51
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
52
|
Isago H, Mitani A, Mikami Y, Horie M, Urushiyama H, Hamamoto R, Terasaki Y, Nagase T. Epithelial Expression of YAP and TAZ Is Sequentially Required in Lung Development. Am J Respir Cell Mol Biol 2020; 62:256-266. [DOI: 10.1165/rcmb.2019-0218oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Hideaki Isago
- Department of Respiratory Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Akihisa Mitani
- Department of Respiratory Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yu Mikami
- Department of Respiratory Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirokazu Urushiyama
- Department of Respiratory Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan; and
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
53
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
54
|
Sui P, Li R, Zhang Y, Tan C, Garg A, Verheyden JM, Sun X. E3 ubiquitin ligase MDM2 acts through p53 to control respiratory progenitor cell number and lung size. Development 2019; 146:dev.179820. [PMID: 31767619 DOI: 10.1242/dev.179820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022]
Abstract
The respiratory lineage initiates from the specification of NKX2-1+ progenitor cells that ultimately give rise to a vast gas-exchange surface area. How the size of the progenitor pool is determined and whether this directly impacts final lung size remains poorly understood. Here, we show that epithelium-specific inactivation of Mdm2, which encodes an E3 ubiquitin ligase, led to lethality at birth with a striking reduction of lung size to a single vestigial lobe. Intriguingly, this lobe was patterned and contained all the appropriate epithelial cell types. The reduction of size can be traced to the progenitor stage, when p53, a principal MDM2 protein degradation target, was transiently upregulated. This was followed by a brief increase of apoptosis. Inactivation of the p53 gene in the Mdm2 mutant background effectively reversed the lung size phenotype, allowing survival at birth. Together, these findings demonstrate that p53 protein turnover by MDM2 is essential for the survival of respiratory progenitors. Unlike in the liver, in which genetic reduction of progenitors triggered compensation, in the lung, respiratory progenitor number is a key determinant factor for final lung size.
Collapse
Affiliation(s)
- Pengfei Sui
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA.,Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.,Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200231, China
| | - Rongbo Li
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA.,Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Yan Zhang
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA.,Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Chunting Tan
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA
| | - Ankur Garg
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA
| | - Jamie M Verheyden
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA .,Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Xin Sun
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA .,Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
55
|
Goodwin K, Mao S, Guyomar T, Miller E, Radisky DC, Košmrlj A, Nelson CM. Smooth muscle differentiation shapes domain branches during mouse lung development. Development 2019; 146:dev.181172. [PMID: 31645357 DOI: 10.1242/dev.181172] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
During branching morphogenesis, a simple cluster of cells proliferates and branches to generate an arborized network that facilitates fluid flow. The overall architecture of the mouse lung is established by domain branching, wherein new branches form laterally off the side of an existing branch. The airway epithelium develops concomitantly with a layer of smooth muscle that is derived from the embryonic mesenchyme. Here, we examined the role of smooth muscle differentiation in shaping emerging domain branches. We found that the position and morphology of domain branches are highly stereotyped, as is the pattern of smooth muscle that differentiates around the base of each branch. Perturbing the pattern of smooth muscle differentiation genetically or pharmacologically causes abnormal domain branching. Loss of smooth muscle results in ectopic branching and decreases branch stereotypy. Increased smooth muscle suppresses branch initiation and extension. Computational modeling revealed that epithelial proliferation is insufficient to generate domain branches and that smooth muscle wrapping is required to shape the epithelium into a branch. Our work sheds light on the physical mechanisms of branching morphogenesis in the mouse lung.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sheng Mao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Tristan Guyomar
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.,Département de Physique, Ecole Normale Supérieure de Lyon, F-69342 Lyon, France
| | - Erin Miller
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA .,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
56
|
Reversal of Surfactant Protein B Deficiency in Patient Specific Human Induced Pluripotent Stem Cell Derived Lung Organoids by Gene Therapy. Sci Rep 2019; 9:13450. [PMID: 31530844 PMCID: PMC6748939 DOI: 10.1038/s41598-019-49696-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Surfactant protein B (SFTPB) deficiency is a fatal disease affecting newborn infants. Surfactant is produced by alveolar type II cells which can be differentiated in vitro from patient specific induced pluripotent stem cell (iPSC)-derived lung organoids. Here we show the differentiation of patient specific iPSCs derived from a patient with SFTPB deficiency into lung organoids with mesenchymal and epithelial cell populations from both the proximal and distal portions of the human lung. We alter the deficiency by infecting the SFTPB deficient iPSCs with a lentivirus carrying the wild type SFTPB gene. After differentiating the mutant and corrected cells into lung organoids, we show expression of SFTPB mRNA during endodermal and organoid differentiation but the protein product only after organoid differentiation. We also show the presence of normal lamellar bodies and the secretion of surfactant into the cell culture medium in the organoids of lentiviral infected cells. These findings suggest that a lethal lung disease can be targeted and corrected in a human lung organoid model in vitro.
Collapse
|
57
|
Shrestha A, Carraro G, Nottet N, Vazquez-Armendariz AI, Herold S, Cordero J, Singh I, Wilhelm J, Barreto G, Morty R, El Agha E, Mari B, Chen C, Zhang JS, Chao CM, Bellusci S. A critical role for miR-142 in alveolar epithelial lineage formation in mouse lung development. Cell Mol Life Sci 2019; 76:2817-2832. [PMID: 30887098 PMCID: PMC11105218 DOI: 10.1007/s00018-019-03067-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023]
Abstract
The respiratory epithelium arises from alveolar epithelial progenitors which differentiate into alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. AT2 cells are stem cells in the lung critical for the repair process after injury. Mechanisms regulating AT1 and AT2 cell maturation are poorly defined. We report that the activation of the glucocorticoid pathway in an in vitro alveolar epithelial lineage differentiation assay led to increased AT2 marker Sftpc and decreased miR-142 expression. Using miR-142 KO mice, we demonstrate an increase in the AT2/AT1 cell number ratio. Overexpression of miR-142 in alveolar progenitor cells in vivo led to the opposite effect. Examination of the KO lungs at E18.5 revealed enhanced expression of miR-142 targets Apc, Ep300 and Kras associated with increased β-catenin and p-Erk signaling. Silencing of miR-142 expression in lung explants grown in vitro triggers enhanced Sftpc expression as well as increased AT2/AT1 cell number ratio. Pharmacological inhibition of Ep300-β-catenin but not Erk in vitro prevented the increase in Sftpc expression triggered by loss of miR-142. These results suggest that the glucocorticoid-miR-142-Ep300-β-catenin signaling axis controls pneumocyte maturation.
Collapse
Affiliation(s)
- Amit Shrestha
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Lung and Regenerative Medicine Institutes, Los Angeles, CA, USA
| | - Nicolas Nottet
- Centre National de la Recherche Scientifique, CNRS, UMR 7275, Institut de Pharmacologie Moleculaire et Cellulaire (IPMC), Sophia Antipolis, France
- Universite Cote d'Azur, Nice, France
| | - Ana Ivonne Vazquez-Armendariz
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Susanne Herold
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Julio Cordero
- Lung Cancer Epigenetics, Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Indrabahadur Singh
- Lung Cancer Epigenetics, Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetics, Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russian Federation
| | - Rory Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elie El Agha
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Bernard Mari
- Centre National de la Recherche Scientifique, CNRS, UMR 7275, Institut de Pharmacologie Moleculaire et Cellulaire (IPMC), Sophia Antipolis, France
- Universite Cote d'Azur, Nice, France
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin-San Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Cho-Ming Chao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany.
- Department of General Pediatrics and Neonatology, University Children's Hospital Gießen, Justus-Liebig-University, Giessen, Germany.
| | - Saverio Bellusci
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
58
|
Chao CM, Moiseenko A, Kosanovic D, Rivetti S, El Agha E, Wilhelm J, Kampschulte M, Yahya F, Ehrhardt H, Zimmer KP, Barreto G, Rizvanov AA, Schermuly RT, Reiss I, Morty RE, Rottier RJ, Bellusci S, Zhang JS. Impact of Fgf10 deficiency on pulmonary vasculature formation in a mouse model of bronchopulmonary dysplasia. Hum Mol Genet 2019; 28:1429-1444. [PMID: 30566624 PMCID: PMC6466116 DOI: 10.1093/hmg/ddy439] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 01/18/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD), characterized by alveoli simplification and dysmorphic pulmonary microvasculature, is a chronic lung disease affecting prematurely born infants. Pulmonary hypertension (PH) is an important BPD feature associated with morbidity and mortality. In human BPD, inflammation leads to decreased fibroblast growth factor 10 (FGF10) expression but the impact on the vasculature is so far unknown. We used lungs from Fgf10+/- versus Fgf10+/+ pups to investigate the effect of Fgf10 deficiency on vascular development in normoxia (NOX) and hyperoxia (HOX, BPD mouse model). To assess the role of fibroblast growth factor receptor 2b (Fgfr2b) ligands independently of early developmentaldefects, we used an inducible double transgenic system in mice allowing inhibition of Fgfr2b ligands activity. Using vascular morphometry, we quantified the pathological changes. Finally, we evaluated changes in FGF10, surfactant protein C (SFTPC), platelet endothelial cell adhesion molecule (PECAM) and alpha-smooth muscle actin 2 (α-SMA) expression in human lung samples from patients suffering from BPD. In NOX, no major difference in the lung vasculature between Fgf10+/- and control pups was detected. In HOX, a greater loss of blood vessels in Fgf10+/- lungs is associated with an increase of poorly muscularized vessels. Fgfr2b ligands inhibition postnatally in HOX is sufficient to decrease the number of blood vessels while increasing the level of muscularization, suggesting a PH phenotype. BPD lungs exhibited decreased FGF10, SFTPC and PECAM but increased α-SMA. Fgf10 deficiency-associated vascular defects are enhanced in HOX and could represent an additional cause of morbidity in human patients with BPD.
Collapse
Affiliation(s)
- Cho-Ming Chao
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University and Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
- Member of the German Lung Research Center (DZL), Department of Internal Medicine II, Universities of Gießen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System (ECCPS), Gießen, Germany
- University Children's Hospital Gießen, Department of General Pediatrics and Neonatology, Justus-Liebig-University, 35392 Gießen, Germany. Member of the German Lung Research Center (DZL), Universities of Gießen and Marburg Lung Center (UGMLC), Gießen, Germany
| | - Alena Moiseenko
- Member of the German Lung Research Center (DZL), Department of Internal Medicine II, Universities of Gießen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System (ECCPS), Gießen, Germany
| | - Djuro Kosanovic
- Member of the German Lung Research Center (DZL), Department of Internal Medicine II, Universities of Gießen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System (ECCPS), Gießen, Germany
| | - Stefano Rivetti
- Member of the German Lung Research Center (DZL), Department of Internal Medicine II, Universities of Gießen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System (ECCPS), Gießen, Germany
| | - Elie El Agha
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University and Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
- Member of the German Lung Research Center (DZL), Department of Internal Medicine II, Universities of Gießen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System (ECCPS), Gießen, Germany
| | - Jochen Wilhelm
- Member of the German Lung Research Center (DZL), Department of Internal Medicine II, Universities of Gießen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System (ECCPS), Gießen, Germany
| | - Marian Kampschulte
- Department of Radiology, Justus-Liebig-University, University Hospital Gießen, Gießen, Germany
| | - Faady Yahya
- Member of the German Lung Research Center (DZL), Department of Internal Medicine II, Universities of Gießen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System (ECCPS), Gießen, Germany
| | - Harald Ehrhardt
- University Children's Hospital Gießen, Department of General Pediatrics and Neonatology, Justus-Liebig-University, 35392 Gießen, Germany. Member of the German Lung Research Center (DZL), Universities of Gießen and Marburg Lung Center (UGMLC), Gießen, Germany
| | - Klaus-Peter Zimmer
- University Children's Hospital Gießen, Department of General Pediatrics and Neonatology, Justus-Liebig-University, 35392 Gießen, Germany. Member of the German Lung Research Center (DZL), Universities of Gießen and Marburg Lung Center (UGMLC), Gießen, Germany
| | - Guillermo Barreto
- Max-Planck-Institute for Heart and Lung Research, Member of the German Lung Research Center (DZL), Bad Nauheim, Germany
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan , Russian Federation
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan , Russian Federation
| | - Ralph T Schermuly
- Member of the German Lung Research Center (DZL), Department of Internal Medicine II, Universities of Gießen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System (ECCPS), Gießen, Germany
| | - Irwin Reiss
- Division of Neonatology, Erasmus Medical Center–Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Rory E Morty
- Max-Planck-Institute for Heart and Lung Research, Member of the German Lung Research Center (DZL), Bad Nauheim, Germany
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center–Sophia Children’s Hospital, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Saverio Bellusci
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University and Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
- Member of the German Lung Research Center (DZL), Department of Internal Medicine II, Universities of Gießen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System (ECCPS), Gießen, Germany
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan , Russian Federation
| | - Jin-San Zhang
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University and Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
59
|
Jones MR, Lingampally A, Dilai S, Shrestha A, Stripp B, Helmbacher F, Chen C, Chao CM, Bellusci S. Characterization of Tg(Etv4-GFP) and Etv5 RFP Reporter Lines in the Context of Fibroblast Growth Factor 10 Signaling During Mouse Embryonic Lung Development. Front Genet 2019; 10:178. [PMID: 30923534 PMCID: PMC6426760 DOI: 10.3389/fgene.2019.00178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Members of the PEA3 transcription factors are emerging as bone fide targets for fibroblast growth factor (FGF) signaling. Among them, ETV4 and ETV5 appear to mediate FGF10 signaling during early embryonic lung development. In this paper, recently obtained Tg(Etv4-GFP) and Etv5CreERT2−RFP fluorescent reporter lines were generally characterized during early embryonic development and in the context of FGF10 signaling, in particular. We found that both Tg(Etv4-GFP) and Etv5CreERT2−RFP were primarily expressed in the epithelium of the lung during embryonic development. However, the expression of Etv5CreERT2−RFP was much higher than that of Tg(Etv4-GFP), and continued to increase during development, whereas Tg(Etv4-GFP) decreased. The expression patterns of the surrogate fluorescent protein GFP and RFP for ETV4 and ETV5, respectively, agreed with known regions of FGF10 signaling in various developing organs, including the lung, where ETV4-GFP was seen primarily in the distal epithelium and to a lesser extent in the surrounding mesenchyme. As expected, ETV5-RFP was restricted to the lung epithelium, showing a decreasing expression pattern from distal buds to proximal conducting airways. FGF10 inhibition experiments confirmed that both Etv4 and Etv5 are downstream of FGF10 signaling. Finally, we also validated that both fluorescent reporters responded to FGF10 inhibition in vitro. In conclusion, these two reporter lines appear to be promising tools to monitor FGF10/FGFR2b signaling in early lung development. These tools will have to be further validated at later stages and in other organs of interest.
Collapse
Affiliation(s)
- Matthew R Jones
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Internal Medicine II, Member of the German Lung Center, Cardio-Pulmonary Institute, University of Giessen Lung Center, Giessen, Germany
| | - Arun Lingampally
- Department of Internal Medicine II, Member of the German Lung Center, Cardio-Pulmonary Institute, University of Giessen Lung Center, Giessen, Germany
| | - Salma Dilai
- Department of Internal Medicine II, Member of the German Lung Center, Cardio-Pulmonary Institute, University of Giessen Lung Center, Giessen, Germany
| | - Amit Shrestha
- Department of Internal Medicine II, Member of the German Lung Center, Cardio-Pulmonary Institute, University of Giessen Lung Center, Giessen, Germany
| | - Barry Stripp
- Department of Medicine, Cedars-Sinai Medical Center, Lung and Regenerative Medicine Institutes, Los Angeles, CA, United States
| | | | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cho-Ming Chao
- Department of Internal Medicine II, Member of the German Lung Center, Cardio-Pulmonary Institute, University of Giessen Lung Center, Giessen, Germany.,Department of General Pediatrics and Neonatology, University Children's Hospital Gießen, Justus-Liebig-University, Gießen, Germany.,International Collaborative Center on Growth Factor Research, Life Science Institute, Wenzhou University-Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Internal Medicine II, Member of the German Lung Center, Cardio-Pulmonary Institute, University of Giessen Lung Center, Giessen, Germany.,International Collaborative Center on Growth Factor Research, Life Science Institute, Wenzhou University-Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
60
|
Jones MR, Dilai S, Lingampally A, Chao CM, Danopoulos S, Carraro G, Mukhametshina R, Wilhelm J, Baumgart-Vogt E, Al Alam D, Chen C, Minoo P, Zhang JS, Bellusci S. A Comprehensive Analysis of Fibroblast Growth Factor Receptor 2b Signaling on Epithelial Tip Progenitor Cells During Early Mouse Lung Branching Morphogenesis. Front Genet 2019; 9:746. [PMID: 30728831 PMCID: PMC6351499 DOI: 10.3389/fgene.2018.00746] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023] Open
Abstract
This study demonstrates that FGF10/FGFR2b signaling on distal epithelial progenitor cells, via ß-catenin/EP300, controls, through a comprehensive set of developmental genes, morphogenesis, and differentiation. Fibroblast growth factor (FGF) 10 signaling through FGF receptor 2b (FGFR2b) is mandatory during early lung development as the deletion of either the ligand or the receptor leads to lung agenesis. However, this drastic phenotype previously hampered characterization of the primary biological activities, immediate downstream targets and mechanisms of action. Through the use of a dominant negative transgenic mouse model (Rosa26rtTA; tet(o)sFgfr2b), we conditionally inhibited FGF10 signaling in vivo in E12.5 embryonic lungs via doxycycline IP injection to pregnant females, and in vitro by culturing control and experimental lungs with doxycycline. The impact on branching morphogenesis 9 h after doxycycline administration was analyzed by morphometry, fluorescence and electron microscopy. Gene arrays at 6 and 9 h following doxycycline administration were carried out. The relationship between FGF10 and ß-catenin signaling was also analyzed through in vitro experiments using IQ1, a pharmacological inhibitor of ß-catenin/EP300 transcriptional activity. Loss of FGF10 signaling did not impact proliferation or survival, but affected both adherens junctions (up-regulation of E-cadherin), and basement membrane organization (increased laminin). Gene arrays identified multiple direct targets of FGF10, including main transcription factors. Immunofluorescence showed a down-regulation of the distal epithelial marker SOX9 and mis-expression distally of the proximal marker SOX2. Staining for the transcriptionally-active form of ß-catenin showed a reduction in experimental vs. control lungs. In vitro experiments using IQ1 phenocopied the impacts of blocking FGF10. This study demonstrates that FGF10/FGFR2b signaling on distal epithelial progenitor cells via ß-catenin/EP300 controls, through a comprehensive set of developmental genes, cell adhesion, and differentiation.
Collapse
Affiliation(s)
- Matthew R Jones
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Salma Dilai
- Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Arun Lingampally
- Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Cho-Ming Chao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Soula Danopoulos
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, United States
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Lung and Regenerative Medicine Institutes, Los Angeles, CA, United States
| | - Regina Mukhametshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Jochen Wilhelm
- Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, United States
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Parviz Minoo
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Jin San Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Life Sciences, Wenzhou University, Zhejiang, China.,International Collaborative Research Center on Growth Factors, Wenzhou Medical University, Zhejiang, China
| | - Saverio Bellusci
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany.,Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, United States.,Institute of Life Sciences, Wenzhou University, Zhejiang, China.,International Collaborative Research Center on Growth Factors, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
61
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
62
|
Azami T, Bassalert C, Allègre N, Estrella LV, Pouchin P, Ema M, Chazaud C. Regulation of ERK signalling pathway in the developing mouse blastocyst. Development 2019; 146:dev.177139. [DOI: 10.1242/dev.177139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
Activation of the ERK signalling pathway is essential for the differentiation of the inner cell mass (ICM) during mouse preimplantation development. We show here that ERK phosphorylation is present in ICM precursor cells, in differentiated Primitive Endoderm (PrE) cells as well as in the mature, formative state Epiblast (Epi). We further show that DUSP4 and ETV5, factors often involved in negative feedback loops of the FGF pathway are differently regulated. While DUSP4 presence clearly depends on ERK phosphorylation in PrE cells, ETV5 localises mainly to Epi cells. Unexpectedly, ETV5 accumulation does not depend on direct activation by ERK but requires NANOG activity. Indeed ETV5, like Fgf4 expression, is not present in Nanog mutant embryos. Our results lead us to propose that in pluripotent early Epi cells, NANOG induces the expression of both Fgf4 and Etv5 to enable the differentiation of neighbouring cells into PrE while protecting the Epi identity from autocrine signalling.
Collapse
Affiliation(s)
- Takuya Azami
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Cécilia Bassalert
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Nicolas Allègre
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Lorena Valverde Estrella
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Pierre Pouchin
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study 606-8501, Japan
| | - Claire Chazaud
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| |
Collapse
|
63
|
Danopoulos S, Thornton ME, Grubbs BH, Frey MR, Warburton D, Bellusci S, Al Alam D. Discordant roles for FGF ligands in lung branching morphogenesis between human and mouse. J Pathol 2018; 247:254-265. [PMID: 30357827 DOI: 10.1002/path.5188] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023]
Abstract
Fibroblast growth factor (FGF) signaling plays an important role in lung organogenesis. Over recent decades, FGF signaling in lung development has been extensively studied in animal models. However, little is known about the expression, localization, and functional roles of FGF ligands during human fetal lung development. Therefore, we aimed to determine the expression and function of several FGF ligands and receptors in human lung development. Using in situ hybridization (ISH) and RNA sequencing, we assessed their expression and distribution in native human fetal lung. Human fetal lung explants were treated with recombinant FGF7, FGF9, or FGF10 in air-liquid interface culture. Explants were analyzed grossly to observe differences in branching pattern as well as at the cellular and molecular level. ISH demonstrated that FGF7 is expressed in both the epithelium and mesenchyme; FGF9 is mainly localized in the distal epithelium, whereas FGF10 demonstrated diffuse expression throughout the parenchyma, with some expression in the smooth muscle cells (SMCs). FGFR2 expression was high in both proximal and distal epithelial cells as well as the SMCs. FGFR3 was expressed mostly in the epithelial cells, with lower expression in the mesenchyme, while FGFR4 was highly expressed throughout the mesenchyme and in the distal epithelium. Using recombinant FGFs, we demonstrated that FGF7 and FGF9 had similar effects on human fetal lung as on mouse fetal lung; however, FGF10 caused the human explants to expand and form cysts as opposed to inducing epithelial branching as seen in the mouse. In conjunction with decreased branching, treatment with recombinant FGF7, FGF9, and FGF10 also resulted in decreased double-positive SOX2/SOX9 progenitor cells, which are exclusively present in the distal epithelial tips in early human fetal lung. Although FGF ligand localization may be somewhat comparable between developing mouse and human lungs, their functional roles may differ substantially. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Soula Danopoulos
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark R Frey
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Warburton
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Saverio Bellusci
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Denise Al Alam
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
64
|
Prince LS. FGF10 and Human Lung Disease Across the Life Spectrum. Front Genet 2018; 9:517. [PMID: 30429870 PMCID: PMC6220039 DOI: 10.3389/fgene.2018.00517] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/12/2018] [Indexed: 02/01/2023] Open
Abstract
Lung diseases impact patients across the lifespan, from infants in the first minutes of life through the aged population. Congenital abnormalities of lung structure can cause lung disease at birth or make adults more susceptible to chronic disease. Continuous inhalation of atmospheric components also requires the lung to be resilient to cellular injury. Fibroblast growth factor 10 (FGF10) regulates multiple stages of structural lung morphogenesis, cellular differentiation, and the response to injury. As a driver of lung airway branching morphogenesis, FGF10 signaling defects during development lead to neonatal lung disease. Alternatively, congenital airway abnormalities attributed to FGF10 mutations increase the risk of chronic airway disease in adulthood. FGF10 also maintains progenitor cell populations in the airway and promotes alveolar type 2 cell expansion and differentiation following injury. Here we review the cellular and molecular mechanisms linking FGF10 to multiple lung diseases, from bronchopulmonary dysplasia in extremely preterm neonates, cystic fibrosis in children, and chronic adult lung disorders. Understanding the connections between FGF10 and lung diseases may lead to exciting new therapeutic strategies.
Collapse
Affiliation(s)
- Lawrence S. Prince
- Department of Pediatrics, University of California, San Diego, Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
65
|
Rytkönen KT, Erkenbrack EM, Poutanen M, Elo LL, Pavlicev M, Wagner GP. Decidualization of Human Endometrial Stromal Fibroblasts is a Multiphasic Process Involving Distinct Transcriptional Programs. Reprod Sci 2018; 26:323-336. [PMID: 30309298 DOI: 10.1177/1933719118802056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Decidual stromal cells differentiate from endometrial stromal fibroblasts (ESFs) under the influence of progesterone and cyclic adenosine monophosphate (cAMP) and are essential for implantation and the maintenance of pregnancy. They evolved in the stem lineage of placental (eutherian) mammals coincidental with the evolution of implantation. Here we use the well-established in vitro decidualization protocol to compare early (3 days) and late (8 days) gene transcription patterns in immortalized human ESF. We document extensive, dynamic changes in the early and late decidual cell transcriptomes. The data suggest the existence of an early signal transducer and activator of transcription (STAT) pathway dominated state and a later nuclear factor κB (NFKB) pathway regulated state. Transcription factor expression in both phases is characterized by putative or known progesterone receptor ( PGR) target genes, suggesting that both phases are under progesterone control. Decidualization leads to proliferative quiescence, which is reversible by progesterone withdrawal after 3 days but to a lesser extent after 8 days of decidualization. In contrast, progesterone withdrawal induces cell death at comparable levels after short or long exposure to progestins and cAMP. We conclude that decidualization is characterized by a biphasic gene expression dynamic that likely corresponds to different phases in the establishment of the fetal-maternal interface.
Collapse
Affiliation(s)
- Kalle T Rytkönen
- 1 Yale Systems Biology Institute, West Haven, CT, USA.,2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,3 Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu, Finland.,4 Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eric M Erkenbrack
- 1 Yale Systems Biology Institute, West Haven, CT, USA.,2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Matti Poutanen
- 3 Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu, Finland
| | - Laura L Elo
- 4 Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mihaela Pavlicev
- 5 Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Günter P Wagner
- 1 Yale Systems Biology Institute, West Haven, CT, USA.,2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,6 Department of Obstetrics, Yale Medical School, New Haven, CT, USA.,7 Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
66
|
FGF-induced Pea3 transcription factors program the genetic landscape for cell fate determination. PLoS Genet 2018; 14:e1007660. [PMID: 30188892 PMCID: PMC6143274 DOI: 10.1371/journal.pgen.1007660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/18/2018] [Accepted: 08/27/2018] [Indexed: 12/01/2022] Open
Abstract
FGF signaling is a potent inducer of lacrimal gland development in the eye, capable of transforming the corneal epithelium into glandular tissues. Here, we show that genetic ablation of the Pea3 family of transcription factors not only disrupted the ductal elongation and branching of the lacrimal gland, but also biased the lacrimal gland epithelium toward an epidermal cell fate. Analysis of high-throughput gene expression and chromatin immunoprecipitation data revealed that the Pea3 genes directly control both the positive and negative feedback loops of FGF signaling. Importantly, Pea3 genes are also required to suppress aberrant Notch signaling which, if gone unchecked, can compromise lacrimal gland development by preventing the expression of both Sox and Six family genes. These results demonstrate that Pea3 genes are key FGF early response transcriptional factors, programing the genetic landscape for cell fate determination. FGF signaling regulates cell fate decision by inducing genome-wide changes in gene expression. We identified Pea3 family transcription factors as the key effectors of FGF signaling in reprograming the epithelia transcriptome. Pea3 factors control both the feedback and feedforward circuities of FGF signaling in lacrimal gland development. They also activate specific expression of Six and Sox family genes and suppress aberrant activation of Notch signaling. In the absence of Pea3 genes, the lacrimal gland progenitors become epidermal-like in their gene expression patterns. The study of Pea3 function resolves the long standing conundrum of how FGF induces the lacrimal gland fate, providing direction for regenerating the lacrimal gland to treat dry eye diseases.
Collapse
|
67
|
Mokhber Dezfouli MR, Sadeghian Chaleshtori S, Moradmand A, Basiri M, Baharvand H, Tahamtani Y. Hydrocortisone Promotes Differentiation of Mouse Embryonic Stem Cell-Derived Definitive Endoderm toward Lung Alveolar Epithelial Cells. CELL JOURNAL 2018; 20:469-476. [PMID: 30123992 PMCID: PMC6099149 DOI: 10.22074/cellj.2019.5521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
Abstract
Objective The ability to generate lung alveolar epithelial type II (ATII) cells from pluripotent stem cells (PSCs) enables the study of lung development, regenerative medicine, and modeling of lung diseases. The establishment of defined, scalable differentiation methods is a step toward this goal. This study intends to investigate the competency of small molecule induced mouse embryonic stem cell-derived definitive endoderm (mESC-DE) cells towards ATII cells. Materials and Methods In this experimental study, we designed a two-step differentiation protocol. mESC line Royan B20 (RB20) was induced to differentiate into DE (6 days) and then into ATII cells (9 days) by using an adherent culture method. To induce differentiation, we treated the mESCs for 6 days in serum-free differentiation (SFD) media and induced them with 200 nM small molecule inducer of definitive endoderm 2 (IDE2). For days 7-15 (9 days) of induction, we treated the resultant DE cells with new differentiation media comprised of 100 ng/ml fibroblast growth factor (FGF2) (group F), 0.5 μg/ml hydrocortisone (group H), and A549 conditioned medium (A549 CM) (group CM) in SFD media. Seven different combinations of factors were tested to assess the efficiencies of these factors to promote differentiation. The expressions of DE- and ATII-specific markers were investigated during each differentiation step. Results Although both F and H (alone and in combination) promoted differentiation through ATII-like cells, the highest percentage of surfactant protein C (SP-C) expressing cells (~37%) were produced in DE-like cells treated by F+H+CM. Ultrastructural analyses also confirmed the presence of lamellar bodies (LB) in the ATII-like cells. Conclusion These results suggest that hydrocortisone can be a promoting factor in alveolar fate differentiation of IDE2-induced mESC-DE cells. These cells have potential for drug screening and cell-replacement therapies.
Collapse
Affiliation(s)
- Mohammad Reza Mokhber Dezfouli
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. Electronic Address:
| | - Sirous Sadeghian Chaleshtori
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell. Electronic Address:
| |
Collapse
|
68
|
Li Q, Jiao J, Li H, Wan H, Zheng C, Cai J, Bao S. Histone arginine methylation by Prmt5 is required for lung branching morphogenesis through repression of BMP signaling. J Cell Sci 2018; 131:jcs.217406. [PMID: 29950483 DOI: 10.1242/jcs.217406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
Branching morphogenesis is essential for the successful development of a functional lung to accomplish its gas exchange function. Although many studies have highlighted requirements for the bone morphogenetic protein (BMP) signaling pathway during branching morphogenesis, little is known about how BMP signaling is regulated. Here, we report that the protein arginine methyltransferase 5 (Prmt5) and symmetric dimethylation at histone H4 arginine 3 (H4R3sme2) directly associate with chromatin of Bmp4 to suppress its transcription. Inactivation of Prmt5 in the lung epithelium results in halted branching morphogenesis, altered epithelial cell differentiation and neonatal lethality. These defects are accompanied by increased apoptosis and reduced proliferation of lung epithelium, as a consequence of elevated canonical BMP-Smad1/5/9 signaling. Inhibition of BMP signaling by Noggin rescues the lung branching defects of Prmt5 mutant in vitro Taken together, our results identify a novel mechanism through which Prmt5-mediated histone arginine methylation represses canonical BMP signaling to regulate lung branching morphogenesis.
Collapse
Affiliation(s)
- Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Jiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huijun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huajing Wan
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Institute of Women and Children's Health, and Department of Pediatrics, Huaxi Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China .,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
69
|
Adaptive Fibrogenic Reprogramming of Osteosarcoma Stem Cells Promotes Metastatic Growth. Cell Rep 2018; 24:1266-1277.e5. [DOI: 10.1016/j.celrep.2018.06.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/28/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
|
70
|
Hui Q, Jin Z, Li X, Liu C, Wang X. FGF Family: From Drug Development to Clinical Application. Int J Mol Sci 2018; 19:ijms19071875. [PMID: 29949887 PMCID: PMC6073187 DOI: 10.3390/ijms19071875] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/17/2018] [Accepted: 06/21/2018] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor (FGF) belongs to a large family of growth factors. FGFs use paracrine or endocrine signaling to mediate a myriad of biological and pathophysiological process, including angiogenesis, wound healing, embryonic development, and metabolism regulation. FGF drugs for the treatment of burn and ulcer wounds are now available. The recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in maintaining homeostasis of bile acid, glucose, and phosphate further extended the activity profile of this family. Here, the applications of recombinant FGFs for the treatment of wounds, diabetes, hypophosphatemia, the development of FGF receptor inhibitors as anti-neoplastic drugs, and the achievements of basic research and applications of FGFs in China are reviewed.
Collapse
Affiliation(s)
- Qi Hui
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| | - Zi Jin
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
- Key Laboratory Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| | - Changxiao Liu
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, 308 Anshan West Road, Tianjin 300193, China.
| | - Xiaojie Wang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
- Key Laboratory Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| |
Collapse
|
71
|
Huang M, He H, Belenkaya T, Lin X. Multiple roles of epithelial heparan sulfate in stomach morphogenesis. J Cell Sci 2018; 131:jcs.210781. [PMID: 29700203 DOI: 10.1242/jcs.210781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) have been shown to regulate various developmental processes. However, the function of heparan sulfate (HS) during the development of mammalian stomach has not been characterized yet. Here, we investigate the role of epithelial HS in embryonic stomach by examining mice deficient in the glycosyltransferase gene Ext1 We show that HS exhibits a specific and dynamic expression pattern in mouse embryonic stomach. Depletion of the epithelial HS leads to stomach hypoplasia, with phenotypic differences in the gastric mucosa between the forestomach and hindstomach. In the posterior stomach, HS depletion disrupts glandular stomach patterning and cytodifferentiation via attenuation of Fgf signaling activity. Inhibition of Fgf signaling in vitro recapitulates the patterning defect. Ligand and carbohydrate engagement assay (LACE) reveals a diminished assembly of Fgf10 and Fgfr2b in the mutant. In the anterior stomach, loss of epithelial HS leads to stratification and differentiation defects of the multilayered squamous epithelium, along with reduced Hh and Bmp signaling activity. Our data demonstrate that epithelial HS plays multiple roles in regulating mammalian stomach morphogenesis in a regional-specific manner.
Collapse
Affiliation(s)
- Meina Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tatyana Belenkaya
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China .,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
72
|
Wang J, Liu H, Gao L, Liu X. Impaired FGF10 Signaling and Epithelial Development in Experimental Lung Hypoplasia With Esophageal Atresia. Front Pediatr 2018; 6:109. [PMID: 29732364 PMCID: PMC5921531 DOI: 10.3389/fped.2018.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/03/2018] [Indexed: 01/07/2023] Open
Abstract
Patients with esophageal atresia (EA) and tracheoesophageal fistula (TEF) often experience persistent respiratory tract disease. In experimental models, doxorubicin-induced developmental lung abnormalities may result from downregulation of branching morphogenesis factor fibroblast growth factor (Fgf10). This study investigated the temporospatial expression of Fgf10 pathway components and lung epithelial factors in an doxorubicin-induced EA-TEF model by quantitative polymerase chain reaction, immunohistochemistry, and immunoblotting. Epigenetic regulation of gene expression by histone deacetylation was also investigated. Bone morphogenetic protein (Bmp) 4 and Cathepsin H (Ctsh), downstream targets of Fgf10, were significantly downregulated in the EA-TEF model during the saccular stage, consistent with Fgf10 expression. The developmental expression pattern of P2x7 receptor (ATI-cell marker), Sftpa, and Sftpb in lung epithelial cells was not affected. Sftpc (ATII-cell Marker) and Scgb1a1 (Clara cell marker) were significantly downregulated at the canalicular stage. Meanwhile, histone deacetylase (Hdac) 1 was upregulated and subsequently decreased acetylation of histone H3 Lys56 in the EA-TEF model, which returned to a normal level at the saccular stage. In conclusion, disturbed molecular signaling involving Fgf10/Ctsh was associated with impaired airway branching and epithelial cell development in lung morphogenesis, as evidenced by downregulated Sftpc and Scgb1a1 protein expression. The influence of Hdac1 activity on gene and protein expression in lung epithelial cells deserves further study.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Benxi Central Hospital of China Medical University, Benxi, China
| | - Hao Liu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linlin Gao
- Central Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaomei Liu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
73
|
Ostrin EJ, Little DR, Gerner-Mauro KN, Sumner EA, Ríos-Corzo R, Ambrosio E, Holt SE, Forcioli-Conti N, Akiyama H, Hanash SM, Kimura S, Huang SXL, Chen J. β-Catenin maintains lung epithelial progenitors after lung specification. Development 2018; 145:dev.160788. [PMID: 29440304 DOI: 10.1242/dev.160788] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/02/2018] [Indexed: 12/18/2022]
Abstract
The entire lung epithelium arises from SRY box 9 (SOX9)-expressing progenitors that form the respiratory tree and differentiate into airway and alveolar cells. Despite progress in understanding their initial specification within the embryonic foregut, how these progenitors are subsequently maintained is less clear. Using inducible, progenitor-specific genetic mosaic mouse models, we showed that β-catenin (CTNNB1) maintains lung progenitors by promoting a hierarchical lung progenitor gene signature, suppressing gastrointestinal (GI) genes, and regulating NK2 homeobox 1 (NKX2.1) and SRY box 2 (SOX2) in a developmental stage-dependent manner. At the early, but not later, stage post-lung specification, CTNNB1 cell-autonomously maintained normal NKX2.1 expression levels and suppressed ectopic SOX2 expression. Genetic epistasis analyses revealed that CTNNB1 is required for fibroblast growth factor (Fgf)/Kirsten rat sarcoma viral oncogene homolog (Kras)-mediated promotion of the progenitors. In silico screening of Eurexpress and translating ribosome affinity purification (TRAP)-RNAseq identified a progenitor gene signature, a subset of which depends on CTNNB1. Wnt signaling also maintained NKX2.1 expression and suppressed GI genes in cultured human lung progenitors derived from embryonic stem cells.
Collapse
Affiliation(s)
- Edwin J Ostrin
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of General Internal Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Danielle R Little
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Kamryn N Gerner-Mauro
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elizabeth A Sumner
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Ricardo Ríos-Corzo
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Elizabeth Ambrosio
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Samantha E Holt
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nicolas Forcioli-Conti
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Haruhiko Akiyama
- Department of Orthopedics, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Sam M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
74
|
Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, Kong J, Zhou S, Cantu E, Morrisey EE. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 2018; 555:251-255. [PMID: 29489752 PMCID: PMC6020060 DOI: 10.1038/nature25786] [Citation(s) in RCA: 499] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Functional tissue regeneration is required for the restoration of normal organ homeostasis after severe injury. Some organs, such as the intestine, harbour active stem cells throughout homeostasis and regeneration; more quiescent organs, such as the lung, often contain facultative progenitor cells that are recruited after injury to participate in regeneration. Here we show that a Wnt-responsive alveolar epithelial progenitor (AEP) lineage within the alveolar type 2 cell population acts as a major facultative progenitor cell in the distal lung. AEPs are a stable lineage during alveolar homeostasis but expand rapidly to regenerate a large proportion of the alveolar epithelium after acute lung injury. AEPs exhibit a distinct transcriptome, epigenome and functional phenotype and respond specifically to Wnt and Fgf signalling. In contrast to other proposed lung progenitor cells, human AEPs can be directly isolated by expression of the conserved cell surface marker TM4SF1, and act as functional human alveolar epithelial progenitor cells in 3D organoids. Our results identify the AEP lineage as an evolutionarily conserved alveolar progenitor that represents a new target for human lung regeneration strategies.
Collapse
Affiliation(s)
- William J Zacharias
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David B Frank
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jarod A Zepp
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael P Morley
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Farrah A Alkhaleel
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jun Kong
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Su Zhou
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
75
|
Developmental mechanisms and adult stem cells for therapeutic lung regeneration. Dev Biol 2018; 433:166-176. [DOI: 10.1016/j.ydbio.2017.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
|
76
|
He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet 2017; 13:e1006992. [PMID: 28859094 PMCID: PMC5597256 DOI: 10.1371/journal.pgen.1006992] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/13/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects. We further demonstrate an expanded Fgf10 expression and increased FGF signaling activity in Ext1 mutant lungs, suggesting a cell non-autonomous mechanism. Consistent with this, we observed reduced levels of SHH signaling which is responsible for suppressing Fgf10 expression. Moreover, reactivating SHH signaling in mutant lungs rescued the tip dilation phenotype and attenuated FGF signaling. Importantly, the reduced SHH signaling activity did not appear to be caused by decreased Shh expression or protein stability; instead, biologically active form of SHH proteins were reduced in both the Ext1 mutant epithelium and surrounding wild type mesenchymal cells. Together, our study highlights the epithelial HS as a key player for dictating SHH signaling critical for lung morphogenesis.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meina Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shenfei Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- * E-mail: ,
| |
Collapse
|
77
|
Rutledge EA, Benazet JD, McMahon AP. Cellular heterogeneity in the ureteric progenitor niche and distinct profiles of branching morphogenesis in organ development. Development 2017; 144:3177-3188. [PMID: 28705898 DOI: 10.1242/dev.149112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
Branching morphogenesis creates arborized epithelial networks. In the mammalian kidney, an epithelial progenitor pool at ureteric branch tips (UBTs) creates the urine-transporting collecting system. Using region-specific mouse reporter strains, we performed an RNA-seq screen, identifying tip- and stalk-enriched gene sets in the developing collecting duct system. Detailed in situ hybridization studies of tip-enriched predictions identified UBT-enriched gene sets conserved between the mouse and human kidney. Comparative spatial analysis of their UBT niche expression highlighted distinct patterns of gene expression revealing novel molecular heterogeneity within the UBT progenitor population. To identify kidney-specific and shared programs of branching morphogenesis, comparative expression studies on the developing mouse lung were combined with in silico analysis of the developing mouse salivary gland. These studies highlight a shared gene set with multi-organ tip enrichment and a gene set specific to UBTs. This comprehensive analysis extends our current understanding of the ureteric branch tip niche.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jean-Denis Benazet
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.,Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
78
|
El Agha E, Kheirollahi V, Moiseenko A, Seeger W, Bellusci S. Ex vivo analysis of the contribution of FGF10 + cells to airway smooth muscle cell formation during early lung development. Dev Dyn 2017; 246:531-538. [PMID: 28387977 DOI: 10.1002/dvdy.24504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Airway smooth muscle cells (ASMCs) have been widely studied during embryonic lung development. These cells have been shown to control epithelial bifurcation during branching morphogenesis. Fibroblast growth factor 10-positive (FGF10+ ) cells, originally residing in the submesothelial mesenchyme, contribute to ASMC formation in the distal lung. The reported work aims at monitoring the response of FGF10+ progenitors and differentiated ASMCs to growth factor treatment in real time using lineage tracing in the background of an air-liquid interface (ALI) culture system. RESULTS FGF ligands impose divergent effects on iterative lung branching in vitro. Moreover, time-lapse imaging and endpoint analysis show that FGF9 treatment leads to amplification of the FGF10+ lineage and represses its differentiation to ASMCs. Sonic hedgehog (SHH) treatment reduces the amplification of this lineage and leads to decreased lung branching. Finally, differentiated ASMCs in proximal regions fail to expand upon FGF9 treatment. CONCLUSIONS Our data demonstrate, in real time, that FGF9 is an important regulator of amplification, migration, and subsequent differentiation of ASMC progenitors during early lung development. The attained results agree with previous findings regarding ASMC formation and highlight the complexity of growth factor signaling networks in controlling mesenchymal cell-fate decisions in the developing mouse lung. Developmental Dynamics 246:531-538, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Vahid Kheirollahi
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Alena Moiseenko
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
79
|
Kang M, Garg V, Hadjantonakis AK. Lineage Establishment and Progression within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2. Dev Cell 2017; 41:496-510.e5. [PMID: 28552559 DOI: 10.1016/j.devcel.2017.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 04/17/2017] [Accepted: 04/30/2017] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 4 (FGF4) is the key signal driving specification of primitive endoderm (PrE) versus pluripotent epiblast (EPI) within the inner cell mass (ICM) of the mouse blastocyst. To gain insight into the receptor(s) responding to FGF4 within ICM cells, we combined single-cell-resolution quantitative imaging with single-cell transcriptomics of wild-type and Fgf receptor (Fgfr) mutant embryos. Despite the PrE-specific expression of FGFR2, it is FGFR1, expressed by all ICM cells, that is critical for establishment of a PrE identity. Signaling through FGFR1 is also required to constrain levels of the pluripotency-associated factor NANOG in EPI cells. However, the activity of both receptors is required for lineage establishment within the ICM. Gene expression profiling of 534 single ICM cells identified distinct downstream targets associated with each receptor. These data lead us to propose a model whereby unique and additive activities of FGFR1 and FGFR2 within the ICM coordinate establishment of two distinct lineages.
Collapse
Affiliation(s)
- Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
80
|
Xiao J, Yang S, Shen P, Wang Y, Sun H, Ji F, Zhou D. Phosphorylation of ETV4 at Ser73 by ERK kinase could block ETV4 ubiquitination degradation in colorectal cancer. Biochem Biophys Res Commun 2017; 486:1062-1068. [PMID: 28373072 DOI: 10.1016/j.bbrc.2017.03.163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
It was reported that Src-mediated and RTK-dependent accumulation of key transcription factor, ETV4, which played an important role in the migration of embryonic cells and tumor cells, were regulated by their common downstream MAPK molecules. However, the detailed mechanism was not completely clear. In the present study, we revealed that ETV4 protein was significantly enhanced by ERK kinase activation in the colorectal cancer (CRC) patients and mouse models as well as in the CRC cell lines. It was further confirmed that the activation of ERK kinase led to the phosphorylation of ETV4 at Ser73 and the ETV4 phosphorylation could block its binding to COP1, thereby stabilized ETV4 via avoiding its ubiquitination degradation. In addition, this effect was not due to altering an E3 ubiquitin ligase, COP1 amount or p-COP1/COP1 ratio. Our results will help understand the mechanism of ETV4 overexpression in CRC patients and provide a clue to search new therapeutic target to treat the related tumors in clinical practice.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Cancer Institute of Capital Medical University, Beijing 100069, PR China
| | - Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, PR China; Cancer Institute of Capital Medical University, Beijing 100069, PR China
| | - Ping Shen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Cancer Institute of Capital Medical University, Beijing 100069, PR China
| | - Yaxi Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, PR China
| | - Haimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, PR China; Cancer Institute of Capital Medical University, Beijing 100069, PR China
| | - Fengqing Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, PR China; Cancer Institute of Capital Medical University, Beijing 100069, PR China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, PR China; Cancer Institute of Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
81
|
Transcription factor Etv5 is essential for the maintenance of alveolar type II cells. Proc Natl Acad Sci U S A 2017; 114:3903-3908. [PMID: 28351980 DOI: 10.1073/pnas.1621177114] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alveolar type II (AT2) cell dysfunction contributes to a number of significant human pathologies including respiratory distress syndrome, lung adenocarcinoma, and debilitating fibrotic diseases, but the critical transcription factors that maintain AT2 cell identity are unknown. Here we show that the E26 transformation-specific (ETS) family transcription factor Etv5 is essential to maintain AT2 cell identity. Deletion of Etv5 from AT2 cells produced gene and protein signatures characteristic of differentiated alveolar type I (AT1) cells. Consistent with a defect in the AT2 stem cell population, Etv5 deficiency markedly reduced recovery following bleomycin-induced lung injury. Lung tumorigenesis driven by mutant KrasG12D was also compromised by Etv5 deficiency. ERK activation downstream of Ras was found to stabilize Etv5 through inactivation of the cullin-RING ubiquitin ligase CRL4COP1/DET1 that targets Etv5 for proteasomal degradation. These findings identify Etv5 as a critical output of Ras signaling in AT2 cells, contributing to both lung homeostasis and tumor initiation.
Collapse
|
82
|
Canonical Sonic Hedgehog Signaling in Early Lung Development. J Dev Biol 2017; 5:jdb5010003. [PMID: 29615561 PMCID: PMC5831770 DOI: 10.3390/jdb5010003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022] Open
Abstract
The canonical hedgehog (HH) signaling pathway is of major importance during embryonic development. HH is a key regulatory morphogen of numerous cellular processes, namely, cell growth and survival, differentiation, migration, and tissue polarity. Overall, it is able to trigger tissue-specific responses that, ultimately, contribute to the formation of a fully functional organism. Of all three HH proteins, Sonic Hedgehog (SHH) plays an essential role during lung development. In fact, abnormal levels of this secreted protein lead to severe foregut defects and lung hypoplasia. Canonical SHH signal transduction relies on the presence of transmembrane receptors, such as Patched1 and Smoothened, accessory proteins, as Hedgehog-interacting protein 1, and intracellular effector proteins, like GLI transcription factors. Altogether, this complex signaling machinery contributes to conveying SHH response. Pulmonary morphogenesis is deeply dependent on SHH and on its molecular interactions with other signaling pathways. In this review, the role of SHH in early stages of lung development, specifically in lung specification, primary bud formation, and branching morphogenesis is thoroughly reviewed.
Collapse
|
83
|
Chanda D, Kurundkar A, Rangarajan S, Locy M, Bernard K, Sharma NS, Logsdon NJ, Liu H, Crossman DK, Horowitz JC, De Langhe S, Thannickal VJ. Developmental Reprogramming in Mesenchymal Stromal Cells of Human Subjects with Idiopathic Pulmonary Fibrosis. Sci Rep 2016; 6:37445. [PMID: 27869174 PMCID: PMC5116673 DOI: 10.1038/srep37445] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Cellular plasticity and de-differentiation are hallmarks of tissue/organ regenerative capacity in diverse species. Despite a more restricted capacity for regeneration, humans with age-related chronic diseases, such as cancer and fibrosis, show evidence of a recapitulation of developmental gene programs. We have previously identified a resident population of mesenchymal stromal cells (MSCs) in the terminal airways-alveoli by bronchoalveolar lavage (BAL) of human adult lungs. In this study, we characterized MSCs from BAL of patients with stable and progressive idiopathic pulmonary fibrosis (IPF), defined as <5% and ≥10% decline, respectively, in forced vital capacity over the preceding 6-month period. Gene expression profiles of MSCs from IPF subjects with progressive disease were enriched for genes regulating lung development. Most notably, genes regulating early tissue patterning and branching morphogenesis were differentially regulated. Network interactive modeling of a set of these genes indicated central roles for TGF-β and SHH signaling. Importantly, fibroblast growth factor-10 (FGF-10) was markedly suppressed in IPF subjects with progressive disease, and both TGF-β1 and SHH signaling were identified as critical mediators of this effect in MSCs. These findings support the concept of developmental gene re-activation in IPF, and FGF-10 deficiency as a potentially critical factor in disease progression.
Collapse
Affiliation(s)
- Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ashish Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sunad Rangarajan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan Locy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nirmal S Sharma
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Naomi J Logsdon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stijn De Langhe
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
84
|
E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors. Proc Natl Acad Sci U S A 2016; 113:7557-62. [PMID: 27335464 DOI: 10.1073/pnas.1603310113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.
Collapse
|
85
|
Branchfield K, Li R, Lungova V, Verheyden JM, McCulley D, Sun X. A three-dimensional study of alveologenesis in mouse lung. Dev Biol 2015; 409:429-41. [PMID: 26632490 DOI: 10.1016/j.ydbio.2015.11.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Alveologenesis is the final step of lung maturation, which subdivides the alveolar region of the lung into smaller units called alveoli. Each of the nascent dividers serves as a new gas-exchange surface, and collectively they drastically increase the surface area for breathing. Disruption of alveologenesis results in simplification of alveoli, as is seen in premature infants diagnosed with bronchopulmonary dysplasia (BPD), a prevalent lung disease that is often associated with lifelong breathing deficiencies. To date, a majority of studies of alveologenesis rely on two-dimensional (2D) analysis of tissue sections. Given that an overarching theme of alveologenesis is thinning and extension of the epithelium and mesenchyme to facilitate gas exchange, often only a small portion of a cell or a cellular structure is represented in a single 2D plane. Here, we use a three-dimensional (3D) approach to examine the structural architecture and cellular composition of myofibroblasts, alveolar type 2 cells, elastin and lipid droplets in normal as well as BPD-like mouse lung. We found that 2D finger-like septal crests, commonly used to depict growing alveolar septae, are often artifacts of sectioning through fully established alveolar walls. Instead, a more accurate representation of growing septae are 3D ridges that are lined by platelet-derived growth factor receptor alpha (PDGFRA) and alpha smooth muscle actin (α-SMA)-expressing myofibroblasts, as well as the elastin fibers that they produce. Accordingly in 3D, both α-SMA and elastin were each found in connected networks underlying the 3D septal ridges rather than as isolated dots at the tip of 2D septal crests. Analysis through representative stages of alveologenesis revealed unappreciated dynamic changes in these patterns. PDGFRA-expressing cells are only α-SMA-positive during the first phase of alveologenesis, but not in the second phase, suggesting that the two phases of septae formation may be driven by distinct mechanisms. Thin elastin fibers are already present in the alveolar region prior to alveologenesis, suggesting that during alveologenesis, there is not only new elastin deposition, but also extensive remodeling to transform thin and uniformly distributed fibers into thick cables that rim the nascent septae. Analysis of several genetic as well as hyperoxia-induced models of BPD revealed that the myofibroblast organization is perturbed in all, regardless of whether the origin of defect is epithelial, mesenchymal, endothelial or environmental. Finally, analysis of relative position of PDGFRA-positive cells and alveolar type 2 cells reveal that during alveologenesis, these two cell types are not always adjacent to one another. This result suggests that the niche and progenitor relationship afforded by their close juxtaposition in the adult lung may be a later acquired property. These insights revealed by 3D reconstruction of the septae set the foundation for future investigations of the mechanisms driving normal alveologenesis, as well as causes of alveolar simplification in BPD.
Collapse
Affiliation(s)
- Kelsey Branchfield
- Laboratory of Genetics, University of Wisconsin-Madison Madison, WI 52706, United States
| | - Rongbo Li
- Laboratory of Genetics, University of Wisconsin-Madison Madison, WI 52706, United States
| | - Vlasta Lungova
- Department of Surgery, University of Wisconsin-Madison Madison, WI 53706, United States
| | - Jamie M Verheyden
- Laboratory of Genetics, University of Wisconsin-Madison Madison, WI 52706, United States
| | - David McCulley
- Department of Pediatrics University of Wisconsin-Madison Madison, WI 53706, United States
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison Madison, WI 52706, United States.
| |
Collapse
|