51
|
Epithelial-stromal cell interactions and extracellular matrix mechanics drive the formation of airway-mimetic tubular morphology in lung organoids. iScience 2021; 24:103061. [PMID: 34585112 PMCID: PMC8450245 DOI: 10.1016/j.isci.2021.103061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/14/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Complex human airway cellular organization where extracellular matrix (ECM) and epithelial and stromal lineages interact present challenges for organ study in vitro. Current in vitro lung models that focus on the lung epithelium do not represent complex airway morphology and cell-ECM interactions seen in vivo. Models including stromal populations often separate them via a semipermeable barrier precluding cell–cell interaction or the effect of ECM mechanics. We investigated the effect of stromal cells on basal epithelial cell-derived bronchosphere structure and function through a triple culture of human bronchial epithelial, lung fibroblast, and airway smooth muscle cells. Epithelial–stromal cross-talk resulted in epithelial cell-driven branching tubules with stromal cells surrounding epithelial cells termed bronchotubules. Agarose– Matrigel scaffold (Agrigel) formed a mechanically tuneable ECM, with adjustable viscoelasticity and stiffness enabling long-term tubule survival. Bronchotubule models may enable research into how epithelial–stromal cell and cell–ECM communication drive tissue patterning, repair, and development of disease. Healthy lung epithelial and fibroblast cell coculture in Matrigel forms tubules Tubules collapse in 4 days Addition of healthy airway smooth muscle cells allows for a contractile phenotype Triple culture in stiffer matrix maintains tubular organoid structure for 20 days
Collapse
|
52
|
Braunstein JA, Robbins AE, Stewart S, Stankunas K. Basal epidermis collective migration and local Sonic hedgehog signaling promote skeletal branching morphogenesis in zebrafish fins. Dev Biol 2021; 477:177-190. [PMID: 34038742 PMCID: PMC10802891 DOI: 10.1016/j.ydbio.2021.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
Teleost fish fins, like all vertebrate limbs, comprise a series of bones laid out in characteristic pattern. Each fin's distal bony rays typically branch to elaborate skeletal networks providing form and function. Zebrafish caudal fin regeneration studies suggest basal epidermal-expressed Sonic hedgehog (Shh) promotes ray branching by partitioning pools of adjacent pre-osteoblasts. This Shh role is distinct from its well-studied Zone of Polarizing Activity role establishing paired limb positional information. Therefore, we investigated if and how Shh signaling similarly functions during developmental ray branching of both paired and unpaired fins while resolving cellular dynamics of branching by live imaging. We found shha is expressed uniquely by basal epidermal cells overlying pre-osteoblast pools at the distal aspect of outgrowing juvenile fins. Lateral splitting of each shha-expressing epidermal domain followed by the pre-osteoblast pools precedes overt ray branching. We use ptch2:Kaede fish and Kaede photoconversion to identify short stretches of shha+basal epidermis and juxtaposed pre-osteoblasts as the Shh/Smoothened (Smo) active zone. Basal epidermal distal collective movements continuously replenish each shha+domain with individual cells transiently expressing and responding to Shh. In contrast, pre-osteoblasts maintain Shh/Smo activity until differentiating. The Smo inhibitor BMS-833923 prevents branching in all fins, paired and unpaired, with surprisingly minimal effects on caudal fin initial skeletal patterning, ray outgrowth or bone differentiation. Staggered BMS-833923 addition indicates Shh/Smo signaling acts throughout the branching process. We use live cell tracking to find Shh/Smo restrains the distal movement of basal epidermal cells by apparent 'tethering' to pre-osteoblasts. We propose short-range Shh/Smo signaling promotes these heterotypic associations to couple instructive basal epidermal collective movements to pre-osteoblast repositioning as a unique mode of branching morphogenesis.
Collapse
Affiliation(s)
- Joshua A Braunstein
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA
| | - Amy E Robbins
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA.
| |
Collapse
|
53
|
Wang S, Matsumoto K, Lish SR, Cartagena-Rivera AX, Yamada KM. Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. Cell 2021; 184:3702-3716.e30. [PMID: 34133940 PMCID: PMC8287763 DOI: 10.1016/j.cell.2021.05.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/19/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required β1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Kazue Matsumoto
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Samantha R Lish
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
54
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
55
|
The origin and the mechanism of mechanical polarity during epithelial folding. Semin Cell Dev Biol 2021; 120:94-107. [PMID: 34059419 DOI: 10.1016/j.semcdb.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Epithelial tissues are sheet-like tissue structures that line the inner and outer surfaces of animal bodies and organs. Their remarkable ability to actively produce, or passively adapt to, complex surface geometries has fascinated physicists and biologists alike for centuries. The most simple and yet versatile process of epithelial deformation is epithelial folding, through which curved shapes, tissue convolutions and internal structures are produced. The advent of quantitative live imaging, combined with experimental manipulation and computational modeling, has rapidly advanced our understanding of epithelial folding. In particular, a set of mechanical principles has emerged to illustrate how forces are generated and dissipated to instigate curvature transitions in a variety of developmental contexts. Folding a tissue requires that mechanical loads or geometric changes be non-uniform. Given that polarity is the most distinct and fundamental feature of epithelia, understanding epithelial folding mechanics hinges crucially on how forces become polarized and how polarized differential deformation arises, for which I coin the term 'mechanical polarity'. In this review, five typical modules of mechanical processes are distilled from a diverse array of epithelial folding events. Their mechanical underpinnings with regard to how forces and polarity intersect are analyzed to accentuate the importance of mechanical polarity in the understanding of epithelial folding.
Collapse
|
56
|
Miao Q, Chen H, Luo Y, Chiu J, Chu L, Thornton ME, Grubbs BH, Kolb M, Lou J, Shi W. Abrogation of mesenchyme-specific TGF-β signaling results in lung malformation with prenatal pulmonary cysts in mice. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1158-L1168. [PMID: 33881909 DOI: 10.1152/ajplung.00299.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The TGF-β signaling pathway plays a pivotal role in controlling organogenesis during fetal development. Although the role of TGF-β signaling in promoting lung alveolar epithelial growth has been determined, mesenchymal TGF-β signaling in regulating lung development has not been studied in vivo due to a lack of genetic tools for specifically manipulating gene expression in lung mesenchymal cells. Therefore, the integral roles of TGF-β signaling in regulating lung development and congenital lung diseases are not completely understood. Using a Tbx4 lung enhancer-driven Tet-On inducible Cre transgenic mouse system, we have developed a mouse model in which lung mesenchyme-specific deletion of TGF-β receptor 2 gene (Tgfbr2) is achieved. Reduced airway branching accompanied by defective airway smooth muscle growth and later peripheral cystic lesions occurred when lung mesenchymal Tgfbr2 was deleted from embryonic day 13.5 to 15.5, resulting in postnatal death due to respiratory insufficiency. Although cell proliferation in both lung epithelium and mesenchyme was reduced, epithelial differentiation was not significantly affected. Tgfbr2 downstream Smad-independent ERK1/2 may mediate these mesenchymal effects of TGF-β signaling through the GSK3β-β-catenin-Wnt canonical pathway in fetal mouse lung. Our study suggests that Tgfbr2-mediated TGF-β signaling in prenatal lung mesenchyme is essential for lung development and maturation, and defective TGF-β signaling in lung mesenchyme may be related to abnormal airway branching morphogenesis and congenital airway cystic lesions.
Collapse
Affiliation(s)
- Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Allergy, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ling Chu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin Kolb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jianlin Lou
- Institute of Occupational Diseases, Hangzhou Medical College (Zhejiang Academy of Medical Science), Hangzhou, People's Republic of China
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
57
|
Donadon M, Santoro MM. The origin and mechanisms of smooth muscle cell development in vertebrates. Development 2021; 148:148/7/dev197384. [PMID: 33789914 DOI: 10.1242/dev.197384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smooth muscle cells (SMCs) represent a major structural and functional component of many organs during embryonic development and adulthood. These cells are a crucial component of vertebrate structure and physiology, and an updated overview of the developmental and functional process of smooth muscle during organogenesis is desirable. Here, we describe the developmental origin of SMCs within different tissues by comparing their specification and differentiation with other organs, including the cardiovascular, respiratory and intestinal systems. We then discuss the instructive roles of smooth muscle in the development of such organs through signaling and mechanical feedback mechanisms. By understanding SMC development, we hope to advance therapeutic approaches related to tissue regeneration and other smooth muscle-related diseases.
Collapse
Affiliation(s)
- Michael Donadon
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| |
Collapse
|
58
|
Ferner K. Early postnatal lung development in the eastern quoll (Dasyurus viverrinus). Anat Rec (Hoboken) 2021; 304:2823-2840. [PMID: 33773053 DOI: 10.1002/ar.24623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/10/2022]
Abstract
Early postnatal lung development (1-25 days) in the eastern quoll (Dasyurus viverrinus) was investigated to assess the morphofunctional status of one of the most immature marsupial neonates. Lung volume, surface density, surface area, and parenchymal and nonparenchymal volume proportions were determined using light microscopic morphometry. The lungs of the neonate were at the canalicular stage and consisted of two "balloon-like" airways with few septal ridges. The absolute volume of the lung was only 0.0009 cm3 with an air space surface density of 108.83 cm-1 and a surface area of 0.082 cm2 . The increase in lung volume in the first three postnatal days was mainly due to airspace expansion. The rapid postnatal development of the lung was indicated by an increase in the septal proportion of the parenchyma around day 4, which was reflected by an increase in the airspace surface density and surface area. By day 5, the lung entered the saccular stage of development with a reduction in septal thickness, expansion of the tubules into saccules and development of a double capillary system. The subsequent saccular period was characterized by repetitive septation steps, which increased the number of airway generations. The lungs of the newborn Dasyurus viverrinus must be considered as structurally and quantitatively insufficient to meet the respiratory requirements at birth. Hence, cutaneous gas exchange might be crucial for the first three postnatal days. The lung has to mature rapidly in the early postnatal period to support the increased metabolic requirements of the developing young.
Collapse
Affiliation(s)
- Kirsten Ferner
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
59
|
Abstract
Branching morphogenesis generates epithelial trees which facilitate gas exchange, filtering, as well as secretion processes with their large surface to volume ratio. In this review, we focus on the developmental mechanisms that control the early stages of lung branching morphogenesis. Lung branching morphogenesis involves the stereotypic, recurrent definition of new branch points, subsequent epithelial budding, and lung tube elongation. We discuss current models and experimental evidence for each of these steps. Finally, we discuss the role of the mesenchyme in determining the organ-specific shape.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
60
|
Kim JM, Jo Y, Jung JW, Park K. A mechanogenetic role for the actomyosin complex in branching morphogenesis of epithelial organs. Development 2021; 148:dev.190785. [PMID: 33658222 DOI: 10.1242/dev.190785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/19/2021] [Indexed: 11/20/2022]
Abstract
The actomyosin complex plays crucial roles in various life processes by balancing the forces generated by cellular components. In addition to its physical function, the actomyosin complex participates in mechanotransduction. However, the exact role of actomyosin contractility in force transmission and the related transcriptional changes during morphogenesis are not fully understood. Here, we report a mechanogenetic role of the actomyosin complex in branching morphogenesis using an organotypic culture system of mouse embryonic submandibular glands. We dissected the physical factors arranged by characteristic actin structures in developing epithelial buds and identified the spatial distribution of forces that is essential for buckling mechanism to promote the branching process. Moreover, the crucial genes required for the distribution of epithelial progenitor cells were regulated by YAP and TAZ through a mechanotransduction process in epithelial organs. These findings are important for our understanding of the physical processes involved in the development of epithelial organs and provide a theoretical background for developing new approaches for organ regeneration.
Collapse
Affiliation(s)
- Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - YoungJu Jo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ju Won Jung
- Department of Dentistry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
61
|
Abstract
Most tissues include several cell types, which generally develop or get repaired synchronously so as to remain properly organized. In a recent Cell Stem Cell article, Ning et al. (2020) reveals how the tensile state of the skin suprabasal cells non-autonomously regulate stem cell behavior in the basal layer.
Collapse
|
62
|
Kina YP, Khadim A, Seeger W, El Agha E. The Lung Vasculature: A Driver or Passenger in Lung Branching Morphogenesis? Front Cell Dev Biol 2021; 8:623868. [PMID: 33585463 PMCID: PMC7873988 DOI: 10.3389/fcell.2020.623868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Abstract
Multiple cellular, biochemical, and physical factors converge to coordinate organogenesis. During embryonic development, several organs such as the lung, salivary glands, mammary glands, and kidneys undergo rapid, but intricate, iterative branching. This biological process not only determines the overall architecture, size and shape of such organs but is also a pre-requisite for optimal organ function. The lung, in particular, relies on a vast surface area to carry out efficient gas exchange, and it is logical to suggest that airway branching during lung development represents a rate-limiting step in this context. Against this background, the vascular network develops in parallel to the airway tree and reciprocal interaction between these two compartments is critical for their patterning, branching, and co-alignment. In this mini review, we present an overview of the branching process in the developing mouse lung and discuss whether the vasculature plays a leading role in the process of airway epithelial branching.
Collapse
Affiliation(s)
| | | | | | - Elie El Agha
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
63
|
Jones MR, Chong L, Bellusci S. Fgf10/Fgfr2b Signaling Orchestrates the Symphony of Molecular, Cellular, and Physical Processes Required for Harmonious Airway Branching Morphogenesis. Front Cell Dev Biol 2021; 8:620667. [PMID: 33511132 PMCID: PMC7835514 DOI: 10.3389/fcell.2020.620667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Airway branching morphogenesis depends on the intricate orchestration of numerous biological and physical factors connected across different spatial scales. One of the key regulatory pathways controlling airway branching is fibroblast growth factor 10 (Fgf10) signaling via its epithelial fibroblast growth factor receptor 2b (Fgfr2b). Fine reviews have been published on the molecular mechanisms, in general, involved in branching morphogenesis, including those mechanisms, in particular, connected to Fgf10/Fgfr2b signaling. However, a comprehensive review looking at all the major biological and physical factors involved in branching, at the different scales at which branching operates, and the known role of Fgf10/Fgfr2b therein, is missing. In the current review, we attempt to summarize the existing literature on airway branching morphogenesis by taking a broad approach. We focus on the biophysical and mechanical forces directly shaping epithelial bud initiation, branch elongation, and branch tip bifurcation. We then shift focus to more passive means by which branching proceeds, via extracellular matrix remodeling and the influence of the other pulmonary arborized networks: the vasculature and nerves. We end the review by briefly discussing work in computational modeling of airway branching. Throughout, we emphasize the known or speculative effects of Fgfr2b signaling at each point of discussion. It is our aim to promote an understanding of branching morphogenesis that captures the multi-scalar biological and physical nature of the phenomenon, and the interdisciplinary approach to its study.
Collapse
Affiliation(s)
- Matthew R. Jones
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Lei Chong
- National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
64
|
Goodwin K, Nelson CM. Mechanics of Development. Dev Cell 2020; 56:240-250. [PMID: 33321105 DOI: 10.1016/j.devcel.2020.11.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 01/06/2023]
Abstract
Mechanical forces are integral to development-from the earliest stages of embryogenesis to the construction and differentiation of complex organs. Advances in imaging and biophysical tools have allowed us to delve into the developmental mechanobiology of increasingly complex organs and organisms. Here, we focus on recent work that highlights the diversity and importance of mechanical influences during morphogenesis. Developing tissues experience intrinsic mechanical signals from active forces and changes to tissue mechanical properties as well as extrinsic mechanical signals, including constraint and compression, pressure, and shear forces. Finally, we suggest promising avenues for future work in this rapidly expanding field.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
65
|
Goodwin K, Nelson CM. Uncovering cellular networks in branching morphogenesis using single-cell transcriptomics. Curr Top Dev Biol 2020; 143:239-280. [PMID: 33820623 DOI: 10.1016/bs.ctdb.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell RNA-sequencing (scRNA-seq) and related technologies to identify cell types and measure gene expression in space, in time, and within lineages have multiplied rapidly in recent years. As these techniques proliferate, we are seeing an increase in their application to the study of developing tissues. Here, we focus on single-cell investigations of branching morphogenesis. Branched organs are highly complex but typically develop recursively, such that a given developmental stage theoretically contains the entire spectrum of cell identities from progenitor to terminally differentiated. Therefore, branched organs are a highly attractive system for study by scRNA-seq. First, we provide an update on advances in the field of scRNA-seq analysis, focusing on spatial transcriptomics, computational reconstruction of differentiation trajectories, and integration of scRNA-seq with lineage tracing. In addition, we discuss the possibilities and limitations for applying these techniques to studying branched organs. We then discuss exciting advances made using scRNA-seq in the study of branching morphogenesis and differentiation in mammalian organs, with emphasis on the lung, kidney, and mammary gland. We propose ways that scRNA-seq could be used to address outstanding questions in each organ. Finally, we highlight the importance of physical and mechanical signals in branching morphogenesis and speculate about how scRNA-seq and related techniques could be applied to study tissue morphogenesis beyond just differentiation.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
66
|
Tozluoǧlu M, Mao Y. On folding morphogenesis, a mechanical problem. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190564. [PMID: 32829686 DOI: 10.1098/rstb.2019.0564] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue folding is a fundamental process that sculpts a simple flat epithelium into a complex three-dimensional organ structure. Whether it is the folding of the brain, or the looping of the gut, it has become clear that to generate an invagination or a fold of any form, mechanical asymmetries must exist in the epithelium. These mechanical asymmetries can be generated locally, involving just the invaginating cells and their immediate neighbours, or on a more global tissue-wide scale. Here, we review the different mechanical mechanisms that epithelia have adopted to generate folds, and how the use of precisely defined mathematical models has helped decipher which mechanisms are the key driving forces in different epithelia. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Melda Tozluoǧlu
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
67
|
Short KM, Smyth IM. Branching morphogenesis as a driver of renal development. Anat Rec (Hoboken) 2020; 303:2578-2587. [PMID: 32790143 DOI: 10.1002/ar.24486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
Branching morphogenesis is an integral developmental mechanism central to the formation of a range of organs including the kidney, lung, pancreas and mammary gland. The ramified networks of epithelial tubules it establishes are critical for the processes of secretion, excretion and exchange mediated by these tissues. In the kidney, branching serves to establish the collecting duct system that transports urine from the nephrons into the renal pelvis, ureter and finally the bladder. Generally speaking, the formation of these networks in different organs begins with the specification and differentiation of simple bud-like organ anlage, which then undergo a process of elaboration, typically by bifurcation. This process is often governed by the interaction of progenitor cells at the tips of the epithelia with neighboring mesenchymal cell populations which direct the branching process and which often themselves differentiate to form part of the adult organ. In the kidney, the tips of ureteric bud elaborate through a dynamic cell signaling relationship with overlying nephron progenitor cell populations. These cells sequentially commit to differentiation and the resulting nephrons reintegrate with the ureteric epithelium as development progresses. This review will describe recent advances in understanding the how the elaboration of the ureteric bud is patterned and consider the extent to which this process is shared with other organs.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
68
|
Palmer MA, Nelson CM. Fusion of airways during avian lung development constitutes a novel mechanism for the formation of continuous lumena in multicellular epithelia. Dev Dyn 2020; 249:1318-1333. [DOI: 10.1002/dvdy.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michael A. Palmer
- Department of Chemical & Biological Engineering Princeton University Princeton New Jersey USA
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering Princeton University Princeton New Jersey USA
- Department of Molecular Biology Princeton University Princeton New Jersey USA
| |
Collapse
|
69
|
Kuwahara A, Lewis AE, Coombes C, Leung FS, Percharde M, Bush JO. Delineating the early transcriptional specification of the mammalian trachea and esophagus. eLife 2020; 9:e55526. [PMID: 32515350 PMCID: PMC7282815 DOI: 10.7554/elife.55526] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
The genome-scale transcriptional programs that specify the mammalian trachea and esophagus are unknown. Though NKX2-1 and SOX2 are hypothesized to be co-repressive master regulators of tracheoesophageal fates, this is untested at a whole transcriptomic scale and their downstream networks remain unidentified. By combining single-cell RNA-sequencing with bulk RNA-sequencing of Nkx2-1 mutants and NKX2-1 ChIP-sequencing in mouse embryos, we delineate the NKX2-1 transcriptional program in tracheoesophageal specification, and discover that the majority of the tracheal and esophageal transcriptome is NKX2-1 independent. To decouple the NKX2-1 transcriptional program from regulation by SOX2, we interrogate the expression of newly-identified tracheal and esophageal markers in Sox2/Nkx2-1 compound mutants. Finally, we discover that NKX2-1 binds directly to Shh and Wnt7b and regulates their expression to control mesenchymal specification to cartilage and smooth muscle, coupling epithelial identity with mesenchymal specification. These findings create a new framework for understanding early tracheoesophageal fate specification at the genome-wide level.
Collapse
Affiliation(s)
- Akela Kuwahara
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
- Developmental and Stem Cell Biology Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Ace E Lewis
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| | - Coohleen Coombes
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
- Department of Biology, San Francisco State UniversitySan FranciscoUnited States
| | - Fang-Shiuan Leung
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| | - Michelle Percharde
- MRC London Institute of Medical Sciences (LMS)LondonUnited Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
70
|
Conway RF, Frum T, Conchola AS, Spence JR. Understanding Human Lung Development through In Vitro Model Systems. Bioessays 2020; 42:e2000006. [PMID: 32310312 PMCID: PMC7433239 DOI: 10.1002/bies.202000006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Indexed: 12/19/2022]
Abstract
An abundance of information about lung development in animal models exists; however, comparatively little is known about lung development in humans. Recent advances using primary human lung tissue combined with the use of human in vitro model systems, such as human pluripotent stem cell-derived tissue, have led to a growing understanding of the mechanisms governing human lung development. They have illuminated key differences between animal models and humans, underscoring the need for continued advancements in modeling human lung development and utilizing human tissue. This review discusses the use of human tissue and the use of human in vitro model systems that have been leveraged to better understand key regulators of human lung development and that have identified uniquely human features of development. This review also examines the implementation and challenges of human model systems and discusses how they can be applied to address knowledge gaps.
Collapse
Affiliation(s)
- Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Ansley S Conchola
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48104, USA
| |
Collapse
|
71
|
Abstract
ABSTRACT
Over the past 5 years, several studies have begun to uncover the links between the classical signal transduction pathways and the physical mechanisms that are used to sculpt branched tissues. These advances have been made, in part, thanks to innovations in live imaging and reporter animals. With modern research tools, our conceptual models of branching morphogenesis are rapidly evolving, and the differences in branching mechanisms between each organ are becoming increasingly apparent. Here, we highlight four branched epithelia that develop at different spatial scales, within different surrounding tissues and via divergent physical mechanisms. Each of these organs has evolved to employ unique branching strategies to achieve a specialized final architecture.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
72
|
Durel JF, Nerurkar NL. Mechanobiology of vertebrate gut morphogenesis. Curr Opin Genet Dev 2020; 63:45-52. [PMID: 32413823 DOI: 10.1016/j.gde.2020.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
Approximately a century after D'Arcy Thompson's On Growth and Form, there continues to be widespread interest in the biophysical and mathematical basis of morphogenesis. Particularly over the past 20 years, this interest has led to great advances in our understanding of a broad range of processes in embryonic development through a quantitative, mechanically driven framework. Nowhere in vertebrate development is this more apparent than the development of endodermally derived organs. Here, we discuss recent advances in the study of gut development that have emerged primarily from mechanobiology-motivated approaches that span from gut tube morphogenesis and later organogenesis of the respiratory and gastrointestinal systems.
Collapse
Affiliation(s)
- John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
73
|
Anthracopoulos MB, Everard ML. Asthma: A Loss of Post-natal Homeostatic Control of Airways Smooth Muscle With Regression Toward a Pre-natal State. Front Pediatr 2020; 8:95. [PMID: 32373557 PMCID: PMC7176812 DOI: 10.3389/fped.2020.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The defining feature of asthma is loss of normal post-natal homeostatic control of airways smooth muscle (ASM). This is the key feature that distinguishes asthma from all other forms of respiratory disease. Failure to focus on impaired ASM homeostasis largely explains our failure to find a cure and contributes to the widespread excessive morbidity associated with the condition despite the presence of effective therapies. The mechanisms responsible for destabilizing the normal tight control of ASM and hence airways caliber in post-natal life are unknown but it is clear that atopic inflammation is neither necessary nor sufficient. Loss of homeostasis results in excessive ASM contraction which, in those with poor control, is manifest by variations in airflow resistance over short periods of time. During viral exacerbations, the ability to respond to bronchodilators is partially or almost completely lost, resulting in ASM being "locked down" in a contracted state. Corticosteroids appear to restore normal or near normal homeostasis in those with poor control and restore bronchodilator responsiveness during exacerbations. The mechanism of action of corticosteroids is unknown and the assumption that their action is solely due to "anti-inflammatory" effects needs to be challenged. ASM, in evolutionary terms, dates to the earliest land dwelling creatures that required muscle to empty primitive lungs. ASM appears very early in embryonic development and active peristalsis is essential for the formation of the lungs. However, in post-natal life its only role appears to be to maintain airways in a configuration that minimizes resistance to airflow and dead space. In health, significant constriction is actively prevented, presumably through classic negative feedback loops. Disruption of this robust homeostatic control can develop at any age and results in asthma. In order to develop a cure, we need to move from our current focus on immunology and inflammatory pathways to work that will lead to an understanding of the mechanisms that contribute to ASM stability in health and how this is disrupted to cause asthma. This requires a radical change in the focus of most of "asthma research."
Collapse
Affiliation(s)
| | - Mark L. Everard
- Division of Paediatrics & Child Health, Perth Children's Hospital, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
74
|
Young RE, Jones MK, Hines EA, Li R, Luo Y, Shi W, Verheyden JM, Sun X. Smooth Muscle Differentiation Is Essential for Airway Size, Tracheal Cartilage Segmentation, but Dispensable for Epithelial Branching. Dev Cell 2020; 53:73-85.e5. [PMID: 32142630 PMCID: PMC7540204 DOI: 10.1016/j.devcel.2020.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 01/31/2020] [Indexed: 01/11/2023]
Abstract
Airway smooth muscle is best known for its role as an airway constrictor in diseases such as asthma. However, its function in lung development is debated. A prevalent model, supported by in vitro data, posits that airway smooth muscle promotes lung branching through peristalsis and pushing intraluminal fluid to branching tips. Here, we test this model in vivo by inactivating Myocardin, which prevented airway smooth muscle differentiation. We found that Myocardin mutants show normal branching, despite the absence of peristalsis. In contrast, tracheal cartilage, vasculature, and neural innervation patterns were all disrupted. Furthermore, airway diameter is reduced in the mutant, counter to the expectation that the absence of smooth muscle constriction would lead to a more relaxed and thereby wider airway. These findings together demonstrate that during development, while airway smooth muscle is dispensable for epithelial branching, it is integral for building the tracheal architecture and promoting airway growth.
Collapse
Affiliation(s)
- Randee E Young
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary-Kayt Jones
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth A Hines
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rongbo Li
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Yongfeng Luo
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jamie M Verheyden
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA.
| | - Xin Sun
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
75
|
Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proc Natl Acad Sci U S A 2020; 117:7622-7632. [PMID: 32193350 DOI: 10.1073/pnas.1919607117] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development, organisms acquire three-dimensional (3D) shapes with important physiological consequences. While basic mechanisms underlying morphogenesis are known in eukaryotes, it is often difficult to manipulate them in vivo. To circumvent this issue, here we present a study of developing Vibrio cholerae biofilms grown on agar substrates in which the spatiotemporal morphological patterns were altered by varying the agar concentration. Expanding biofilms are initially flat but later undergo a mechanical instability and become wrinkled. To gain mechanistic insights into this dynamic pattern-formation process, we developed a model that considers diffusion of nutrients and their uptake by bacteria, bacterial growth/biofilm matrix production, mechanical deformation of both the biofilm and the substrate, and the friction between them. Our model shows quantitative agreement with experimental measurements of biofilm expansion dynamics, and it accurately predicts two distinct spatiotemporal patterns observed in the experiments-the wrinkles initially appear either in the peripheral region and propagate inward (soft substrate/low friction) or in the central region and propagate outward (stiff substrate/high friction). Our results, which establish that nonuniform growth and friction are fundamental determinants of stress anisotropy and hence biofilm morphology, are broadly applicable to bacterial biofilms with similar morphologies and also provide insight into how other bacterial biofilms form distinct wrinkle patterns. We discuss the implications of forming undulated biofilm morphologies, which may enhance the availability of nutrients and signaling molecules and serve as a "bet hedging" strategy.
Collapse
|
76
|
Nerger BA, Nelson CM. Engineered extracellular matrices: emerging strategies for decoupling structural and molecular signals that regulate epithelial branching morphogenesis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 13:103-112. [PMID: 32864528 PMCID: PMC7451493 DOI: 10.1016/j.cobme.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) is a heterogeneous mixture of proteoglycans and fibrous proteins that form the non-cellular component of tissues and organs. During normal development, homeostasis, and disease progression, the ECM provides dynamic structural and molecular signals that influence the form and function of individual cells and multicellular tissues. Here, we review recent developments in the design and fabrication of engineered ECMs and the application of these systems to study the morphogenesis of epithelial tissues. We emphasize emerging techniques for reproducing the structural and molecular complexity of native ECM, and we highlight how these techniques may be used to decouple the different signals that drive epithelial morphogenesis. Engineered models of native ECM will enable further investigation of the dynamic mechanisms by which the microenvironment influences tissue morphogenesis.
Collapse
Affiliation(s)
- Bryan A. Nerger
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
77
|
Fernandes-Silva H, Araújo-Silva H, Correia-Pinto J, Moura RS. Retinoic Acid: A Key Regulator of Lung Development. Biomolecules 2020; 10:biom10010152. [PMID: 31963453 PMCID: PMC7022928 DOI: 10.3390/biom10010152] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid (RA) is a key molecular player in embryogenesis and adult tissue homeostasis. In embryo development, RA plays a crucial role in the formation of different organ systems, namely, the respiratory system. During lung development, there is a spatiotemporal regulation of RA levels that assures the formation of a fully functional organ. RA signaling influences lung specification, branching morphogenesis, and alveolarization by regulating the expression of particular target genes. Moreover, cooperation with other developmental pathways is essential to shape lung organogenesis. This review focuses on the events regulated by retinoic acid during lung developmental phases and pulmonary vascular development; also, it aims to provide a snapshot of RA interplay with other well-known regulators of lung development.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- PhDOC PhD Program, ICVS/3B’s, School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Henrique Araújo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital of Braga, 4710-243 Braga, Portugal
| | - Rute S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +35-12-5360-4911
| |
Collapse
|
78
|
Callens SJP, Uyttendaele RJC, Fratila-Apachitei LE, Zadpoor AA. Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials 2019; 232:119739. [PMID: 31911284 DOI: 10.1016/j.biomaterials.2019.119739] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
Recent evidence clearly shows that cells respond to various physical cues in their environments, guiding many cellular processes and tissue morphogenesis, pathology, and repair. One aspect that is gaining significant traction is the role of local geometry as an extracellular cue. Elucidating how geometry affects cell and tissue behavior is, indeed, crucial to design artificial scaffolds and understand tissue growth and remodeling. Perhaps the most fundamental descriptor of local geometry is surface curvature, and a growing body of evidence confirms that surface curvature affects the spatiotemporal organization of cells and tissues. While well-defined in differential geometry, curvature remains somewhat ambiguously treated in biological studies. Here, we provide a more formal curvature framework, based on the notions of mean and Gaussian curvature, and summarize the available evidence on curvature guidance at the cell and tissue levels. We discuss the involved mechanisms, highlighting the interplay between tensile forces and substrate curvature that forms the foundation of curvature guidance. Moreover, we show that relatively simple computational models, based on some application of curvature flow, are able to capture experimental tissue growth remarkably well. Since curvature guidance principles could be leveraged for tissue regeneration, the implications for geometrical scaffold design are also discussed. Finally, perspectives on future research opportunities are provided.
Collapse
Affiliation(s)
- Sebastien J P Callens
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands.
| | - Rafael J C Uyttendaele
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| |
Collapse
|
79
|
Barazzone-Argiroffo C, Lascano Maillard J, Vidal I, Bochaton-Piallat ML, Blaskovic S, Donati Y, Wildhaber BE, Rougemont AL, Delacourt C, Ruchonnet-Métrailler I. New insights on congenital pulmonary airways malformations revealed by proteomic analyses. Orphanet J Rare Dis 2019; 14:272. [PMID: 31779656 PMCID: PMC6883702 DOI: 10.1186/s13023-019-1192-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/04/2019] [Indexed: 12/28/2022] Open
Abstract
Background Congenital Pulmonary Airway Malformation (CPAM) has an estimated prevalence between 0.87 and 1.02/10,000 live births and little is know about their pathogenesis. To improve our knowledge on these rare malformations, we analyzed the cellular origin of the two most frequent CPAM, CPAM types 1 and 2, and compared these malformations with adjacent healthy lung and human fetal lungs. Methods We prospectively enrolled 21 infants undergoing surgical resection for CPAM. Human fetal lung samples were collected after termination of pregnancy. Immunohistochemistry and proteomic analysis were performed on laser microdissected samples. Results CPAM 1 and 2 express mostly bronchial markers, such as cytokeratin 17 (Krt17) or α-smooth muscle actin (ACTA 2). CPAM 1 also expresses alveolar type II epithelial cell markers (SPC). Proteomic analysis on microlaser dissected epithelium confirmed these results and showed distinct protein profiles, CPAM 1 being more heterogeneous and displaying some similarities with fetal bronchi. Conclusion This study provides new insights in CPAM etiology, showing clear distinction between CPAM types 1 and 2, by immunohistochemistry and proteomics. This suggests that CPAM 1 and CPAM 2 might occur at different stages of lung branching. Finally, the comparison between fetal lung structures and CPAMs shows clearly different protein profiles, thereby arguing against a developmental arrest in a localized part of the lung.
Collapse
Affiliation(s)
- C Barazzone-Argiroffo
- Pediatric Pulmonology Unit, Department of Pediatrics,Obstetrics and Gynecology, Children's Hospital, 6 Rue Willy Donzé, 1211, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - J Lascano Maillard
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - I Vidal
- Division of Pediatric Surgery, University Hospitals Geneva, University Center of Pediatric Surgery of Western Switzerland, Geneva, Switzerland
| | - M L Bochaton-Piallat
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - S Blaskovic
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Y Donati
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - B E Wildhaber
- Division of Pediatric Surgery, University Hospitals Geneva, University Center of Pediatric Surgery of Western Switzerland, Geneva, Switzerland
| | - A-L Rougemont
- Division of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland
| | - C Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - I Ruchonnet-Métrailler
- Pediatric Pulmonology Unit, Department of Pediatrics,Obstetrics and Gynecology, Children's Hospital, 6 Rue Willy Donzé, 1211, Geneva, Switzerland. .,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
80
|
Goodwin K, Mao S, Guyomar T, Miller E, Radisky DC, Košmrlj A, Nelson CM. Smooth muscle differentiation shapes domain branches during mouse lung development. Development 2019; 146:dev.181172. [PMID: 31645357 DOI: 10.1242/dev.181172] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
During branching morphogenesis, a simple cluster of cells proliferates and branches to generate an arborized network that facilitates fluid flow. The overall architecture of the mouse lung is established by domain branching, wherein new branches form laterally off the side of an existing branch. The airway epithelium develops concomitantly with a layer of smooth muscle that is derived from the embryonic mesenchyme. Here, we examined the role of smooth muscle differentiation in shaping emerging domain branches. We found that the position and morphology of domain branches are highly stereotyped, as is the pattern of smooth muscle that differentiates around the base of each branch. Perturbing the pattern of smooth muscle differentiation genetically or pharmacologically causes abnormal domain branching. Loss of smooth muscle results in ectopic branching and decreases branch stereotypy. Increased smooth muscle suppresses branch initiation and extension. Computational modeling revealed that epithelial proliferation is insufficient to generate domain branches and that smooth muscle wrapping is required to shape the epithelium into a branch. Our work sheds light on the physical mechanisms of branching morphogenesis in the mouse lung.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sheng Mao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Tristan Guyomar
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.,Département de Physique, Ecole Normale Supérieure de Lyon, F-69342 Lyon, France
| | - Erin Miller
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA .,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
81
|
Tozluoǧlu M, Duda M, Kirkland NJ, Barrientos R, Burden JJ, Muñoz JJ, Mao Y. Planar Differential Growth Rates Initiate Precise Fold Positions in Complex Epithelia. Dev Cell 2019; 51:299-312.e4. [PMID: 31607650 PMCID: PMC6838681 DOI: 10.1016/j.devcel.2019.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/10/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023]
Abstract
Tissue folding is a fundamental process that shapes epithelia into complex 3D organs. The initial positioning of folds is the foundation for the emergence of correct tissue morphology. Mechanisms forming individual folds have been studied, but the precise positioning of folds in complex, multi-folded epithelia is less well-understood. We present a computational model of morphogenesis, encompassing local differential growth and tissue mechanics, to investigate tissue fold positioning. We use the Drosophila wing disc as our model system and show that there is spatial-temporal heterogeneity in its planar growth rates. This differential growth, especially at the early stages of development, is the main driver for fold positioning. Increased apical layer stiffness and confinement by the basement membrane drive fold formation but influence positioning to a lesser degree. The model successfully predicts the in vivo morphology of overgrowth clones and wingless mutants via perturbations solely on planar differential growth in silico. Drosophila wing discs grow with spatial and temporal heterogeneity This differential growth determines the positions of epithelial folds Constriction from the basement membrane is necessary for correct fold initiation Our computational model correctly predicts the shape of growth mutants
Collapse
Affiliation(s)
- Melda Tozluoǧlu
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Maria Duda
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Natalie J Kirkland
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Ricardo Barrientos
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J Burden
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - José J Muñoz
- Mathematical and Computational Modeling (LaCàN), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK; College of Information and Control, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
82
|
Multiscale dynamics of branching morphogenesis. Curr Opin Cell Biol 2019; 60:99-105. [DOI: 10.1016/j.ceb.2019.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
|
83
|
Korolj A, Wu HT, Radisic M. A healthy dose of chaos: Using fractal frameworks for engineering higher-fidelity biomedical systems. Biomaterials 2019; 219:119363. [PMID: 31376747 PMCID: PMC6759375 DOI: 10.1016/j.biomaterials.2019.119363] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022]
Abstract
Optimal levels of chaos and fractality are distinctly associated with physiological health and function in natural systems. Chaos is a type of nonlinear dynamics that tends to exhibit seemingly random structures, whereas fractality is a measure of the extent of organization underlying such structures. Growing bodies of work are demonstrating both the importance of chaotic dynamics for proper function of natural systems, as well as the suitability of fractal mathematics for characterizing these systems. Here, we review how measures of fractality that quantify the dose of chaos may reflect the state of health across various biological systems, including: brain, skeletal muscle, eyes and vision, lungs, kidneys, tumours, cell regulation, skin and wound repair, bone, vasculature, and the heart. We compare how reports of either too little or too much chaos and fractal complexity can be damaging to normal biological function, and suggest that aiming for the healthy dose of chaos may be an effective strategy for various biomedical applications. We also discuss rising examples of the implementation of fractal theory in designing novel materials, biomedical devices, diagnostics, and clinical therapies. Finally, we explain important mathematical concepts of fractals and chaos, such as fractal dimension, criticality, bifurcation, and iteration, and how they are related to biology. Overall, we promote the effectiveness of fractals in characterizing natural systems, and suggest moving towards using fractal frameworks as a basis for the research and development of better tools for the future of biomedical engineering.
Collapse
Affiliation(s)
- Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Hau-Tieng Wu
- Department of Statistical Science, Duke University, Durham, NC, USA; Department of Mathematics, Duke University, Durham, NC, USA; Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Toronto General Research Institute, University Health Network, Toronto, Canada; The Heart and Stroke/Richard Lewar Center of Excellence, Toronto, Canada.
| |
Collapse
|
84
|
Spurlin JW, Siedlik MJ, Nerger BA, Pang MF, Jayaraman S, Zhang R, Nelson CM. Mesenchymal proteases and tissue fluidity remodel the extracellular matrix during airway epithelial branching in the embryonic avian lung. Development 2019; 146:dev.175257. [PMID: 31371376 DOI: 10.1242/dev.175257] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/16/2019] [Indexed: 12/31/2022]
Abstract
Reciprocal epithelial-mesenchymal signaling is essential for morphogenesis, including branching of the lung. In the mouse, mesenchymal cells differentiate into airway smooth muscle that wraps around epithelial branches, but this contractile tissue is absent from the early avian lung. Here, we have found that branching morphogenesis in the embryonic chicken lung requires extracellular matrix (ECM) remodeling driven by reciprocal interactions between the epithelium and mesenchyme. Before branching, the basement membrane wraps the airway epithelium as a spatially uniform sheath. After branch initiation, however, the basement membrane thins at branch tips; this remodeling requires mesenchymal expression of matrix metalloproteinase 2, which is necessary for branch extension but for not branch initiation. As branches extend, tenascin C (TNC) accumulates in the mesenchyme several cell diameters away from the epithelium. Despite its pattern of accumulation, TNC is expressed exclusively by epithelial cells. Branch extension coincides with deformation of adjacent mesenchymal cells, which correlates with an increase in mesenchymal fluidity at branch tips that may transport TNC away from the epithelium. These data reveal novel epithelial-mesenchymal interactions that direct ECM remodeling during airway branching morphogenesis.
Collapse
Affiliation(s)
- James W Spurlin
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Michael J Siedlik
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bryan A Nerger
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mei-Fong Pang
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sahana Jayaraman
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Rawlison Zhang
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA .,Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
85
|
Abstract
Extracellular matrices (ECMs) are structurally and compositionally diverse networks of collagenous and noncollagenous glycoproteins, glycosaminoglycans, proteoglycans, and associated molecules that together comprise the metazoan matrisome. Proper deposition and assembly of ECM is of profound importance to cell proliferation, survival, and differentiation, and the morphogenesis of tissues and organ systems that define sequential steps in the development of all animals. Importantly, it is now clear that the instructive influence of a particular ECM at various points in development reflects more than a simple summing of component parts; cellular responses also reflect the dynamic assembly and changing topology of embryonic ECM, which in turn affect its biomechanical properties. This review highlights recent advances in understanding how biophysical features attributed to ECM, such as stiffness and viscoelasticity, play important roles in the sculpting of embryonic tissues and the regulation of cell fates. Forces generated within cells and tissues are transmitted both through integrin-based adhesions to ECM, and through cadherin-dependent cell-cell adhesions; the resulting short- and long-range deformations of embryonic tissues drive morphogenesis. This coordinate regulation of cell-ECM and cell-cell adhesive machinery has emerged as a common theme in a variety of developmental processes. In this review we consider select examples in the embryo where ECM is implicated in setting up tissue barriers and boundaries, in resisting pushing or pulling forces, or in constraining or promoting cell and tissue movement. We reflect on how each of these processes contribute to morphogenesis.
Collapse
|
86
|
Cellular crosstalk in the development and regeneration of the respiratory system. Nat Rev Mol Cell Biol 2019; 20:551-566. [PMID: 31217577 DOI: 10.1038/s41580-019-0141-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
The respiratory system, including the peripheral lungs, large airways and trachea, is one of the most recently evolved adaptations to terrestrial life. To support the exchange of respiratory gases, the respiratory system is interconnected with the cardiovascular system, and this interconnective nature requires a complex interplay between a myriad of cell types. Until recently, this complexity has hampered our understanding of how the respiratory system develops and responds to postnatal injury to maintain homeostasis. The advent of new single-cell sequencing technologies, developments in cellular and tissue imaging and advances in cell lineage tracing have begun to fill this gap. The view that emerges from these studies is that cellular and functional heterogeneity of the respiratory system is even greater than expected and also highly adaptive. In this Review, we explore the cellular crosstalk that coordinates the development and regeneration of the respiratory system. We discuss both the classic cell and developmental biology studies and recent single-cell analysis to provide an integrated understanding of the cellular niches that control how the respiratory system develops, interacts with the external environment and responds to injury.
Collapse
|
87
|
Millar-Haskell CS, Dang AM, Gleghorn JP. Coupling synthetic biology and programmable materials to construct complex tissue ecosystems. MRS COMMUNICATIONS 2019; 9:421-432. [PMID: 31485382 PMCID: PMC6724541 DOI: 10.1557/mrc.2019.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 05/17/2023]
Abstract
Synthetic biology combines engineering and biology to produce artificial systems with programmable features. Specifically, engineered microenvironments have advanced immensely over the past few decades, owing in part to the merging of materials with biological mimetic structures. In this review, we adapt a traditional definition of community ecology to describe "cellular ecology", or the study of the distribution of cell populations and interactions within their microenvironment. We discuss two exemplar hydrogel platforms: (1) self-assembling peptide (SAP) hydrogels and (2) Poly(ethylene) glycol (PEG) hydrogels and describe future opportunities for merging smart material design and synthetic biology within the scope of multicellular platforms.
Collapse
Affiliation(s)
| | - Allyson M. Dang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
88
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
89
|
Jiang Y, Luo Y, Tang Y, Moats R, Warburton D, Zhou S, Lou J, Pryhuber GS, Shi W, Wang LL. Alteration of cystic airway mesenchyme in congenital pulmonary airway malformation. Sci Rep 2019; 9:5296. [PMID: 30923323 PMCID: PMC6439218 DOI: 10.1038/s41598-019-41777-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Congenital pulmonary airway malformation (CPAM) is the most common congenital lesion detected in the neonatal lung, which may lead to respiratory distress, infection, and pneumothorax. CPAM is thought to result from abnormal branching morphogenesis during fetal lung development, arising from different locations within the developing respiratory tract. However, the pathogenic mechanisms are unknown, and previous studies have focused on abnormalities in airway epithelial cells. We have analyzed 13 excised lung specimens from infants (age < 1 year) with a confirmed diagnosis of type 2 CPAM, which is supposed to be derived from abnormal growth of intrapulmonary distal airways. By examining the mesenchymal components including smooth muscle cells, laminin, and elastin in airway and cystic walls using immunofluorescence staining, we found that the thickness and area of the smooth muscle layer underlining the airway cysts in these CPAM tissue sections were significantly decreased compared with those in bronchiolar walls of normal controls. Extracellular elastin fibers were also visually reduced or absent in airway cystic walls. In particular, a layer of elastin fibers seen in normal lung between airway epithelia and underlying smooth muscle cells was missing in type 2 CPAM samples. Thus, our data demonstrate for the first time that airway cystic lesions in type 2 CPAM occur not only in airway epithelial cells, but also in adjacent mesenchymal tissues, including airway smooth muscle cells and their extracellular protein products. This provides a new direction to study the molecular and cellular mechanisms of CPAM pathogenesis in human.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Pathology, the Second Xiangya Hospital of Central South University, Changsha, China
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Yongfeng Luo
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Yang Tang
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Rex Moats
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Jianlin Lou
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.
| | - Larry L Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.
| |
Collapse
|
90
|
Yan J, Fei C, Mao S, Moreau A, Wingreen NS, Košmrlj A, Stone HA, Bassler BL. Mechanical instability and interfacial energy drive biofilm morphogenesis. eLife 2019; 8:43920. [PMID: 30848725 PMCID: PMC6453567 DOI: 10.7554/elife.43920] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/06/2019] [Indexed: 11/17/2022] Open
Abstract
Surface-attached bacterial communities called biofilms display a diversity of morphologies. Although structural and regulatory components required for biofilm formation are known, it is not understood how these essential constituents promote biofilm surface morphology. Here, using Vibrio cholerae as our model system, we combine mechanical measurements, theory and simulation, quantitative image analyses, surface energy characterizations, and mutagenesis to show that mechanical instabilities, including wrinkling and delamination, underlie the morphogenesis program of growing biofilms. We also identify interfacial energy as a key driving force for mechanomorphogenesis because it dictates the generation of new and the annihilation of existing interfaces. Finally, we discover feedback between mechanomorphogenesis and biofilm expansion, which shapes the overall biofilm contour. The morphogenesis principles that we discover in bacterial biofilms, which rely on mechanical instabilities and interfacial energies, should be generally applicable to morphogenesis processes in tissues in higher organisms. Engineers have long studied how mechanical instabilities cause patterns to form in inanimate materials, and recently more attention has been given to how such forces affect biological systems. For example, stresses can build up within a tissue if one layer grows faster than an adjacent layer. The tissue can release this stress by wrinkling, folding or creasing. Though ancient and single-celled, bacteria can also develop spectacular patterns when they exist in the lifestyle known as a biofilm: a community of cells adhered to a surface. But do mechanical instabilities drive the patterns seen in biofilms? To investigate, Yan, Fei, Mao et al. grew biofilms of the bacterium called Vibrio cholerae – which causes the disease cholera – on solid, non-growing ‘substrates’. This work revealed that as the biofilms grow, their expansion is constrained by the substrate, and this situation generates mechanical stresses. To release the stresses, the biofilm initially folds to form wrinkles. Later, as the biofilm expands further, small parts of it detach from the substrate to form blisters. The same forces that keep water droplets spherical (known as interfacial forces) dictate how the blisters evolve, interact, and eventually shape the expanding biofilm. Using these principles, Yan et al. could engineer the biofilm into desired shapes. Collectively, the results presented by Yan et al. connect the shape of the biofilm surface with its material properties, in particular its stiffness. Understanding this relationship could help researchers to develop new ways to remove harmful biofilms, such as those that cause disease or that damage underwater structures. The stiffness of biofilms is already known to affect how well bacteria can resist antibiotics. Future studies could look for new genes or compounds that change the material properties of a biofilm, thereby altering the biofilm surface.
Collapse
Affiliation(s)
- Jing Yan
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Sheng Mao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Alexis Moreau
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, United States.,The Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
91
|
Yin W, Kim HT, Wang S, Gunawan F, Li R, Buettner C, Grohmann B, Sengle G, Sinner D, Offermanns S, Stainier DYR. Fibrillin-2 is a key mediator of smooth muscle extracellular matrix homeostasis during mouse tracheal tubulogenesis. Eur Respir J 2019; 53:13993003.00840-2018. [PMID: 30578393 DOI: 10.1183/13993003.00840-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
Epithelial tubes, comprised of polarised epithelial cells around a lumen, are crucial for organ function. However, the molecular mechanisms underlying tube formation remain largely unknown. Here, we report on the function of fibrillin (FBN)2, an extracellular matrix (ECM) glycoprotein, as a critical regulator of tracheal tube formation.We performed a large-scale forward genetic screen in mouse to identify regulators of respiratory organ development and disease. We identified Fbn2 mutants which exhibit shorter and narrowed tracheas as well as defects in tracheal smooth muscle cell alignment and polarity.We found that FBN2 is essential for elastic fibre formation and Fibronectin accumulation around tracheal smooth muscle cells. These processes appear to be regulated at least in part through inhibition of p38-mediated upregulation of matrix metalloproteinases (MMPs), as pharmacological decrease of p38 phosphorylation or MMP activity partially attenuated the Fbn2 mutant tracheal phenotypes. Analysis of human tracheal tissues indicates that a decrease in ECM proteins, including FBN2 and Fibronectin, is associated with tracheomalacia.Our findings provide novel insights into the role of ECM homeostasis in mesenchymal cell polarisation during tracheal tubulogenesis.
Collapse
Affiliation(s)
- Wenguang Yin
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany.,W. Yin and D.Y.R. Stainier are joint senior authors
| | - Hyun-Taek Kim
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Rui Li
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany
| | - Carmen Buettner
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Beate Grohmann
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Debora Sinner
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine Cincinnati, OH, USA
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany.,Center for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany.,W. Yin and D.Y.R. Stainier are joint senior authors
| |
Collapse
|
92
|
Nerurkar NL, Lee C, Mahadevan L, Tabin CJ. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature 2019; 565:480-484. [PMID: 30651642 PMCID: PMC6397660 DOI: 10.1038/s41586-018-0865-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/06/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Nandan L Nerurkar
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA.,Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
93
|
Gkatzis K, Taghizadeh S, Huh D, Stainier DYR, Bellusci S. Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease. Eur Respir J 2018; 52:13993003.00876-2018. [PMID: 30262579 DOI: 10.1183/13993003.00876-2018] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/16/2018] [Indexed: 11/05/2022]
Abstract
Differences in lung anatomy between mice and humans, as well as frequently disappointing results when using animal models for drug discovery, emphasise the unmet need for in vitro models that can complement animal studies and improve our understanding of human lung physiology, regeneration and disease. Recent papers have highlighted the use of three-dimensional organoids and organs-on-a-chip to mimic tissue morphogenesis and function in vitro Here, we focus on the respiratory system and provide an overview of these in vitro models, which can be derived from primary lung cells and pluripotent stem cells, as well as healthy or diseased lungs. We emphasise their potential application in studies of respiratory development, regeneration and disease modelling.
Collapse
Affiliation(s)
- Konstantinos Gkatzis
- Dept of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sara Taghizadeh
- Dept of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Dongeun Huh
- Dept of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Didier Y R Stainier
- Dept of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saverio Bellusci
- Dept of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Excellence Cluster Cardio-Pulmonary System, Justus-Liebig University Giessen, Giessen, Germany and German Center for Lung Research (DZL)
| |
Collapse
|
94
|
Modepalli V, Kumar A, Sharp JA, Saunders NR, Nicholas KR, Lefèvre C. Gene expression profiling of postnatal lung development in the marsupial gray short-tailed opossum (Monodelphis domestica) highlights conserved developmental pathways and specific characteristics during lung organogenesis. BMC Genomics 2018; 19:732. [PMID: 30290757 PMCID: PMC6173930 DOI: 10.1186/s12864-018-5102-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/21/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND After a short gestation, marsupials give birth to immature neonates with lungs that are not fully developed and in early life the neonate partially relies on gas exchange through the skin. Therefore, significant lung development occurs after birth in marsupials in contrast to eutherian mammals such as humans and mice where lung development occurs predominantly in the embryo. To explore the mechanisms of marsupial lung development in comparison to eutherians, morphological and gene expression analysis were conducted in the gray short-tailed opossum (Monodelphis domestica). RESULTS Postnatal lung development of Monodelphis involves three key stages of development: (i) transition from late canalicular to early saccular stages, (ii) saccular and (iii) alveolar stages, similar to developmental stages overlapping the embryonic and perinatal period in eutherians. Differentially expressed genes were identified and correlated with developmental stages. Functional categories included growth factors, extracellular matrix protein (ECMs), transcriptional factors and signalling pathways related to branching morphogenesis, alveologenesis and vascularisation. Comparison with published data on mice highlighted the conserved importance of extracellular matrix remodelling and signalling pathways such as Wnt, Notch, IGF, TGFβ, retinoic acid and angiopoietin. The comparison also revealed changes in the mammalian gene expression program associated with the initiation of alveologenesis and birth, pointing to subtle differences between the non-functional embryonic lung of the eutherian mouse and the partially functional developing lung of the marsupial Monodelphis neonates. The data also highlighted a subset of contractile proteins specifically expressed in Monodelphis during and after alveologenesis. CONCLUSION The results provide insights into marsupial lung development and support the potential of the marsupial model of postnatal development towards better understanding of the evolution of the mammalian bronchioalveolar lung.
Collapse
Affiliation(s)
| | - Amit Kumar
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Julie A Sharp
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia.,Institute of Frontiers Materials, Deakin University, Pigdons Road, Geelong, VIC, Australia
| | - Norman R Saunders
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Kevin R Nicholas
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia.,Monash Institute of Pharmaceutical Science, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Christophe Lefèvre
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, Australia. .,Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, Melbourne, Australia. .,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia. .,Peter MacCallum Cancer Centre, Melbourne, Australia.
| |
Collapse
|
95
|
Anlaş AA, Nelson CM. Tissue mechanics regulates form, function, and dysfunction. Curr Opin Cell Biol 2018; 54:98-105. [PMID: 29890398 PMCID: PMC6214752 DOI: 10.1016/j.ceb.2018.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 01/08/2023]
Abstract
Morphogenesis encompasses the developmental processes that reorganize groups of cells into functional tissues and organs. The spatiotemporal patterning of individual cell behaviors is influenced by how cells perceive and respond to mechanical forces, and determines final tissue architecture. Here, we review recent work examining the physical mechanisms of tissue morphogenesis in vertebrate and invertebrate models, discuss how epithelial cells employ contractility to induce global changes that lead to tissue folding, and describe how tissue form itself regulates cell behavior. We then highlight novel tools to recapitulate these processes in engineered tissues.
Collapse
Affiliation(s)
- Alişya A Anlaş
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
96
|
Jaslove JM, Nelson CM. Smooth muscle: a stiff sculptor of epithelial shapes. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170318. [PMID: 30249770 PMCID: PMC6158200 DOI: 10.1098/rstb.2017.0318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Smooth muscle is increasingly recognized as a key mechanical sculptor of epithelia during embryonic development. Smooth muscle is a mesenchymal tissue that surrounds the epithelia of organs including the gut, blood vessels, lungs, bladder, ureter, uterus, oviduct and epididymis. Smooth muscle is stiffer than its adjacent epithelium and often serves its morphogenetic function by physically constraining the growth of a proliferating epithelial layer. This constraint leads to mechanical instabilities and epithelial morphogenesis through buckling. Smooth muscle stiffness alone, without smooth muscle cell shortening, seems to be sufficient to drive epithelial morphogenesis. Fully understanding the development of organs that use smooth muscle stiffness as a driver of morphogenesis requires investigating how smooth muscle develops, a key aspect of which is distinguishing smooth muscle-like tissues from one another in vivo and in culture. This necessitates a comprehensive appreciation of the genetic, anatomical and functional markers that are used to distinguish the different subtypes of smooth muscle (for example, vascular versus visceral) from similar cell types (including myofibroblasts and myoepithelial cells). Here, we review how smooth muscle acts as a mechanical driver of morphogenesis and discuss ways of identifying smooth muscle, which is critical for understanding these morphogenetic events.This article is part of the Theo Murphy meeting issue 'Mechanics of Development'.
Collapse
Affiliation(s)
- Jacob M Jaslove
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| |
Collapse
|
97
|
Abstract
Goodwin and Nelson discuss the recent discovery by Sirka et al. that remodeling activity of myoepithelial cells can control breast cancer cell invasion. Smooth muscle–like cells can actively remodel epithelia, a mechanism common across developing tissues. In this issue, new work from Sirka et al. (2018. J. Cell Biol.https://doi.org/10.1083/jcb.201802144) demonstrates a novel mechanism for tumor suppression by smooth muscle–like myoepithelial cells of the mammary gland.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ .,Department of Molecular Biology, Princeton University, Princeton, NJ
| |
Collapse
|
98
|
Nerger BA, Nelson CM. 3D culture models for studying branching morphogenesis in the mammary gland and mammalian lung. Biomaterials 2018; 198:135-145. [PMID: 30174198 DOI: 10.1016/j.biomaterials.2018.08.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/20/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
The intricate architecture of branched tissues and organs has fascinated scientists and engineers for centuries. Yet-despite their ubiquity-the biophysical and biochemical mechanisms by which tissues and organs undergo branching morphogenesis remain unclear. With the advent of three-dimensional (3D) culture models, an increasingly powerful and diverse set of tools are available for investigating the development and remodeling of branched tissues and organs. In this review, we discuss the application of 3D culture models for studying branching morphogenesis of the mammary gland and the mammalian lung in the context of normal development and disease. While current 3D culture models lack the cellular and molecular complexity observed in vivo, we emphasize how these models can be used to answer targeted questions about branching morphogenesis. We highlight the specific advantages and limitations of using 3D culture models to study the dynamics and mechanisms of branching in the mammary gland and mammalian lung. Finally, we discuss potential directions for future research and propose strategies for engineering the next generation of 3D culture models for studying tissue morphogenesis.
Collapse
Affiliation(s)
- Bryan A Nerger
- Department of Chemical & Biological Engineering, Princeton, NJ, 08544, USA
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton, NJ, 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
99
|
Deconstructing the principles of ductal network formation in the pancreas. PLoS Biol 2018; 16:e2002842. [PMID: 30048442 PMCID: PMC6080801 DOI: 10.1371/journal.pbio.2002842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/07/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
The mammalian pancreas is a branched organ that does not exhibit stereotypic branching patterns, similarly to most other glands. Inside branches, it contains a network of ducts that undergo a transition from unconnected microlumen to a mesh of interconnected ducts and finally to a treelike structure. This ductal remodeling is poorly understood, both on a microscopic and macroscopic level. In this article, we quantify the network properties at different developmental stages. We find that the pancreatic network exhibits stereotypic traits at each stage and that the network properties change with time toward the most economical and optimized delivery of exocrine products into the duodenum. Using in silico modeling, we show how steps of pancreatic network development can be deconstructed into two simple rules likely to be conserved for many other glands. The early stage of the network is explained by noisy, redundant duct connection as new microlumens form. The later transition is attributed to pruning of the network based on the flux of fluid running through the pancreatic network into the duodenum. In the pancreas of mammals, digestive enzymes are transported from their production site in acini (clusters of cells that secrete the enzymes) to the intestine via a network of ducts. During organ development in fetuses, the ducts initially form by the coordinated polarization of cells to form small holes, which will connect and fuse, to constitute a meshwork. This hyperconnected network further develops into a treelike structure by the time of birth. In this article, we use methods originally developed to analyze road, rail, web, or river networks to quantify the network properties at different developmental stages. We find that the pancreatic network properties are similar between individuals at specific time points but eventually change to achieve the most economical and optimized structure to deliver pancreatic juice into the duodenum. Using in silico modeling, we show how the stages of pancreatic network development follow two simple rules, which are likely to be conserved for the development of other glands. The early stage of the network is explained by noisy, redundant duct connection as new small ductal holes form. Later on, the secretion of fluid that runs through the pancreatic network into the duodenum leads to the widening of ducts with the greatest flow, while nonnecessary ducts are eliminated, akin to how river beds are formed.
Collapse
|
100
|
Yin W, Kim HT, Wang S, Gunawan F, Wang L, Kishimoto K, Zhong H, Roman D, Preussner J, Guenther S, Graef V, Buettner C, Grohmann B, Looso M, Morimoto M, Mardon G, Offermanns S, Stainier DYR. The potassium channel KCNJ13 is essential for smooth muscle cytoskeletal organization during mouse tracheal tubulogenesis. Nat Commun 2018; 9:2815. [PMID: 30022023 PMCID: PMC6052067 DOI: 10.1038/s41467-018-05043-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Tubulogenesis is essential for the formation and function of internal organs. One such organ is the trachea, which allows gas exchange between the external environment and the lungs. However, the cellular and molecular mechanisms underlying tracheal tube development remain poorly understood. Here, we show that the potassium channel KCNJ13 is a critical modulator of tracheal tubulogenesis. We identify Kcnj13 in an ethylnitrosourea forward genetic screen for regulators of mouse respiratory organ development. Kcnj13 mutants exhibit a shorter trachea as well as defective smooth muscle (SM) cell alignment and polarity. KCNJ13 is essential to maintain ion homeostasis in tracheal SM cells, which is required for actin polymerization. This process appears to be mediated, at least in part, through activation of the actin regulator AKT, as pharmacological increase of AKT phosphorylation ameliorates the Kcnj13-mutant trachea phenotypes. These results provide insight into the role of ion homeostasis in cytoskeletal organization during tubulogenesis.
Collapse
Affiliation(s)
- Wenguang Yin
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - Hyun-Taek Kim
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Lei Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Keishi Kishimoto
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Hua Zhong
- Departments of Pathology and Immunology and Molecular and Human Genetics, Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dany Roman
- Departments of Pathology and Immunology and Molecular and Human Genetics, Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jens Preussner
- Max Planck Institute for Heart and Lung Research, ECCPS Bioinformatics and Deep Sequencing Platform, Bad Nauheim, 61231, Germany
| | - Stefan Guenther
- Max Planck Institute for Heart and Lung Research, ECCPS Bioinformatics and Deep Sequencing Platform, Bad Nauheim, 61231, Germany
| | - Viola Graef
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Carmen Buettner
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Beate Grohmann
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, ECCPS Bioinformatics and Deep Sequencing Platform, Bad Nauheim, 61231, Germany
| | - Mitsuru Morimoto
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Graeme Mardon
- Departments of Pathology and Immunology and Molecular and Human Genetics, Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- Center for Molecular Medicine, Goethe University, Frankfurt, 60590, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| |
Collapse
|