51
|
Xiong J, Yang F, Yao X, Zhao Y, Wen Y, Lin H, Guo H, Yin Y, Zhang D. The deubiquitinating enzymes UBP12 and UBP13 positively regulate recovery after carbon starvation by modulating BES1 stability in Arabidopsis thaliana. THE PLANT CELL 2022; 34:4516-4530. [PMID: 35944221 PMCID: PMC9614486 DOI: 10.1093/plcell/koac245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BRI1-EMS-SUPPRESSOR1 (BES1), a core transcription factor in the brassinosteroid (BR) signaling pathway, primarily regulates plant growth and development by influencing BR-regulated gene expression. Several E3 ubiquitin (Ub) ligases regulate BES1 stability, but little is known about BES1 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain BES1 homeostasis. Here, we report that two Arabidopsis thaliana deubiquitinating enzymes, Ub-SPECIFIC PROTEASE (UBP) 12 and UBP13, interact with BES1. UBP12 and UBP13 removed Ub from polyubiquitinated BES1 to stabilize both phosphorylated and dephosphorylated forms of BES1. A double mutant, ubp12-2w ubp13-3, lacking UBP12 and UBP13 function showed both BR-deficient and BR-insensitive phenotypes, whereas transgenic plants overexpressing UBP12 or UBP13 exhibited an increased BR response. Expression of UBP12 and UPB13 was induced during recovery after carbon starvation, which led to BES1 accumulation and quick recovery of stressed plants. Our work thus establishes a mechanism by which UBP12 and UBP13 regulate BES1 protein abundance to enhance BR-regulated growth during recovery after carbon starvation.
Collapse
Affiliation(s)
- Jiawei Xiong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Fabin Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yu Wen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Hongqing Guo
- Department of Genetics, Development, and Cell Biology, Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
52
|
Park SH, Jeong JS, Zhou Y, Binte Mustafa NF, Chua NH. Deubiquitination of BES1 by UBP12/UBP13 promotes brassinosteroid signaling and plant growth. PLANT COMMUNICATIONS 2022; 3:100348. [PMID: 35706355 PMCID: PMC9483116 DOI: 10.1016/j.xplc.2022.100348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 05/26/2023]
Abstract
As a key transcription factor in the brassinosteroid (BR) signaling pathway, the activity and expression of BES1 (BRI1-EMS-SUPPRESSOR 1) are stringently regulated. BES1 degradation is mediated by ubiquitin-related 26S proteasomal and autophagy pathways, which attenuate and terminate BR signaling; however, the opposing deubiquitinases (DUBs) are still unknown. Here, we showed that the ubp12-2w/13-3 double mutant phenocopies the BR-deficient dwarf mutant, suggesting that the two DUBs UBP12/UBP13 antagonize ubiquitin-mediated degradation to stabilize BES1. These two DUBs can trim tetraubiquitin with K46 and K63 linkages in vitro. UBP12/BES1 and UBP13/BES1 complexes are localized in both cytosol and nuclei. UBP12/13 can deubiquitinate polyubiquitinated BES1 in vitro and in planta, and UBP12 interacts with and deubiquitinates both inactive, phosphorylated BES1 and active, dephosphorylated BES1 in vivo. UBP12 overexpression in BES1OE plants significantly enhances cell elongation in hypocotyls and petioles and increases the ratio of leaf length to width compared with BES1OE or UBP12OE plants. Hypocotyl elongation and etiolation result from elevated BES1 levels because BES1 degradation is retarded by UBP12 in darkness or in light with BR. Protein degradation inhibitor experiments show that the majority of BES1 can be degraded by either the proteasomal or the autophagy pathway, but a minor BES1 fraction remains pathway specific. In conclusion, UBP12/UBP13 deubiquitinate BES1 to stabilize the latter as a positive regulator for BR responses.
Collapse
Affiliation(s)
- Su-Hyun Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Jin Seo Jeong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Yu Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Nur Fatimah Binte Mustafa
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore.
| |
Collapse
|
53
|
Shi H, Li X, Lv M, Li J. BES1/BZR1 Family Transcription Factors Regulate Plant Development via Brassinosteroid-Dependent and Independent Pathways. Int J Mol Sci 2022; 23:ijms231710149. [PMID: 36077547 PMCID: PMC9478962 DOI: 10.3390/ijms231710149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
The BES1/BZR1 family is a plant-specific small group of transcription factors possessing a non-canonical bHLH domain. Genetic and biochemical analyses within the last two decades have demonstrated that members of this family are key transcription factors in regulating the expression of brassinosteroid (BR) response genes. Several recent genetic and evolutionary studies, however, have clearly indicated that the BES1/BZR1 family transcription factors also function in regulating several aspects of plant development via BR-independent pathways, suggesting they are not BR specific. In this review, we summarize our current understanding of this family of transcription factors, the mechanisms regulating their activities, DNA binding motifs, and target genes. We selectively discuss a number of their biological functions via BR-dependent and particularly independent pathways, which were recently revealed by loss-of-function genetic analyses. We also highlight a few possible future directions.
Collapse
|
54
|
Costigliolo Rojas C, Bianchimano L, Oh J, Romero Montepaone S, Tarkowská D, Minguet EG, Schön J, García Hourquet M, Flugel T, Blázquez MA, Choi G, Strnad M, Mora-García S, Alabadi D, Zurbriggen MD, Casal JJ. Organ-specific COP1 control of BES1 stability adjusts plant growth patterns under shade or warmth. Dev Cell 2022; 57:2009-2025.e6. [PMID: 35901789 DOI: 10.1016/j.devcel.2022.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/16/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Under adverse conditions such as shade or elevated temperatures, cotyledon expansion is reduced and hypocotyl growth is promoted to optimize plant architecture. The mechanisms underlying the repression of cotyledon cell expansion remain unknown. Here, we report that the nuclear abundance of the BES1 transcription factor decreased in the cotyledons and increased in the hypocotyl in Arabidopsis thaliana under shade or warmth. Brassinosteroid levels did not follow the same trend. PIF4 and COP1 increased their nuclear abundance in both organs under shade or warmth. PIF4 directly bound the BES1 promoter to enhance its activity but indirectly reduced BES1 expression. COP1 physically interacted with the BES1 protein, promoting its proteasome degradation in the cotyledons. COP1 had the opposite effect in the hypocotyl, demonstrating organ-specific regulatory networks. Our work indicates that shade or warmth reduces BES1 activity by transcriptional and post-translational regulation to inhibit cotyledon cell expansion.
Collapse
Affiliation(s)
- Cecilia Costigliolo Rojas
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Luciana Bianchimano
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Jeonghwa Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sofía Romero Montepaone
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Dana Tarkowská
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czech Republic
| | - Eugenio G Minguet
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Jonas Schön
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariano García Hourquet
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Timo Flugel
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Miguel A Blázquez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czech Republic
| | - Santiago Mora-García
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - David Alabadi
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Jorge J Casal
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina; Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1417 Buenos Aires, Argentina.
| |
Collapse
|
55
|
An JP, Zhang CL, Li HL, Wang GL, You CX. Apple SINA E3 ligase MdSINA3 negatively mediates JA-triggered leaf senescence by ubiquitinating and degrading the MdBBX37 protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:457-472. [PMID: 35560993 DOI: 10.1111/tpj.15808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Jasmonic acid (JA) induces chlorophyll degradation and leaf senescence. B-box (BBX) proteins play important roles in the modulation of leaf senescence, but the molecular mechanism of BBX protein-mediated leaf senescence remains to be further studied. Here, we identified the BBX protein MdBBX37 as a positive regulator of JA-induced leaf senescence in Malus domestica (apple). Further studies showed that MdBBX37 interacted with the senescence regulatory protein MdbHLH93 to enhance its transcriptional activation on the senescence-associated gene MdSAG18, thereby promoting leaf senescence. Moreover, the JA signaling repressor MdJAZ2 interacted with MdBBX37 and interfered with the interaction between MdBBX37 and MdbHLH93, thereby negatively mediating MdBBX37-promoted leaf senescence. In addition, the E3 ubiquitin ligase MdSINA3 delayed MdBBX37-promoted leaf senescence through targeting MdBBX37 for degradation. The MdJAZ2-MdBBX37-MdbHLH93-MdSAG18 and MdSINA3-MdBBX37 modules realized the precise modulation of JA on leaf senescence. In parallel, our data demonstrate that MdBBX37 was involved in abscisic acid (ABA)- and ethylene-mediated leaf senescence through interacting with the ABA signaling regulatory protein MdABI5 and ethylene signaling regulatory protein MdEIL1, respectively. Taken together, our results not only reveal the role of MdBBX37 as an integration node in JA-, ABA- and ethylene-mediated leaf senescence, but also provide new insights into the post-translational modification of BBX proteins.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
56
|
Coordinative regulation of ERAD and selective autophagy in plants. Essays Biochem 2022; 66:179-188. [PMID: 35612379 DOI: 10.1042/ebc20210099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) plays important roles in plant development, hormone signaling, and plant-environment stress interactions by promoting the clearance of certain proteins or soluble misfolded proteins through the ubiquitin-proteasome system. Selective autophagy is involved in the autophagic degradation of protein aggregates mediated by specific selective autophagy receptors. These two major degradation routes co-operate with each other to relieve the cytotoxicity caused by ER stress. In this review, we analyze ERAD and different types of autophagy, including nonselective macroautophagy and ubiquitin-dependent and ubiquitin-independent selective autophagy in plants, and specifically summarize the selective autophagy receptors characterized in plants. In addition to being a part of selective autophagy, ERAD components also serve as their cargos. Moreover, an ubiquitinated substrate can be delivered to two distinguishable degradation systems, while the underlying determinants remain elusive. These excellent findings suggest an interdependent but complicated relationship between ERAD and selective autophagy. According to this point, we propose several key issues that need to be addressed in the future.
Collapse
|
57
|
Cao J, Liang Y, Yan T, Wang X, Zhou H, Chen C, Zhang Y, Zhang B, Zhang S, Liao J, Cheng S, Chu J, Huang X, Xu D, Li J, Deng XW, Lin F. The photomorphogenic repressors BBX28 and BBX29 integrate light and brassinosteroid signaling to inhibit seedling development in Arabidopsis. THE PLANT CELL 2022; 34:2266-2285. [PMID: 35294019 PMCID: PMC9134050 DOI: 10.1093/plcell/koac092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/27/2022] [Indexed: 05/20/2023]
Abstract
B-box containing proteins (BBXs) integrate light and various hormonal signals to regulate plant growth and development. Here, we demonstrate that the photomorphogenic repressors BBX28 and BBX29 positively regulate brassinosteroid (BR) signaling in Arabidopsis thaliana seedlings. Treatment with the BR brassinolide stabilized BBX28 and BBX29, which partially depended on BR INSENSITIVE1 (BRI1) and BIN2. bbx28 bbx29 seedlings exhibited larger cotyledon aperture than the wild-type when treated with brassinazole in the dark, which partially suppressed the closed cotyledons of brassinazole resistant 1-1D (bzr1-1D). Consistently, overexpressing BBX28 and BBX29 partially rescued the short hypocotyls of bri1-5 and bin2-1 in both the dark and light, while the loss-of-function of BBX28 and BBX29 partially suppressed the long hypocotyls of bzr1-1D in the light. BBX28 and BBX29 physically interacted with BR-ENHANCED EXPRESSION1 (BEE1), BEE2, and BEE3 and enhanced their binding to and activation of their target genes. Moreover, BBX28 and BBX29 as well as BEE1, BEE2, and BEE3 increased BZR1 accumulation to promote the BR signaling pathway. Therefore, both BBX28 and BBX29 interact with BEE1, BEE2, and BEE3 to orchestrate light and BR signaling by facilitating the transcriptional activity of BEE target genes. Our study provides insights into the pivotal roles of BBX28 and BBX29 as signal integrators in ensuring normal seedling development.
Collapse
Affiliation(s)
| | | | | | - Xuncheng Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Hua Zhou
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingli Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beihong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuhao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juncheng Liao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shujing Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xing Wang Deng
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
58
|
Yue ZL, Liu N, Deng ZP, Zhang Y, Wu ZM, Zhao JL, Sun Y, Wang ZY, Zhang SW. The receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid signaling and regulate cell elongation in rice. Curr Biol 2022; 32:2454-2466.e7. [PMID: 35512695 DOI: 10.1016/j.cub.2022.04.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
Abstract
Rates of plant cell elongation change with day-night alternation, reflecting differences in metabolism related to cell wall remodeling. Information from cell wall surveillance pathways must be integrated with growth regulation pathways to provide feedback regulation of cell wall modification; such feedback regulation is important to ensure sufficient strength and prevent rupture of the cell wall during growth. Several lines of evidence suggest that cell wall perturbations often influence phytohormone signaling, but the identity of the nexus between these two processes remained elusive. Here, we show that wall-associated kinase11 (OsWAK11) acts as a linker connecting cell wall pectin methyl-esterification changes and brassinosteroid (BR) signaling in rice. Our data show that OsWAK11 controls several important agronomical traits by regulating cell elongation in rice. OsWAK11 directly binds and phosphorylates the BR receptor OsBRI1 at residue Thr752, within a motif conserved across most monocot graminaceous crops, thus hindering OsBRI1 interaction with its co-receptor OsSERK1/OsBAK1 and inhibiting BR signaling. The extracellular domain of OsWAK11 shows a much stronger interaction toward methyl-esterified pectin as compared with de-methyl-esterified pectin. OsWAK11 is stabilized in light but is degraded in darkness, in a process triggered by changes in the ratio of methyl-esterified to de-methyl-esterified pectin, creating fluctuations in plant BR signaling in response to day and night alternation. We conclude that OsWAK11 is a cell wall monitor that regulates cell elongation rates to adapt to the environment from the outside in, which complements the well-established inside-out signaling pathway affecting cell elongation in plants.
Collapse
Affiliation(s)
- Zhi-Liang Yue
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China; Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang 050051, China
| | - Ning Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Zhi-Ping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Zhi-Ming Wu
- Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang 050051, China
| | - Ji-Long Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Sheng-Wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| |
Collapse
|
59
|
Liao CY, Wang P, Yin Y, Bassham DC. Interactions between autophagy and phytohormone signaling pathways in plants. FEBS Lett 2022; 596:2198-2214. [PMID: 35460261 PMCID: PMC9543649 DOI: 10.1002/1873-3468.14355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022]
Abstract
Autophagy is a conserved recycling process with important functions in plant growth, development, and stress responses. Phytohormones also play key roles in the regulation of some of the same processes. Increasing evidence indicates that a close relationship exists between autophagy and phytohormone signaling pathways, and the mechanisms of interaction between these pathways have begun to be revealed. Here, we review recent advances in our understanding of how autophagy regulates hormone signaling and, conversely, how hormones regulate the activity of autophagy, both in plant growth and development and in environmental stress responses. We highlight in particular recent mechanistic insights into the coordination between autophagy and signaling events controlled by the stress hormone abscisic acid and by the growth hormones brassinosteroid and cytokinin and briefly discuss potential connections between autophagy and other phytohormones.
Collapse
Affiliation(s)
- Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
60
|
Zhao J, Yang G, Jiang L, Zhang S, Miao L, Xu P, Chen H, Chen L, Mao Z, Guo T, Kou S, Yang HQ, Wang W. Phytochromes A and B Mediate Light Stabilization of BIN2 to Regulate Brassinosteroid Signaling and Photomorphogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:865019. [PMID: 35432407 PMCID: PMC9005995 DOI: 10.3389/fpls.2022.865019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Phytochromes A and B (phyA and phyB) are the far-red and red lights photoreceptors mediating many light responses in Arabidopsis thaliana. Brassinosteroid (BR) is a pivotal phytohormone regulating a variety of plant developmental processes including photomorphogenesis. It is known that phyB interacts with BES1 to inhibit its DNA-binding activity and repress BR signaling. Here, we show that far-red and red lights modulate BR signaling through phyA and phyB regulation of the stability of BIN2, a glycogen synthase kinase 3 (GSK3)-like kinase that phosphorylates BES1/BZR1 to inhibit BR signaling. The BIN2 gain-of-function mutant bin2-1 displays an enhanced photomorphogenic phenotype in both far-red and red lights. phyA-enhanced accumulation of BIN2 promotes the phosphorylation of BES1 in far-red light. BIN2 acts genetically downstream from PHYA to regulate photomorphogenesis under far-red light. Both phyA and phyB interact directly with BIN2, which may promote the interaction of BIN2 with BES1 and induce the phosphorylation of BES1. Our results suggest that far-red and red lights inhibit BR signaling through phyA and phyB stabilization of BIN2 and promotion of BES1 phosphorylation, which defines a new layer of the regulatory mechanism that allows plants to coordinate light and BR signaling pathways to optimize photomorphogenesis.
Collapse
Affiliation(s)
- Jiachen Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guangqiong Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lu Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shilong Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Langxi Miao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Xu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Huiru Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuang Kou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
61
|
Qi H, Xia FN, Xiao S, Li J. TRAF proteins as key regulators of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:431-448. [PMID: 34676666 DOI: 10.1111/jipb.13182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles. They are characterized by their C-terminal region (TRAF-C domain) containing seven to eight anti-parallel β-sheets, also known as the meprin and TRAF-C homology (MATH) domain. Over the past few decades, significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants. Compared to other eukaryotic species, the Arabidopsis thaliana and rice (Oryza sativa) genomes encode many more TRAF/MATH domain-containing proteins; these plant proteins cluster into five classes: TRAF/MATH-only, MATH-BPM, MATH-UBP (ubiquitin protease), Seven in absentia (SINA), and MATH-Filament and MATH-PEARLI-4 proteins, suggesting parallel evolution of TRAF proteins in plants. Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes, such as vegetative and reproductive development, autophagosome formation, plant immunity, symbiosis, phytohormone signaling, and abiotic stress responses. Here, we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
62
|
Chang S, Huang G, Wang D, Zhu W, Shi J, Yang L, Liang W, Xie Q, Zhang D. Rice SIAH E3 Ligases Interact with RMD Formin and Affect Plant Morphology. RICE (NEW YORK, N.Y.) 2022; 15:6. [PMID: 35075530 PMCID: PMC8786996 DOI: 10.1186/s12284-022-00554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Formins are actin-binding proteins that are key to maintaining the actin cytoskeleton in cells. However, molecular mechanisms controlling the stability of formin proteins in plants remain unknown. Here, we have identified six rice SIAH-type E3 ligases, named RIP1-6 (RMD Interacting Protein 1-6) respectively, with ubiquitination enzyme activity in vitro. All six proteins can form homo- and hetero-dimers with themselves, and hetero-dimers with type II formin RMD/OsFH5. In vivo assays showed that RIP1-6 proteins localize in the cytoplasm with a punctate distribution, and all of them interact with RMD to change its native diffuse cytoplasmic localization to match that of RIP1-6. To our surprise, degradation experiments revealed that RIP1, RIP5, and RIP6 decrease rather than increase the degradation rate of RMD. Genetic analyses revealed redundancy between these six genes; either single or double mutants did not show any obvious phenotypes. However, the sextuple rip1-6 mutant displayed dwarf height, wrinkled seeds and wider leaves that were similar to the previously reported rmd mutant, and defective microfilaments and increased flag leaf angles that were not reported in rmd mutant. Collectively, our study provides insights into the mechanisms determining formin protein stability in plants.
Collapse
Affiliation(s)
- Shuwei Chang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Guoqiang Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Duoxiang Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanwan Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Litao Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
63
|
Hu J, Hu X, Yang Y, He C, Hu J, Wang X. Strigolactone signaling regulates cambial activity through repression of WOX4 by transcription factor BES1. PLANT PHYSIOLOGY 2022; 188:255-267. [PMID: 34687296 PMCID: PMC8774819 DOI: 10.1093/plphys/kiab487] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
During secondary growth, meristematic cells in the cambium can either proliferate to maintain the stem cell population or differentiate into xylem or phloem. The balance between these two developmental trajectories is tightly regulated by many environmental and endogenous cues. Strigolactones (SLs), a class of plant hormones, were previously reported to regulate secondary growth by promoting cambium activity. However, the underlying molecular mechanisms of SL action in plant secondary growth are not well understood. We performed histological, genetic, and biochemical analyses using genetic materials in Arabidopsis (Arabidopsis thaliana) with altered activity of the transcription factors BRI1-EMS-SUPPRESSOR1 (BES1) or WUSCHEL-related HOMEOBOX4 (WOX4) or lacking MORE AXILLARY SHOOT2 (MAX2), a key positive component in the SL signaling pathway. We found that BES1, a downstream regulator in the SL signaling pathway that promotes shoot branching and xylem differentiation, also inhibits WOX4 expression, a key regulator of cambium cell division in the intercellular TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)-TDIF RECEPTOR (TDR) signaling pathway. The antagonistic roles of BES1 and WOX4 in the regulation of cambium activity may integrate intercellular TDIF signals to efficiently and bidirectionally modulate cambium cell proliferation and differentiation. As both BES1 and WOX4 are widely involved in various endogenous signals and responses to environmental stimuli, these findings may provide insight into the dynamic regulation of cambium development.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | - Xiaotong Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | - Chunmei He
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | - Jin Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| |
Collapse
|
64
|
Groszyk J, Szechyńska-Hebda M. Brassinazole Resistant 1 Activity Is Organ-Specific and Genotype-Dependent in Barley Seedlings. Int J Mol Sci 2021; 22:ijms222413572. [PMID: 34948366 PMCID: PMC8706524 DOI: 10.3390/ijms222413572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Brassinosteroids (BRs) control many plant developmental processes by regulating different groups of transcription factors, and consequently gene expressions. The most known is BZR1, the main member of the BES1 family. However, to date, it is poorly characterized in crop species. The main goal of the presented study was to identify HvBZR1 and determine its activity in 5-day-old barley (the stage is related to one leaf on the main shoot and a few seminal roots) using two cultivars with different sensitivities to BRs. Using the anti-OsBZR1 antibody, we identified the forms of HvBZR1 transcription factor with different molecular weights, which can be related to different phosphorylated forms of serine/threonine residues. Two phosphorylated forms in the shoots and one dephosphorylated form in the roots were determined. A minor amount of the dephosphorylated form of the HvBZR1 in the Haruna Nijo shoots was also found. The phosphorylated forms gave a higher band intensity for Golden Promise than Haruna Nijo. The bands were similar in their intensity, when two different phosphorylated forms were compared in Golden Promise, while a reduced intensity was detected for the phosphorylated form with a lower molecular weight for Haruna Nijo. Degradation of the phosphorylated forms in the shoots (complete degradation in Golden Promise and significant but not complete in Haruna Nijo) and the presence of the dephosphorylated form in the roots were proven for the etiolated barley. In the case of Haruna Nijo, a wider range of the regulators of the BR biosynthesis and signaling pathways induced the expected effects, 24-EBL (0.001 µM) and bikinin (10 and 50 µM) caused low amount of the phosphorylated forms, and at the same time, a tiny band of dephosphorylated form was detected. However, the expression of genes related to the BR biosynthesis and signaling pathways was not a determinant for the protein amount.
Collapse
|
65
|
Ma A, Zhang D, Wang G, Wang K, Li Z, Gao Y, Li H, Bian C, Cheng J, Han Y, Yang S, Gong Z, Qi J. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. THE PLANT CELL 2021; 33:3675-3699. [PMID: 34469582 PMCID: PMC8643689 DOI: 10.1093/plcell/koab221] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 05/30/2023]
Abstract
Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.
Collapse
Affiliation(s)
- Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dingpeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32608, USA
| | - Guangxing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanhui Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hengchang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Bian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinan Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Science, Hebei University, Baoding 071002, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
66
|
Li C, Zhang B, Yu H. GSK3s: nodes of multilayer regulation of plant development and stress responses. TRENDS IN PLANT SCIENCE 2021; 26:1286-1300. [PMID: 34417080 DOI: 10.1016/j.tplants.2021.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 05/28/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) family members are highly conserved serine/threonine protein kinases in eukaryotes. Unlike animals, plants have evolved with multiple homologs of GSK3s involved in a diverse array of biological processes. Emerging evidence suggests that GSK3s act as signaling hubs for integrating perception and transduction of diverse signals required for plant development and responses to abiotic and biotic cues. Here we review recent advances in understanding the molecular interactions between GSK3s and an expanding spectrum of their upstream regulators and downstream substrates in plants. We further discuss how GSK3s act as key signaling nodes of multilayer regulation of plant development and stress response through either being regulated at the post-translational level or regulating their substrates via phosphorylation.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Bin Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
67
|
Lin F, Cao J, Yuan J, Liang Y, Li J. Integration of Light and Brassinosteroid Signaling during Seedling Establishment. Int J Mol Sci 2021; 22:12971. [PMID: 34884771 PMCID: PMC8657978 DOI: 10.3390/ijms222312971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 01/02/2023] Open
Abstract
Light and brassinosteroid (BR) are external stimuli and internal cue respectively, that both play critical roles in a wide range of developmental and physiological process. Seedlings grown in the light exhibit photomorphogenesis, while BR promotes seedling etiolation. Light and BR oppositely control the development switch from shotomorphogenesis in the dark to photomorphogenesis in the light. Recent progress report that substantial components have been identified as hubs to integrate light and BR signals. Photomorphogenic repressors including COP1, PIFs, and AGB1 have been reported to elevate BR response, while photomorphogenesis-promoting factors such as HY5, BZS1, and NF-YCs have been proven to repress BR signal. In addition, BR components also modulate light signal. Here, we review the current research on signaling network associated with light and brassinosteroids, with a focus on the integration of light and BR signals enabling plants to thrive in the changeable environment.
Collapse
Affiliation(s)
- Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (J.Y.); (Y.L.); (J.L.)
| | | | | | | | | |
Collapse
|
68
|
Wang P, Nolan TM, Clark NM, Jiang H, Montes-Serey C, Guo H, Bassham DC, Walley JW, Yin Y. The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis. THE PLANT CELL 2021; 33:3532-3554. [PMID: 34436598 PMCID: PMC8566207 DOI: 10.1093/plcell/koab210] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/14/2021] [Indexed: 05/02/2023]
Abstract
Brassinosteroids (BRs) regulate plant growth, development, and stress responses by activating the core transcription factor BRI1-EMS-SUPPRESSOR1 (BES1), whose degradation occurs through the proteasome and autophagy pathways. The E3 ubiquitin ligase(s) that modify BES1 for autophagy-mediated degradation remain to be fully defined. Here, we identified an F-box family E3 ubiquitin ligase named BES1-ASSOCIATED F-BOX1 (BAF1) in Arabidopsis thaliana. BAF1 interacts with BES1 and mediates its ubiquitination and degradation. Our genetic data demonstrated that BAF1 inhibits BR signaling in a BES1-dependent manner. Moreover, BAF1 targets BES1 for autophagic degradation in a selective manner. BAF1-triggered selective autophagy of BES1 depends on the ubiquitin binding receptor DOMINANT SUPPRESSOR OF KAR2 (DSK2). Sucrose starvation-induced selective autophagy of BES1, but not bulk autophagy, was significantly compromised in baf1 mutant and BAF1-ΔF (BAF1 F-box decoy) overexpression plants, but clearly increased by BAF1 overexpression. The baf1 and BAF1-ΔF overexpression plants had increased BR-regulated growth but were sensitive to long-term sucrose starvation, while BAF1 overexpression plants had decreased BR-regulated growth but were highly tolerant of sucrose starvation. Our results not only established BAF1 as an E3 ubiquitin ligase that targets BES1 for degradation through selective autophagy pathway, but also revealed a mechanism for plants to reduce growth during sucrose starvation.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | | | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
- Plant Sciences Institutes, Iowa State University, Ames, Iowa 50011
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
- Plant Sciences Institutes, Iowa State University, Ames, Iowa 50011
- Author for correspondence:
| |
Collapse
|
69
|
Reciprocal antagonistic regulation of E3 ligases controls ACC synthase stability and responses to stress. Proc Natl Acad Sci U S A 2021; 118:2011900118. [PMID: 34404725 DOI: 10.1073/pnas.2011900118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14-3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases.
Collapse
|
70
|
Xu J, Wang JJ, Xue HW, Zhang GH. Leaf direction: Lamina joint development and environmental responses. PLANT, CELL & ENVIRONMENT 2021; 44:2441-2454. [PMID: 33866581 DOI: 10.1111/pce.14065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Plant architecture plays a major role in canopy photosynthesis and biomass production, and plants adjust their growth (and thus architecture) in response to changing environments. Leaf angle is one of the most important traits in rice (Oryza sativa L.) plant architecture, because leaf angle strongly affects leaf direction and rice production, with more-erect leaves being advantageous for high-density plantings. The degree of leaf bending depends on the morphology of the lamina joint, which connects the leaf and the sheath. In this review, we discuss cell morphology in different lamina joint tissues and describe the underlying genetic network that governs this morphology and thus regulates leaf direction. Furthermore, we focus on the mechanism by how environmental factors influence rice leaf angle. Our review provides a theoretical framework for the future genetic improvement of rice leaf orientation and plant architecture.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jia-Jia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hong-Wei Xue
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Heng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
71
|
Feng Z, Shi H, Lv M, Ma Y, Li J. Protein farnesylation negatively regulates brassinosteroid signaling via reducing BES1 stability in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1353-1366. [PMID: 33764637 PMCID: PMC8360029 DOI: 10.1111/jipb.13093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) are a group of steroidal phytohormones, playing critical roles in almost all physiological aspects during the life span of a plant. In Arabidopsis, BRs are perceived at the cell surface, triggering a reversible phosphorylation-based signaling cascade that leads to the activation and nuclear accumulation of a family of transcription factors, represented by BES1 and BZR1. Protein farnesylation is a type of post-translational modification, functioning in many important cellular processes. Previous studies demonstrated a role of farnesylation in BR biosynthesis via regulating the endoplasmic reticulum localization of a key bassinolide (BL) biosynthetic enzyme BR6ox2. Whether such a process is also involved in BR signaling is not understood. Here, we demonstrate that protein farnesylation is involved in mediating BR signaling in Arabidopsis. A loss-of-function mutant of ENHANCED RESPONSE TO ABA 1 (ERA1), encoding a β subunit of the protein farnesyl transferase holoenzyme, can alter the BL sensitivity of bak1-4 from a reduced to a hypersensitive level. era1 can partially rescue the BR defective phenotype of a heterozygous mutant of bin2-1, a gain-of-function mutant of BIN2 which encodes a negative regulator in the BR signaling. Our genetic and biochemical analyses revealed that ERA1 plays a significant role in regulating the protein stability of BES1.
Collapse
Affiliation(s)
- Zengxiu Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hongyong Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Minghui Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuang Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
72
|
Xiao S, Hu Q, Zhang X, Si H, Liu S, Chen L, Chen K, Berne S, Yuan D, Lindsey K, Zhang X, Zhu L. Orchestration of plant development and defense by indirect crosstalk of salicylic acid and brassinosteorid signaling via transcription factor GhTINY2. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4721-4743. [PMID: 33928361 DOI: 10.1093/jxb/erab186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) and brassinosteroids (BRs) are well known to regulate diverse processes of plant development and stress responses, but the mechanisms by which these phytohormones mediate the growth and defense trade-off are largely unclear. In addition, little is known about the roles of DEHYDRATION RESPONSIVE ELEMENT BINDING transcription factors, especially in biotic stress and plant growth. Here, we identified a cotton (Gossypium hirsutum) APETALA2/ETHYLENE RESPONSIVE FACTOR gene GhTINY2 that is strongly induced by Verticillium dahliae. Overexpression of GhTINY2 in cotton and Arabidopsis enhanced tolerance to V. dahliae, while knockdown of expression increased the susceptibility of cotton to the pathogen. GhTINY2 was found to promote SA accumulation and SA signaling transduction by directly activating expression of WRKY51. Moreover, GhTINY2-overexpressing cotton and Arabidopsis showed retardation of growth, increased sensitivity to inhibitors of BR biosynthesis, down-regulation of several BR-induced genes, and up-regulation of BR-repressed genes, while GhTINY2-RNAi cotton showed the opposite effects. We further determined that GhTINY2 negatively regulates BR signaling by interacting with BRASSINAZOLE-RESISTANT 1 (BZR1) and restraining its transcriptional activation of the expression of INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19). These findings indicate that GhTINY2 fine-tunes the trade-off between immunity and growth via indirect crosstalk between WRKY51-mediated SA biosynthesis and BZR1-IAA19-regulated BR signaling.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430000, Hubei, China
| | - Xiaojun Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Sabina Berne
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
73
|
Zhang Z, Sun Y, Jiang X, Wang W, Wang ZY. Sugar inhibits brassinosteroid signaling by enhancing BIN2 phosphorylation of BZR1. PLoS Genet 2021; 17:e1009540. [PMID: 33989283 PMCID: PMC8153450 DOI: 10.1371/journal.pgen.1009540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/26/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Sugar, light, and hormones are major signals regulating plant growth and development, however, the interactions among these signals are not fully understood at the molecular level. Recent studies showed that sugar promotes hypocotyl elongation by activating the brassinosteroid (BR) signaling pathway after shifting Arabidopsis seedlings from light to extended darkness. Here, we show that sugar inhibits BR signaling in Arabidopsis seedlings grown under light. BR induction of hypocotyl elongation in seedlings grown under light is inhibited by increasing concentration of sucrose. The sugar inhibition of BR response is correlated with decreased effect of BR on the dephosphorylation of BZR1, the master transcription factor of the BR signaling pathway. This sugar effect is independent of the sugar sensors Hexokinase 1 (HXK1) and Target of Rapamycin (TOR), but requires the GSK3-like kinase Brassinosteroid-Insensitive 2 (BIN2), which is stabilized by sugar. Our study uncovers an inhibitory effect of sugar on BR signaling in plants grown under light, in contrast to its promotive effect in the dark. Such light-dependent sugar-BR crosstalk apparently contributes to optimal growth responses to photosynthate availability according to light-dark conditions.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Ying Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Xue Jiang
- College of Life Sciences, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Wenfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- * E-mail: (WW); (ZW)
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
- * E-mail: (WW); (ZW)
| |
Collapse
|
74
|
Zhao B, Liu Q, Wang B, Yuan F. Roles of Phytohormones and Their Signaling Pathways in Leaf Development and Stress Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3566-3584. [PMID: 33739096 DOI: 10.1021/acs.jafc.0c07908] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phytohormones participate in various processes over the course of a plant's lifecycle. In addition to the five classical phytohormones (auxins, cytokinins, gibberellins, abscisic acid, and ethylene), phytohormones such as brassinosteroids, jasmonic acid, salicylic acid, strigolactones, and peptides also play important roles in plant growth and stress responses. Given the highly interconnected nature of phytohormones during plant development and stress responses, it is challenging to study the biological function of a single phytohormone in isolation. In the current Review, we describe the combined functions and signaling cascades (especially the shared points and pathways) of various phytohormones in leaf development, in particular, during leaf primordium initiation and the establishment of leaf polarity and leaf morphology as well as leaf development under various stress conditions. We propose a model incorporating the roles of multiple phytohormones in leaf development and stress responses to illustrate the underlying combinatorial signaling pathways. This model provides a reference for breeding stress-resistant crops.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Qingyun Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| |
Collapse
|
75
|
Opposing functions of the plant TOPLESS gene family during SNC1-mediated autoimmunity. PLoS Genet 2021; 17:e1009026. [PMID: 33621240 PMCID: PMC7935258 DOI: 10.1371/journal.pgen.1009026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 03/05/2021] [Accepted: 02/05/2021] [Indexed: 11/19/2022] Open
Abstract
Regulation of the plant immune system is important for controlling the specificity and amplitude of responses to pathogens and in preventing growth-inhibiting autoimmunity that leads to reductions in plant fitness. In previous work, we reported that SRFR1, a negative regulator of effector-triggered immunity, interacts with SNC1 and EDS1. When SRFR1 is non-functional in the Arabidopsis accession Col-0, SNC1 levels increase, causing a cascade of events that lead to autoimmunity phenotypes. Previous work showed that some members of the transcriptional co-repressor family TOPLESS interact with SNC1 to repress negative regulators of immunity. Therefore, to explore potential connections between SRFR1 and TOPLESS family members, we took a genetic approach that examined the effect of each TOPLESS member in the srfr1 mutant background. The data indicated that an additive genetic interaction exists between SRFR1 and two members of the TOPLESS family, TPR2 and TPR3, as demonstrated by increased stunting and elevated PR2 expression in srfr1 tpr2 and srfr1 tpr2 tpr3 mutants. Furthermore, the tpr2 mutation intensifies autoimmunity in the auto-active snc1-1 mutant, indicating a novel role of these TOPLESS family members in negatively regulating SNC1-dependent phenotypes. This negative regulation can also be reversed by overexpressing TPR2 in the srfr1 tpr2 background. Similar to TPR1 that positively regulates snc1-1 phenotypes by interacting with SNC1, we show here that TPR2 directly binds the N-terminal domain of SNC1. In addition, TPR2 interacts with TPR1 in vivo, suggesting that the opposite functions of TPR2 and TPR1 are based on titration of SNC1-TPR1 complexes by TPR2 or altered functions of a SNC1-TPR1-TPR2 complex. Thus, this work uncovers diverse functions of individual members of the TOPLESS family in Arabidopsis and provides evidence for the additive effect of transcriptional and post-transcriptional regulation of SNC1. The immune system is a double-edged sword that affords organisms with protection against infectious diseases but can also lead to negative effects if not properly controlled. Plants only possess an innate antimicrobial immune system that relies on rapid upregulation of defenses once immune receptors detect the presence of microbes. Plant immune receptors known as resistance proteins play a key role in rapidly triggering defenses if pathogens breach other defenses. A common model of unregulated immunity in the reference Arabidopsis variety Columbia-0 involves a resistance gene called SNC1. When the SNC1 protein accumulates to unnaturally high levels or possesses auto-activating mutations, the visible manifestations of immune overactivity include stunted growth and low biomass and seedset. Consequently, expression of this gene and accumulation of the encoded protein are tightly regulated on multiple levels. Despite careful study the mechanisms of SNC1 gene regulation are not fully understood. Here we present data on members of the well-known TOPLESS family of transcriptional repressors. While previously characterized members were shown to function in indirect activation of defenses, TPR2 and TPR3 are shown here to function in preventing high defense activity. This study therefore contributes to the understanding of complex regulatory processes in plant immunity.
Collapse
|
76
|
Van Nguyen T, Park CR, Lee KH, Lee S, Kim CS. BES1/BZR1 Homolog 3 cooperates with E3 ligase AtRZF1 to regulate osmotic stress and brassinosteroid responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:636-653. [PMID: 33529338 DOI: 10.1093/jxb/eraa458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 05/16/2023]
Abstract
Proline (Pro) metabolism plays important roles in protein synthesis, redox balance, and abiotic stress response. However, it is not known if cross-talk occurs between proline and brassinosteroid (BR) signaling pathways. Here, an Arabidopsis intergenic enhancer double mutant, namely proline content alterative 41 (pca41), was generated by inserting a T-DNA tag in the Arabidopsis thaliana ring zinc finger 1 (atrzf1 ) mutant background. pca41 had a T-DNA inserted at the site of the gene encoding BES1/BZR1 Homolog 3 (BEH3). pca41 has a drought-insensitive phenotype that is stronger than atrzf1 under osmotic stress, including high Pro accumulation and decreased amounts of reactive oxygen species. Analysis of physiological, genetic, and molecular networks revealed that negative regulation of BEH3 during abiotic stress was linked to the BR signaling pathway. Our data also suggest that AtRZF1, an E3 ubiquitin ligase, might control osmotic stress, abscisic acid, and BR responses in a BEH3-dependent manner. Under darkness, pca41 displays a long hypocotyl phenotype, which is similar to atrzf1 and beh3, suggesting that BEH3 acts in the same pathway as AtRZF1. Overexpression of BEH3 results in an osmotic stress-sensitive phenotype, which is reversed by exogenous BR application. Taken together, our results indicate that AtRZF1 and BEH3 may play important roles in the osmotic stress response via ubiquitination and BR signaling.
Collapse
Affiliation(s)
- Tinh Van Nguyen
- Department of Applied Biology, Chonnam National University, Gwangju, Republic of Korea
| | - Cho-Rong Park
- Department of Applied Biology, Chonnam National University, Gwangju, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Rural and Biosystems Engineering, Agricultural Robotics and Automation Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Sungbeom Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
77
|
Hu J, Hu Y, Yang M, Hu X, Wang X. Light-Induced Dynamic Change of Phytochrome B and Cryptochrome 1 Stabilizes SINATs in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:722733. [PMID: 34490020 PMCID: PMC8417825 DOI: 10.3389/fpls.2021.722733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/29/2021] [Indexed: 05/03/2023]
Abstract
Ubiquitin-dependent protein degradation plays an important role in many plant developmental processes. We previously identified a class of SINA RING-type E3 ligases of Arabidopsis thaliana (SINATs), whose protein levels decrease in the dark and increase in red and blue light, but the underlying mechanism is unclear. In this study, we created transgenic lines carrying point mutations in SINAT genes and photoreceptors-NLS or -NES transgenic plants to investigate the regulatory mechanism of SINAT protein stability. We demonstrated that the degradation of SINATs is self-regulated, and SINATs interact with photoreceptors phytochrome B (phyB) and cryptochrome 1 (CRY1) in the cytoplasm, which leads to the degradation of SINATs in the dark. Furthermore, we observed that the red light-induced subcellular localization change of phyB and blue light-induced the dissociation of CRY1 from SINATs and was the major determinant for the light-promoted SINATs accumulation. Our findings provide a novel mechanism of how the stability and degradation of the E3 ligase SINATs are regulated by an association and dissociation mechanism through the red light-induced subcellular movement of phyB and the blue light-induced dissociation of CRY1 from SINATs.
Collapse
Affiliation(s)
- Jin Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Yinmeng Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengran Yang
- State Key Laboratory of Genetic Engineering and Department of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaotong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
- *Correspondence: Xuelu Wang,
| |
Collapse
|
78
|
A BIN2-GLK1 Signaling Module Integrates Brassinosteroid and Light Signaling to Repress Chloroplast Development in the Dark. Dev Cell 2020; 56:310-324.e7. [PMID: 33357403 DOI: 10.1016/j.devcel.2020.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/05/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022]
Abstract
Arabidopsis GLYCOGEN SYNTHASE KINASE 3 (GSK3)-like kinases play various roles in plant development, including chloroplast development, but the underlying molecular mechanism is not well defined. Here, we demonstrate that transcription factors GLK1 and GLK2 interact with and are phosphorylated by the BRASSINOSTEROID insensitive2 (BIN2). The loss-of-function mutant of BIN2 and its homologs, bin2-3 bil1 bil2, displays abnormal chloroplast development, whereas the gain-of-function mutant, bin2-1, exhibits insensitivity to BR-induced de-greening and reduced numbers of thylakoids per granum, suggesting that BIN2 positively regulates chloroplast development. Furthermore, BIN2 phosphorylates GLK1 at T175, T238, T248, and T256, and mutations of these phosphorylation sites alter GLK1 protein stability and DNA binding and impair plant responses to BRs/darkness. On the other hand, BRs and darkness repress the BIN2-GLK module to enhance BR/dark-mediated de-greening and impair the formation of the photosynthetic apparatus. Our results thus provide a mechanism by which BRs modulate photomorphogenesis and chloroplast development.
Collapse
|
79
|
Song B, Zhao H, Dong K, Wang M, Wu S, Li S, Wang Y, Chen P, Jiang L, Tao Y. Phytochrome A inhibits shade avoidance responses under strong shade through repressing the brassinosteroid pathway in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1520-1534. [PMID: 33037720 DOI: 10.1111/tpj.15018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
In dense canopy, a reduction in red to far-red (R/FR) light ratio triggers shade avoidance responses (SARs) in Arabidopsis thaliana, a shade avoiding plant. Two red/far-red (R/FR) light photoreceptors, PHYB and PHYA, were reported to be key negative regulators of the SARs. PHYB represses the SARs under normal light conditions; however, the role of PHYA in the SARs remains elusive. We set up two shade conditions: Shade and strong Shade (s-Shade) with different R/FR ratios (0.7 and 0.1), which allowed us to observe phenotypes dominated by PHYB- and PHYA-mediated pathway, respectively. By comparing the hypocotyl growth under these two conditions with time, we found PHYA was predominantly activated in the s-Shade after prolonged shade treatment. We further showed that under s-Shade, PHYA inhibits hypocotyl elongation partially through repressing the brassinosteroid (BR) pathway. COP1 and PIF4,5 act downstream of PHYA. After prolonged shade treatment, the nuclear localization of COP1 was reduced, while the PIF4 protein level was much lower in the s-Shade than that in Shade. Both changes occurred in a PHYA-dependent manner. We propose that under deep canopy, the R/FR ratio is extremely low, which promotes the nuclear accumulation of PHYA. Activated PHYA reduces COP1 nuclear speckle, which may lead to changes of downstream targets, such as PIF4,5 and HY5. Together, these proteins regulate the BR pathway through modulating BES1/BZR1 and the expression of BR biosynthesis and BR target genes.
Collapse
Affiliation(s)
- Bin Song
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Hongli Zhao
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Kangmei Dong
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Meiling Wang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Shujuan Wu
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Si Li
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yuxiang Wang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Peirui Chen
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Liangrong Jiang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yi Tao
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| |
Collapse
|
80
|
Xia FN, Zeng B, Liu HS, Qi H, Xie LJ, Yu LJ, Chen QF, Li JF, Chen YQ, Jiang L, Xiao S. SINAT E3 Ubiquitin Ligases Mediate FREE1 and VPS23A Degradation to Modulate Abscisic Acid Signaling. THE PLANT CELL 2020; 32:3290-3310. [PMID: 32753431 PMCID: PMC7534459 DOI: 10.1105/tpc.20.00267] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 05/09/2023]
Abstract
In plants, the ubiquitin-proteasome system, endosomal sorting, and autophagy are essential for protein degradation; however, their interplay remains poorly understood. Here, we show that four Arabidopsis (Arabidopsis thaliana) E3 ubiquitin ligases, SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA1 (SINAT1), SINAT2, SINAT3, and SINAT4, regulate the stabilities of FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FREE1) and VACUOLAR PROTEIN SORTING23A (VPS23A), key components of the endosomal sorting complex required for transport-I, to modulate abscisic acid (ABA) signaling. GFP-SINAT1, GFP-SINAT2, and GFP-SINAT4 primarily localized to the endosomal and autophagic vesicles. SINATs controlled FREE1 and VPS23A ubiquitination and proteasomal degradation. SINAT overexpressors showed increased ABA sensitivity, ABA-responsive gene expression, and PYRABACTIN RESISTANCE1-LIKE4 protein levels. Furthermore, the SINAT-FREE1/VPS23A proteins were codegraded by the vacuolar pathway. In particular, during recovery post-ABA exposure, SINATs formed homo- and hetero-oligomers in vivo, which were disrupted by the autophagy machinery. Taken together, our findings reveal a novel mechanism by which the proteasomal and vacuolar turnover systems regulate ABA signaling in plants.
Collapse
Affiliation(s)
- Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Baiquan Zeng
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
| | - Hui-Shan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yue-Qin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
81
|
Wang Q, Yu F, Xie Q. Balancing growth and adaptation to stress: Crosstalk between brassinosteroid and abscisic acid signaling. PLANT, CELL & ENVIRONMENT 2020; 43:2325-2335. [PMID: 32671865 DOI: 10.1111/pce.13846] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 05/07/2023]
Abstract
Plant growth and development are plastic and canadapt to environmental changes. In this process different plant hormones coordinate to modulate plant growth and environmental interactions. In this article, we describe the individual brassinosteroid (BR) and abscisic acid (ABA) signaling pathways, emphasize the specific regulatory mechanisms between ABA and BR responses and discuss how both phytohormones coordinate growth, development and stress responses in plants. BR signaling is essential for plant development, while ABA signaling is activated to ensure plants survive stress. The crosstalk between BR and ABA, especially protein phosphorylation, protein stability control and downstream transcription control of key components of both pathways are discussed in terms of modulating plant development and stress adaptation.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
82
|
Liang T, Shi C, Peng Y, Tan H, Xin P, Yang Y, Wang F, Li X, Chu J, Huang J, Yin Y, Liu H. Brassinosteroid-Activated BRI1-EMS-SUPPRESSOR 1 Inhibits Flavonoid Biosynthesis and Coordinates Growth and UV-B Stress Responses in Plants. THE PLANT CELL 2020; 32:3224-3239. [PMID: 32796123 PMCID: PMC7534464 DOI: 10.1105/tpc.20.00048] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 05/20/2023]
Abstract
UV-B light is a potential stress factor in plants, but how plants coordinate growth and UV-B stress responses is not well understood. Here, we report that brassinosteroid (BR) signaling inhibits UV-B stress responses in Arabidopsis (Arabidopsis thaliana) and various crops by controlling flavonol biosynthesis. We further demonstrate that BRI1-EMS-SUPPRESSOR 1 (BES1) mediates the tradeoff between plant growth and UV-B defense responses. BES1, a master transcription factor involved in BR signaling, represses the expression of transcription factor genes MYB11, MYB12, and MYB111, which activate flavonol biosynthesis. BES1 directly binds to the promoters of these MYBs in a BR-enhanced manner to repress their expression, thereby reducing flavonol accumulation. However, exposure to broadband UV-B down-regulates BES1 expression, thus promoting flavonol accumulation. These findings demonstrate that BR-activated BES1 not only promotes growth but also inhibits flavonoid biosynthesis. UV-B stress suppresses the expression of BES1 to allocate energy to flavonoid biosynthesis and UV-B stress responses, allowing plants to switch from growth to UV-B stress responses in a timely manner.
Collapse
Affiliation(s)
- Tong Liang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Chen Shi
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Yao Peng
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Huijuan Tan
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yu Yang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Fei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, People's Republic of China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, People's Republic of China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jirong Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, People's Republic of China
| |
Collapse
|
83
|
Lee HG, Won JH, Choi YR, Lee K, Seo PJ. Brassinosteroids Regulate Circadian Oscillation via the BES1/TPL-CCA1/LHY Module in Arabidopsisthaliana. iScience 2020; 23:101528. [PMID: 32947126 PMCID: PMC7502351 DOI: 10.1016/j.isci.2020.101528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 01/15/2023] Open
Abstract
Brassinosteroids (BRs) regulate a variety of physiological processes in plants via extensive crosstalk with diverse biological signaling networks. Although BRs are known to reciprocally regulate circadian oscillation, the molecular mechanism underlying BR-mediated regulation of circadian clock remains unknown. Here, we demonstrate that the BR-activated transcription factor bri1-EMS-SUPPRESSOR 1 (BES1) integrates BR signaling into the circadian network in Arabidopsis. BES1 repressed expression of CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) at night by binding to their promoters, together with TOPLESS (TPL). The repression of CCA1 and LHY by BR treatment, which occurred during the night, was compromised in bes1-ko and tpl-8 mutants. Consistently, long-term treatment with BR shortened the circadian period, and BR-induced rhythmic shortening was impaired in bes1-ko and tpl-8 single mutants and in the cca1-1lhy-21 double mutant. Overall, BR signaling is conveyed to the circadian oscillator via the BES1/TPL-CCA1/LHY module, contributing to gating diurnal BR responses in plants.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea
| | - Jin Hoon Won
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yee-Ram Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | - Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
84
|
Zhang X, Huai J, Liu S, Jin JB, Lin R. SIZ1-Mediated SUMO Modification of SEUSS Regulates Photomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100080. [PMID: 33367258 PMCID: PMC7748021 DOI: 10.1016/j.xplc.2020.100080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 05/20/2023]
Abstract
Small ubiquitin-like modifier (SUMO) post-translational modification (SUMOylation) plays essential roles in regulating various biological processes; however, its function and regulation in the plant light signaling pathway are largely unknown. SEUSS (SEU) is a transcriptional co-regulator that integrates light and temperature signaling pathways, thereby regulating plant growth and development in Arabidopsis thaliana. Here, we show that SEU is a substrate of SUMO1, and that substitution of four conserved lysine residues disrupts the SUMOylation of SEU, impairs its function in photo- and thermomorphogenesis, and enhances its interaction with PHYTOCHROME-INTERACTING FACTOR 4 transcription factors. Furthermore, the SUMO E3 ligase SIZ1 interacts with SEU and regulates its SUMOylation. Moreover, SEU directly interacts with phytochrome B photoreceptors, and the SUMOylation and stability of SEU are activated by light. Our study reveals a novel post-translational modification mechanism of SEU in which light regulates plant growth and development through SUMOylation-mediated protein stability.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Bo Jin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| |
Collapse
|
85
|
Xiao Z, Yang C, Liu C, Yang L, Yang S, Zhou J, Li F, Jiang L, Xiao S, Gao C, Shen W. SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1399-1417. [PMID: 32786047 DOI: 10.1111/jipb.13005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 05/18/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is an ancient, evolutionarily conserved membrane remodeling complex that is essential for multivesicular body (MVB) biogenesis in eukaryotes. FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), which was previously identified as a plant-specific ESCRT component, modulates MVB-mediated endosomal sorting and autophagic degradation. Although the basic cellular functions of FREE1 as an ESCRT component have been described, the regulators that control FREE1 turnover remain unknown. Here, we analyzed how FREE1 homeostasis is mediated by the RING-finger E3 ubiquitin ligases, SINA of Arabidopsis thaliana (SINATs), in response to iron deficiency. Under iron-deficient growth conditions, SINAT1-4 were induced and ubiquitinated FREE1, thereby promoting its degradation and relieving the repressive effect of FREE1 on iron absorption. By contrast, SINAT5, another SINAT member that lacks ubiquitin ligase activity due to the absence of the RING domain, functions as a protector protein which stabilizes FREE1. Collectively, our findings uncover a hitherto unknown mechanism of homeostatic regulation of FREE1, and demonstrate a unique regulatory SINAT-FREE1 module that subtly regulates plant response to iron deficiency stress.
Collapse
Affiliation(s)
- Zhidan Xiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lianming Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuhong Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liwen Jiang
- School of Life Sciences, Center for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
86
|
Cao X, Khaliq A, Lu S, Xie M, Ma Z, Mao J, Chen B. Genome-wide identification and characterization of the BES1 gene family in apple (Malus domestica). PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:723-733. [PMID: 32141196 DOI: 10.1111/plb.13109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/19/2020] [Indexed: 05/19/2023]
Abstract
As the most important transcription factor in the brassinosteroid (BR) signal transduction pathway, BES1 not only affects growth and development of plants but also regulates stress resistance of crops. The physicochemical properties, gene structure, cis-acting elements and gene chip expression of apple BES1 transcription factors were analysed using bioinformatics, and expression of this gene family was analysed with qRT-PCR. There were 22 members of the apple BES1 transcription factors, distributed on eight chromosomes, divided into seven subtribes (I-VII), and the same subtribe contained the same basic motifs. Gene structure analysis showed that the number and position of exons differed, and there was no upstream and downstream structure. Analysis of cis-acting elements indicated that BES1 transcription factors contain response elements for hormones and abiotic stress, as well as organ-specific elements. Gene chip expression profile analysis revealed that expression patterns of BES1 transcription factors differed in different apple hybrids and different organs. In addition, expression of apple BES1 genes was higher in flowers, young fruits, mature fruits and leaves. qRT-PCR demonstrated that expression of MdBES1 genes was highest 12 h after BR induction. At the same time, there were differences in expression in response to PEG, NaCl and MeJA. This paper provides a theoretical basis for analysis of the biological function and stress resistance mechanism of BES1 transcription factors in apple.
Collapse
Affiliation(s)
- X Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - A Khaliq
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - S Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - M Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Z Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - J Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - B Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
87
|
Xiao Y, Zhang G, Liu D, Niu M, Tong H, Chu C. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1187-1201. [PMID: 31950543 DOI: 10.1111/tpj.14692] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 05/23/2023]
Abstract
Brassinosteroids (BRs) are a class of phytohormones that modulate several important agronomic traits in rice (Oryza sativa). GSK2 is one of the critical suppressors of BR signalling and targets transcription factors such as OsBZR1 and DLT to regulate BR responses. Here, we identified OFP3 (OVATE FAMILY PROTEIN 3) as an interactor of both GSK2 and DLT by yeast-two-hybrid screening and demonstrated that OFP3 plays a distinctly negative role in BR responses. While knockout of OFP3 promoted rice seedling growth, overexpression of OFP3 led to strong BR insensitivity, which resulted in reduced plant height, leaf angle, and grain size. Interestingly, both BR biosynthetic and signalling genes had decreased expression in the overexpression plants. OFP3 overexpression also enhanced the phenotypes of BR-deficient mutants, but largely suppressed those of BR-enhanced plants. Moreover, treatment with either BR or bikinin, a GSK3-like kinase inhibitor, induced OFP3 depletion, whereas GSK2 or brassinazole, a BR synthesis inhibitor, promoted OFP3 accumulation. Furthermore, OFP3 exhibited transcription repressor activity and was able to interact with itself as well as additional BR-related components, including OFP1, OSH1, OSH15, OsBZR1, and GF14c. Importantly, GSK2 can phosphorylate OFP3 and enhance these interactions. We propose that OFP3, as a suppressor of both BR synthesis and signalling but stabilized by GSK2, incorporates into a transcription factor complex to facilitate BR signalling control, which is critical for the proper development of various tissues.
Collapse
Affiliation(s)
- Yunhua Xiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dapu Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Niu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
88
|
Otani Y, Tomonaga Y, Tokushige K, Kamimura M, Sasaki A, Nakamura Y, Nakamura T, Matsuo T, Okamoto S. Expression profiles of four BES1/ BZR1 homologous genes encoding bHLH transcription factors in Arabidopsis. JOURNAL OF PESTICIDE SCIENCE 2020; 45:95-104. [PMID: 32508516 PMCID: PMC7251199 DOI: 10.1584/jpestics.d20-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/10/2020] [Indexed: 05/28/2023]
Abstract
Arabidopsis bHLH-type transcription factors-BRASSINOSTEROID INSENSITIVE 1-EMS-SUPPRESSOR 1 (BES1) and BRASSINAZOLE RESISTANT 1 (BZR1)-play key roles in brassinosteroid (BR) signaling. By contrast, the functions of the other four BES1/BZR1 homologs (BEH1-4) remain unknown. Here, we describe the detailed expression profiles of the BES1/BZR1 family genes. Their expressions were distinct regarding growth-stage dependence and organ specificity but exhibited some overlaps as well. Furthermore, their mRNA levels mostly remained unchanged responding to seven non-BR phytohormones. However, BEH1 and BEH2 were downregulated by brassinolide, suggesting a close association with the BR function. Additionally, BEH4 was ubiquitously expressed throughout the life of the plant but displayed some expression preference. For instance, BEH4 expression was limited to guard cells and the adjacent pavement cells in the leaf epidermis and was induced during growth progression in very young seedlings, suggesting that BEH4 is specifically regulated in certain contexts, although it is almost constitutively controlled.
Collapse
Affiliation(s)
- Yui Otani
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yusuke Tomonaga
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kenya Tokushige
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Miyu Kamimura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Azusa Sasaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yasushi Nakamura
- Department of Japanese Food Culture, Faculty of Letters, Kyoto Prefectural University, Kyoto, Japan
| | - Takako Nakamura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tomoaki Matsuo
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Shigehisa Okamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
89
|
Hu J, Ji Y, Hu X, Sun S, Wang X. BES1 Functions as the Co-regulator of D53-like SMXLs to Inhibit BRC1 Expression in Strigolactone-Regulated Shoot Branching in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100014. [PMID: 33404550 PMCID: PMC7748003 DOI: 10.1016/j.xplc.2019.100014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 05/27/2023]
Abstract
Shoot branching, determining plant architecture and crop yield, is critically controlled by strigolactones (SLs). However, how SLs inhibit shoot branching after its perception by the receptor complex remains largely obscure. In this study, using the transcriptomic and genetic analyss as well as biochemical studies, we reveal the key role of BES1 in the SL-regulated shoot branching. We demonstrate that BES1 and D53-like SMXLs, the substrates of SL receptor complex D14-MAX2, interact with each other to inhibit BRC1 expression, which specifically triggers the SL-regulated transcriptional network in shoot branching. BES1 directly binds the BRC1 promoter and recruits SMXLs to inhibit BRC1 expression. Interestingly, despite being the shared component by SL and brassinosteroid (BR) signaling, BES1 gains signal specificity through different mechanisms in response to BR and SL signals.
Collapse
Affiliation(s)
- Jie Hu
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Ji
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaotong Hu
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Sun
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
90
|
Chen L, Sun H, Wang F, Yue D, Shen X, Sun W, Zhang X, Yang X. Genome-wide identification of MAPK cascade genes reveals the GhMAP3K14-GhMKK11-GhMPK31 pathway is involved in the drought response in cotton. PLANT MOLECULAR BIOLOGY 2020; 103:211-223. [PMID: 32172495 DOI: 10.1007/s11103-020-00986-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade pathway, which has three components, MAP3Ks, MKKs and MPKs, is involved in diverse biological processes in plants. In the current study, MAPK cascade genes were identified in three cotton species, based on gene homology with Arabidopsis. Selection pressure analysis of MAPK cascade genes revealed that purifying selection occurred among the cotton species. Expression pattern analysis showed that some MAPK cascade genes differentially expressed under abiotic stresses and phytohormones treatments, and especially under drought stress. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments showed extensive interactions between different MAPK cascade proteins. Virus-induced gene silencing (VIGS) assays showed that some MAPK cascade modules play important roles in the drought stress response, and the GhMAP3K14-GhMKK11-GhMPK31 signal pathway was demonstrated to regulate drought stress tolerance in cotton. This study provides new information on the function of MAPK cascade genes in the drought response, and will help direct molecular breeding for improved drought stress tolerance in cotton.
Collapse
Affiliation(s)
- Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Heng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Fengjiao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiankun Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
91
|
Lv M, Li J. Molecular Mechanisms of Brassinosteroid-Mediated Responses to Changing Environments in Arabidopsis. Int J Mol Sci 2020; 21:ijms21082737. [PMID: 32326491 PMCID: PMC7215551 DOI: 10.3390/ijms21082737] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Plant adaptations to changing environments rely on integrating external stimuli into internal responses. Brassinosteroids (BRs), a group of growth-promoting phytohormones, have been reported to act as signal molecules mediating these processes. BRs are perceived by cell surface receptor complex including receptor BRI1 and coreceptor BAK1, which subsequently triggers a signaling cascade that leads to inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Recent studies in the model plant Arabidopsis demonstrated that BR biosynthesis and signal transduction, especially the regulatory components BIN2 and BES1/BZR1, are finely tuned by various environmental cues. Here, we summarize these research updates and give a comprehensive review of how BR biosynthesis and signaling are modulated by changing environments and how these changes regulate plant adaptive growth or stress tolerance.
Collapse
|
92
|
|
93
|
Wolf S. Deviating from the Beaten Track: New Twists in Brassinosteroid Receptor Function. Int J Mol Sci 2020; 21:ijms21051561. [PMID: 32106564 PMCID: PMC7084826 DOI: 10.3390/ijms21051561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022] Open
Abstract
A key feature of plants is their plastic development tailored to the environmental conditions. To integrate environmental signals with genetic growth regulatory programs, plants rely on a number of hormonal pathways, which are intimately connected at multiple levels. Brassinosteroids (BRs), a class of plant sterol hormones, are perceived by cell surface receptors and trigger responses instrumental in tailoring developmental programs to environmental cues. Arguably, BR signalling is one of the best-characterized plant signalling pathways, and the molecular composition of the core signal transduction cascade seems clear. However, BR research continues to reveal new twists to re-shape our view on this key signalling circuit. Here, exciting novel findings pointing to the plasma membrane as a key site for BR signalling modulation and integration with other pathways are reviewed and new inputs into the BR signalling pathway and emerging “non-canonical” functions of the BR receptor complex are highlighted. Together, this new evidence underscores the complexity of plant signalling integration and serves as a reminder that highly-interconnected signalling pathways frequently comprise non-linear aspects which are difficult to convey in classical conceptual models.
Collapse
Affiliation(s)
- Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, INF230, 69120 Heidelberg, Germany
| |
Collapse
|
94
|
Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. THE PLANT CELL 2020; 32:295-318. [PMID: 31776234 PMCID: PMC7008487 DOI: 10.1105/tpc.19.00335] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/01/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a group of polyhydroxylated plant steroid hormones that are crucial for many aspects of a plant's life. BRs were originally characterized for their function in cell elongation, but it is becoming clear that they play major roles in plant growth, development, and responses to several stresses such as extreme temperatures and drought. A BR signaling pathway from cell surface receptors to central transcription factors has been well characterized. Here, we summarize recent progress toward understanding the BR pathway, including BR perception and the molecular mechanisms of BR signaling. Next, we discuss the roles of BRs in development and stress responses. Finally, we show how knowledge of the BR pathway is being applied to manipulate the growth and stress responses of crops. These studies highlight the complex regulation of BR signaling, multiple points of crosstalk between BRs and other hormones or stress responses, and the finely tuned spatiotemporal regulation of BR signaling.
Collapse
Affiliation(s)
- Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Derui Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
95
|
Li HL, Wang X, Ji XL, Qiao ZW, You CX, Hao YJ. Genome-Wide Identification of Apple Ubiquitin SINA E3 Ligase and Functional Characterization of MdSINA2. FRONTIERS IN PLANT SCIENCE 2020; 11:1109. [PMID: 32793265 PMCID: PMC7393226 DOI: 10.3389/fpls.2020.01109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
SINA (Seven in absentia) proteins are a small family of ubiquitin ligases that play important roles in regulating plant growth and developmental processes as well as in responses to diverse types of biotic and abiotic stress. However, the characteristics of the apple SINA family have not been previously studied. Here, we identified 11 MdSINAs members in the apple genome based on their conserved, N-terminal RING and C-terminal SINA domains. We also reconstructed a phylogeny of these genes; characterized their chromosomal location, structure, and motifs; and identified two major groups of MdSINA genes. Subsequent qRT-PCR analyses were used to characterize the expression of MdSINA genes in various tissues and organs, and levels of expression were highest in leaves. MdSINAs were significantly induced under ABA and carbon- and nitrate-starvation treatment. Except for MdSINA1 and MdSINA7, the other MdSINA proteins could interact with each other. Moreover, MdSINA2 was found to be localized in the nucleus using Agrobacterium-mediated transient expression. Western-blot analysis showed that MdSINA2 accumulated extensively under light, decreased under darkness, and became insensitive to light when the RING domain was disrupted. Finally, ABA-hypersensitive phenotypes were confirmed by transgenic calli and the ectopic expression of MdSINA2 in Arabidopsis. In conclusion, our results suggest that MdSINA genes participate in the responses to different types of stress, and that MdSINA2 might act as a negative regulator in the ABA stress response.
Collapse
|
96
|
The E3 ubiquitin ligase TRIM7 suppressed hepatocellular carcinoma progression by directly targeting Src protein. Cell Death Differ 2019; 27:1819-1831. [PMID: 31802035 DOI: 10.1038/s41418-019-0464-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant Src kinase activity is known to be involved in a variety of human malignancies, whereas the regulatory mechanism of Src has not been completely clarified. Here, we demonstrated that tripartite motif containing 7 (TRIM7) directly interacted with Src, induced Lys48-linked polyubiquitination of Src and reduced the abundance of Src protein in hepatocellular carcinoma (HCC) cells. We further identified TRIM7 as a tumor suppressor in HCC cells through its negative modulation of the Src-mTORC1-S6K1 axis in vivo and in vitro in several HCC models. Moreover, we verified the dysregulated expression of TRIM7 in clinical liver cancer tissues and its negative correlation with Src protein in clinical HCC specimens. Overall, we demonstrated that TRIM7 suppressed HCC progression through its direct negative regulation of Src and modulation of the Src-mTORC1-S6K1 axis; thus, we provided a novel insight into the development of HCC and defined a promising therapeutic strategy for cancers with overactive Src by modulating TRIM7.
Collapse
|
97
|
Zhang L, Han Q, Xiong J, Zheng T, Han J, Zhou H, Lin H, Yin Y, Zhang D. Sumoylation of BRI1-EMS-SUPPRESSOR 1 (BES1) by the SUMO E3 Ligase SIZ1 Negatively Regulates Brassinosteroids Signaling in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:2282-2292. [PMID: 31290980 DOI: 10.1093/pcp/pcz125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/18/2019] [Indexed: 05/27/2023]
Abstract
Brassinosteroids (BRs), a group of plant steroid hormones, participate in the regulation of plant growth and developmental processes. BR functions through the BES1/BZR1 family of transcription factors, however, the regulation of the BES1 activity by post-translational modifications remains largely unknown. Here, we present evidence that the SUMO E3 ligase SIZ1 negatively regulates BR signaling pathway. T-DNA insertion mutant siz1-2 shows BL (Brassinolide, the most active BR) hypersensitivity and BRZ (Brassinazole, a BR biosynthesis inhibitor) insensitivity during hypocotyl elongation. In addition, expression of BES1-dependent BR-response genes is hyper-regulated in siz1-2 seedlings. The siz1-2bes1-D double mutant exhibits longer hypocotyl than bes1-D. Moreover, SIZ1 physically interacts with BES1 in vivo and in vitro and mediates the sumoylation of BES1. A K302R substitution in BES1 blocks its sumoylation mediated by SIZ1 in plants, indicating that K302 is the principal site for SUMO conjugation. Consistently, we find that sumoylation inhibits BES1 protein stability and activity. Taken together, our data show that the sumoylation of BES1 via SIZ1 negatively regulates the BR signaling pathway.
Collapse
Affiliation(s)
- Li'e Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jiawei Xiong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Zheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jifu Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Dawei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
98
|
Xie Z, Nolan T, Jiang H, Tang B, Zhang M, Li Z, Yin Y. The AP2/ERF Transcription Factor TINY Modulates Brassinosteroid-Regulated Plant Growth and Drought Responses in Arabidopsis. THE PLANT CELL 2019; 31:1788-1806. [PMID: 31126980 PMCID: PMC6713308 DOI: 10.1105/tpc.18.00918] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 05/04/2023]
Abstract
APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors have well-documented functions in stress responses, but their roles in brassinosteroid (BR)-regulated growth and stress responses have not been established. Here, we show that the Arabidopsis (Arabidopsis thaliana) stress-inducible AP2/ERF transcription factor TINY inhibits BR-regulated growth while promoting drought responses. TINY-overexpressing plants have stunted growth, increased sensitivity to BR biosynthesis inhibitors, and compromised BR-responsive gene expression. By contrast, tiny tiny2 tiny3 triple mutants have increased BR-regulated growth and BR-responsive gene expression. TINY positively regulates drought responses by activating drought-responsive genes and promoting abscisic acid-mediated stomatal closure. Global gene expression studies revealed that TINY and BRs have opposite effects on plant growth and stress response genes. TINY interacts with and antagonizes BRASSINOSTERIOID INSENSITIVE1-ETHYL METHANESULFONATE SUPRESSOR1 (BES1) in the regulation of these genes. Glycogen synthase kinase 3-like protein kinase BR-INSENSITIVE2 (BIN2), a negative regulator in the BR pathway, phosphorylates and stabilizes TINY, providing a mechanism for BR-mediated downregulation of TINY to prevent activation of stress responses under optimal growth conditions. Taken together, our results demonstrate that BR signaling negatively regulates TINY through BIN2 phosphorylation and TINY positively regulates drought responses, as well as inhibiting BR-mediated growth through TINY-BES1 antagonistic interactions. Our results thus provide insight into the coordination of BR-regulated growth and drought responses.
Collapse
Affiliation(s)
- Zhouli Xie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Buyun Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
99
|
Wang F, Gao Y, Liu Y, Zhang X, Gu X, Ma D, Zhao Z, Yuan Z, Xue H, Liu H. BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:1407-1419. [PMID: 31009078 DOI: 10.1111/nph.15866] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/14/2019] [Indexed: 05/23/2023]
Abstract
BRI1-EMS-SUPPRESSOR 1 (BES1) functions as a key regulator in the brassinosteroid (BR) pathway that promotes plant growth. However, whether BES1 is involved in photoperiodic flowering is unknown. Here we report that BES1 acts as a positive regulator of photoperiodic flowering, but it cannot directly bind FLOWERING LOCUS T (FT) promoter. BR ENHANCED EXPRESSION 1 (BEE1) is the direct target of BES1 and acts downstream of BES1. BEE1 is also a positive regulator of photoperiodic flowering. BEE1 binds directly to the FT chromatin to activate the transcription of FT and promote flowering initiation. More importantly, BEE1 promotes flowering in a blue light photoreceptor CRYPTOCHROME 2 (CRY2) partially dependent manner, as it physically interacts with CRY2 under the blue light. Furthermore, BEE1 is regulated by both BRs and blue light. The transcription of BEE1 is induced by BRs, and the BEE1 protein is stabilized under the blue light. Our findings indicate that BEE1 is the integrator of BES1 and CRY2 mediating flowering, and BES1-BEE1-FT is a new signaling pathway in regulating photoperiodic flowering.
Collapse
Affiliation(s)
- Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongshun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture/College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yawen Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xingxing Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dingbang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhiwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenjiang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hongwei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
100
|
Zhang C, Hao Z, Ning Y, Wang GL. SINA E3 Ubiquitin Ligases: Versatile Moderators of Plant Growth and Stress Response. MOLECULAR PLANT 2019; 12:610-612. [PMID: 30965150 DOI: 10.1016/j.molp.2019.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 05/19/2023]
Affiliation(s)
- Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, the Ohio State University, Columbus, OH 43210, USA
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, the Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|