51
|
Spears E, Serafimidis I, Powers AC, Gavalas A. Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass. Front Endocrinol (Lausanne) 2021; 12:722250. [PMID: 34421829 PMCID: PMC8378310 DOI: 10.3389/fendo.2021.722250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
In all forms of diabetes, β cell mass or function is reduced and therefore the capacity of the pancreatic cells for regeneration or replenishment is a critical need. Diverse lines of research have shown the capacity of endocrine as well as acinar, ductal and centroacinar cells to generate new β cells. Several experimental approaches using injury models, pharmacological or genetic interventions, isolation and in vitro expansion of putative progenitors followed by transplantations or a combination thereof have suggested several pathways for β cell neogenesis or regeneration. The experimental results have also generated controversy related to the limitations and interpretation of the experimental approaches and ultimately their physiological relevance, particularly when considering differences between mouse, the primary animal model, and human. As a result, consensus is lacking regarding the relative importance of islet cell proliferation or progenitor differentiation and transdifferentiation of other pancreatic cell types in generating new β cells. In this review we summarize and evaluate recent experimental approaches and findings related to islet regeneration and address their relevance and potential clinical application in the fight against diabetes.
Collapse
Affiliation(s)
- Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| |
Collapse
|
52
|
Li Y, He Y, Peng J, Su Z, Li Z, Zhang B, Ma J, Zhuo M, Zou D, Liu X, Liu X, Wang W, Huang D, Xu M, Wang J, Deng H, Xue J, Xie W, Lan X, Chen M, Zhao Y, Wu W, David CJ. Mutant Kras co-opts a proto-oncogenic enhancer network in inflammation-induced metaplastic progenitor cells to initiate pancreatic cancer. NATURE CANCER 2021; 2:49-65. [PMID: 35121887 DOI: 10.1038/s43018-020-00134-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Kras-activating mutations display the highest incidence in pancreatic ductal adenocarcinoma. Pancreatic inflammation accelerates mutant Kras-driven tumorigenesis in mice, suggesting high selectivity in the cells that oncogenic Kras transforms, although the mechanisms dictating this specificity are poorly understood. Here we show that pancreatic inflammation is coupled to the emergence of a transient progenitor cell population that is readily transformed in the presence of mutant KrasG12D. These progenitors harbor a proto-oncogenic transcriptional program driven by a transient enhancer network. KrasG12D mutations lock this enhancer network in place, providing a sustained Kras-dependent oncogenic program that drives tumors throughout progression. Enhancer co-option occurs through functional interactions between the Kras-activated transcription factors Junb and Fosl1 and pancreatic lineage transcription factors, potentially accounting for inter-tissue specificity of oncogene transformation. The pancreatic ductal adenocarcinoma cell of origin thus provides an oncogenic transcriptional program that fuels tumor progression beyond initiation, accounting for the intra-tissue selectivity of Kras transformation.
Collapse
Affiliation(s)
- Yong Li
- Tsinghua University School of Medicine, Beijing, China
| | - Yi He
- Tsinghua University School of Medicine, Beijing, China
| | - Junya Peng
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhendong Su
- Tsinghua University School of Medicine, Beijing, China
- Peking University-Tsinghua Center for Life Sciences, Beijing, China
| | - Zeyao Li
- Tsinghua University School of Life Sciences, Beijing, China
| | - Bingjie Zhang
- Tsinghua University School of Life Sciences, Beijing, China
| | - Jing Ma
- Tsinghua University School of Life Sciences, Beijing, China
| | - Meilian Zhuo
- Tsinghua University School of Medicine, Beijing, China
| | - Di Zou
- Tsinghua University School of Medicine, Beijing, China
| | - Xinde Liu
- Tsinghua University School of Medicine, Beijing, China
| | - Xinhong Liu
- Tsinghua University School of Medicine, Beijing, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Dan Huang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Mengyue Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jianbin Wang
- Tsinghua University School of Medicine, Beijing, China
- Peking University-Tsinghua Center for Life Sciences, Beijing, China
| | - Haiteng Deng
- Tsinghua University School of Life Sciences, Beijing, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xie
- Peking University-Tsinghua Center for Life Sciences, Beijing, China
- Tsinghua University School of Life Sciences, Beijing, China
| | - Xun Lan
- Tsinghua University School of Medicine, Beijing, China
- Peking University-Tsinghua Center for Life Sciences, Beijing, China
| | - Mo Chen
- Tsinghua University School of Medicine, Beijing, China
| | - Yupei Zhao
- Peking University-Tsinghua Center for Life Sciences, Beijing, China.
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Charles J David
- Tsinghua University School of Medicine, Beijing, China.
- Peking University-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
53
|
Yin Y, Liu PY, Shi Y, Li P. Single-Cell Sequencing and Organoids: A Powerful Combination for Modelling Organ Development and Diseases. Rev Physiol Biochem Pharmacol 2021; 179:189-210. [PMID: 33619630 DOI: 10.1007/112_2020_47] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development and function of a particular organ and the pathogenesis of various diseases remain intimately linked to the features of each cell type in the organ. Conventional messenger RNA- or protein-based methodologies often fail to elucidate the contribution of rare cell types, including some subpopulations of stem cells, short-lived progenitors and circulating tumour cells, thus hampering their applications in studies regarding organ development and diseases. The scRNA-seq technique represents a new approach for determining gene expression variability at the single-cell level. Organoids are new preclinical models that recapitulate complete or partial features of their original organ and are thought to be superior to cell models in mimicking the sophisticated spatiotemporal processes of the development and regeneration and diseases. In this review, we highlight recent advances in the field of scRNA-seq, organoids and their current applications and summarize the advantages of using a combination of scRNA-seq and organoid technology to model diseases and organ development.
Collapse
Affiliation(s)
- Yuebang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Peng-Yu Liu
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Ping Li
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou, China.
| |
Collapse
|
54
|
Paoli C, Carrer A. Organotypic Culture of Acinar Cells for the Study of Pancreatic Cancer Initiation. Cancers (Basel) 2020; 12:E2606. [PMID: 32932616 PMCID: PMC7564199 DOI: 10.3390/cancers12092606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
The carcinogenesis of pancreatic ductal adenocarcinoma (PDA) progresses according to multi-step evolution, whereby the disease acquires increasingly aggressive pathological features. On the other hand, disease inception is poorly investigated. Decoding the cascade of events that leads to oncogenic transformation is crucial to design strategies for early diagnosis as well as to tackle tumor onset. Lineage-tracing experiments demonstrated that pancreatic cancerous lesions originate from acinar cells, a highly specialized cell type in the pancreatic epithelium. Primary acinar cells can survive in vitro as organoid-like 3D spheroids, which can transdifferentiate into cells with a clear ductal morphology in response to different cell- and non-cell-autonomous stimuli. This event, termed acinar-to-ductal metaplasia, recapitulates the histological and molecular features of disease initiation. Here, we will discuss the isolation and culture of primary pancreatic acinar cells, providing a historical and technical perspective. The impact of pancreatic cancer research will also be debated. In particular, we will dissect the roles of transcriptional, epigenetic, and metabolic reprogramming for tumor initiation and we will show how that can be modeled using ex vivo acinar cell cultures. Finally, mechanisms of PDA initiation described using organotypical cultures will be reviewed.
Collapse
Affiliation(s)
- Carlotta Paoli
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy;
- Department of Biology, University of Padova, 35129 Padova, Italy
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy;
- Department of Biology, University of Padova, 35129 Padova, Italy
| |
Collapse
|
55
|
Hoffman MT, Kemp SB, Salas-Escabillas DJ, Zhang Y, Steele NG, The S, Long D, Benitz S, Yan W, Margolskee RF, Bednar F, Pasca di Magliano M, Wen HJ, Crawford HC. The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:349-369. [PMID: 32882403 PMCID: PMC7779788 DOI: 10.1016/j.jcmgh.2020.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDA) initiation and progression are accompanied by an immunosuppressive inflammatory response. Here, we evaluated the immunomodulatory role of chemosensory signaling in metaplastic tuft cells (MTCs) by analyzing the role of GNAT3, a gustatory pathway G-protein expressed by MTCs, during PDA progression. METHODS Gnat3-null (Gnat3-/-) mice were crossbred with animals harboring a Cre-inducible KrasLSL-G12D/+ allele with either Ptf1aCre/+ (KC) or tamoxifen-inducible Ptf1aCreERT/+ (KCERT) mice to drive oncogenic KRAS expression in the pancreas. Ex vivo organoid conditioned medium generated from KC and Gnat3-/-;KC acinar cells was analyzed for cytokine secretion. Experimental pancreatitis was induced in KCERT and Gnat3-/-;KCERT mice to accelerate tumorigenesis, followed by analysis using mass cytometry and single-cell RNA sequencing. To study PDA progression, KC and Gnat3-/-;KC mice were aged to morbidity or 52 weeks. RESULTS Ablation of Gnat3 in KC organoids increased release of tumor-promoting cytokines in conditioned media, including CXCL1 and CXCL2. Analysis of Gnat3-/-;KCERT pancreata found altered expression of immunomodulatory genes in Cxcr2 expressing myeloid-derived suppressor cells (MDSCs) and an increased number of granulocytic MDSCs, a subset of tumor promoting MDSCs. Importantly, expression levels of CXCL1 and CXCL2, known ligands for CXCR2, were also elevated in Gnat3-/-;KCERT pancreata. Consistent with the tumor-promoting role of MDSCs, aged Gnat3-/-;KC mice progressed more rapidly to metastatic carcinoma compared with KC controls. CONCLUSIONS Compromised gustatory sensing, achieved by Gnat3 ablation, enhanced the CXCL1/2-CXCR2 axis to alter the MDSC population and promoted the progression of metastatic PDA.
Collapse
Affiliation(s)
- Megan T Hoffman
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Samantha B Kemp
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Salas-Escabillas
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Nina G Steele
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Daniel Long
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Simone Benitz
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Wei Yan
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Filip Bednar
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Howard C Crawford
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
56
|
Ouadah Y, Rojas ER, Riordan DP, Capostagno S, Kuo CS, Krasnow MA. Rare Pulmonary Neuroendocrine Cells Are Stem Cells Regulated by Rb, p53, and Notch. Cell 2020; 179:403-416.e23. [PMID: 31585080 DOI: 10.1016/j.cell.2019.09.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/29/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023]
Abstract
Pulmonary neuroendocrine (NE) cells are neurosensory cells sparsely distributed throughout the bronchial epithelium, many in innervated clusters of 20-30 cells. Following lung injury, NE cells proliferate and generate other cell types to promote epithelial repair. Here, we show that only rare NE cells, typically 2-4 per cluster, function as stem cells. These fully differentiated cells display features of classical stem cells. Most proliferate (self-renew) following injury, and some migrate into the injured area. A week later, individual cells, often just one per cluster, lose NE identity (deprogram), transit amplify, and reprogram to other fates, creating large clonal repair patches. Small cell lung cancer (SCLC) tumor suppressors regulate the stem cells: Rb and p53 suppress self-renewal, whereas Notch marks the stem cells and initiates deprogramming and transit amplification. We propose that NE stem cells give rise to SCLC, and transformation results from constitutive activation of stem cell renewal and inhibition of deprogramming.
Collapse
Affiliation(s)
- Youcef Ouadah
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Enrique R Rojas
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel P Riordan
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah Capostagno
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Christin S Kuo
- Department of Pediatrics, Division of Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
57
|
Huang H, Brekken RA. Beyond Stiffness: Collagen Signaling in Pancreatic Cancer and Pancreas Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1622-1624. [PMID: 32450151 DOI: 10.1016/j.ajpath.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 01/04/2023]
Abstract
This commentary highlights the article by Ruggeri et al that reports the importance of discoidin domain receptor 1 in tissue homeostasis in pancreatic injury and pancreatic ductal adenocarcinoma pathogenesis.
Collapse
Affiliation(s)
- Huocong Huang
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
58
|
Adult Pancreatic Acinar Progenitor-like Populations in Regeneration and Cancer. Trends Mol Med 2020; 26:758-767. [PMID: 32362534 DOI: 10.1016/j.molmed.2020.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
The bulk of the pancreas primarily comprises long-lived acinar cells that are not considered a bona fide source for stem cells. However, certain acinar subpopulations have a repopulating capacity during regeneration, raising the hypothesis as to the presence of regenerative progenitor-like populations in the adult pancreas. Here, we describe recent discoveries based on fate-mapping techniques that support the existence of progenitor-like acinar subpopulations, including active progenitor-like cells that maintain tissue homeostasis and facultative progenitor-like cells that drive tissue regeneration. A possible link between progenitor-like acinar cells and cancer initiators is proposed. Further analysis of these cellular components is needed, because it would help uncover possible cellular sources for regeneration and cancer, as well as potential targets for therapy.
Collapse
|
59
|
Ruggeri JM, Franco-Barraza J, Sohail A, Zhang Y, Long D, Pasca di Magliano M, Cukierman E, Fridman R, Crawford HC. Discoidin Domain Receptor 1 (DDR1) Is Necessary for Tissue Homeostasis in Pancreatic Injury and Pathogenesis of Pancreatic Ductal Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1735-1751. [PMID: 32339496 DOI: 10.1016/j.ajpath.2020.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 01/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) and chronic pancreatitis are characterized by a dense collagen-rich desmoplastic reaction. Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by collagens that can regulate cell proliferation, migration, adhesion, and remodeling of the extracellular matrix. To address the role of DDR1 in PDA, Ddr1-null (Ddr-/-) mice were crossed with the KrasG12D/+; Trp53R172H/+; Ptf1aCre/+ (KPC) model of metastatic PDA. Ddr1-/-; KPC mice progress to differentiated PDA but resist progression to poorly differentiated cancer compared with KPC control mice. Strikingly, severe pancreatic atrophy accompanied tumor progression in Ddr1-/-; KPC mice. To further explore the effects of Ddr1 ablation, Ddr1-/- mice were crossed with the KrasG12D/+; Ptf1aCre/+ neoplasia model and subjected to cerulein-induced experimental pancreatitis. Similar to KPC mice, tissue atrophy was a hallmark of both neoplasia and pancreatitis models in the absence of Ddr1. Compared with controls, Ddr1-/- models had increased acinar cell dropout and reduced proliferation with no difference in apoptotic cell death between control and Ddr1-/- animals. In most models, organ atrophy was accompanied by increased fibrillar collagen deposition, suggesting a compensatory response in the absence of this collagen receptor. Overall, these data suggest that DDR1 regulates tissue homeostasis in the neoplastic and injured pancreas.
Collapse
Affiliation(s)
- Jeanine M Ruggeri
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Janusz Franco-Barraza
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anjum Sohail
- Department of Pathology, Wayne State University, Detroit, Michigan; Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Daniel Long
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Edna Cukierman
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rafael Fridman
- Department of Pathology, Wayne State University, Detroit, Michigan; Karmanos Cancer Institute, Wayne State University, Detroit, Michigan; Department of Oncology, Wayne State University, Detroit, Michigan.
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
60
|
Hakobyan D, Médina C, Dusserre N, Stachowicz ML, Handschin C, Fricain JC, Guillermet-Guibert J, Oliveira H. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication 2020; 12:035001. [PMID: 32131058 DOI: 10.1088/1758-5090/ab7cb8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common malignancy of the pancreas. It has shown a poor prognosis and a rising incidence in the developed world. Other pathologies associated with this tissue include pancreatitis, a risk condition for pancreatic cancer. The onset of both pancreatitis and pancreatic cancer follows a common pattern: exocrine pancreatic acinar cells undergo a transdifferentiation to duct cells that triggers a 3D restructuration of the pancreatic tissue. However, the exact mechanism underlying this process remains partially undefined. Further understanding the cellular events leading to PDAC could open new avenues in the development of novel therapeutic approaches. Since current 2D cell culture models fail to mimic the tridimensional complexity of the pancreatic tissue, new in vitro models are urgently needed. Here, we generated 3D pancreatic cell spheroid arrays using laser-assisted bioprinting and characterized their phenotypic evolution over time through image analysis and phenotypic characterization. We show that these bioprinted spheroids, composed of both acinar and ductal cells, can replicate the initial stages of PDAC development. This bioprinted miniaturized spheroid-based array model should prove useful for the study of the internal and external factors that contribute to the formation of precursor PDAC lesions and to cancer progression, and may therefore shed light on future PDAC therapy strategies.
Collapse
Affiliation(s)
- Davit Hakobyan
- Bioingénierie tissulaire, Université de Bordeaux, 146, rue Léo Saignat 33076, Bordeaux, France. Bioingénierie tissulaire, Inserm U1026, 146, rue Léo Saignat 33076, Bordeaux, France. Both authors have contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Yu XX, Xu CR. Understanding generation and regeneration of pancreatic β cells from a single-cell perspective. Development 2020; 147:147/7/dev179051. [PMID: 32280064 DOI: 10.1242/dev.179051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms that underlie the generation and regeneration of β cells is crucial for developing treatments for diabetes. However, traditional research methods, which are based on populations of cells, have limitations for defining the precise processes of β-cell differentiation and trans-differentiation, and the associated regulatory mechanisms. The recent development of single-cell technologies has enabled re-examination of these processes at a single-cell resolution to uncover intermediate cell states, cellular heterogeneity and molecular trajectories of cell fate specification. Here, we review recent advances in understanding β-cell generation and regeneration, in vivo and in vitro, from single-cell technologies, which could provide insights for optimization of diabetes therapy strategies.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
62
|
Wang J, Yuan R, Zhu X, Ao P. Adaptive Landscape Shaped by Core Endogenous Network Coordinates Complex Early Progenitor Fate Commitments in Embryonic Pancreas. Sci Rep 2020; 10:1112. [PMID: 31980678 PMCID: PMC6981170 DOI: 10.1038/s41598-020-57903-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
The classical development hierarchy of pancreatic cell fate commitments describes that multipotent progenitors (MPs) first bifurcate into tip cells and trunk cells, and then these cells give rise to acinar cells and endocrine/ductal cells separately. However, lineage tracings reveal that pancreatic progenitors are highly heterogeneous in tip and trunk domains in embryonic pancreas. The progenitor fate commitments from multipotency to unipotency during early pancreas development is insufficiently characterized. In pursuing a mechanistic understanding of the complexity in progenitor fate commitments, we construct a core endogenous network for pancreatic lineage decisions based on genetic regulations and quantified its intrinsic dynamic properties using dynamic modeling. The dynamics reveal a developmental landscape with high complexity that has not been clarified. Not only well-characterized pancreatic cells are reproduced, but also previously unrecognized progenitors-tip progenitor (TiP), trunk progenitor (TrP), later endocrine progenitor (LEP), and acinar progenitors (AciP/AciP2) are predicted. Further analyses show that TrP and LEP mediate endocrine lineage maturation, while TiP, AciP, AciP2 and TrP mediate acinar and ductal lineage maturation. The predicted cell fate commitments are validated by analyzing single-cell RNA sequencing (scRNA-seq) data. Significantly, this is the first time that a redefined hierarchy with detailed early pancreatic progenitor fate commitment is obtained.
Collapse
Affiliation(s)
- Junqiang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruoshi Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomei Zhu
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ping Ao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW Novel 3D organoid culture techniques have enabled long-term expansion of pancreatic tissue. This review comprehensively summarizes and evaluates the applications of primary tissue-derived pancreatic organoids in regenerative studies, disease modelling, and personalized medicine. RECENT FINDINGS Organoids derived from human fetal and adult pancreatic tissue have been used to study pancreas development and repair. Generated adult human pancreatic organoids harbor the capacity for clonal expansion and endocrine cell formation. In addition, organoids have been generated from human pancreatic ductal adenocarcinoma in order to study tumor behavior and assess drug responses. Pancreatic organoids constitute an important translational bridge between in vitro and in vivo models, enhancing our understanding of pancreatic cell biology. Current applications for pancreatic organoid technology include studies on tissue regeneration, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Jeetindra R. A. Balak
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Juri Juksar
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Françoise Carlotti
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Antonio Lo Nigro
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Eelco J. P. de Koning
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| |
Collapse
|
64
|
Ingalls MH, Hollomon AJ, Newlands SD, McDavid AN, Ovitt CE. Intrinsic mitotic activity supports the human salivary gland acinar cell population. FEBS Lett 2019; 594:376-382. [PMID: 31538335 DOI: 10.1002/1873-3468.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022]
Abstract
To develop treatments for salivary gland dysfunction, it is important to understand how human salivary glands are maintained under normal homeostasis. Previous data from our lab demonstrated that murine salivary acinar cells maintain the acinar cell population through self-duplication under conditions of homeostasis, as well as after injury. Early studies suggested that human acinar cells are mitotically active, but the identity of the resultant daughter cells was not clear. Using markers of cell cycle activity and mitosis, as well as an ex vivo 5-Ethynyl-2´-deoxyuridine assay, we show that human salivary gland acinar cells divide to generate daughter acinar cells. As in mouse, our data indicate that human salivary gland homeostasis is supported by the intrinsic mitotic capacity of acinar cells.
Collapse
Affiliation(s)
- Matthew H Ingalls
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, NY, USA
| | - Andrew J Hollomon
- Department of Biomedical Engineering, University of Rochester, NY, USA
| | - Shawn D Newlands
- Department of Otolaryngology, Department of Neuroscience, Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, NY, USA
| | - Andrew N McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, NY, USA
| | - Catherine E Ovitt
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, NY, USA
| |
Collapse
|
65
|
Aldh1b1 expression defines progenitor cells in the adult pancreas and is required for Kras-induced pancreatic cancer. Proc Natl Acad Sci U S A 2019; 116:20679-20688. [PMID: 31548432 DOI: 10.1073/pnas.1901075116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The presence of progenitor or stem cells in the adult pancreas and their potential involvement in homeostasis and cancer development remain unresolved issues. Here, we show that mouse centroacinar cells can be identified and isolated by virtue of the mitochondrial enzyme Aldh1b1 that they uniquely express. These cells are necessary and sufficient for the formation of self-renewing adult pancreatic organoids in an Aldh1b1-dependent manner. Aldh1b1-expressing centroacinar cells are largely quiescent, self-renew, and, as shown by genetic lineage tracing, contribute to all 3 pancreatic lineages in the adult organ under homeostatic conditions. Single-cell RNA sequencing analysis of these cells identified a progenitor cell population, established its molecular signature, and determined distinct differentiation pathways to early progenitors. A distinct feature of these progenitor cells is the preferential expression of small GTPases, including Kras, suggesting that they might be susceptible to Kras-driven oncogenic transformation. This finding and the overexpression of Aldh1b1 in human and mouse pancreatic cancers, driven by activated Kras, prompted us to examine the involvement of Aldh1b1 in oncogenesis. We demonstrated genetically that ablation of Aldh1b1 completely abrogates tumor development in a mouse model of KrasG12D-induced pancreatic cancer.
Collapse
|
66
|
Tarashansky AJ, Xue Y, Li P, Quake SR, Wang B. Self-assembling manifolds in single-cell RNA sequencing data. eLife 2019; 8:e48994. [PMID: 31524596 PMCID: PMC6795480 DOI: 10.7554/elife.48994] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
Single-cell RNA sequencing has spurred the development of computational methods that enable researchers to classify cell types, delineate developmental trajectories, and measure molecular responses to external perturbations. Many of these technologies rely on their ability to detect genes whose cell-to-cell variations arise from the biological processes of interest rather than transcriptional or technical noise. However, for datasets in which the biologically relevant differences between cells are subtle, identifying these genes is challenging. We present the self-assembling manifold (SAM) algorithm, an iterative soft feature selection strategy to quantify gene relevance and improve dimensionality reduction. We demonstrate its advantages over other state-of-the-art methods with experimental validation in identifying novel stem cell populations of Schistosoma mansoni, a prevalent parasite that infects hundreds of millions of people. Extending our analysis to a total of 56 datasets, we show that SAM is generalizable and consistently outperforms other methods in a variety of biological and quantitative benchmarks.
Collapse
Affiliation(s)
| | - Yuan Xue
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Pengyang Li
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of BioengineeringStanford UniversityStanfordUnited States
- Department of Applied PhysicsStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Bo Wang
- Department of BioengineeringStanford UniversityStanfordUnited States
- Department of Developmental BiologyStanford University School of MedicineStanfordUnited States
| |
Collapse
|
67
|
Arrojo E Drigo R, Lev-Ram V, Tyagi S, Ramachandra R, Deerinck T, Bushong E, Phan S, Orphan V, Lechene C, Ellisman MH, Hetzer MW. Age Mosaicism across Multiple Scales in Adult Tissues. Cell Metab 2019; 30:343-351.e3. [PMID: 31178361 PMCID: PMC7289515 DOI: 10.1016/j.cmet.2019.05.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/18/2018] [Accepted: 05/11/2019] [Indexed: 12/22/2022]
Abstract
Most neurons are not replaced during an animal's lifetime. This nondividing state is characterized by extreme longevity and age-dependent decline of key regulatory proteins. To study the lifespans of cells and proteins in adult tissues, we combined isotope labeling of mice with a hybrid imaging method (MIMS-EM). Using 15N mapping, we show that liver and pancreas are composed of cells with vastly different ages, many as old as the animal. Strikingly, we also found that a subset of fibroblasts and endothelial cells, both known for their replicative potential, are characterized by the absence of cell division during adulthood. In addition, we show that the primary cilia of beta cells and neurons contains different structural regions with vastly different lifespans. Based on these results, we propose that age mosaicism across multiple scales is a fundamental principle of adult tissue, cell, and protein complex organization.
Collapse
Affiliation(s)
- Rafael Arrojo E Drigo
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory (MCBL), La Jolla, CA, USA
| | - Varda Lev-Ram
- Department of Pharmacology, University of California, San Diego School of Medicine (UCSD), La Jolla, CA, USA
| | - Swati Tyagi
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory (MCBL), La Jolla, CA, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Thomas Deerinck
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Victoria Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Claude Lechene
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark H Ellisman
- Department of Pharmacology, University of California, San Diego School of Medicine (UCSD), La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA, USA
| | - Martin W Hetzer
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory (MCBL), La Jolla, CA, USA.
| |
Collapse
|
68
|
van den Brink SC, Sage F, Vértesy Á, Spanjaard B, Peterson-Maduro J, Baron CS, Robin C, van Oudenaarden A. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods 2019; 14:935-936. [PMID: 28960196 DOI: 10.1038/nmeth.4437] [Citation(s) in RCA: 640] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Susanne C van den Brink
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Fanny Sage
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ábel Vértesy
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Bastiaan Spanjaard
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Josi Peterson-Maduro
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Chloé S Baron
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Department of Cell Biology, Utrecht, The Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| |
Collapse
|
69
|
Abdeladim L, Matho KS, Clavreul S, Mahou P, Sintes JM, Solinas X, Arganda-Carreras I, Turney SG, Lichtman JW, Chessel A, Bemelmans AP, Loulier K, Supatto W, Livet J, Beaurepaire E. Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nat Commun 2019; 10:1662. [PMID: 30971684 PMCID: PMC6458155 DOI: 10.1038/s41467-019-09552-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/12/2019] [Indexed: 11/20/2022] Open
Abstract
Large-scale microscopy approaches are transforming brain imaging, but currently lack efficient multicolor contrast modalities. We introduce chromatic multiphoton serial (ChroMS) microscopy, a method integrating one-shot multicolor multiphoton excitation through wavelength mixing and serial block-face image acquisition. This approach provides organ-scale micrometric imaging of spectrally distinct fluorescent proteins and label-free nonlinear signals with constant micrometer-scale resolution and sub-micron channel registration over the entire imaged volume. We demonstrate tridimensional (3D) multicolor imaging over several cubic millimeters as well as brain-wide serial 2D multichannel imaging. We illustrate the strengths of this method through color-based 3D analysis of astrocyte morphology and contacts in the mouse cerebral cortex, tracing of individual pyramidal neurons within densely Brainbow-labeled tissue, and multiplexed whole-brain mapping of axonal projections labeled with spectrally distinct tracers. ChroMS will be an asset for multiscale and system-level studies in neuroscience and beyond.
Collapse
Affiliation(s)
- Lamiae Abdeladim
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Katherine S Matho
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - Solène Clavreul
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Jean-Marc Sintes
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Xavier Solinas
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Ignacio Arganda-Carreras
- Department of Computer Science and Artificial Intelligence, University of the Basque Country, San Sebastian, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
- Donostia International Physics Center (DIPC), San Sebastian, 20018, Spain
| | - Stephen G Turney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Jeff W Lichtman
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Anatole Chessel
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Alexis-Pierre Bemelmans
- Neurodegenerative Diseases Laboratory, Molecular Imaging Research Center, Institut de Biologie François Jacob, CEA, CNRS, Université Paris-Sud, Fontenay-aux-Roses, 92265, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France.
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France.
| |
Collapse
|
70
|
Adult human pancreatic acinar cells dedifferentiate into an embryonic progenitor-like state in 3D suspension culture. Sci Rep 2019; 9:4040. [PMID: 30858455 PMCID: PMC6411888 DOI: 10.1038/s41598-019-40481-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/15/2019] [Indexed: 01/02/2023] Open
Abstract
Human pancreatic exocrine cells were cultured in 3D suspension and formed pancreatospheres composed of acinar-derived and duct-like cells. We investigated, up to 6 days, the fate of human pancreatic acinar cells using fluorescein-conjugated Ulex Europaeus Agglutinin 1 lectin, a previously published acinar-specific non-genetic lineage tracing strategy. At day 4, fluorescence-activated cell sort for the intracellularly incorporated FITC-conjugated UEA1 lectin and the duct-specific CA19.9 surface marker, distinguished acinar-derived cells (UEA1+CA19.9-) from duct-like cells (UEA1-CA19.9+) and acinar-to-duct-like transdifferentiated cells (UEA1+CA19.9+). mRNA expression analysis of the acinar-derived (UEA1+CA19.9-) and duct-like (UEA1-CA19.9+) cell fractions with concomitant immunocytochemical analysis of the pancreatospheres revealed acquisition of an embryonic signature in the UEA1+CA19.9- acinar-derived cells characterized by de novo expression of SOX9 and CD142, robust expression of PDX1 and surface expression of GP2. The colocalisation of CD142, a multipotent pancreatic progenitor surface marker, PDX1, SOX9 and GP2 is reminiscent of a cellular state present during human embryonic development. Addition of TGF-beta signalling inhibitor Alk5iII, induced a 28-fold increased KI67-labeling in pancreatospheres, more pronounced in the CD142+GP2+ acinar-derived cells. These findings with human cells underscore the remarkable plasticity of pancreatic exocrine acinar cells, previously described in rodents, and could find applications in the field of regenerative medicine.
Collapse
|
71
|
Functional Heterogeneity of Mouse Prostate Stromal Cells Revealed by Single-Cell RNA-Seq. iScience 2019; 13:328-338. [PMID: 30878879 PMCID: PMC6423355 DOI: 10.1016/j.isci.2019.02.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/23/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
We perform a single-cell RNA sequencing analysis to investigate the phenotypic and functional heterogeneity of the adult mouse prostate stromal cells. Our analysis identifies three major cell populations representing the smooth muscle cells and two types of fibroblast cells enriched by Sca-1 and CD90. The Sca-1+CD90+ fibroblast cells are in direct contact with the epithelial cells and express growth factors and genes associated with cell motility, developmental process, and androgen biosynthesis. This suggests that they may regulate epithelial cell survival and growth. The Sca-1+CD90-/low myofibroblast-like cells highly express genes associated with the extracellular matrix and cytokine-mediated signaling pathways, indicating a role in tissue repair and immune responses. The Sca-1+CD90-/low cells significantly suppress the capacity of the basal cells for bipotent differentiation in the prostate organoid assay. Collectively, we identify the surface markers enabling physical separation of stromal subpopulations and generate the gene expression profiles implying their cellular functions. scRNA-seq reveals three distinct mouse prostate stromal cell populations Sca-1+CD90+ cells produce growth factors mediating developmental process Sca-1+CD90-/low cells express genes mediating immune response and tissue repair Sca-1+CD90-/low cells robustly suppress bipotent differentiation of basal cells
Collapse
|
72
|
Lafzi A, Moutinho C, Picelli S, Heyn H. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc 2018; 13:2742-2757. [DOI: 10.1038/s41596-018-0073-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
73
|
Burclaff J, Mills JC. Plasticity of differentiated cells in wound repair and tumorigenesis, part I: stomach and pancreas. Dis Model Mech 2018; 11:dmm033373. [PMID: 30037967 PMCID: PMC6078397 DOI: 10.1242/dmm.033373] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For the last century or so, the mature, differentiated cells throughout the body have been regarded as largely inert with respect to their regenerative potential, yet recent research shows that they can become progenitor-like and re-enter the cell cycle. Indeed, we recently proposed that mature cells can become regenerative via a conserved set of molecular mechanisms ('paligenosis'), suggesting that a program for regeneration exists alongside programs for death (apoptosis) and division (mitosis). In two Reviews describing how emerging concepts of cellular plasticity are changing how the field views regeneration and tumorigenesis, we present the commonalities in the molecular and cellular features of plasticity at homeostasis and in response to injury in multiple organs. Here, in part 1, we discuss these advances in the stomach and pancreas. Understanding the extent of cell plasticity and uncovering its underlying mechanisms may help us refine important theories about the origin and progression of cancer, such as the cancer stem cell model, as well as the multi-hit model of tumorigenesis. Ultimately, we hope that the new concepts and perspectives on inherent cellular programs for regeneration and plasticity may open novel avenues for treating or preventing cancers.
Collapse
Affiliation(s)
- Joseph Burclaff
- Division of Gastroenterology, Departments of Medicine, Pathology and Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology and Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| |
Collapse
|
74
|
Vahle JL, Anderson U, Blomme EA, Hoflack JC, Stiehl DP. Use of toxicogenomics in drug safety evaluation: Current status and an industry perspective. Regul Toxicol Pharmacol 2018; 96:18-29. [DOI: 10.1016/j.yrtph.2018.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
|
75
|
Emmerson E, May AJ, Berthoin L, Cruz-Pacheco N, Nathan S, Mattingly AJ, Chang JL, Ryan WR, Tward AD, Knox SM. Salivary glands regenerate after radiation injury through SOX2-mediated secretory cell replacement. EMBO Mol Med 2018; 10:e8051. [PMID: 29335337 PMCID: PMC5840548 DOI: 10.15252/emmm.201708051] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022] Open
Abstract
Salivary gland acinar cells are routinely destroyed during radiation treatment for head and neck cancer that results in a lifetime of hyposalivation and co-morbidities. A potential regenerative strategy for replacing injured tissue is the reactivation of endogenous stem cells by targeted therapeutics. However, the identity of these cells, whether they are capable of regenerating the tissue, and the mechanisms by which they are regulated are unknown. Using in vivo and ex vivo models, in combination with genetic lineage tracing and human tissue, we discover a SOX2+ stem cell population essential to acinar cell maintenance that is capable of replenishing acini after radiation. Furthermore, we show that acinar cell replacement is nerve dependent and that addition of a muscarinic mimetic is sufficient to drive regeneration. Moreover, we show that SOX2 is diminished in irradiated human salivary gland, along with parasympathetic nerves, suggesting that tissue degeneration is due to loss of progenitors and their regulators. Thus, we establish a new paradigm that salivary glands can regenerate after genotoxic shock and do so through a SOX2 nerve-dependent mechanism.
Collapse
Affiliation(s)
- Elaine Emmerson
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Alison J May
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Lionel Berthoin
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Noel Cruz-Pacheco
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Sara Nathan
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Aaron J Mattingly
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Jolie L Chang
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - William R Ryan
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - Aaron D Tward
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| |
Collapse
|
76
|
Martinelli P, Real FX. Animal Modeling of Pancreatitis-to-Cancer Progression. PANCREATIC CANCER 2018:313-347. [DOI: 10.1007/978-1-4939-7193-0_66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
77
|
Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios AC, Wilcox S, Fu N, Liu KH, Jackling FC, Davis MJ, Lindeman GJ, Smyth GK, Visvader JE. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat Commun 2017; 8:1627. [PMID: 29158510 PMCID: PMC5696379 DOI: 10.1038/s41467-017-01560-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
The mammary epithelium comprises two primary cellular lineages, but the degree of heterogeneity within these compartments and their lineage relationships during development remain an open question. Here we report single-cell RNA profiling of mouse mammary epithelial cells spanning four developmental stages in the post-natal gland. Notably, the epithelium undergoes a large-scale shift in gene expression from a relatively homogeneous basal-like program in pre-puberty to distinct lineage-restricted programs in puberty. Interrogation of single-cell transcriptomes reveals different levels of diversity within the luminal and basal compartments, and identifies an early progenitor subset marked by CD55. Moreover, we uncover a luminal transit population and a rare mixed-lineage cluster amongst basal cells in the adult mammary gland. Together these findings point to a developmental hierarchy in which a basal-like gene expression program prevails in the early post-natal gland prior to the specification of distinct lineage signatures, and the presence of cellular intermediates that may serve as transit or lineage-primed cells.
Collapse
Affiliation(s)
- Bhupinder Pal
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yunshun Chen
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - François Vaillant
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul Jamieson
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Lavinia Gordon
- Australian Genome Research Facility, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anne C Rios
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephen Wilcox
- Systems Biology & Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Naiyang Fu
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kevin He Liu
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Felicity C Jackling
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Melissa J Davis
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Geoffrey J Lindeman
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, 3010, Australia.,Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC, 3050, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jane E Visvader
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
78
|
Schwalie PC, Ordóñez-Morán P, Huelsken J, Deplancke B. Cross-Tissue Identification of Somatic Stem and Progenitor Cells Using a Single-Cell RNA-Sequencing Derived Gene Signature. Stem Cells 2017; 35:2390-2402. [PMID: 29044933 DOI: 10.1002/stem.2719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022]
Abstract
A long-standing question in biology is whether multipotent somatic stem and progenitor cells (SSPCs) feature molecular properties that could guide their system-independent identification. Population-based transcriptomic studies have so far not been able to provide a definite answer, given the rarity and heterogeneous nature of these cells. Here, we exploited the resolving power of single-cell RNA-sequencing to develop a computational model that is able to accurately distinguish SSPCs from differentiated cells across tissues. The resulting classifier is based on the combined expression of 23 genes including known players in multipotency, proliferation, and tumorigenesis, as well as novel ones, such as Lcp1 and Vgll4 that we functionally validate in intestinal organoids. We show how this approach enables the identification of stem-like cells in still ambiguous systems such as the pancreas and the epidermis as well as the exploration of lineage commitment hierarchies, thus facilitating the study of biological processes such as cellular differentiation, tissue regeneration, and cancer. Stem Cells 2017;35:2390-2402.
Collapse
Affiliation(s)
- Petra C Schwalie
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
| | - Paloma Ordóñez-Morán
- ISREC (Swiss Institute for Experimental Cancer Research), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Joerg Huelsken
- ISREC (Swiss Institute for Experimental Cancer Research), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
| |
Collapse
|
79
|
Acinar cells in the neonatal pancreas grow by self-duplication and not by neogenesis from duct cells. Sci Rep 2017; 7:12643. [PMID: 28974717 PMCID: PMC5626771 DOI: 10.1038/s41598-017-12721-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023] Open
Abstract
Pancreatic acinar cells secrete digestive enzymes necessary for nutrient digestion in the intestine. They are considered the initiating cell type of pancreatic cancer and are endowed with differentiation plasticity that has been harnessed to regenerate endocrine beta cells. However, there is still uncertainty about the mechanisms of acinar cell formation during the dynamic period of early postnatal development. To unravel cellular contributions in the exocrine acinar development we studied two reporter mouse strains to trace the fate of acinar and duct cells during the first 4 weeks of life. In the acinar reporter mice, the labelling index of acinar cells remained unchanged during the neonatal pancreas growth period, evidencing that acinar cells are formed by self-duplication. In line with this, duct cell tracing did not show significant increase in acinar cell labelling, excluding duct-to-acinar cell contribution during neonatal development. Immunohistochemical analysis confirms massive levels of acinar cell proliferation in this early period of life. Further, also increase in acinar cell size contributes to the growth of pancreatic mass.We conclude that the growth of acinar cells during physiological neonatal pancreas development is by self-duplication (and hypertrophy) rather than neogenesis from progenitor cells as was suggested before.
Collapse
|
80
|
Tritschler S, Theis FJ, Lickert H, Böttcher A. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab 2017; 6:974-990. [PMID: 28951822 PMCID: PMC5605721 DOI: 10.1016/j.molmet.2017.06.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is characterized by loss or dysfunction of insulin-producing β-cells in the pancreas, resulting in failure of blood glucose regulation and devastating secondary complications. Thus, β-cells are currently the prime target for cell-replacement and regenerative therapy. Triggering endogenous repair is a promising strategy to restore β-cell mass and normoglycemia in diabetic patients. Potential strategies include targeting specific β-cell subpopulations to increase proliferation or maturation. Alternatively, transdifferentiation of pancreatic islet cells (e.g. α- or δ-cells), extra-islet cells (acinar and ductal cells), hepatocytes, or intestinal cells into insulin-producing cells might improve glycemic control. To this end, it is crucial to systematically characterize and unravel the transcriptional program of all pancreatic cell types at the molecular level in homeostasis and disease. Furthermore, it is necessary to better determine the underlying mechanisms of β-cell maturation, maintenance, and dysfunction in diabetes, to identify and molecularly profile endocrine subpopulations with regenerative potential, and to translate the findings from mice to man. Recent approaches in single-cell biology started to illuminate heterogeneity and plasticity in the pancreas that might be targeted for β-cell regeneration in diabetic patients. SCOPE OF REVIEW This review discusses recent literature on single-cell analysis including single-cell RNA sequencing, single-cell mass cytometry, and flow cytometry of pancreatic cell types in the context of mechanisms of endogenous β-cell regeneration. We discuss new findings on the regulation of postnatal β-cell proliferation and maturation. We highlight how single-cell analysis recapitulates described principles of functional β-cell heterogeneity in animal models and adds new knowledge on the extent of β-cell heterogeneity in humans as well as its role in homeostasis and disease. Furthermore, we summarize the findings on cell subpopulations with regenerative potential that might enable the formation of new β-cells in diseased state. Finally, we review new data on the transcriptional program and function of rare pancreatic cell types and their implication in diabetes. MAJOR CONCLUSION Novel, single-cell technologies offer high molecular resolution of cellular heterogeneity within the pancreas and provide information on processes and factors that govern β-cell homeostasis, proliferation, and maturation. Eventually, these technologies might lead to the characterization of cells with regenerative potential and unravel disease-associated changes in gene expression to identify cellular and molecular targets for therapy.
Collapse
Affiliation(s)
- Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
81
|
Hayakawa Y, Fox JG, Wang TC. The Origins of Gastric Cancer From Gastric Stem Cells: Lessons From Mouse Models. Cell Mol Gastroenterol Hepatol 2017; 3:331-338. [PMID: 28462375 PMCID: PMC5404024 DOI: 10.1016/j.jcmgh.2017.01.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/28/2017] [Indexed: 12/24/2022]
Abstract
The cellular origin of digestive cancers has been a long-standing question in the cancer field. Mouse models have identified long-lived stem cells in most organ systems, including the luminal gastrointestinal tract, and numerous studies have pointed to tissue resident stem cells as the main cellular origin of cancer. During gastric carcinogenesis, chronic inflammation induces genetic and epigenetic alterations in long-lived stem cells, along with expansion of stem cell niches, eventually leading to invasive cancer. The gastric corpus and antrum have distinct stem cells and stem cell niches, suggesting differential regulation of cancer initiation at the 2 sites. In this short review, we discuss recent experimental models and human studies, which provide important insights into the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York,Correspondence Address correspondence to: Timothy C. Wang, MD, Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, 1130 St Nicholas Avenue, Room 925, New York, New York 10032-3802. fax: (212) 851-4590.Division of Digestive and Liver DiseasesDepartment of Medicine and Irving Cancer Research CenterColumbia University Medical Center1130 St Nicholas AvenueRoom 925New YorkNew York 10032-3802
| |
Collapse
|
82
|
Schmitner N, Kohno K, Meyer D. ptf1a+ , ela3l- cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae. Dis Model Mech 2017; 10:307-321. [PMID: 28138096 PMCID: PMC5374315 DOI: 10.1242/dmm.026633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells.
Collapse
Affiliation(s)
- Nicole Schmitner
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| | - Kenji Kohno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Dirk Meyer
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| |
Collapse
|