51
|
Elchaninov A, Sukhikh G, Fatkhudinov T. Evolution of Regeneration in Animals: A Tangled Story. Front Ecol Evol 2021; 9. [DOI: 10.3389/fevo.2021.621686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The evolution of regenerative capacity in multicellular animals represents one of the most complex and intriguing problems in biology. How could such a seemingly advantageous trait as self-repair become consistently attenuated by the evolution? This review article examines the concept of the origin and nature of regeneration, its connection with the processes of embryonic development and asexual reproduction, as well as with the mechanisms of tissue homeostasis. The article presents a variety of classical and modern hypotheses explaining different trends in the evolution of regenerative capacity which is not always beneficial for the individual and notably for the species. Mechanistically, these trends are driven by the evolution of signaling pathways and progressive restriction of differentiation plasticity with concomitant advances in adaptive immunity. Examples of phylogenetically enhanced regenerative capacity are considered as well, with appropriate evolutionary reasoning for the enhancement and discussion of its molecular mechanisms.
Collapse
|
52
|
Jared C, Luiz Mailho‐Fontana P, Maria Antoniazzi M. Differences between poison and venom: An attempt at an integrative biological approach. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlos Jared
- Laboratory of Structural Biology Instituto Butantan São Paulo Brazil
| | | | | |
Collapse
|
53
|
Daponte V, Tylzanowski P, Forlino A. Appendage Regeneration in Vertebrates: What Makes This Possible? Cells 2021; 10:cells10020242. [PMID: 33513779 PMCID: PMC7911911 DOI: 10.3390/cells10020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ability to regenerate amputated or injured tissues and organs is a fascinating property shared by several invertebrates and, interestingly, some vertebrates. The mechanism of evolutionary loss of regeneration in mammals is not understood, yet from the biomedical and clinical point of view, it would be very beneficial to be able, at least partially, to restore that capability. The current availability of new experimental tools, facilitating the comparative study of models with high regenerative ability, provides a powerful instrument to unveil what is needed for a successful regeneration. The present review provides an updated overview of multiple aspects of appendage regeneration in three vertebrates: lizard, salamander, and zebrafish. The deep investigation of this process points to common mechanisms, including the relevance of Wnt/β-catenin and FGF signaling for the restoration of a functional appendage. We discuss the formation and cellular origin of the blastema and the identification of epigenetic and cellular changes and molecular pathways shared by vertebrates capable of regeneration. Understanding the similarities, being aware of the differences of the processes, during lizard, salamander, and zebrafish regeneration can provide a useful guide for supporting effective regenerative strategies in mammals.
Collapse
Affiliation(s)
- Valentina Daponte
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, via Taramelli 3/B, 27100 Pavia, Italy;
| | - Przemko Tylzanowski
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium;
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, via Taramelli 3/B, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-987235
| |
Collapse
|
54
|
Grigoryan EN. Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine. J Dev Biol 2021; 9:2. [PMID: 33477527 PMCID: PMC7838874 DOI: 10.3390/jdb9010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The review considers the molecular, cellular, organismal, and ontogenetic properties of Urodela that exhibit the highest regenerative abilities among tetrapods. The genome specifics and the expression of genes associated with cell plasticity are analyzed. The simplification of tissue structure is shown using the examples of the sensory retina and brain in mature Urodela. Cells of these and some other tissues are ready to initiate proliferation and manifest the plasticity of their phenotype as well as the correct integration into the pre-existing or de novo forming tissue structure. Without excluding other factors that determine regeneration, the pedomorphosis and juvenile properties, identified on different levels of Urodele amphibians, are assumed to be the main explanation for their high regenerative abilities. These properties, being fundamental for tissue regeneration, have been lost by amniotes. Experiments aimed at mammalian cell rejuvenation currently use various approaches. They include, in particular, methods that use secretomes from regenerating tissues of caudate amphibians and fish for inducing regenerative responses of cells. Such an approach, along with those developed on the basis of knowledge about the molecular and genetic nature and age dependence of regeneration, may become one more step in the development of regenerative medicine.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
55
|
Lee J, Cho Y. Comparative gene expression profiling reveals the mechanisms of axon regeneration. FEBS J 2020; 288:4786-4797. [PMID: 33248003 DOI: 10.1111/febs.15646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
Axons are vulnerable to injury, potentially leading to degeneration or neuronal death. While neurons in the central nervous system fail to regenerate, neurons in the peripheral nervous system are known to regenerate. Since it has been shown that injury-response signal transduction is mediated by gene expression changes, expression profiling is a useful tool to understand the molecular mechanisms of regeneration. Axon regeneration is regulated by injury-responsive genes induced in both neurons and their surrounding non-neuronal cells. Thus, an experimental setup for the comparative analysis between regenerative and nonregenerative conditions is essential to identify ideal targets for the promotion of regeneration-associated genes and to understand the mechanisms of axon regeneration. Here, we review the original research that shows the key factors regulating axon regeneration, in particular by using comparative gene expression profiling in diverse systems.
Collapse
Affiliation(s)
- Jinyoung Lee
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Seoul, Korea
| | - Yongcheol Cho
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
56
|
Xu C, Palade J, Fisher RE, Smith CI, Clark AR, Sampson S, Bourgeois R, Rawls A, Elsey RM, Wilson-Rawls J, Kusumi K. Anatomical and histological analyses reveal that tail repair is coupled with regrowth in wild-caught, juvenile American alligators (Alligator mississippiensis). Sci Rep 2020; 10:20122. [PMID: 33208803 PMCID: PMC7674433 DOI: 10.1038/s41598-020-77052-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Reptiles are the only amniotes that maintain the capacity to regenerate appendages. This study presents the first anatomical and histological evidence of tail repair with regrowth in an archosaur, the American alligator. The regrown alligator tails constituted approximately 6–18% of the total body length and were morphologically distinct from original tail segments. Gross dissection, radiographs, and magnetic resonance imaging revealed that caudal vertebrae were replaced by a ventrally-positioned, unsegmented endoskeleton. This contrasts with lepidosaurs, where the regenerated tail is radially organized around a central endoskeleton. Furthermore, the regrown alligator tail lacked skeletal muscle and instead consisted of fibrous connective tissue composed of type I and type III collagen fibers. The overproduction of connective tissue shares features with mammalian wound healing or fibrosis. The lack of skeletal muscle contrasts with lizards, but shares similarities with regenerated tails in the tuatara and regenerated limbs in Xenopus adult frogs, which have a cartilaginous endoskeleton surrounded by connective tissue, but lack skeletal muscle. Overall, this study of wild-caught, juvenile American alligator tails identifies a distinct pattern of wound repair in mammals while exhibiting features in common with regeneration in lepidosaurs and amphibia.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Joanna Palade
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Rebecca E Fisher
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.,Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Cameron I Smith
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Andrew R Clark
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Samuel Sampson
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | | | - Alan Rawls
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Ruth M Elsey
- Rockefeller Wildlife Refuge, Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, 70643, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.
| |
Collapse
|
57
|
Stoica AE, Grumezescu AM, Hermenean AO, Andronescu E, Vasile BS. Scar-Free Healing: Current Concepts and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2179. [PMID: 33142891 PMCID: PMC7693882 DOI: 10.3390/nano10112179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Every year, millions of people develop scars due to skin injuries after trauma, surgery, or skin burns. From the beginning of wound healing development, scar hyperplasia, and prolonged healing time in wound healing have been severe problems. Based on the difference between adult and fetal wound healing processes, many promising therapies have been developed to decrease scar formation in skin wounds. Currently, there is no good or reliable therapy to cure or prevent scar formation. This work briefly reviews the engineering methods of scarless wound healing, focusing on regenerative biomaterials and different cytokines, growth factors, and extracellular components in regenerative wound healing to minimize skin damage cell types, and scar formation.
Collapse
Affiliation(s)
- Alexandra Elena Stoica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
| | - Anca Oana Hermenean
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, 310025 Arad, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
58
|
Ferrario C, Sugni M, Somorjai IML, Ballarin L. Beyond Adult Stem Cells: Dedifferentiation as a Unifying Mechanism Underlying Regeneration in Invertebrate Deuterostomes. Front Cell Dev Biol 2020; 8:587320. [PMID: 33195242 PMCID: PMC7606891 DOI: 10.3389/fcell.2020.587320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
The diversity of regenerative phenomena seen in adult metazoans, as well as their underlying mechanistic bases, are still far from being comprehensively understood. Reviewing both ultrastructural and molecular data, the present work aims to showcase the increasing relevance of invertebrate deuterostomes, i.e., echinoderms, hemichordates, cephalochordates and tunicates, as invaluable models to study cellular aspects of adult regeneration. Our comparative approach suggests a fundamental contribution of local dedifferentiation -rather than mobilization of resident undifferentiated stem cells- as an important cellular mechanism contributing to regeneration in these groups. Thus, elucidating the cellular origins, recruitment and fate of cells, as well as the molecular signals underpinning tissue regrowth in regeneration-competent deuterostomes, will provide the foundation for future research in tackling the relatively limited regenerative abilities of vertebrates, with clear applications in regenerative medicine.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ildiko M. L. Somorjai
- The Willie Russel Laboratories, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, United Kingdom
| | | |
Collapse
|
59
|
Effect of Multiradiance Low-Level Laser Therapy and Topical Silver Sulfadiazine on Healing Characteristics of Dermal Wounds in Marine Toads ( Rhinella marina). Vet Med Int 2020; 2020:8888328. [PMID: 33123338 PMCID: PMC7586172 DOI: 10.1155/2020/8888328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 10/03/2020] [Indexed: 01/28/2023] Open
Abstract
Current recommendations for wound management in amphibians are based primarily on clinical experience and on extrapolation from other taxa, whereas controlled clinical studies are lacking. Low-level laser therapy, also termed photobiomodulation, has gained popularity in veterinary medicine and may represent a valuable adjunct therapy for wound care in amphibians, though dosing and safety evaluations have not been previously reported. Silver sulfadiazine (SSD), a topical antimicrobial, is commonly utilized in amphibian medicine but little is known about its effects on wound healing in this class of animals. This pilot study evaluated the effects of repeated treatments of low-level laser therapy or topical SSD on second-intention healing characteristics of surgically induced full-thickness dermal wounds in 33 adult wild-caught marine toads. Toads were anesthetized, and a 6 mm cutaneous biopsy was performed over the right dorsum. They were then randomly assigned to one of three groups: laser therapy (LT) at 5 Hz (905 nm wavelength on a super pulsed sequence), topical SSD (SD), or control sham treatment (CT). Treatments were administered at 24 hrs after biopsy and then every 72 hrs thereafter, concurrent with a visual assessment of the wound. Toads were euthanized at one of five timepoints (day 4, 7, 13, 19, or 28) to permit scoring of histologic criteria, including lymphocytic inflammation, granulomatous inflammation, heterophilic inflammation, granulation tissue, fibrosis, and reepithelialization. Visual assessments and histologic scoring did not identify a benefit of laser therapy or SSD as compared to controls. Laser therapy and SSD, at the doses and dosing schedule utilized in this pilot study, appear to be safe and well-tolerated treatments in marine toads, but may not be warranted for uncomplicated skin wounds in this species.
Collapse
|
60
|
Gawriluk TR, Simkin J, Hacker CK, Kimani JM, Kiama SG, Ezenwa VO, Seifert AW. Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Front Immunol 2020; 11:1695. [PMID: 32849592 PMCID: PMC7427103 DOI: 10.3389/fimmu.2020.01695] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice (Acomys cahirinus and Acomys percivali) vs. fibrotic repair in Mus musculus. By directly quantifying cytokines during tissue healing, we found that fibrotic repair was associated with a greater release of pro-inflammatory cytokines (i.e., IL-6, CCL2, and CXCL1) during acute inflammation in the wound microenvironment. However, reducing inflammation via COX-2 inhibition was not sufficient to reduce fibrosis or induce a regenerative response, suggesting that inflammatory strength does not control how an injury heals. Although regeneration was associated with lower concentrations of many inflammatory markers, we measured a comparatively larger influx of T cells into regenerating ear tissue and detected a local increase in the T cell associated cytokines IL-12 and IL-17 during the proliferative phase of regeneration. Taken together, our data demonstrate that a strong adaptive immune response is not antagonistic to regeneration and that other mechanisms likely explain the distribution of regenerative ability in vertebrates.
Collapse
Affiliation(s)
- Thomas R. Gawriluk
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Corin K. Hacker
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - John M. Kimani
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Stephen G. Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vanessa O. Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
61
|
Alibardi L. Autoradiography and inmmunolabeling suggests that lizard blastema contains arginase-positive M2-like macrophages that may support tail regeneration. Ann Anat 2020; 231:151549. [PMID: 32512203 DOI: 10.1016/j.aanat.2020.151549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The regenerating blastema of the tail in the lizard Podarcis muralis contains numerous macrophages among the prevalent mesenchymal cells. Some macrophages are phagocytic but others are devoid of phagosomes suggesting that they have other roles aside phagocytosis. METHODS The presence of healing macrophages (M2-like) has been tested using autoradiographic, immunohistochemical and ultrastructural studies. RESULTS Autoradiography shows an uptake of tritiated arginine in sparse cells of the blastema and in the regenerating epidermis. Bioinformatics analysis suggests that epitopes for arginase-1 and -2, recognized by the employed antibody, are present in lizards. Immunofluorescence shows sparse arginase immunopositive macrophages in the blastema and few macrophages also in the apical wound epidermis. The ultrastructural study shows that macrophages contain dense secretory granules, most likely inactive lysosomes, and small cytoplasmic pale vesicles. Some of the small vesicles are arginase-positive while immunolabeling is very diffuse in the macrophage cytoplasm. CONCLUSIONS The presence of cells incorporating arginine and of arginase 1-positive cells suggests that M2-like macrophages are present among mesenchymal and epidermal cells of the regenerative tail blastema. M2-like macrophages may promote tail regeneration differently from the numerous pro-inflammatory macrophages previously detected in the scarring limb. The presence of M2-like macrophages in addition to hyaluronate, support the hypothesis that the regenerative blastema of the tail in lizards is an immuno-privileged organ where cell proliferation and growth occur without degenerating in a tumorigenic outgrowth.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology University of Bologna, Italy.
| |
Collapse
|
62
|
Bothe V, Mahlow K, Fröbisch NB. A histological study of normal and pathological limb regeneration in the Mexican axolotl Ambystoma mexicanum. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:116-128. [PMID: 32394624 DOI: 10.1002/jez.b.22950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 01/13/2023]
Abstract
Salamanders show unparalleled capacities of tissue regeneration amongst tetrapods (four-legged vertebrates), being able to repair and renew lost or damage body parts, such as tails, jaws, and limbs in a seemingly perfect fashion. Despite countless studies on axolotl (Ambystoma mexicanum) regeneration, only a few studies have thus far compared gross morphological and histological features of the original and regenerated limb skeleton. Therein, most studies have focused on nerves or muscles, while even fewer have provided detailed information about bones and cartilage. This study compares skeletal tissue structures of original and regenerated limbs with respect to tissue level histology. Histological serial sections of 55 axolotl larvae were generated, including 29 limbs that were severed by conspecifics, and 26 that were subject to targeted amputations. Amputations were executed in several larval stages (48, 52, and 53) and at different limb positions (humeral midshaft, above the mesopod). In addition, 3D reconstructions were prepared based on X-ray microtomography scans. The results demonstrate that regenerated forelimbs show a diversity of limb and digit abnormalities as a result of imperfect regeneration. Furthermore, abnormalities were more severe and more frequent in regenerated forelimbs caused by natural bites as compared with regenerated forelimbs after amputation. The results indicate that abnormalities occur frequently after regeneration in larval axolotls contradicting the notion of regeneration generally resulting in perfect limbs.
Collapse
Affiliation(s)
- Vivien Bothe
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Kristin Mahlow
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Nadia B Fröbisch
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
63
|
Cell-based therapies for the treatment of myocardial infarction: lessons from cardiac regeneration and repair mechanisms in non-human vertebrates. Heart Fail Rev 2020; 24:133-142. [PMID: 30421074 DOI: 10.1007/s10741-018-9750-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ischemic cardiomyopathy is the cardiovascular condition with the highest impact on the Western population. In mammals (humans included), prolonged ischemia in the ventricular walls causes the death of cardiomyocytes (myocardial infarction, MI). The loss of myocardial mass is soon compensated by the formation of a reparative, non-contractile fibrotic scar that ultimately affects heart performance. Despite the enormous clinical relevance of MI, no effective therapy is available for the long-term treatment of this condition. Moreover, since the human heart is not able to undergo spontaneous regeneration, many researchers aim at designing cell-based therapies that allow for the substitution of dead cardiomyocytes by new, functional ones. So far, the majority of such strategies rely on the injection of different progenitor/stem cells to the infarcted heart. These cardiovascular progenitors, which are expected to differentiate into cardiomyocytes de novo, seldom give rise to new cardiac muscle. In this context, the most important challenge in the field is to fully disclose the molecular and cellular mechanisms that could promote active myocardial regeneration after cardiac damage. Accordingly, we suggest that such strategy should be inspired by the unique regenerative and reparative responses displayed by non-human animal models, from the restricted postnatal myocardial regeneration abilities of the murine heart to the full ventricular regeneration of some bony fishes (e.g., zebrafish). In this review article, we will discuss about current scientific approaches to study cardiac reparative and regenerative phenomena using animal models.
Collapse
|
64
|
|
65
|
Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.regen.2019.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
66
|
Alibardi L. Presence of immune cells in the regenerating caudal spinal cord of frog tadpoles indicates active immune-surveillance before metamorphosis. ZOOLOGY 2020; 139:125745. [PMID: 32106043 DOI: 10.1016/j.zool.2020.125745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/03/2023]
Abstract
During spinal cord (SC) regeneration in the tail of Rana dalmatina tadpoles few neurons are regenerated from the ependymal epithelium. Using microscopic methods, immunofluorescence, tract tracing and electron microscopy, the present study has analyzed the cells generated in the caudal SC during the first 20 days of regeneration under normal and stress conditions. Since early larval stages, the regenerating SC contains few nerve cells (2-3%) and more numerous immune cells (5-7%), namely heterophil granulocytes, macrophages and lymphocytes. Few regenerated nerve cells are connected to the normal SC by axons detected after application of the retrograde fluorescent tracer Dil. Cell degeneration in the regenerating SC is commonly observed, including also loss of nerve cells, a process that occurs well in advance from metamorphosis. Furthermore, under lightly stress conditions, when tadpoles are kept in agitated water during tail regeneration, nerve degeneration and the number of immune cells significantly increases in the regenerating SC, a mean of 13.5% versus 5.6% in normal conditions. The study shows that normal and regenerating SC are under immune surveillance since early tadpole stages, well in advance of metamorphosis when immune cells determine the degeneration of the SC and the complete reabsorption of the tail.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology at University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
67
|
Recombinant HvRNASET2 protein induces marked connective tissue remodelling in the invertebrate model Hirudo verbana. Cell Tissue Res 2020; 380:565-579. [PMID: 32043208 DOI: 10.1007/s00441-020-03174-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/20/2020] [Indexed: 01/03/2023]
Abstract
The RNASET2 ribonuclease, belonging to the highly conserved RH/T2/s RNase gene family, has been recently shown to modulate inflammatory processes in both vertebrates and invertebrates. Indeed, the RNASET2 protein acts as a chemoattractor for macrophages in both in vitro and in vivo experimental settings and its expression significantly increases following bacterial infections. Moreover, we recently observed that injection of human recombinant RNASET2 protein in the body wall of the medicinal leech (a consolidated invertebrate model for both immune response and tissue regeneration) not only induced immune cell recruitment but also apparently triggered massive connective tissue remodelling as well. Based on these data, we evaluate here a possible role of leech recombinant RNASET2 protein (rHvRNASET2) in connective tissue remodelling by characterizing the cell types involved in this process through histochemical, morphological and immunofluorescent assays. Moreover, a time-course expression analysis of newly synthesized pro-collagen1α1 (COL1α1) and basic FGF receptor (bFGFR, a known fibroblast marker) following rHvRNASET2 injection in the leech body wall further supported the occurrence of rHvRNASET2-mediated matrix remodelling. Human MRC-5 fibroblast cells were also investigated in order to evaluate their pattern of collagen neosynthesis driven by rHvRNASET2 injection.Taken together, the data reported in this work provide compelling evidence in support of a pleiotropic role for RNASET2 in orchestrating an evolutionarily conserved crosstalk between inflammatory response and regenerative process, based on macrophage recruitment and fibroblast activation, coupled to a massive extracellular reorganization.
Collapse
|
68
|
Role of TGF-β in Skin Chronic Wounds: A Keratinocyte Perspective. Cells 2020; 9:cells9020306. [PMID: 32012802 PMCID: PMC7072438 DOI: 10.3390/cells9020306] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic wounds are characterized for their incapacity to heal within an expected time frame. Potential mechanisms driving this impairment are poorly understood and current hypotheses point to the development of an unbalanced milieu of growth factor and cytokines. Among them, TGF-β is considered to promote the broadest spectrum of effects. Although it is known to contribute to healthy skin homeostasis, the highly context-dependent nature of TGF-β signaling restricts the understanding of its roles in healing and wound chronification. Historically, low TGF-β levels have been suggested as a pattern in chronic wounds. However, a revision of the available evidence in humans indicates that this could constitute a questionable argument. Thus, in chronic wounds, divergences regarding skin tissue compartments seem to be characterized by elevated TGF-β levels only in the epidermis. Understanding how this aspect affects keratinocyte activities and their capacity to re-epithelialize might offer an opportunity to gain comprehensive knowledge of the involvement of TGF-β in chronic wounds. In this review, we compile existing evidence on the roles played by TGF-β during skin wound healing, with special emphasis on keratinocyte responses. Current limitations and future perspectives of TGF-β research in chronic wounds are discussed.
Collapse
|
69
|
Wong AY, Whited JL. Parallels between wound healing, epimorphic regeneration and solid tumors. Development 2020; 147:147/1/dev181636. [PMID: 31898582 DOI: 10.1242/dev.181636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striking similarities between wound healing, epimorphic regeneration and the progression of solid tumors have been uncovered by recent studies. In this Review, we discuss systemic effects of tumorigenesis that are now being appreciated in epimorphic regeneration, including genetic, cellular and metabolic heterogeneity, changes in circulating factors, and the complex roles of immune cells and immune modulation at systemic and local levels. We suggest that certain mechanisms enabling regeneration may be co-opted by cancer to promote growth at primary and metastatic sites. Finally, we advocate that working with a unified approach could complement research in both fields.
Collapse
Affiliation(s)
- Alan Y Wong
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02138, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
70
|
Gawriluk TR, Simkin J, Hacker CK, Kimani JM, Kiama SG, Ezenwa VO, Seifert AW. Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Front Immunol 2020. [PMID: 32849592 DOI: 10.3389/fimmu.2020.01695/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice (Acomys cahirinus and Acomys percivali) vs. fibrotic repair in Mus musculus. By directly quantifying cytokines during tissue healing, we found that fibrotic repair was associated with a greater release of pro-inflammatory cytokines (i.e., IL-6, CCL2, and CXCL1) during acute inflammation in the wound microenvironment. However, reducing inflammation via COX-2 inhibition was not sufficient to reduce fibrosis or induce a regenerative response, suggesting that inflammatory strength does not control how an injury heals. Although regeneration was associated with lower concentrations of many inflammatory markers, we measured a comparatively larger influx of T cells into regenerating ear tissue and detected a local increase in the T cell associated cytokines IL-12 and IL-17 during the proliferative phase of regeneration. Taken together, our data demonstrate that a strong adaptive immune response is not antagonistic to regeneration and that other mechanisms likely explain the distribution of regenerative ability in vertebrates.
Collapse
Affiliation(s)
- Thomas R Gawriluk
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Corin K Hacker
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - John M Kimani
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Stephen G Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vanessa O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States.,Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States.,Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
71
|
Macrophages in cardiac repair: Environmental cues and therapeutic strategies. Exp Mol Med 2019; 51:1-10. [PMID: 31857583 PMCID: PMC6923399 DOI: 10.1038/s12276-019-0269-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Mammals, in contrast to urodeles and teleost fish, lose the ability to regenerate their hearts soon after birth. Central to this regenerative response are cardiac macrophages, which comprise a heterogeneous population of cells with origins from the yolk sac, fetal liver, and bone marrow. These cardiac macrophages maintain residency in the myocardium through local proliferation and partial replacement over time by circulating monocytes. The intrinsic plasticity of cardiac macrophages in the adult heart promotes dynamic phenotypic changes in response to environmental cues, which may either protect against injury or promote maladaptive remodeling. Thus, therapeutic strategies promoting myocardial repair are warranted. Adult stromal cell-derived exosomes have shown therapeutic promise by skewing macrophages toward a cardioprotective phenotype. While several key exosomal non-coding RNA have been identified, additional factors responsible for cardiomyocyte proliferation remain to be elucidated. Here I review cardiac macrophages in development and following injury, unravel environmental cues modulating macrophage activation, and assess novel approaches for targeted delivery. The human heart may be coaxed toward regeneration by modifying the activity of specialized immune cells known as macrophages. Insight from the regenerating hearts of zebrafish, newt, and neonatal mammals has revealed that macrophages are required to replace scar with functioning heart tissue. As mammals lose the ability to regenerate heart tissue, macrophages mature from a regenerative phenotype towards an immunomodulatory phenotype. By adulthood, heart macrophages comprise a mixed population of cells arising from either early embryonic development or differentiation from white blood cells. In this issue, Dr. Geoffrey de Couto from the Smidt Heart Institute at Cedars-Sinai Medical Center, reviews the role of macrophages in heart repair and therapeutic strategies to enhance their activity. Recent studies suggest that exosomes, which are naturally-released nano-sized vesicles, can re-educate adult macrophages to protect the heart from injury.
Collapse
|
72
|
Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:61-93. [PMID: 30043235 DOI: 10.1007/5584_2018_194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.
Collapse
Affiliation(s)
| | - Kathrin Weber
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Ulrich Walliser
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Florian Geburek
- Justus-Liebig-University Giessen, Faculty of Veterinary Medicine, Clinic for Horses - Department of Surgery, Giessen, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
73
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
74
|
Ivankovic M, Haneckova R, Thommen A, Grohme MA, Vila-Farré M, Werner S, Rink JC. Model systems for regeneration: planarians. Development 2019; 146:146/17/dev167684. [PMID: 31511248 DOI: 10.1242/dev.167684] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Planarians are a group of flatworms. Some planarian species have remarkable regenerative abilities, which involve abundant pluripotent adult stem cells. This makes these worms a powerful model system for understanding the molecular and evolutionary underpinnings of regeneration. By providing a succinct overview of planarian taxonomy, anatomy, available tools and the molecular orchestration of regeneration, this Primer aims to showcase both the unique assets and the questions that can be addressed with this model system.
Collapse
Affiliation(s)
- Mario Ivankovic
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Radmila Haneckova
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.,Department of Tissue Dynamics and Regeneration, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| | - Albert Thommen
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.,The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Markus A Grohme
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Miquel Vila-Farré
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.,Department of Tissue Dynamics and Regeneration, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| | - Steffen Werner
- FOM Institute AMOLF, Department of Systems Biology, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Jochen C Rink
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany .,Department of Tissue Dynamics and Regeneration, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
75
|
West MD, Sternberg H, Labat I, Janus J, Chapman KB, Malik NN, de Grey ADNJ, Larocca D. Toward a unified theory of aging and regeneration. Regen Med 2019; 14:867-886. [DOI: 10.2217/rme-2019-0062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the antagonistic pleiotropy theory of mammalian aging. Accordingly, changes in gene expression following the pluripotency transition, and subsequent transitions such as the embryonic–fetal transition, while providing tumor suppressive and antiviral survival benefits also result in a loss of regenerative potential leading to age-related fibrosis and degenerative diseases. However, reprogramming somatic cells to pluripotency demonstrates the possibility of restoring telomerase and embryonic regeneration pathways and thus reversing the age-related decline in regenerative capacity. A unified model of aging and loss of regenerative potential is emerging that may ultimately be translated into new therapeutic approaches for establishing induced tissue regeneration and modulation of the embryo-onco phenotype of cancer.
Collapse
Affiliation(s)
| | | | - Ivan Labat
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
| | | | | | - Nafees N Malik
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- Juvenescence Ltd, London, UK
| | - Aubrey DNJ de Grey
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | |
Collapse
|
76
|
Garcia-Puig A, Mosquera JL, Jiménez-Delgado S, García-Pastor C, Jorba I, Navajas D, Canals F, Raya A. Proteomics Analysis of Extracellular Matrix Remodeling During Zebrafish Heart Regeneration. Mol Cell Proteomics 2019; 18:1745-1755. [PMID: 31221719 PMCID: PMC6731076 DOI: 10.1074/mcp.ra118.001193] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Adult zebrafish, in contrast to mammals, are able to regenerate their hearts in response to injury or experimental amputation. Our understanding of the cellular and molecular bases that underlie this process, although fragmentary, has increased significantly over the last years. However, the role of the extracellular matrix (ECM) during zebrafish heart regeneration has been comparatively rarely explored. Here, we set out to characterize the ECM protein composition in adult zebrafish hearts, and whether it changed during the regenerative response. For this purpose, we first established a decellularization protocol of adult zebrafish ventricles that significantly enriched the yield of ECM proteins. We then performed proteomic analyses of decellularized control hearts and at different times of regeneration. Our results show a dynamic change in ECM protein composition, most evident at the earliest (7 days postamputation) time point analyzed. Regeneration associated with sharp increases in specific ECM proteins, and with an overall decrease in collagens and cytoskeletal proteins. We finally tested by atomic force microscopy that the changes in ECM composition translated to decreased ECM stiffness. Our cumulative results identify changes in the protein composition and mechanical properties of the zebrafish heart ECM during regeneration.
Collapse
Affiliation(s)
- Anna Garcia-Puig
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; §Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Jose Luis Mosquera
- ¶Bioinformatics Unit, Institut d'Investigació Biomèdica de Bellvitge IDIBELL), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Senda Jiménez-Delgado
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Cristina García-Pastor
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Ignasi Jorba
- ‖Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, 08028 Barcelona, Spain; **Unit of Biophysics and Bioengineering, Department of Physiological Sciences I, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; ‡‡Center for Networked Biomedical Research on Respiratory Diseases (CIBERES), 08036 Barcelona, Spain
| | - Daniel Navajas
- ‖Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, 08028 Barcelona, Spain; **Unit of Biophysics and Bioengineering, Department of Physiological Sciences I, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; ‡‡Center for Networked Biomedical Research on Respiratory Diseases (CIBERES), 08036 Barcelona, Spain
| | - Francesc Canals
- §§Proteomics group, Vall d'Hebron Institut of Oncology (VHIO), Cellex center, Natzaret 115-117, 08035 Barcelona, Spain
| | - Angel Raya
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; §Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08908 Hospitalet de Llobregat (Barcelona), Spain; ¶¶Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
77
|
Oliveira KMC, Barker JH, Berezikov E, Pindur L, Kynigopoulos S, Eischen-Loges M, Han Z, Bhavsar MB, Henrich D, Leppik L. Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model. Sci Rep 2019; 9:11433. [PMID: 31391536 PMCID: PMC6685943 DOI: 10.1038/s41598-019-47389-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Different species respond differently to severe injury, such as limb loss. In species that regenerate, limb loss is met with complete restoration of the limbs’ form and function, whereas in mammals the amputated limb’s stump heals and scars. In in vitro studies, electrical stimulation (EStim) has been shown to promote cell migration, and osteo- and chondrogenesis. In in vivo studies, after limb amputation, EStim causes significant new bone, cartilage and vessel growth. Here, in a rat model, the stumps of amputated rat limbs were exposed to EStim, and we measured extracellular matrix (ECM) deposition, macrophage distribution, cell proliferation and gene expression changes at early (3 and 7 days) and later stages (28 days). We found that EStim caused differences in ECM deposition, with less condensed collagen fibrils, and modified macrophage response by changing M1 to M2 macrophage ratio. The number of proliferating cells was increased in EStim treated stumps 7 days after amputation, and transcriptome data strongly supported our histological findings, with activated gene pathways known to play key roles in embryonic development and regeneration. In conclusion, our findings support the hypothesis that EStim shifts injury response from healing/scarring towards regeneration. A better understanding of if and how EStim controls these changes, could lead to strategies that replace scarring with regeneration.
Collapse
Affiliation(s)
- K M C Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - J H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - E Berezikov
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - L Pindur
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany.,Department of Plastic, Hand and Reconstructive Surgery, BG Trauma Center Frankfurt am Main gGmbH, Frankfurt am Main, Germany
| | - S Kynigopoulos
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M Eischen-Loges
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - Z Han
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M B Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - D Henrich
- Department of Trauma, Hand and Reconstructive Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - L Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
78
|
Miller BM, Johnson K, Whited JL. Common themes in tetrapod appendage regeneration: a cellular perspective. EvoDevo 2019; 10:11. [PMID: 31236203 PMCID: PMC6572735 DOI: 10.1186/s13227-019-0124-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/08/2019] [Indexed: 01/13/2023] Open
Abstract
Complete and perfect regeneration of appendages is a process that has fascinated and perplexed biologists for centuries. Some tetrapods possess amazing regenerative abilities, but the regenerative abilities of others are exceedingly limited. The reasons underlying these differences have largely remained mysterious. A great deal has been learned about the morphological events that accompany successful appendage regeneration, and a handful of experimental manipulations can be reliably applied to block the process. However, only in the last decade has the goal of attaining a thorough molecular and cellular biological understanding of appendage regeneration in tetrapods become within reach. Advances in molecular and genetic tools for interrogating these remarkable events are now allowing for unprecedented access to the fundamental biology at work in appendage regeneration in a variety of species. This information will be critical for integrating the large body of detailed observations from previous centuries with a modern understanding of how cells sense and respond to severe injury and loss of body parts. Understanding commonalities between regenerative modes across diverse species is likely to illuminate the most important aspects of complex tissue regeneration.
Collapse
Affiliation(s)
- Bess M. Miller
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138 USA
| | - Kimberly Johnson
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138 USA
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138 USA
| |
Collapse
|
79
|
Franchini A. Adaptive Immunity and Skin Wound Healing in Amphibian Adults. Open Life Sci 2019; 14:420-426. [PMID: 33817177 PMCID: PMC7874748 DOI: 10.1515/biol-2019-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/26/2019] [Indexed: 01/18/2023] Open
Abstract
Regeneration and repair with scarring of the skin are two different responses to tissue injury that proceed depending on the animal species. Several studies in multiple organisms have shown that the effectiveness of tissue repair gradually decreases with age in most vertebrates, while the molecular and cellular mechanisms underlying the diverse potentials remain incompletely understood. It is clear, however, that immune system actively participates in the whole process and immune-related activities can mediate both negative and positive roles to influence the quality and diversity of tissue response to damage. Compared with innate immunity, our understanding of the significance of adaptive immune cells in normal repair outcome is limited and deserves further investigation. Here, experimental evidence supporting the contribution of lymphocytes and the involvement of lymphoid organs in skin wound healing are discussed, focusing on the findings emerged in adult amphibians, key animal models for tissue repair and regeneration research.
Collapse
Affiliation(s)
- Antonella Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, via Campi 213/D, 41125 Modena, Italy
| |
Collapse
|
80
|
Therapeutic potential of endogenous stem cells and cellular factors for scar-free skin regeneration. Drug Discov Today 2019; 24:69-84. [DOI: 10.1016/j.drudis.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
|
81
|
Chia CY, Medeiros AD, Corraes ADMS, Manso JEF, Silva CSCD, Takiya CM, Vanz RL. Healing effect of andiroba-based emulsion in cutaneous wound healing via modulation of inflammation and transforming growth factor beta 31. Acta Cir Bras 2018; 33:1000-1015. [PMID: 30517327 DOI: 10.1590/s0102-865020180110000007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To evaluate the effects and mechanisms of andiroba-based emulsion (ABE) topical treatment on full-thickness cutaneous wounds in rats. METHODS The wounds were harvested on days 3, 7, 15, and 20 post-surgery. Wound contraction rate, quantitative immunohistochemistry [macrophages, myofibroblasts, capillaries, collagens (col) I and III, transforming growth factor β3β (TGFβ3)], and tensile strength were assessed. RESULTS Treated wounds were smaller, contracted earlier and had increased angiogenesis, fewer CD68+ and M2 macrophages on days 7 and 15, but higher on day 20. Myofibroblasts appeared on days 3 to 7 in untreated wounds and on days 7 to 15 in treated wounds. TGFβ3 levels were higher in the treated wounds, less dense collagen fibers, lower col I/III ratios and a higher tensile strength. CONCLUSION These results demonstrate the important anti-inflammatory role of treatment and the associated modulation of macrophages, myofibroblasts, and TGFβ3 levels. Collagen fibers in the treated wounds were more organized and less dense, similar to unwounded skin, which likely contributed to the higher tensile strength.
Collapse
Affiliation(s)
- Chang Yung Chia
- MD, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, and Immunopathology Laboratory, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Brazil. Conception and design of the study, analysis and interpretation of data, statistics analysis, technical procedures, manuscript writing, critical revision
| | - Andréia Dantas Medeiros
- PhD, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro-RJ, Brazil. Technical procedures, manuscript writing, critical revision, final approval
| | - André de Menezes Silva Corraes
- PhD, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro-RJ, Brazil. Technical procedures, manuscript writing, critical revision, final approval
| | - José Eduardo Ferreira Manso
- PhD, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brazil. Design of the study, analysis and interpretation of data, final approval
| | - César Silveira Claudio da Silva
- PhD, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brazil. Design of the study, analysis and interpretation of data, final approval
| | - Christina Maeda Takiya
- PhD, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, and Immunopathology Laboratory, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro-RJ, Brazil. Design of the study, analysis and interpretation of data, immunohistochemical examinations, statistics analysis, manuscript writing, critical revision, final approval
| | - Ricardo Luís Vanz
- MD, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brazil. Manuscript writing, critical revision, final approval
| |
Collapse
|
82
|
Injury and stress responses of adult neural crest-derived cells. Dev Biol 2018; 444 Suppl 1:S356-S365. [DOI: 10.1016/j.ydbio.2018.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
83
|
Tica J, Didangelos A. Comparative Transcriptomics of Rat and Axolotl After Spinal Cord Injury Dissects Differences and Similarities in Inflammatory and Matrix Remodeling Gene Expression Patterns. Front Neurosci 2018; 12:808. [PMID: 30519154 PMCID: PMC6262295 DOI: 10.3389/fnins.2018.00808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Following spinal cord injury in mammals, maladaptive inflammation, and matrix deposition drive tissue scarring and permanent loss of function. In contrast, axolotls regenerate their spinal cord after severe injury fully and without scarring. To explore previously unappreciated molecules and pathways that drive tissue responses after spinal cord injury, we performed a 4-way intersection of rat and axolotl transcriptomics datasets and isolated shared genes with similar or differential expression at days 1, 3, and 7 after spinal cord injury in both species. Systems-wide differences and similarities between the two species are described in detail using public-domain computational tools and key differentially regulated genes are highlighted. Amongst persistent differential expression in matching neuronal genes (upregulated in axolotls but downregulated in rats) and nucleic acid metabolism genes (downregulated in axolotls but upregulated in rats), we found multiple extracellular matrix genes that were upregulated in both species after spinal cord injury and all time-points (days 1, 3, and 7), indicating the importance of extracellular matrix remodeling in wound healing. Moreover, the archetypal transcription factor SP1, which was consistently upregulated in rats but was unchanged in axolotls, was predicted as a potential transcriptional regulator of classic inflammatory response genes in rats most of which were not regulated in regenerating axolotls. This analysis offers an extensive comparative platform between a non-regenerating mammal and a regenerating urodele after spinal cord injury. To better understand regeneration vs. scarring mechanisms it is important to understand consistent molecular differences as well as similarities after experimental spinal cord injury.
Collapse
Affiliation(s)
- Jure Tica
- Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Athanasios Didangelos
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
84
|
Taghiyar L, Hosseini S, Safari F, Bagheri F, Fani N, Stoddart MJ, Alini M, Eslaminejad MB. New insight into functional limb regeneration: A to Z approaches. J Tissue Eng Regen Med 2018; 12:1925-1943. [PMID: 30011424 DOI: 10.1002/term.2727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 02/19/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Limb/digit amputation is a common event in humans caused by trauma, medical illness, or surgery. Although the loss of a digit is not lethal, it affects quality of life and imposes high costs on amputees. In recent years, the increasing interest in limb regeneration has led to enhanced scientific knowledge. However, the limited ability to develop functional limb regeneration in the clinical setting suggests that a challenging issue remains in limb regeneration. Recently, the emergence of regenerative engineering is a promising field to address this challenge and close the gap between science and clinical applications. Cell signalling and molecular mechanisms involved in the limb regeneration process have been extensively studied; however, there is still insufficient data on cell therapy and tissue engineering for limb regeneration. In this review, we intend to focus on therapeutic approaches for limb regeneration that are closely related to gene, immune, and stem cell therapies, as well as tissue engineering approaches that take into consideration the peculiar developmental properties of the limbs. In addition, we attempt to identify the challenges of these strategies for limb regeneration studies in terms of clinical settings and as a road map to accomplish the goal of functional human limb regeneration.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Safari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
85
|
Gao ZH, Deng CJ, Xie YY, Guo XL, Wang QQ, Liu LZ, Lee WH, Li SA, Zhang Y. Pore‐forming toxin‐like protein complex expressed by frog promotes tissue repair. FASEB J 2018; 33:782-795. [DOI: 10.1096/fj.201800087r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen-Hua Gao
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
- First Affiliated Hospital of Kunming Medical University Kunming China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
| | - Yue-Ying Xie
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
| | - Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of Sciences Kunming China
| |
Collapse
|
86
|
Ranadive I, Patel S, Buch P, Uggini G, Desai I, Balakrishnan S. Inherent variations in the cellular events at the site of amputation orchestrate scar-free wound healing in the tail and scarred wound healing in the limb of lizard Hemidactylus flaviviridis. Wound Repair Regen 2018; 26:366-380. [PMID: 30054965 DOI: 10.1111/wrr.12659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Lizards are unique in having both-regeneration competent (tail) as well as non-regenerating appendages (limbs) in adults. They therefore present an appropriate model for comparing processes underlying regenerative repair and nonregenerative healing after amputation. In the current study, we use northern house gecko Hemidactylus flaviviridis to compare major cellular and molecular events following amputation of the limb and of the tail. Although the early response to injury in both cases comprises apoptosis, proliferation, and angiogenesis, the temporal distribution of these processes in each remained obscure. In this regard, observations were made on the anatomy and gene expression levels of key regulators of these processes during the healing phase of the tail and limb separately. It was revealed that cell proliferation markers like fibroblast growth factors were upregulated early in the healing tail, coinciding with the growing epithelium. The amputated limb, in contrast, showed weak expression of proliferation markers, limited only to fibroblasts in the later stage of healing. Additionally, apoptotic activity in the tail was limited to the very early phase of healing, as opposed to that in the limb, wherein high expression of caspase-3 was observed throughout the healing process. Early rise in VEGF-α expression reflected an early onset of angiogenesis in the tail, while it was seen to occur at a later stage in case of the limb. Moreover, the expression pattern of transforming growth factor beta members points toward a pro-fibrotic response being induced very early in the amputated limb. Collectively, these results explain why regenerating appendages are able to heal without scars and if we are to induce scar-free healing in nonregenerating limbs, what interventions can be envisaged. This is crucial to the field of regenerative medicine since it is the initial stages of repair following amputation, which decide whether the appendage will be restored or only covered with a scab.
Collapse
Affiliation(s)
- Isha Ranadive
- Faculty of Science, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sonam Patel
- Faculty of Science, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Pranav Buch
- Faculty of Science, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Gowrikumari Uggini
- Faculty of Science, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Isha Desai
- N. V. Patel College of Pure and Applied Sciences, Vallabh Vidhya Nagar, Gujarat, India
| | - Suresh Balakrishnan
- Faculty of Science, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
87
|
Topical application of Mentha piperita essential oil accelerates wound healing in infected mice model. Inflammopharmacology 2018; 27:531-537. [DOI: 10.1007/s10787-018-0510-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/01/2018] [Indexed: 10/28/2022]
|
88
|
Alibardi L. Tail regeneration reduction in lizards after repetitive amputation or cauterization reflects an increase of immune cells in blastemas. Zool Res 2018; 39:413-423. [PMID: 29976844 PMCID: PMC6085768 DOI: 10.24272/j.issn.2095-8137.2018.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lizards are key amniote models for studying organ regeneration. During tail regeneration in lizards, blastemas contain sparse granulocytes, macrophages, and lymphocytes among the prevalent mesenchymal cells. Using transmission electron microscopy to examine scarring blastemas after third and fourth sequential tail amputations, the number of granulocytes, macrophages, and lymphocytes increased at 3-4 weeks in comparison to the first regeneration. An increase in granulocytes and agranulocytes also occurred within a week after blastema cauterization during the process of scarring. Blood at the third and fourth regeneration also showed a significant increase in white blood cells compared with that under normal conditions and at the first regeneration. The extracellular matrix of the scarring blastema, especially after cauterization, was denser than that in the normal blastema and numerous white blood cells and fibroblasts were surrounded by electron-pale, fine fibrinoid material mixed with variable collagen fibrils. In addition to previous studies, the present observations support the hypothesis that an increase in inflammation and immune reactions determine scarring rather than regeneration. These new findings verify that an immune reaction against mesenchymal and epidermal cells of the regenerative blastema is one of the main causes for the failure of organ regeneration in amniotes.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padua, Department of Biology, University of Bologna, Bologna 40126, Italy; E-mail:
| |
Collapse
|
89
|
Subramaniam N, Petrik JJ, Vickaryous MK. VEGF, FGF-2 and TGFβ expression in the normal and regenerating epidermis of geckos: implications for epidermal homeostasis and wound healing in reptiles. J Anat 2018; 232:768-782. [PMID: 29417581 PMCID: PMC5879961 DOI: 10.1111/joa.12784] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
The skin is a bilayered organ that serves as a key barrier between an organism and its environment. In addition to protecting against microbial invasion, physical trauma and environmental damage, skin participates in maintaining homeostasis. Skin is also capable of spontaneous self-repair following injury. These functions are mediated by numerous pleiotrophic growth factors, including members of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and transforming growth factor β (TGFβ) families. Although growth factor expression has been well documented in mammals, particularly during wound healing, for groups such as reptiles less is known. Here, we investigate the spatio-temporal pattern of expression of multiple growth factors in normal skin and following a full-thickness cutaneous injury in the representative lizard Eublepharis macularius, the leopard gecko. Unlike mammals, leopard geckos can heal cutaneous wounds without scarring. We demonstrate that before, during and after injury, keratinocytes of the epidermis express a diverse panel of growth factor ligands and receptors, including: VEGF, VEGFR1, VEGFR2, and phosphorylated VEGFR2; FGF-2 and FGFR1; and phosphorylated SMAD2, TGFβ1, and activin βA. Unexpectedly, only the tyrosine kinase receptors VEGFR1 and FGFR1 were dynamically expressed, and only during the earliest phases of re-epithelization; otherwise all the proteins of interest were constitutively present. We propose that the ubiquitous pattern of growth factor expression by keratinocytes is associated with various roles during tissue homeostasis, including protection against ultraviolet photodamage and coordinated body-wide skin shedding.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
- Institute of Medical ScienceFaculty of MedicineUniversity of TorontoTorontoONCanada
- Keenan Research Centre in the Li Ka Shing Knowledge InstituteSt. Michael's HospitalDepartment of MedicineUniversity of TorontoTorontoONCanada
| | - James J. Petrik
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| | - Matthew K. Vickaryous
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| |
Collapse
|
90
|
Alibardi L. Review: Limb regeneration in humans: Dream or reality? Ann Anat 2018; 217:1-6. [DOI: 10.1016/j.aanat.2017.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023]
|
91
|
Kaplani K, Koutsi S, Armenis V, Skondra FG, Karantzelis N, Champeris Tsaniras S, Taraviras S. Wound healing related agents: Ongoing research and perspectives. Adv Drug Deliv Rev 2018; 129:242-253. [PMID: 29501699 DOI: 10.1016/j.addr.2018.02.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/28/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Wound healing response plays a central part in chronic inflammation, affecting millions of people worldwide. It is a dynamic process that can lead to fibrosis, if tissue damage is irreversible and wound resolution is not attained. It is clear that there is a tight interconnection among wound healing, fibrosis and a variety of chronic disease conditions, demonstrating the heterogeneity of this pathology. Based on our further understanding of the cellular and molecular mechanisms underpinning tissue repair, new therapeutic approaches have recently been developed that target different aspects of the wound healing process and fibrosis. Nevertheless, several issues still need to be taken into consideration when designing modern wound healing drug delivery formulations. In this review, we highlight novel pharmacological agents that hold promise for targeting wound repair and fibrosis. We also focus on drug-delivery systems that may enhance current and future therapies.
Collapse
Affiliation(s)
- Konstantina Kaplani
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Stamatina Koutsi
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Vasileios Armenis
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece
| | - Foteini G Skondra
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece
| | - Nickolas Karantzelis
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | | | - Stavros Taraviras
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece.
| |
Collapse
|
92
|
Costa RA, Power DM. Skin and scale regeneration after mechanical damage in a teleost. Mol Immunol 2018; 95:73-82. [DOI: 10.1016/j.molimm.2018.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/20/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
|
93
|
Florez-Sampedro L, Song S, Melgert BN. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. ACTA ACUST UNITED AC 2018; 5:3-25. [PMID: 29721324 PMCID: PMC5911451 DOI: 10.1002/reg2.97] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
94
|
Erickson JR, Echeverri K. Learning from regeneration research organisms: The circuitous road to scar free wound healing. Dev Biol 2018; 433:144-154. [PMID: 29179946 PMCID: PMC5914521 DOI: 10.1016/j.ydbio.2017.09.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022]
Abstract
The skin is the largest organ in the body and plays multiple essential roles ranging from regulating temperature, preventing infection and ultimately defining who we are physically. It is a highly dynamic organ that constantly replaces the outermost cells throughout life. However, when faced with a major injury, human skin cannot restore a significant lesion to its original functionality, instead a reparative scar is formed. In contrast to this, many other species have the unique ability to regenerate full thickness skin without formation of scar tissue. Here we review recent advances in the field that shed light on how the skin cells in regenerative species react to injury to prevent scar formation versus scar forming humans.
Collapse
Affiliation(s)
- Jami R Erickson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
95
|
Regeneration in distantly related species: common strategies and pathways. NPJ Syst Biol Appl 2018; 4:5. [PMID: 29354283 PMCID: PMC5764997 DOI: 10.1038/s41540-017-0042-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023] Open
Abstract
While almost all animals are able to at least partially replace some lost parts, regeneration abilities vary considerably across species. Here we study gene expression patterns in distantly related species to investigate conserved regeneration strategies. To this end, we collect from the literature transcriptomic data obtained during the regeneration of three species (Hydra magnipapillata, Schmidtea mediterranea, and Apostichopus japonicus), and compare them with gene expression during regeneration in vertebrates and mammals. This allows us to identify a common set of differentially expressed genes and relevant shared pathways that are conserved across species during the early stage of the regeneration process. We also find a set of differentially expressed genes that in mammals are associated to the presence of macrophages and to the epithelial–mesenchymal transition. This suggests that features of the sophisticated wound healing strategy of mammals are already observable in earlier emerging metazoans. All animals capable of regenerating a lost body part, from an organ or a limb to the whole organism, use a common set of genes. This is the striking discovery of a team of researchers from the Center for Complexity and Biosystems of the University of Milan, led by Caterina La Porta. They analyzed the genetic activity in regenerating tissues from widely different species—from hydra to mice. They found that some of the genes active at the beginning of the regeneration process are the same in very different species, including mammals which have lost this function during evolution, except for the restoration of the liver. The discovery of this shared genetic signature is of great importance to understand how regeneration evolved and could be useful for future regeneration therapies.
Collapse
|
96
|
Tao J, Rong W, Diao X, Zhou H. Toxic responses of Sox2 gene in the regeneration of the earthworm Eisenia foetida exposed to Retnoic acid. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:106-112. [PMID: 29229524 DOI: 10.1016/j.cbpc.2017.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Exogenous retinoic acid delays and disturbs the regeneration of Eisenia foetida. The stem cell pluripotency factor, Sox2, can play a crucial role in cell reprogramming and dedifferentiation. In this study, we compared the regeneration of Eisenia foetida in different segments after amputation and the effects of retinoic acid on the regeneration of different segments. The results showed that the regeneration speed of the head and tail was slightly faster than the middle part, and retinoic acid disrupted and delayed the regeneration of the earthworm. The qRT-PCR and Western blot analysis showed that the expression of the Sox2 gene and Sox2 protein was highest on the seventh day in different segments (p<0.05). After treatment with retinoic acid, the expression level of the Sox2 gene and Sox2 protein was significantly reduced (p<0.05). The results indicated that the regeneration of earthworms and the formation of blastema are related to the expression of the Sox2 gene and protein. Retinoic acid delays and interferes with the regeneration of the earthworm by affecting the expression levels of the Sox2 gene and protein.
Collapse
Affiliation(s)
- Jing Tao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Rong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; College of Life Science, Hainan Normal University, Haikou 571158, China.
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
97
|
Virador GM, de Marcos L, Virador VM. Skin Wound Healing: Refractory Wounds and Novel Solutions. Methods Mol Biol 2018; 1879:221-241. [PMID: 29797010 DOI: 10.1007/7651_2018_161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This overview of the current state of skin wound healing includes in vitro and in vivo approaches along with some recent clinical trials. From an introduction to wound healing, to tissue engineering as applied to the skin, we cover the basis for the current wound care techniques as well as novel and promising approaches. Special emphasis is given to refractory wounds which include wounds in diabetic patients. Natural compounds have been ever present in wound healing, and so we devote a section to highlighting current attempts to understand their mechanisms and to use them in novel ways.
Collapse
Affiliation(s)
- Gabriel M Virador
- Biology Department, Montgomery College, Rockville, MD, USA.,University of Navarra, Pamplona, Navarra, Spain
| | | | - Victoria M Virador
- Biology Department, Montgomery College, Rockville, MD, USA. .,Virador and Associates, Bethesda, MD, USA.
| |
Collapse
|
98
|
Liao S, Dong W, Lv L, Guo H, Yang J, Zhao H, Huang R, Yuan Z, Chen Y, Feng S, Zheng X, Huang J, Huang W, Qi X, Cai D. Heart regeneration in adult Xenopus tropicalis after apical resection. Cell Biosci 2017; 7:70. [PMID: 29255592 PMCID: PMC5727962 DOI: 10.1186/s13578-017-0199-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023] Open
Abstract
Background Myocardium regeneration in adult mammals is very limited, but has enormous therapeutic potentials. However, we are far from complete understanding the cellular and molecular mechanisms by which heart tissue can regenerate. The full functional ability of amphibians to regenerate makes them powerful animal models for elucidating how damaged mature organs are naturally reconstituted in an adult organism. Like other amphibians, such as newts and axolotls, adult Xenopus displays high regenerative capacity such as retina. So far, whether the adult frog heart processes regenerative capacity after injury has not been well delineated. Results We examined the regeneration of adult cardiac tissues of Xenopus tropicalis after resection of heart apex. We showed, for the first time, that the adult X. tropicalis heart can regenerate perfectly in a nearly scar-free manner approximately 30 days after injury via apical resection. We observed that the injured heart was sealed through coagulation immediately after resection, which was followed by transient fibrous tissue production. Finally, the amputated area was regenerated by cardiomyocytes. During the regeneration process, the cardiomyocytes in the border area of the myocardium adjacent to the wound exhibited high proliferation after injury, thus contribute the newly formed heart tissue. Conclusions Establishing a cardiac regeneration model in adult X. tropicalis provides a powerful tool for recapitulating a perfect regeneration phenomenon and elucidating the underlying molecular mechanisms of cardiac regeneration in an adult heart, and findings from this model may be applicable in mammals. Electronic supplementary material The online version of this article (10.1186/s13578-017-0199-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Souqi Liao
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Wenyan Dong
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Luocheng Lv
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Hongyan Guo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Jifeng Yang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Hui Zhao
- Stem Cell and Regeneration TRP, School of Biomedical Sciences, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ruijin Huang
- Institute of Anatomy, University of Bonn, Bonn, Germany
| | - Ziqiang Yuan
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, USA
| | - Yilin Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Xin Zheng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Junqi Huang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Weihuan Huang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
99
|
Alibardi L. Hyaluronic acid in the tail and limb of amphibians and lizards recreates permissive embryonic conditions for regeneration due to its hygroscopic and immunosuppressive properties. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:760-771. [DOI: 10.1002/jez.b.22771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/19/2017] [Accepted: 08/29/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab; Padova Italy
- Department of Biology; University of Bologna; Bologna Italy
| |
Collapse
|
100
|
Vitulo N, Dalla Valle L, Skobo T, Valle G, Alibardi L. Downregulation of lizard immuno-genes in the regenerating tail and myogenes in the scarring limb suggests that tail regeneration occurs in an immuno-privileged organ. PROTOPLASMA 2017; 254:2127-2141. [PMID: 28357509 DOI: 10.1007/s00709-017-1107-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Amputated tails of lizards regenerate while limbs form scars which histological structure is very different from the original organs. Lizards provide useful information for regenerative medicine and some hypotheses on the loss of regeneration in terrestrial vertebrates. Analysis of tail and limb transcriptomes shows strong downregulation in the tail blastema for immunoglobulins and surface B and T receptors, cell function, and metabolism. In contrast, in the limb blastema genes for myogenesis, muscle and cell function, and extracellular matrix deposition but not immunity are variably downregulated. The upregulated genes show that the regenerating tail is an embryonic organ driven by the Wnt pathway and non-coding RNAs. The strong inflammation following amputation, the non-activation of the Wnt pathway, and the upregulation of inflammatory genes with no downregulation of immune genes indicate that the amputated limb does not activate an embryonic program. Intense inflammation in limbs influences in particular the activity of genes coding for muscle proteins, cell functions, and stimulates the deposition of dense extracellular matrix proteins resulting in scarring limb outgrowths devoid of muscles. The present study complements that on upregulated genes, and indicates that the regenerating tail requires immune suppression to maintain this embryonic organ connected to the rest of the tail without be rejected or turned into a scar. It is hypothesized that the evolution of the adaptive immune system determined scarring instead of organ regeneration in terrestrial vertebrates and that lizards evolved the process of tail regeneration through a mechanism of immuno-evasion.
Collapse
Affiliation(s)
- Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Tatjana Skobo
- Department of Biology, University of Padova, Padova, Italy
| | - Giorgio Valle
- Department of Biology, University of Padova, Padova, Italy
| | - Lorenzo Alibardi
- Comparative Histolab, Padova, Italy.
- Dipartimento Bigea, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|