51
|
Bai X, Ni J, Beretov J, Graham P, Li Y. Triple-negative breast cancer therapeutic resistance: Where is the Achilles' heel? Cancer Lett 2020; 497:100-111. [PMID: 33069769 DOI: 10.1016/j.canlet.2020.10.016] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) shows a higher response rate to systemic therapy compared with other breast cancer subtypes. However, the tumor differentiation of TNBC is poorer, with an early tendency to metastasis and a higher recurrence rate. Relapsed and metastatic TNBCs usually progress more rapidly, showing strong resistance to chemotherapy and radiotherapy. Due to the lack of combinatorial targeted drugs, alternative treatments fail to improve these patient's prognosis and the quality of life. Finding the Achilles' heel of TNBC is critical for patients with advanced TNBC. Here, we summarize the latest advances in the mechanisms underlying TNBC therapeutic resistance, consider how these mechanisms may affect the development and utilization of TNBC targeted drugs, and discuss the rationale of relevant signals as therapeutic targets. Also, we review the clinical trials registered in ClinicalTrial.gov for TNBC patients, which comprehensively reveals current research and development of novel TNBC targeted drugs and future trends.
Collapse
Affiliation(s)
- Xupeng Bai
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Julia Beretov
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia; School of Basic Medical Sciences, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
52
|
Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2020; 41:525-555. [PMID: 33047304 DOI: 10.1002/med.21739] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
53
|
Mahmoud N, Saeed MEM, Sugimoto Y, Klinger A, Fleischer E, Efferth T. Putative molecular determinants mediating sensitivity or resistance towards carnosic acid tumor cell responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153271. [PMID: 32659679 DOI: 10.1016/j.phymed.2020.153271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Carnosic acid (CA) is one of the main constituents in rosemary extract. It possesses valuable pharmacological properties, including anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer activities. Numerous in vitro and in vivo studies investigated the anticancer profile of CA and emphasized its potentiality for cancer treatment. Nevertheless, the role of multidrug-resistance (MDR) related mechanisms for CA's anticancer effect is not yet known. PURPOSE We investigated the cytotoxicity of CA against known mechanisms of anticancer drug resistance (P-gp, ABCB5, BCRP, EGFR and p53) and determined novel putative molecular factors associated with cellular response towards CA. STUDY DESIGN Cytotoxicity assays, bioinformatic analysis, flow cytometry and western blotting were performed to identify the mode of action of CA towards cancer cells. METHODS The cytotoxicity to CA was assessed using the resazurin assays in cell lines expressing the mentioned resistance mechanisms. A pharmacogenomic characterization of the NCI 60 cell line panel was applied via COMPARE, hierarchical cluster and network analyses. Flow cytometry was used to detect cellular mode of death and ROS generation. Changes in proteins-related to apoptosis were determined by Western blotting. RESULTS Cell lines expressing ABC transporters (P-gp, BCRP or ABCB5), mutant EGFR or p53 were not cross-resistant to CA compared to their parental counterparts. By pharmacogenomic approaches, we identified genes that belong to different functional groups (e.g. signal transduction, regulation of cytoskeleton and developmental regulatory system). These genes were predicted as molecular determinants that mediate CA tumor cellular responses. The top affected biofunctions included cellular development, cellular proliferation and cellular death and survival. The effect of CA-mediated apoptosis in leukemia cells, which were recognized as the most sensitive tumor type, was confirmed via flow cytometry and western blot analysis. CONCLUSION CA may provide a novel treatment option to target refractory tumors and to effectively cooperate with established chemotherapy. Using pharmacogenomic approaches and network pharmacology, the relationship between cancer complexity and multi-target potentials of CA was analyzed and many putative molecular determinants were identified. They could serve as novel targets for CA and further studies are needed to translate the possible implications to clinical cancer treatment.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Abietanes/pharmacology
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Humans
- Neoplasm Proteins/metabolism
- Pharmacogenetics
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Nuha Mahmoud
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
54
|
Liu K, Song J, Yan Y, Zou K, Che Y, Wang B, Li Z, Yu W, Guo W, Zou L, Deng W, Sun X. Melatonin increases the chemosensitivity of diffuse large B-cell lymphoma cells to epirubicin by inhibiting P-glycoprotein expression via the NF-κB pathway. Transl Oncol 2020; 14:100876. [PMID: 33007707 PMCID: PMC7527585 DOI: 10.1016/j.tranon.2020.100876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background Epirubicin is a first-line chemotherapeutic drug for the clinical treatment of diffuse large B cell lymphoma (DLBCL), but the overexpression of multidrug resistance (MDR) transporter proteins, especially P-glycoprotein (P-gp), renders epirubicin ineffective. Some studies reveal the potential role of melatonin in chemotherapeutic synergy and MDR. Methods The cell viability and apoptosis were determined by CCK-8 assay and acridine orange/ethidium bromide (AO/EB) fluorescence staining assay. Immunofluorescence and immunohistochemical staining were used to detect the expression of P-gp in DLBCL cells and tissues. Rhodamine-123 accumulation assay was used to evaluate the pump function of P-gp. The possible mechanisms of melatonin sensitize DLBCL cells to epirubicin were explored by western blotting, cytochrome C release, and pulldown assay. Results Melatonin significantly enhanced the epirubicin-induced cell proliferation suppression, epirubicin-induced apoptosis, and reduced the IC50 value of epirubicin. Further, melatonin synergized with epirubicin to promote the activation of the mitochondria-mediated apoptosis pathway and increased the accumulation of epirubicin in DLBCL cells by inhibiting the expression and function of P-gp. Immunohistochemical staining studies revealed that P-gp expression was positively correlated with P65 expression. Epirubicin was subsequently discovered to upregulate the expression of P-gp by activating the NF-κB pathway in the DLBCL cells. Melatonin reduced the amount of P65 protein in the nucleus and abrogated the ability of P65 to bind to the ABCB1 promoter, decisively suppressing P-gp expression. Conclusions Our results demonstrated that melatonin inactivates the NF-κB pathway and downregulates the expression of P-gp, ultimately sensitizing DLBCL cells to the epirubicin that suppresses their growth.
Collapse
Affiliation(s)
- Kaili Liu
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Jincheng Song
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Yue Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Kun Zou
- The First Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Yuxuan Che
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Beichen Wang
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Zongjuan Li
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Wendan Yu
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China.
| | - Wei Guo
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China.
| | - Lijuan Zou
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Xiuhua Sun
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China.
| |
Collapse
|
55
|
Kadioglu O, Saeed MEM, Munder M, Spuller A, Greten HJ, Efferth T. Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed Pharmacother 2020; 131:110718. [PMID: 32932043 DOI: 10.1016/j.biopha.2020.110718] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) transporters mediate multidrug resistance in cancer. In contrast to DNA single nucleotide polymorphisms in normal tissues, the role of mutations in tumors is unknown. Furthermore, the significance of their expression for prediction of chemoresistance and survival prognosis is still under debate. We investigated 18 tumors by RNA-sequencing. The mutation rate varied from 27,507 to 300885. In ABCB1, three hotspots with novel mutations were in transmembrane domains 3, 8, and 9. We also mined the cBioPortal database with 11,814 patients from 23 different tumor entities. We performed Kaplan-Meier survival analyses to investigate the effect of ABC transporter expression on survival rates of cancer patients. Novel mutations were also found in ABCA2, ABCA3, ABCB2, ABCB5, ABCC1-6, and ABCG2. Mining the cBioPortal database with 11,814 patients from 23 different tumor entities validated our results. Missense and in-frame mutations led to altered binding of anticancer drugs in molecular docking approaches. The ABCB1 nonsense mutation Q856* led to a truncated P-glycoprotein, which may sensitize tumors to anticancer drugs. The search for ABC transporter nonsense mutations represents a novel approach for precision medicine.. Low ABCB1 mRNA expression correlated with significantly longer survival in ovarian or kidney cancer and thymoma. In cancers of breast, kidney or lung, ABC transporter expression correlated with different tumor stages and human populations as further parameters to refine strategies for more individualized chemotherapy.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Markus Munder
- Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Henry Johannes Greten
- Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal; Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
56
|
Pajaniradje S, Mohankumar K, Radhakrishnan R, Sufi SA, Subramanian S, Anaikutti P, Hulluru SPR, Rajagopalan R. Indole Curcumin Reverses Multidrug Resistance by Reducing the Expression of ABCB1 and COX2 in Induced Multidrug Resistant Human Lung Cancer Cells. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200402124503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background:
Drug resistance by the cancer cells towards current chemotherapeutic
approaches poses a great challenge. In the present study, an indole analogue of a well-known plant
derived anticancer molecule, curcumin, was tested for its Multidrug Resistance (MDR) reversing
potential in induced multi drug resistant A549 cell line.
Materials and Methods:
Human lung cancer cell line A549 was made Multidrug Resistant (MDR)
by prolonged treatment with low dosage of Docetaxel, an established anticancer drug. The MDR
induction was confirmed by morphological evidence, Hoechst 33342 staining, MTT assay,
Rhodamine123 staining and RT-PCR of ABCB1 gene. Protein expression studies were carried out
using western blotting technique
Results and Discussions:
The induced MDR A549 cells exhibited significant increase in the gene
expression of ABCB1 gene at the transcriptional level. Retention and efflux studies with Pglycoprotein
(P-gp) substrate Rh123 indicated that indole curcumin inhibited P-gp mediated efflux
of Rhodamine. Furthermore, treatment of MDR A549 cells with indole curcumin showed downregulation
of gene expression of ABCB1 and COX 2. This was also confirmed from the decreased
protein expression of COX 2.
Conclusion:
The results of the present study indicate that indole curcumin reverses multi drug
resistance by downregulating the expression of ABCB1 and COX 2 genes. Thus, indole curcumin
may act as a potent modulator for ABCB1 and COX 2 mediated MDR in lung cancer.
Collapse
Affiliation(s)
- Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Kumaravel Mohankumar
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Rakesh Radhakrishnan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Shamim Akhtar Sufi
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | | | | | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
57
|
Cytotoxicity of a naturally occuring spirostanol saponin, progenin III, towards a broad range of cancer cell lines by induction of apoptosis, autophagy and necroptosis. Chem Biol Interact 2020; 326:109141. [DOI: 10.1016/j.cbi.2020.109141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
|
58
|
Zhou Y, Zhang J, Wang K, Han W, Wang X, Gao M, Wang Z, Sun Y, Yan H, Zhang H, Xu X, Yang DH. Quercetin overcomes colon cancer cells resistance to chemotherapy by inhibiting solute carrier family 1, member 5 transporter. Eur J Pharmacol 2020; 881:173185. [PMID: 32422185 DOI: 10.1016/j.ejphar.2020.173185] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/26/2020] [Accepted: 05/09/2020] [Indexed: 01/08/2023]
Abstract
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) remains a significant impediment to the success of cancer chemotherapy. The natural flavonoid Quercetin (Que) has been reported to be able to inhibit P-gp-mediated MDR in various cancer cells. However, the MDR reversal effect of Que on human colon cancer cells and its mechanism at the metabolic level requires further clarification. This study was designed to provide a better understanding of the MDR reversal effect of Que. Our present results showed that 33 μM of Que significantly improved the cytotoxicity of doxorubicin (Dox) to P-gp-overexpressed SW620/Ad300 cells by proliferation and apoptpsis assay. Further mechanism studies demonstrated that Que inhibited the ATP-driven transport activity of P-gp, which in turn increased the intracellular accumulation of Dox. The metabolomics studies based on UPLC-MS/MS analysis revealed that Que could reverse the MDR by significantly blocking D-glutamine and D-glutamate metabolism, and the underlying mechanism is that Que down-regulated the expression of the glutamine transporter solute sarrier family 1, member 5 (SLC1A5) in SW620/Ad300 cells. This is the first time to report that Que was a SLC1A5 inhibitor, which could be served as a template compound to potentially develop novel P-gp-mediated MDR reversal modulators in cancer chemotherapy.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Junhong Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Kaili Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Wenchao Han
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Xinying Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Ming Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Zihan Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yaxin Sun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hao Yan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, JamaicaNY, 11439, USA.
| |
Collapse
|
59
|
Yang Y, Ji N, Teng QX, Cai CY, Wang JQ, Wu ZX, Lei ZN, Lusvarghi S, Ambudkar SV, Chen ZS. Sitravatinib, a Tyrosine Kinase Inhibitor, Inhibits the Transport Function of ABCG2 and Restores Sensitivity to Chemotherapy-Resistant Cancer Cells in vitro. Front Oncol 2020; 10:700. [PMID: 32477943 PMCID: PMC7236772 DOI: 10.3389/fonc.2020.00700] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Sitravatinib, also called MGCD516 or MG-516, is a broad-spectrum tyrosine kinase inhibitor (TKI) under phase III clinical evaluation. Herein, we explored the activity of sitravatinib toward multidrug resistance (MDR) by emphasizing its inhibitory effect on ATP-binding cassette super-family G member 2 (ABCG2). ABCG2 is a member of ATP-binding cassette (ABC) transporter family and plays a critical role in mediating MDR. Sitravatinb received an outstanding docking score for binding to the human ABCG2 model (PDB code: 6ETI) among thirty screened TKIs. Also, an MTT assay indicated that sitravatinib at 3 μM had the ability to restore the antineoplastic effect of various ABCG2 substrates in both drug-selected and gene-transfected ABCG2-overexpressing cell lines. In further tritium-labeled mitoxantrone transportation study, sitravatinib at 3 μM blocked the efflux function mediated by ABCG2 and as a result, increased the intracellular concentration of anticancer drugs. Interestingly, sitravatinib at 3 μM altered neither protein expression nor subcellular localization of ABCG2. An ATPase assay demonstrated that ATPase activity of ABCG2 was inhibited in a concentration-dependent manner with sitravatinib; thus, the energy source to pump out compounds was interfered. Collectively, the results of this study open new avenues for sitravatinib working as an ABCG2 inhibitor which restores the antineoplastic activity of anticancer drugs known to be ABCG2 substrates.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Ning Ji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,State Key Laboratory of Experimental Hematology Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
60
|
Riganti C, Giampietro R, Kopecka J, Costamagna C, Abatematteo FS, Contino M, Abate C. MRP1-Collateral Sensitizers as a Novel Therapeutic Approach in Resistant Cancer Therapy: An In Vitro and In Vivo Study in Lung Resistant Tumor. Int J Mol Sci 2020; 21:ijms21093333. [PMID: 32397184 PMCID: PMC7247425 DOI: 10.3390/ijms21093333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Multidrug resistance (MDR) is the main obstacle to current chemotherapy and it is mainly due to the overexpression of some efflux transporters such as MRP1. One of the most studied strategies to overcome MDR has been the inhibition of MDR pumps through small molecules, but its translation into the clinic unfortunately failed. Recently, a phenomenon called collateral sensitivity (CS) emerged as a new strategy to hamper MDR acting as a synthetic lethality, where the genetic changes developed upon the acquisition of resistance towards a specific agent are followed by the development of hypersensitivity towards a second agent. Among our library of sigma ligands acting as MDR modulators, we identified three compounds, F397, F400, and F421, acting as CS-promoting agents. We deepened their CS mechanisms in the "pure" model of MRP1-expressing cells (MDCK-MRP1) and in MRP1-expressing/drug resistant non-small cell lung cancer cells (A549/DX). The in vitro results demonstrated that (i) the three ligands are highly cytotoxic for MRP1-expressing cells; (ii) their effect is MRP1-mediated; (iii) they increase the cytotoxicity induced by cis-Pt, the therapeutic agent commonly used in the treatment of lung tumors; and (iv) their effect is ROS-mediated. Moreover, a preclinical in vivo study performed in lung tumor xenografts confirms the in vitro findings, making the three CS-promoting agents candidates for a novel therapeutic approach in lung resistant tumors.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (C.R.); (J.K.); (C.C.)
| | - Roberta Giampietro
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
| | - Joanna Kopecka
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (C.R.); (J.K.); (C.C.)
| | - Costanzo Costamagna
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (C.R.); (J.K.); (C.C.)
| | - Francesca Serena Abatematteo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
| | - Marialessandra Contino
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
- Correspondence:
| | - Carmen Abate
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
| |
Collapse
|
61
|
Patel M, Nowsheen S, Maraboyina S, Xia F. The role of poly(ADP-ribose) polymerase inhibitors in the treatment of cancer and methods to overcome resistance: a review. Cell Biosci 2020; 10:35. [PMID: 32180937 PMCID: PMC7065339 DOI: 10.1186/s13578-020-00390-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/23/2020] [Indexed: 02/08/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors represent one of the successful novel approaches to targeted cancer treatment. Indeed, the US Food and Drug Administration (FDA) has recently approved PARP inhibitors for the treatment of breast and ovarian cancers. Despite the proven efficacy of these agents, certain challenges remain with their use. Among the most important are primary and secondary resistance. Here, we review the mechanism of action of PARP inhibitors and their ability to exploit certain inherent deficiencies among malignant cells to improve cell killing, with a focus on deficiencies in homologous recombination among cells with BRCA1 and BRCA2 mutations. Moreover, we discuss the different mechanisms of resistance including development of secondary resistance and strategies to overcome them. Finally, we discuss the limitations of novel therapeutic interventions and possible future studies to exploit biochemical pathways in order to improve therapeutic efficacy of PARP inhibitors.
Collapse
Affiliation(s)
- Mausam Patel
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR 72205-7199 USA
| | - Somaira Nowsheen
- 2Mayo Clinic Medical Scientist Training Program, Mayo Clinic Alix School of Medicine and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN USA
| | - Sanjay Maraboyina
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR 72205-7199 USA
| | - Fen Xia
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR 72205-7199 USA
| |
Collapse
|
62
|
Lin S, Chang C, Hsu C, Tsai M, Cheng H, Leong MK, Sung P, Chen J, Weng C. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol 2020; 177:1409-1423. [PMID: 31368509 PMCID: PMC7056458 DOI: 10.1111/bph.14816] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Traditional chemotherapy is being considered due to hindrances caused by systemic toxicity. Currently, the administration of multiple chemotherapeutic drugs with different biochemical/molecular targets, known as combination chemotherapy, has attained numerous benefits like efficacy enhancement and amelioration of adverse effects that has been broadly applied to various cancer types. Additionally, seeking natural-based alternatives with less toxicity has become more important. Experimental evidence suggests that herbal extracts such as Solanum nigrum and Claviceps purpurea and isolated herbal compounds (e.g., curcumin, resveratrol, and matairesinol) combined with antitumoral drugs have the potential to attenuate resistance against cancer therapy and to exert chemoprotective actions. Plant products are not free of risks: Herb adverse effects, including herb-drug interactions, should be carefully considered. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Shian‐Ren Lin
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
| | - Chia‐Hsiang Chang
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
| | - Che‐Fang Hsu
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
- Center for Prevention and Therapy of Gynaecological Cancers, Department of ResearchTzu Chi HospitalHualienTaiwan
| | - May‐Jwan Tsai
- Neural Regeneration Laboratory, Neurological InstituteTaipei Veterans General HospitalTaipei CityTaiwan
| | - Henrich Cheng
- Neural Regeneration Laboratory, Neurological InstituteTaipei Veterans General HospitalTaipei CityTaiwan
| | - Max K. Leong
- Department of ChemistryNational Dong Hwa UniversityHualienTaiwan
| | - Ping‐Jyun Sung
- Graduate Institute of Marine BiotechnologyNational Dong Hwa UniversityPingtungTaiwan
| | - Jian‐Chyi Chen
- Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainan CityTaiwan
| | - Ching‐Feng Weng
- Graduate Institute of Marine BiotechnologyNational Dong Hwa UniversityPingtungTaiwan
- Department of Basic Medical Science, Center for Transitional MedicineXiamen Medical CollegeXiamenChina
| |
Collapse
|
63
|
Wang L, Lv X, Fu X, Su L, Yang T, Xu P. MiR-153 inhibits the resistance of lung cancer to gefitinib via modulating expression of ABCE1. Cancer Biomark 2020; 25:361-369. [PMID: 31306106 DOI: 10.3233/cbm-190094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Gefitinib-resistance in lung cancers has become an intractable clinical problem. However, the mechanisms underlying this resistance are not fully understood. OBJECTIVE Present study aims to investigate the roles and underlying mechanism of miR-153 in modulating gefitinib resistance in lung cancers. METHODS In the present study, genes expression of miR-153, MDR-1 and ABCE1 were detected by qRT-PCR and western blot. The cell viability was examined by MTT assays. The regulation of miR-153 on ABCE1 was examined by luciferase reporter gene assays. The interaction of miR-153 and ABCE1 was detected by gene over-expression and siRNA interference technology. RESULTS The mRNA level of miR-153 was significantly down-regulated in gefitinib-resistance (GR) tissues and HCC827 cells, while the protein level of ABCE1 was up-regulated in GR tissues and HCC827 cells. Besides, miR-153 over-expression evidently increased miR-153 level and suppressed cell viability and multi drug resistance gene (MDR-1) expression in HCC827/Gef cells, while silence of miR-153 caused adverse alterations in HCC827 cells. Luciferase reporter assay results showed that miR-153 directly targeted ABCE1. Further studies showed that ABCE1 over-expression improved the expression of ABCE1 and MDR-1 and increased cell viability in HCC827/Gef cells, while ABCE1 silencing resulted in contrary trends in HCC827 cells. What's more, miR-153 over-expression inhibited tumorigenesis and ABCE1 expression, while increased miR-153 level in tumor tissues. CONCLUSIONS MiR-153 regulates gefitinib resistance by modulating expression of ABCE1 in lung cancers. Our findings may provide a worthwhile therapeutic target to reverse gefitinib resistance in lung cancers in the future.
Collapse
|
64
|
Sava GP, Fan H, Fisher RA, Lusvarghi S, Pancholi S, Ambudkar SV, Martin LA, Charles Coombes R, Buluwela L, Ali S. ABC-transporter upregulation mediates resistance to the CDK7 inhibitors THZ1 and ICEC0942. Oncogene 2020; 39:651-663. [PMID: 31530935 PMCID: PMC6962093 DOI: 10.1038/s41388-019-1008-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/26/2019] [Accepted: 08/24/2019] [Indexed: 12/22/2022]
Abstract
The CDK7 inhibitors (CDK7i) ICEC0942 and THZ1, are promising new cancer therapeutics. Resistance to targeted drugs frequently compromises cancer treatment. We sought to identify mechanisms by which cancer cells may become resistant to CDK7i. Resistant lines were established through continuous drug selection. ABC-transporter copy number, expression and activity were examined using real-time PCR, immunoblotting and flow cytometry. Drug responses were measured using growth assays. ABCB1 was upregulated in ICEC0942-resistant cells and there was cross-resistance to THZ1. THZ1-resistant cells upregulated ABCG2 but remained sensitive to ICEC0942. Drug resistance in both cell lines was reversible upon inhibition of ABC-transporters. CDK7i response was altered in adriamycin- and mitoxantrone-resistant cell lines demonstrating ABC-transporter upregulation. ABCB1 expression correlated with ICEC0942 and THZ1 response, and ABCG2 expression with THZ2 response, in a panel of cancer cell lines. We have identified ABCB1 upregulation as a common mechanism of resistance to ICEC0942 and THZ1, and confirmed that ABCG2 upregulation is a mechanism of resistance to THZ1. The identification of potential mechanisms of CDK7i resistance and differences in susceptibility of ICEC0942 and THZ1 to ABC-transporters, may help guide their future clinical use.
Collapse
Affiliation(s)
- Georgina P Sava
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Hailing Fan
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rosemary A Fisher
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sunil Pancholi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lesley-Ann Martin
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - R Charles Coombes
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Lakjaya Buluwela
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
65
|
Efferth T, Saeed ME, Kadioglu O, Seo EJ, Shirooie S, Mbaveng AT, Nabavi SM, Kuete V. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol Adv 2020; 38:107342. [DOI: 10.1016/j.biotechadv.2019.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 01/25/2023]
|
66
|
|
67
|
Gui Y, Aguilar-Mahecha A, Krzemien U, Hosein A, Buchanan M, Lafleur J, Pollak M, Ferrario C, Basik M. Metastatic Breast Carcinoma–Associated Fibroblasts Have Enhanced Protumorigenic Properties Related to Increased IGF2 Expression. Clin Cancer Res 2019; 25:7229-7242. [DOI: 10.1158/1078-0432.ccr-19-1268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/05/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
|
68
|
Gana CC, Hanssen KM, Yu DMT, Flemming CL, Wheatley MS, Conseil G, Cole SPC, Norris MD, Haber M, Fletcher JI. MRP1 modulators synergize with buthionine sulfoximine to exploit collateral sensitivity and selectively kill MRP1-expressing cancer cells. Biochem Pharmacol 2019; 168:237-248. [PMID: 31302132 DOI: 10.1016/j.bcp.2019.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/09/2019] [Indexed: 11/25/2022]
Abstract
Members of the ABC transporter family, particularly P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance protein 1 (MRP1, ABCC1) are well characterized mediators of multidrug resistance, however their pharmacological inhibition has so far failed as a clinical strategy. Harnessing collateral sensitivity, a form of synthetic lethality where cells with acquired multidrug resistance exhibit hypersensitivity to unrelated agents, may be an alternative approach to targeting multidrug resistant tumour cells. We characterized a novel small molecule modulator that selectively enhanced MRP1-dependent efflux of reduced glutathione (GSH), an endogenous MRP1 substrate. Using cell lines expressing high levels of endogenous MRP1 from three difficult to treat cancer types-lung cancer, ovarian cancer and high-risk neuroblastoma-we showed that the MRP1 modulator substantially lowered intracellular GSH levels as a single agent. The effect was on-target, as MRP1 knockdown abolished GSH depletion. The MRP1 modulator was synergistic with the GSH synthesis inhibitor buthionine sulfoximine (BSO), with the combination exhausting intracellular GSH, increasing intracellular reactive oxygen species (ROS) and abolishing clonogenic capacity. Clonogenicity was rescued by the ROS scavenger N-acetylcysteine, implicating GSH depletion in the effect. The MRP1 modulator in combination with BSO also strongly sensitized cancer cells to MRP1-substrate chemotherapeutic agents, particularly arsenic trioxide, and was more effective than either the MRP1 modulator or BSO alone. GSH-depleting MRP1 modulators may therefore provide an enhanced therapeutic window to treat chemo-resistant MRP1-overexpressing pediatric and adult cancers.
Collapse
Affiliation(s)
- Christine C Gana
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Denise M T Yu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Claudia L Flemming
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Madeleine S Wheatley
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Gwenaëlle Conseil
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - Susan P C Cole
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia; University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
69
|
Mlejnek P, Kosztyu P, Dolezel P, Kimura Y, Cizkova K, Ruzickova E. Estimation of ABCB1 concentration in plasma membrane. J Cell Biochem 2019; 120:18406-18414. [PMID: 31209929 DOI: 10.1002/jcb.29157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
The interaction between ABCB1 transporter and its substrates takes place in cell membranes but the available data precludes quantitative analysis of the interaction between transporter and substrate molecules. Further, the amount of transporter is usually expressed as a number of ABCB1 molecules per cell. In contrast, the substrate concentration in cell membranes is estimated by determination of substrate-lipid partition coefficient, as examples. In this study, we demonstrate an approach, which enables us to estimate the concentration of ABCB1 molecules within plasma membranes. For this purpose, human leukemia K562 cells with varying expression levels of ABCB1 were used: drug selected K562/Dox and K562/HHT cells with very high transporter expression, and K562/DoxDR2, K562/DoxDR1, and K562/DoxDR05 cells with gradually decreased expression of ABCB1 derived from K562/Dox cells using RNA interference technology. First, we determined the absolute amount of ABCB1 in cell lysates using immunoblotting and recombinant ABCB1 as a standard. We then determined the relative portion of transporter residing in the plasma membrane using immunohistochemistry in nonpermeabilized and permeabilized cells. These results enabled us to estimate the concentration of ABCB1 in the plasma membrane in resistant cells. The ABCB1 concentrations in the plasma membrane of drug selected K562/Dox and K562/HHT cells containing the highest amount of transporter reached millimolar levels. Concentrations of ABCB1 in the plasma membrane of resistant K562/DoxDR2, K562/DoxDR1, and K562/DoxDR05 cells with lower transporter expression were proportionally decreased.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Petr Kosztyu
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Petr Dolezel
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Yasuhisa Kimura
- Laboratory of Cellular Biochemistry, Division of Applied Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Eliska Ruzickova
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
70
|
Zhang W, Li M, Du W, Yang W, Li G, Zhang C, Liang X, Chen H. Tissue Distribution and Anti-Lung Cancer Effect of 10-Hydroxycamptothecin Combined with Platycodonis Radix and Glycyrrhizae Radix ET Rhizoma. Molecules 2019; 24:E2068. [PMID: 31151274 PMCID: PMC6600312 DOI: 10.3390/molecules24112068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a broad-spectrum chemotherapeutic drug, although its side effects and multidrug resistance (MDR) limit its clinical application. A range of drug delivery systems have been utilized to overcome its shortcomings and maintain its therapeutic efficacy, however the use of the transport effect of traditional Chinese medicines (TCMs) to improve the distribution of chemotherapeutic drugs has not been widely reported. Platycodonis Radix (JG) and Glycyrrhizae Radix ET Rhizoma (GC) are common TCMs in clinics and are often combined as drug pairs to act as "transport agents". In the present study, the effect of JG and GC (JGGC) on the distribution of HCPT in tissues and its antitumor efficacy after being combined as a therapy were investigated, for which ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used. Furthermore, the effect on the protein expression of multidrug resistance proteins (P-gp and LRP), and the immunomodulatory and synergistic antiapoptotic effect on Lewis lung cancer-bearing C57BL/6J mice were also evaluated. The results demonstrate that JGGC significantly increased the area under the concentration time curve (AUC) and mean residence time (MRT) and reduced the clearance rate (CL) of HCPT. In addition, the combined use of JGGC decreased the levels of LRP, P-gp and Bcl-2/Bax when treated with HCPT. JGGC also significantly elevated the levels of RBCs, PLTs, HGB, IL-2, and IFN-γ, and decreased IL-10 levels. In summary, an increased concentration of HCPT in tissues was observed when it was combined with JGGC through inhibition of efflux protein, with a synergistic enhancement of the anticancer effect observed through promotion of apoptosis and immunity due to a reversion of the Th1/Th2 shift. Our findings provide a reference for the feasibility of combining JGGC with chemotherapy drugs in clinical applications.
Collapse
Affiliation(s)
- Wugang Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Mulan Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Wendi Du
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Wuliang Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Guofeng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Chen Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Xinli Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Haifang Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
71
|
Li Z, Qian J, Li J, Zhu C. Knockdown of lncRNA-HOTAIR downregulates the drug-resistance of breast cancer cells to doxorubicin via the PI3K/AKT/mTOR signaling pathway. Exp Ther Med 2019; 18:435-442. [PMID: 31281438 PMCID: PMC6580102 DOI: 10.3892/etm.2019.7629] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
The resistance to chemotherapeutic drugs is a critical feature of breast cancer recurrence and metastasis. Long non-coding RNAs (LncRNAs) serve key roles in tumor drug resistance. LncRNA-HOX transcript antisense RNA (HOTAIR) has been reported to be overexpressed in certain types of cancer and may be closely associated with tumor resistance. The current study aimed to investigate the role of lncRNA-HOTAIR in the regulation of breast cancer resistance to doxorubicin (DOX). A breast cancer cell line (MCF-7) and DOX-resistant breast cancer cell line (DOXR-MCF-7) were utilized in the current study. DOXR-MCF-7 cells were transfected with lncRNA-HOTAIR small interfering RNA (siRNA) and control siRNA. Subsequently, MTT and colony formation assays were performed to assess cell proliferation. Cell apoptosis was also evaluated via flow cytometry. In addition, western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression of caspase-3, B-cell lymphoma 2, Bcl-2-associated X protein, phosphoinositide 3-kinase (PI3K), protein kinase B (AKT) and mechanistic target of rapamycin (mTOR), and the phosphorylation of PI3K, AKT, and mTOR. The data indicated that lncRNA-HOTAIR silencing decreased cell proliferation and increased apoptosis in MCF-7 and DOXR MCF-7 cells. Furthermore, lncRNA-HOTAIR silencing significantly decreased the phosphorylation of PI3K, AKT and mTOR, indicating that the knockdown of lncRNA-HOTAIR effectively attenuates the resistance of breast cancer cells to DOX by inhibiting the PI3K/AKT/mTOR pathway. In summary, the present study indicated that the knockdown of lncRNA-HOTAIR weakened the resistance of breast cancer cells to DOX via PI3K/AKT/mTOR signaling, suggesting that lncRNA-HOTAIR may be a novel intervention target to reverse DOX-resistance in breast cancer.
Collapse
Affiliation(s)
- Zhixiang Li
- Department of Tumor Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Jun Qian
- Department of Tumor Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Jing Li
- Department of Tumor Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Chao Zhu
- Department of Tumor Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| |
Collapse
|
72
|
Song KH, Trudeau T, Kar A, Borden MA, Gutierrez-Hartmann A. Ultrasound-mediated delivery of siESE complexed with microbubbles attenuates HER2+/- cell line proliferation and tumor growth in rodent models of breast cancer. Nanotheranostics 2019; 3:212-222. [PMID: 31183315 PMCID: PMC6536781 DOI: 10.7150/ntno.31827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
The highly tunable, noninvasive and spatially targeted nature of microbubble-enhanced, ultrasound-guided (MB+US) drug delivery makes it desirable for a wide variety of therapies. In breast cancer, both HER2+ and HER2- type neoplasms pose significant challenges to conventional therapeutics in greater than 40% of breast cancer patients, even with the widespread application of biologics such as trastuzumab. To address this therapeutic challenge, we examined the novel combination of tumor-injected microbubble-bound siRNA complexes and monodisperse size-isolated microbubbles (4-µm diameter) to attenuate tumor growth in vivo, as well as MB+US-facilitated shRNA and siRNA knockdown of ESE-1, an effector linked to dysregulated HER2 expression in HER2+/- cell line propagation. We first screened six variants of siESE and shESE for efficient knockdown of ESE in breast cancer cell lines. We demonstrated efficient reduction of BT-474 (PR+, ER+, HER2+; luminal B) and MDA-MB-468 (PR-, ER-, HER2-; triple-negative) clonogenicity and non-adherent growth after knockdown of ESE-1. A significant reduction in proliferative potential was seen for both cell lines using MB+US to deliver shESE and siESE. We then demonstrated significant attenuation of BT-474 xenograft tumor growth in Nod/SCID female mice using direct injection of microbubble-adsorbed siESE to the tumor and subsequent sonication. Our results suggest a positive effect on drug delivery from MB+US, and highlights the feasibility of using RNAi and MB+US for breast cancer pathologies. RNAi coupled with MB+US may also be an effective theranostic approach to treat other acoustically accessible tumors, such as melanoma, thyroid, parotid and skin cancer.
Collapse
Affiliation(s)
- Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Tammy Trudeau
- Departments of Medicine and of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Adwitiya Kar
- Departments of Medicine and of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Arthur Gutierrez-Hartmann
- Departments of Medicine and of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
73
|
Hjorth CF, Nielsen AS, Sørensen HT, Lash TL, Damkier P, Hamilton-Dutoit S, Cronin-Fenton D. Multi-drug resistance protein 2 (MRP2) expression, adjuvant tamoxifen therapy, and risk of breast cancer recurrence: a Danish population-based nested case-control study. Acta Oncol 2019; 58:168-174. [PMID: 30458661 DOI: 10.1080/0284186x.2018.1537508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Adjuvant tamoxifen therapy approximately halves the risk of recurrence in estrogen receptor-positive (ER+) breast cancer patients, but many women respond insufficiently to therapy. Expression of multi-drug resistance protein 2 (MRP2) in breast cancer may potentiate tamoxifen resistance. Thus, we investigated the expression of MRP2 in breast cancer as a predictor of tamoxifen therapy effectiveness. MATERIAL AND METHODS We conducted a case-control study nested in the Danish Breast Cancer Group clinical database. The study included women aged 35-69 years diagnosed with stage l-lll breast cancer during 1985-2001, in Jutland, Denmark. We identified 541 recurrent breast cancers (cases) among women with estrogen receptor positive (ER+) disease treated with tamoxifen for at least 1 year (ER+/TAM+) and 300 cases among women with estrogen receptor-negative (ER-) disease, never treated with tamoxifen (ER-/TAM-). We matched one recurrence-free control to each recurrent case. We retrieved paraffin-embedded primary tumor tissue for all patients, and all available recurrent tumor tissue from pathology archives. MRP2 expression was evaluated using immunohistochemistry. We computed odds ratios (ORs) and 95% confidence intervals (95% CIs) associating MRP2 expression (positive vs. none) with breast cancer recurrence in conditional logistic regression models. We compared MRP2 expression in paired primary- and recurrent tumors. RESULTS MRP2 expression was more prevalent in the ER+/TAM + group, than in the ER-/TAM - group. No predictive utility of MRP2 for breast cancer recurrence was found in the ER+/TAM + group (ORadj = 0.96, 95% CI 0.70, 1.33). Further, no prognostic utility was found in the ER-/TAM - group (ORadj = 0.81, 95% CI 0.53, 1.23). MRP2 expression was not increased in recurrent versus primary tumors. CONCLUSIONS MRP2 expression is neither a predictive marker of tamoxifen effectiveness nor a prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Cathrine F. Hjorth
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Anja S. Nielsen
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik T. Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Timothy L. Lash
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Epidemiology, Rollins School of Public Health, and Winship Cancer Institute, Emory University, Atlanta, USA
| | - Per Damkier
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | | | | |
Collapse
|
74
|
Pan J, Mendes LP, Yao M, Filipczak N, Garai S, Thakur GA, Sarisozen C, Torchilin VP. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm 2019; 136:18-28. [PMID: 30633973 DOI: 10.1016/j.ejpb.2019.01.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Multidrug resistance (MDR) significantly decreases the therapeutic efficiency of anti-cancer drugs. Its reversal could serve as a potential method to restore the chemotherapeutic efficiency. Downregulation of MDR-related proteins with a small interfering RNA (siRNA) is a promising way to reverse the MDR effect. Additionally, delivery of small molecule therapeutics simultaneously with siRNA can enhance the efficiency of chemotherapy by dual action in MDR cell lines. Here, we conjugated the dendrimer, generation 4 polyamidoamine (G4 PAMAM), with a polyethylene glycol (PEG)-phospholipid copolymer. The amphiphilic conjugates obtained spontaneously self-assembled into a micellar nano-preparation, which can be co-loaded with siRNA onto PAMAM moieties and sparingly water-soluble chemotherapeutics into the lipid hydrophobic core. This system was co-loaded with doxorubicin (DOX) and therapeutic siRNA (siMDR-1) and tested for cytotoxicity against MDR cancer cells: human ovarian carcinoma (A2780 ADR) and breast cancer (MCF7 ADR). The combination nanopreparation effectively downregulated P-gp in MDR cancer cells and reversed the resistance towards DOX.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Livia P Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil
| | - Momei Yao
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
75
|
Zhang YK, Wang YJ, Lei ZN, Zhang GN, Zhang XY, Wang DS, Al-Rihani SB, Shukla S, Ambudkar SV, Kaddoumi A, Shi Z, Chen ZS. Regorafenib antagonizes BCRP-mediated multidrug resistance in colon cancer. Cancer Lett 2018; 442:104-112. [PMID: 30392788 DOI: 10.1016/j.canlet.2018.10.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Overexpression of breast cancer resistance protein (BCRP) has been shown to produce multidrug resistance (MDR) in colon cancer, leading to major obstacles for chemotherapy. In this study, we evaluated the effect of regorafenib, an oral multi-kinase inhibitor, in inhibiting BCRP-mediated MDR in silico, in vitro and in vivo. We found that regorafenib significantly sensitized MDR colon cancer cells to BCRP substrates by increasing their intracellular accumulation. There are no significant changes in the expression level or the subcellular distribution of BCRP in the cells exposed to regorafenib. Investigation of the mechanism revealed that regorafenib stimulated BCRP ATPase activity. Our induced-fit docking and molecular dynamics simulations suggested the existence of a strong and stable interaction between regorafenib and the transmembrane domain of human crystalized BCRP. In vivo tumor xenograft study revealed that the combination of regorafenib and topotecan exhibited synergistic effects on mitoxantrone-resistant S1-M1-80 xenograft tumors. In conclusion, our studies indicate that regorafenib would be beneficial in combating MDR in colon cancer.
Collapse
Affiliation(s)
- Yun-Kai Zhang
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Yi-Jun Wang
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Guan-Nan Zhang
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Xiao-Yu Zhang
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - De-Shen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sweilem B Al-Rihani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
76
|
Khatami M. Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and 'Dark Energy': loss of biorhythms (Anabolism v. Catabolism). Clin Transl Med 2018; 7:20. [PMID: 29961900 PMCID: PMC6026585 DOI: 10.1186/s40169-018-0193-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health involves a synchronized network of catabolic and anabolic signals among organs/tissues/cells that requires differential bioenergetics from mitochondria and glycolysis (biological laws or biorhythms). We defined biological circadian rhythms as Yin (tumoricidal) and Yang (tumorigenic) arms of acute inflammation (effective immunity) involving immune and non-immune systems. Role of pathogens in altering immunity and inducing diseases and cancer has been documented for over a century. However, in 1955s decision makers in cancer/medical establishment allowed public (current baby boomers) to consume million doses of virus-contaminated polio vaccines. The risk of cancer incidence and mortality sharply rose from 5% (rate of hereditary/genetic or innate disease) in 1900s, to its current scary status of 33% or 50% among women and men, respectively. Despite better hygiene, modern detection technologies and discovery of antibiotics, baby boomers and subsequent 2-3 generations are sicker than previous generations at same age. American health status ranks last among other developed nations while America invests highest amount of resources for healthcare. In this perspective we present evidence that cancer is an induced disease of twentieth century, facilitated by a great deception of cancer/medical establishment for huge corporate profits. Unlike popularized opinions that cancer is 100, 200 or 1000 diseases, we demonstrate that cancer is only one disease; the severe disturbances in biorhythms (differential bioenergetics) or loss of balance in Yin and Yang of effective immunity. Cancer projects that are promoted and funded by decision makers are reductionist approaches, wrong and unethical and resulted in loss of millions of precious lives and financial toxicity to society. Public vaccination with pathogen-specific vaccines (e.g., flu, hepatitis, HPV, meningitis, measles) weakens, not promotes, immunity. Results of irresponsible projects on cancer sciences or vaccines are increased population of drug-dependent sick society. Outcome failure rates of claimed 'targeted' drugs, 'precision' or 'personalized' medicine are 90% (± 5) for solid tumors. We demonstrate that aging, frequent exposures to environmental hazards, infections and pathogen-specific vaccines and ingredients are 'antigen overload' for immune system, skewing the Yin and Yang response profiles and leading to induction of 'mild', 'moderate' or 'severe' immune disorders. Induction of decoy or pattern recognition receptors (e.g., PRRs), such as IRAK-M or IL-1dRs ('designer' molecules) and associated genomic instability and over-expression of growth promoting factors (e.g., pyruvate kinases, mTOR and PI3Ks, histamine, PGE2, VEGF) could lead to immune tolerance, facilitating cancer cells to hijack anabolic machinery of immunity (Yang) for their increased growth requirements. Expression of constituent embryonic factors would negatively regulate differentiation of tumor cells through epithelial-mesenchymal-transition and create "dual negative feedback loop" that influence tissue metabolism under hypoxic conditions. It is further hypothesized that induction of tolerance creates 'dark energy' and increased entropy and temperature in cancer microenvironment allowing disorderly cancer proliferation and mitosis along with increased glucose metabolism via Crabtree and Pasteur Effects, under mitophagy and ribophagy, conditions that are toxic to host survival. Effective translational medicine into treatment requires systematic and logical studies of complex interactions of tumor cells with host environment that dictate clinical outcomes. Promoting effective immunity (biological circadian rhythms) are fundamental steps in correcting host differential bioenergetics and controlling cancer growth, preventing or delaying onset of diseases and maintaining public health. The author urges independent professionals and policy makers to take a closer look at cancer dilemma and stop the 'scientific/medical ponzi schemes' of a powerful group that control a drug-dependent sick society before all hopes for promoting public health evaporate.
Collapse
Affiliation(s)
- Mahin Khatami
- Inflammation, Aging and Cancer, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
77
|
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18:452-464. [PMID: 29643473 PMCID: PMC6622180 DOI: 10.1038/s41568-018-0005-8] [Citation(s) in RCA: 1263] [Impact Index Per Article: 180.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most patients who die of cancer have disseminated disease that has become resistant to multiple therapeutic modalities. Ample evidence suggests that the expression of ATP-binding cassette (ABC) transporters, especially the multidrug resistance protein 1 (MDR1, also known as P-glycoprotein or P-gp), which is encoded by ABC subfamily B member 1 (ABCB1), can confer resistance to cytotoxic and targeted chemotherapy. However, the development of MDR1 as a therapeutic target has been unsuccessful. At the time of its discovery, appropriate tools for the characterization and clinical development of MDR1 as a therapeutic target were lacking. Thirty years after the initial cloning and characterization of MDR1 and the implication of two additional ABC transporters, the multidrug resistance-associated protein 1 (MRP1; encoded by ABCC1)), and ABCG2, in multidrug resistance, interest in investigating these transporters as therapeutic targets has waned. However, with the emergence of new data and advanced techniques, we propose to re-evaluate whether these transporters play a clinical role in multidrug resistance. With this Opinion article, we present recent evidence indicating that it is time to revisit the investigation into the role of ABC transporters in efficient drug delivery in various cancer types and at the blood-brain barrier.
Collapse
Affiliation(s)
- Robert W Robey
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen M Pluchino
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Antonio T Fojo
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Susan E Bates
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
78
|
Ma J, Lv Z, Liu X, Liu X, Xu W. MG‑132 reverses multidrug resistance by activating the JNK signaling pathway in FaDu/T cells. Mol Med Rep 2018; 18:1820-1825. [PMID: 29901180 DOI: 10.3892/mmr.2018.9138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/23/2018] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) is a major impediment to cancer therapy. MG‑132 has been identified to be effective against MDR in several types of cancer. However, the mechanism of MG‑132 in head and neck squamous cell carcinomas remains unknown. Based on our previous study, the present detected P‑gp and P‑gp expression in hypopharyngeal carcinoma FaDu cells, revealing that their expression was lower than that observed in the MDR cell line FaDu/T. To reverse the MDR of FaDu/T cells, the present study introduced MG‑132 and demonstrated that the high expression of P‑gp/P‑gp in FaDu/T cells was attenuated in a time‑dependent manner. MG‑132 also strengthened the sensitivity of FaDu/T cells to multidrugs. c‑Jun N‑terminal kinase (JNK) activation was further observed in FaDu/T cells. However, P‑gp/P‑gp did not decrease when FaDu/T cells were pretreated with SP600125. These results indicated that MG‑132 reversed the MDR of hypopharyngeal carcinoma by downregulating P‑gp/P‑gp, and the underlying mechanism may be associated with the activation the of the JNK signaling pathway.
Collapse
Affiliation(s)
- Juke Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhenghua Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiuxiu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xianfang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wei Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
79
|
Cronin-Fenton DP, Damkier P. Tamoxifen and CYP2D6: A Controversy in Pharmacogenetics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:65-91. [PMID: 29801584 DOI: 10.1016/bs.apha.2018.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tamoxifen reduces the rate of breast cancer recurrence by about one-half. It is converted to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6) and transported by ATP-binding cassette transporters. Genetic polymorphisms that confer reduced CYP2D6 activity or concurrent use of CYP2D6-inhibiting drugs may reduce the clinical efficacy of tamoxifen. The issue of the clinical utility of CYP2D6 genotype testing is subject to considerable and ongoing academic and clinical controversy. In this chapter, we outline tamoxifen's clinical pharmacology and give an overview of the research to date on the association between CYP2D6 inhibition and tamoxifen effectiveness. Based on the evidence to date, the impact of drug-induced and/or gene-induced inhibition of CYP2D6 activity is likely to be null or small, or at most moderate in subjects carrying two reduced function alleles. Future research should examine the effect of polymorphisms in genes encoding enzymes in tamoxifen's complete metabolic pathway, should comprehensively evaluate other biomarkers that affect tamoxifen effectiveness, such as the transport enzymes, and focus on subgroups of patients, such as premenopausal breast cancer patients, for whom tamoxifen is the only guideline approved endocrine therapy.
Collapse
Affiliation(s)
| | - Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
80
|
Huang L, Zeng L, Chu J, Xu P, Lv M, Xu J, Wen J, Li W, Wang L, Wu X, Fu Z, Xie H, Wang S. Chemoresistance‑related long non‑coding RNA expression profiles in human breast cancer cells. Mol Med Rep 2018; 18:243-253. [PMID: 29749447 PMCID: PMC6059676 DOI: 10.3892/mmr.2018.8942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 03/07/2017] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death in females worldwide. Chemoresistance has been a major reason for the drug therapy failure. The present study performed a microarray analysis between MCF-7 and MCF-7/adriamycin (ADR) cells, and intended to identify long non-coding (lnc)RNA expression character in drug resistant breast cancer cells. MCF-7/ADR cells were induced from MCF-7 cells via pulse-selection with doxorubicin for 4 weeks, and the resistance to doxorubicin of ADR cells was confirmed by MTT assay. Microarray analysis was performed between MCF-7 and MCF-7/ADR cells. Total RNA was extracted from the two cell lines respectively and was transcribed into cDNA. The results of the microarray were verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene Ontology (GO) and pathways analysis were conducted to enrich the dysregulated lncRNAs presented in the microarray results. Compared to the MCF-7 cells, 8,892 lncRNAs were differentially expressed in MCF/ADR cells (absolute fold-change >2.0). A total of 32 lncRNAs were selected for RT-qPCR by fold-change filtering, standard Student's t-test, and multiple hypothesis testing. Among the dysregulated lncRNAs, AX747207 was prominent because its associated gene RUNX3 was previously reported to be relative to malignant tumor chemoresistance. GO analysis results also indicated some biological processes and molecular functions linked to chemoresistance. The pathway enrichment results provided some potential pathways associated with chemoresistance. In the present study, the authors intended to identify lncRNA expression character in drug resistant cell line MCF-7/ADR, corresponding to the parental MCF-7 cell line. In addition, the study identified the lncRNA AX747207, and its potential targeted gene RUNX3, may be related to chemoresistance in breast cancer. These results may new insights into exploring the mechanisms of chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Lei Huang
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lihua Zeng
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Jiahui Chu
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Mingming Lv
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Xu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Wen
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Wenqu Li
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Luyu Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaowei Wu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Hui Xie
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
81
|
Ochwang'i DO, Kimwele CN, Oduma JA, Gathumbi PK, Kiama SG, Efferth T. Cytotoxic activity of medicinal plants of the Kakamega County (Kenya) against drug-sensitive and multidrug-resistant cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:233-240. [PMID: 29309859 DOI: 10.1016/j.jep.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 12/16/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The geographical location of Kakamega County proximal to the Kakamega Rain Forest in Kenya and its rich flora represents an interesting resource of traditional medicinal plants. The medicinal plants in the present study are traditionally used to treat cancer in Kakamega County as recorded in published literature. AIM OF THE STUDY Due to multidrug resistance (MDR) and severe side effects of currently used drugs in clinical oncology, new candidate compounds are urgently required to improve treatment outcome. The present study explored the in vitro cytotoxic potential of 34 organic and 19 aqueous extracts of Kakamega medicinal plants towards sensitive and multidrug-resistant cancer cell lines. METHODS AND RESULTS The cytotoxicity was determined using the resazurin assay. Eight organic and two aqueous plant extracts inhibited the growth of CCRF-CEM leukemia cells by more than 50%. The organic extracts were Harungana madagascariensis Lam. ex poir (6.6% of untreated control), Prunus africana (Hook.f.) Kalkman (19.4%), Entada abyssinica Steud. ex A. Rich (38.6%), Phyllanthus fischeri Pax (40.7%), Shirakiopsis elliptica (Hochst.) Esser Synonym: Sapium ellipticum (Hochst. kraus) Pax (41.8%), Bridelia micrantha (Hochst.) Baill (45.4%) and Futumia africana Benth. (45.8%) and Microglossa pyrifolia (Lam.) Kuntze (48%). The aqueous extracts were Bridelia micrantha (Hochst.) Baill (31.3%) and Shirakiopsis elliptica (Hochst.) Esser Synonym: Sapium ellipticum (Hochst. Kraus) Pax (48.2%). In addition to P-glycoprotein-expressing tumor cells, we also investigated other mechanisms of drug resistance, i.e. BCRP- or EGFR-transfected and TP53-knockout tumor cells. Some extracts also showed considerable cytotoxic activity against these drug-resistant cell lines. As demonstrated for selected examples, some extracts exhibited enhanced cytotoxicity towards cancer cells, if applied in combination with other extracts. DISCUSSION The panel of medicinal plants used in the Kakamega County for cancer treatment revealed indeed cytotoxicity to various extent towards cancer cells in vitro. Hence, our results may at least in part substantiate the traditional use of these compounds to treat cancer. Even more interesting, several extracts inhibited otherwise drug-resistant tumor cell lines with similar or even better efficacy than their drug-sensitive counterparts. This provides an attractive perspective for further exploration of their anticancer potential to combat drug resistance of refractory tumors.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Drug Resistance, Neoplasm
- Drug Therapy, Combination
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Inhibitory Concentration 50
- Medicine, African Traditional
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oxazines/metabolism
- Plants, Medicinal/chemistry
- Xanthenes/metabolism
Collapse
Affiliation(s)
- Dominic O Ochwang'i
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Charles N Kimwele
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Jemimah A Oduma
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Peter K Gathumbi
- Department of Veterinary Pathology, Parasitology and Microbiology, University of Nairobi, P.O. BOX 30197-00100, Nairobi, Kenya.
| | - Stephen G Kiama
- College of Agriculture and Veterinary Sciences, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
82
|
Treatment of Multidrug-Resistant Leukemia Cells by Novel Artemisinin-, Egonol-, and Thymoquinone-Derived Hybrid Compounds. Molecules 2018; 23:molecules23040841. [PMID: 29642419 PMCID: PMC6017613 DOI: 10.3390/molecules23040841] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 01/09/2023] Open
Abstract
Two major obstacles for successful cancer treatment are the toxicity of cytostatics and the development of drug resistance in cancer cells during chemotherapy. Acquired or intrinsic drug resistance is responsible for almost 90% of treatment failure. For this reason, there is an urgent need for new anticancer drugs with improved efficacy against cancer cells, and with less toxicity on normal cells. There are impressive examples demonstrating the success of natural plant compounds to fight cancer, such as Vinca alkaloids, taxanes, and anthracyclines. Artesunic acid (ARTA), a drug for malaria treatment, also exerts cytotoxic activity towards cancer cells. Multidrug resistance often results from drug efflux pumps (ABC-transporters) that reduce intracellular drug levels. Hence, it would be interesting to know, whether ARTA could overcome drug resistance of tumor cells, and in what way ABC-transporters are involved. Different derivatives showing improved features concerning cytotoxicity and pharmacokinetic behavior have been developed. Considering both drug sensitivity and resistance, we chose a sensitive and a doxorubicin-resistant leukemia cell line and determined the killing effect of ARTA on these cells. Molecular docking and doxorubicin efflux assays were performed to investigate the interaction of the derivatives with P-glycoprotein. Using single-cell gel electrophoresis (alkaline comet assay), we showed that the derivatives of ARTA induce DNA breakage and accordingly programmed cell death, which represents a promising strategy in cancer treatment. ARTA activated apoptosis in cancer cells by the iron-mediated generation of reactive oxygen species (ROS). In conclusion, ARTA derivatives may bear the potential to be further developed as anticancer drugs.
Collapse
|
83
|
Hu Y, Yu K, Wang G, Zhang D, Shi C, Ding Y, Hong D, Zhang D, He H, Sun L, Zheng JN, Sun S, Qian F. Lanatoside C inhibits cell proliferation and induces apoptosis through attenuating Wnt/β-catenin/c-Myc signaling pathway in human gastric cancer cell. Biochem Pharmacol 2018; 150:280-292. [DOI: 10.1016/j.bcp.2018.02.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
|
84
|
Maeda H, Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med 2018; 7:11. [PMID: 29541939 PMCID: PMC5852245 DOI: 10.1186/s40169-018-0185-6] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
For over six decades reductionist approaches to cancer chemotherapies including recent immunotherapy for solid tumors produced outcome failure-rates of 90% (±5) according to governmental agencies and industry. Despite tremendous public and private funding and initial enthusiasm about missile-therapy for site-specific cancers, molecular targeting drugs for specific enzymes such as kinases or inhibitors of growth factor receptors, the outcomes are very bleak and disappointing. Major scientific reasons for repeated failures of such therapeutic approaches are attributed to reductionist approaches to research and infinite numbers of genetic mutations in chaotic molecular environment of solid tumors that are bases of drug development. Safety and efficacy of candidate drugs tested in test tubes or experimental tumor models of rats or mice are usually evaluated and approved by FDA. Cost-benefit ratios of such 'targeted' therapies are also far from ideal as compared with antibiotics half a century ago. Such alarming records of failure of clinical outcomes, the increased publicity for specific vaccines (e.g., HPV or flu) targeting young and old populations, along with increasing rise of cancer incidence and death created huge and unsustainable cost to the public around the globe. This article discusses a closer scientific assessment of current cancer therapeutics and vaccines. We also present future logical approaches to cancer research and therapy and vaccines.
Collapse
Affiliation(s)
- Hiroshi Maeda
- BioDynamics Research Foundation, Kumamoto University (Med), Kumamoto, Kenshin Bldg 3F, Kuwamizu 1-chome, 24-6, Chuo-ku, Kumamoto, 862-0954, Japan.
- Osaka University Medical School, Osaka, Japan.
- Tohoku University, Sendai, Japan.
| | - Mahin Khatami
- Inflammation, Aging and Cancer, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
85
|
Qu C, Gao S, Shao H, Zhang W, Bo H, Lu X, Chen T, Kou J, Wang Y, Chen GS, Huang S, Shen H. Identification of an HLA-A2-restricted CD147 epitope that can induce specific CTL cytotoxicity against drug resistant MCF-7/Adr cells. Oncol Lett 2018; 15:6050-6056. [PMID: 29556319 DOI: 10.3892/ol.2018.8085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/19/2018] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147 is highly expressed in drug-resistant tumor cell lines and is involved in the formation of tumor drug resistance. Therefore, immunotherapy utilizing CD147 epitope peptides is a promising approach for the elimination of drug-resistant tumor cells. However, like most tumor-associated antigens (TAAs), CD147 belongs to the autoantigen category, and T cells that recognize high affinity, immunodominant epitopes from autoantigens are deleted though thymic negative selection. Furthermore, wild-type autoantigen peptides cannot effectively activate and expand T lymphocytes with lower affinity T cell receptors in vivo. However, mutations of TAA peptides have been demonstrated to increase the affinity of major histocompatibility complex molecules and their binding to T cell receptor molecules, leading to activation of T lymphocytes in vitro. In the present study, a high-affinity point mutation peptide, CD147126-134L2, was predicted by the human leukocyte antigen (HLA) binding prediction algorithm and its affinity was testified using a T2 binding assay. In addition, when peptide-specific cytotoxic T lymphocytes (CTLs) were stimulated with dendritic cells loaded with the CD147126-134L2 peptide under HLA-A*02:01 restriction, interferon-γ release and cytotoxicity assays showed that peptide-specific CTLs effectively cross-recognized and lysed T2 target cells loaded either with the wild-type (CD147126-134) or mutated peptide (CD147126-134L2). Moreover, the CD147126-134L2 peptide-specific CTLs exerted strong cytotoxic activity against drug-resistant MCF-7/Adr cells, which express a high level of CD147 and are HLA-A*02:01-positive, but not against normal MCF-7 cells. Thus, this suggests that the wild-type peptide (CD147126-134) is naturally presented on HLA-A*02:01 of CD147-expressing MCF-7/Adr cells and is cross-recognized by CTLs. In conclusion, an HLA-A*02:01-restricted CD147-point mutant epitope peptide was identified that induces CTLs to efficiently lyse drug-resistant MCF-7 cells that highly express CD147. Therefore, this immunotherapeutic approach should be explored as a potential treatment for drug-resistant tumors.
Collapse
Affiliation(s)
- Chuang Qu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Shuhui Gao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Hongwei Shao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,Institute of Bio-Pharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,Institute of Bio-Pharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Huabben Bo
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,Institute of Bio-Pharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xin Lu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Tianjiao Chen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jing Kou
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Yue Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Gui Si Chen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Shulin Huang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,Institute of Bio-Pharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Han Shen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China.,Institute of Bio-Pharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
86
|
Kopecka J, Porto S, Lusa S, Gazzano E, Salzano G, Pinzòn-Daza ML, Giordano A, Desiderio V, Ghigo D, De Rosa G, Caraglia M, Riganti C. Zoledronic acid-encapsulating self-assembling nanoparticles and doxorubicin: a combinatorial approach to overcome simultaneously chemoresistance and immunoresistance in breast tumors. Oncotarget 2018; 7:20753-72. [PMID: 26980746 PMCID: PMC4991490 DOI: 10.18632/oncotarget.8012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
The resistance to chemotherapy and the tumor escape from host immunosurveillance are the main causes of the failure of anthracycline-based regimens in breast cancer, where an effective chemo-immunosensitizing strategy is lacking. The clinically used aminobisphosphonate zoledronic acid (ZA) reverses chemoresistance and immunoresistance in vitro. Previously we developed a nanoparticle-based zoledronic acid-containing formulation (NZ) that allowed a higher intratumor delivery of the drug compared with free ZA in vivo. We tested its efficacy in combination with doxorubicin in breast tumors refractory to chemotherapy and immune system recognition as a new combinatorial approach to produce chemo- and immunosensitization. NZ reduced the IC50 of doxorubicin in human and murine chemoresistant breast cancer cells and restored the doxorubicin efficacy against chemo-immunoresistant tumors implanted in immunocompetent mice. By reducing the metabolic flux through the mevalonate pathway, NZ lowered the activity of Ras/ERK1/2/HIF-1α axis and the expression of P-glycoprotein, decreased the glycolysis and the mitochondrial respiratory chain, induced a cytochrome c/caspase 9/caspase 3-dependent apoptosis, thus restoring the direct cytotoxic effects of doxorubicin on tumor cell. Moreover, NZ restored the doxorubicin-induced immunogenic cell death and reversed the tumor-induced immunosuppression due to the production of kynurenine, by inhibiting the STAT3/indoleamine 2,3 dioxygenase axis. These events increased the number of dendritic cells and decreased the number of immunosuppressive T-regulatory cells infiltrating the tumors. Our work proposes the use of nanoparticle encapsulating zoledronic acid as an effective tool overcoming at the same time chemoresistance and immunoresistance in breast tumors, thanks to the effects exerted on tumor cell and tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Turin, Turin, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Sara Lusa
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Elena Gazzano
- Department of Oncology, University of Turin, Turin, Italy
| | - Giuseppina Salzano
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Martha Leonor Pinzòn-Daza
- Department of Oncology, University of Turin, Turin, Italy.,Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, RG in Biochemistry and Biotechnology (BIO-BIO), Bogotá, Colombia
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Dario Ghigo
- Department of Oncology, University of Turin, Turin, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
87
|
Waghray D, Zhang Q. Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment. J Med Chem 2017; 61:5108-5121. [PMID: 29251920 DOI: 10.1021/acs.jmedchem.7b01457] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. P-glycoprotein (P-gp), a promiscuous drug efflux pump, has been extensively studied for its association with MDR due to overexpression in cancer cells. Several P-gp inhibitors or modulators have been investigated in clinical trials in hope of circumventing MDR, with only limited success. Alternative strategies are actively pursued, such as the modification of existing drugs, development of new drugs, or combination of novel drug delivery agents to evade P-gp-dependent efflux. Despite the importance and numerous studies, these efforts have mostly been undertaken without a priori knowledge of how drugs interact with P-gp at the molecular level. This review highlights and discusses progress toward and challenges impeding drug development for inhibiting or evading P-gp in the context of our improved understanding of the structural basis and mechanism of P-gp-mediated MDR.
Collapse
Affiliation(s)
- Deepali Waghray
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
88
|
Zhou XW, Xia YZ, Zhang YL, Luo JG, Han C, Zhang H, Zhang C, Yang L, Kong LY. Tomentodione M sensitizes multidrug resistant cancer cells by decreasing P-glycoprotein via inhibition of p38 MAPK signaling. Oncotarget 2017; 8:101965-101983. [PMID: 29254218 PMCID: PMC5731928 DOI: 10.18632/oncotarget.21949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
In this study, we investigated the mechanism by which tomentodione M (TTM), a novel natural syncarpic acid-conjugated monoterpene, reversed multi-drug resistance (MDR) in cancer cells. TTM increased the cytotoxicity of chemotherapeutic drugs such as docetaxel and doxorubicin in MCF-7/MDR and K562/MDR cells in a dose- and time-dependent manner. TTM reduced colony formation and enhanced apoptosis in docetaxel-treated MCF-7/MDR and K562/MDR cells, and it enhanced intracellular accumulation of doxorubicin and rhodamine 123 in MDR cancer cells by reducing drug efflux mediated by P-gp. TTM decreased expression of both P-gp mRNA and protein by inhibiting p38 MAPK signaling. Similarly, the p38 MAPK inhibitor SB203580 reversed MDR in cancer cells by decreasing P-gp expression. Conversely, p38 MAPK-overexpressing MCF-7 and K562 cells showed higher P-gp expression than controls. These observations indicate that TTM reverses MDR in cancer cells by decreasing P-gp expression via p38 MAPK inhibition.
Collapse
Affiliation(s)
- Xu-Wei Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Long Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
89
|
Wang J, Wang W, Cai H, Du B, Zhang L, Ma W, Hu Y, Feng S, Miao G. MACC1 facilitates chemoresistance and cancer stem cell‑like properties of colon cancer cells through the PI3K/AKT signaling pathway. Mol Med Rep 2017; 16:8747-8754. [PMID: 28990068 PMCID: PMC5779950 DOI: 10.3892/mmr.2017.7721] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
With regards to colon cancer, resistance to 5-fluorouracil (5-FU)-based chemotherapy and cancer stem cells (CSCs) are considered important factors underlying therapy failure. Metastasis-associated colon cancer 1 (MACC1) has been associated with poor prognosis and the promotion of metastasis within several types of cancer. However, the biological behavior of MACC1 in chemoresistance and CSC-like properties remains unclear. In the present study, various methods including gene knockdown, gene overexpression, western blotting, quantitative polymerase chain reaction and MTT assay, have been adopted. According to the results of the present study, MACC1 was depleted in two colon cancer cell lines resistant to 5-FU; subsequently, CSC-like properties and 5-FU sensitivity were investigated. Within 5-FU-resistant cells, cell death was facilitated by MACC1 knockdown. Furthermore, sphere formation and the expression levels of pluripotent markers, including cluster of differentiation (CD) 44, CD133 and Nanog were reduced due to MACC1 depletion. Additionally, it was indicated that the phosphoinositide 3-kinase/protein kinase B signaling pathway may be associated with 5-FU resistance and CSC-like properties via MACC1.
Collapse
Affiliation(s)
- Jiankai Wang
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Wenjuan Wang
- Department of Physical Examination Center, The Third People's Hospital of Gansu, Lanzhou, Gansu 730050, P.R. China
| | - Hongyi Cai
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Binbin Du
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Lijuan Zhang
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Wen Ma
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Yongguo Hu
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Shifang Feng
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Guoying Miao
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
90
|
Tang H, Zeng L, Wang J, Zhang X, Ruan Q, Wang J, Cui S, Yang D. Reversal of 5-fluorouracil resistance by EGCG is mediate by inactivation of TFAP2A/VEGF signaling pathway and down-regulation of MDR-1 and P-gp expression in gastric cancer. Oncotarget 2017; 8:82842-82853. [PMID: 29137307 PMCID: PMC5669933 DOI: 10.18632/oncotarget.20666] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/24/2017] [Indexed: 12/18/2022] Open
Abstract
The effect of 5-fluorouracil (5-FU) chemotherapy for gastric cancer (GC) is limited by drug-resistance. To conquer this drug-resistance, various treatments including combination therapy have been used, but the overall survival has not been improved yet. In our current study, 5-FU resistant GC cells, SGC7901/FU and MGC803/FU, were established by long term exposure to 5-FU, and the proliferation capability of these resistant cells was verified to be reduced. The drug related proteins, MDR1 and P-gp were up-regulated in resistant cells compared to the parental cells. We further found proliferation and tumor growth suppressed effects of epigallocatechin gallate (EGCG), which is the predominant polyphenolic catechin constituent in green tea, on both the 5-FU resistant cells and the SGC7901/FU xenograft. Furthermore, an interesting results showed that reversal of 5-FU resistance of GC cells by EGCG treatment in vivo and in vitro. In the molecular study, We also found that EGCG suppressed the expression of both MDR-1 and P-gp at mRNA and protein levels in vivo and in vitro. Western blot and ELISA assay revealed that EGCG was able to inhibit VEGF secretion and expression, and its up-stream signal regulator, transcription factor activator protein 2A (TFAP2A) was also down-regulated by EGCG, our results indicated that TFAP2A/VEGF axis is one of the critical pathway inhibited by EGCG for cell proliferation and 5-FU resistance. Taken together, our data suggested that EGCG inhibits GC growth and reverses 5-FU resistance of GC through inactivation of TFAP2A/VEGF pathway and down-regulation of MDR-1 and P-gp expression.
Collapse
Affiliation(s)
- Hongsheng Tang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.,Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Lisi Zeng
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Jiahong Wang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Xiangliang Zhang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Qiang Ruan
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Jin Wang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Shuzhong Cui
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
91
|
Lin LF, Wu MH, Pidugu VK, Ho IC, Su TL, Lee TC. P-glycoprotein attenuates DNA repair activity in multidrug-resistant cells by acting through the Cbp-Csk-Src cascade. Oncotarget 2017; 8:45072-45087. [PMID: 28178691 PMCID: PMC5542168 DOI: 10.18632/oncotarget.15065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Recent studies have demonstrated that P-glycoprotein (P-gp) expression impairs DNA interstrand cross-linking agent-induced DNA repair efficiency in multidrug-resistant (MDR) cells. To date, the detailed molecular mechanisms underlying how P-gp interferes with Src activation and subsequent DNA repair activity remain unclear. In this study, we determined that the C-terminal Src kinase-binding protein (Cbp) signaling pathway involved in the negative control of Src activation is enhanced in MDR cells. We also demonstrated that cells that ectopically express P-gp exhibit reduced activation of DNA damage response regulators, such as ATM, Chk2, Braca1 and Nbs1 and hence attenuated DNA double-strand break repair capacity and become more susceptible than vector control cells to DNA interstrand cross-linking (ICL) agents. Moreover, we demonstrated that P-gp can not only interact with Cbp and Src but also enhance the formation of inhibitory C-terminal Src kinase (Csk)-Cbp complexes that reduce phosphorylation of the Src activation residue Y416 and increase phosphorylation of the Src negative regulatory residue Y527. Notably, suppression of Cbp expression in MDR cells restores cisplatin-induced Src activation, improves DNA repair capacity, and increases resistance to ICL agents. Ectopic expression of Cbp attenuates cisplatin-induced Src activation and increases the susceptibility of cells to ICL agents. Together, the current results indicate that P-gp inhibits DNA repair activity by modulating Src activation via Cbp-Csk-Src cascade. These results suggest that DNA ICL agents are likely to have therapeutic potential against MDR cells with P-gp-overexpression.
Collapse
Affiliation(s)
- Li-Fang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Vijaya Kumar Pidugu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei 11529, Taiwan
| | - I-Ching Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tsann-Long Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei 11529, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
92
|
Mlejnek P, Kosztyu P, Dolezel P, Bates SE, Ruzickova E. Reversal of ABCB1 mediated efflux by imatinib and nilotinib in cells expressing various transporter levels. Chem Biol Interact 2017. [PMID: 28623111 DOI: 10.1016/j.cbi.2017.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, it has been suggested that imatinib (IM) and nilotinib (NIL) could be studied beyond their original application, as inhibitors of the drug efflux pump ABCB1 (P-glycoprotein, MDR1). Since the reversal of ABCB1-mediated resistance has never been successfully demonstrated in the clinic, we addressed the question of whether IM and NIL may actually serve as efficient inhibitors of ABCB1. Here we define an efficient inhibitor as a compound that achieves full (90-100%) reversal of drug efflux at a concentration that does not exhibit significant off-target toxicity in vitro. In this study, human leukemia K562 cells expressing various levels of ABCB1 were used. We observed that cells expressing higher ABCB1 levels required higher concentrations of IM and NIL to achieve full reversal of drug efflux. Among the well-known ABCB1 inhibitors, a similar effect was found for cyclosporin A (CsA) but not for zosuquidar. IM was efficient only in cells with the low and moderate ABCB1 expression at high concentrations that were cytotoxic in the absence of Bcr-Abl. In contrast, NIL was as efficient an inhibitor of ABCB1 as CsA. Low and moderate expression levels of ABCB1 could be efficiently inhibited by NIL concentrations without cytotoxic effects in the absence of Bcr-Abl. However, high expression levels of ABCB1 required higher NIL concentrations with off-target cytotoxic effects. In conclusion, application of NIL, but not of IM, in clinics is promising, however, only in cells with low ABCB1 expression levels. We hypothesize that some patients may benefit from an inhibitor exhibiting an ABCB1 expression-dependent effect.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic.
| | - Petr Kosztyu
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Petr Dolezel
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Susan E Bates
- Hematology and Oncology, Columbia University, Herbert Irving Pavilion, 9th Floor, 161 Fort Washington Ave., New York, NY 10032, USA
| | - Eliska Ruzickova
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| |
Collapse
|
93
|
Tsyganov MM, Freidin MB, Ibragimova MK, Deryusheva IV, Kazantseva PV, Slonimskaya EM, Cherdyntseva NV, Litviakov NV. Genetic variability in the regulation of the expression cluster of MDR genes in patients with breast cancer. Cancer Chemother Pharmacol 2017; 80:251-260. [DOI: 10.1007/s00280-017-3354-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
|
94
|
Chen FQ, Zhang JM, Fang XF, Yu H, Liu YL, Li H, Wang YT, Chen MW. Reversal of paclitaxel resistance in human ovarian cancer cells with redox-responsive micelles consisting of α-tocopheryl succinate-based polyphosphoester copolymers. Acta Pharmacol Sin 2017; 38:859-873. [PMID: 28260803 DOI: 10.1038/aps.2016.150] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/12/2016] [Indexed: 02/08/2023]
Abstract
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a major obstacle in achieving the therapeutic benefits of paclitaxel (PTX) in the treatment of human ovarian carcinoma. This study is aimed to develop an efficient PTX drug delivery approach to overcome MDR. Redox-responsive micelles consisting of amphiphilic polymers containing disulfide linkages, ie, poly (phosphate ester)-SS-D-α-tocopheryl succinate (POPEA-SS-TOS, PSST) were prepared. PTX-loaded PSST micelles (PTX/PSST-M) designed to display synergistic functions, including reversible inhibition of P-gp, intracellular redox-sensitive release and potent anticancer activities. The average size of PTX/PSST-M was 68.1±4.9 nm. The encapsulated PTX was released quickly through redox-triggered dissociation of micelles. The inhibition of P-gp activity and enhanced cellular accumulation of the PSST micelles were validated. PTX/PSST-M showed significantly increased cytotoxicity against PTX-resistant human ovarian cancer A2780/PTX cells: when the cells were treated with PTX/PSST-M for 48 h, the equivalent IC50 value of PTX was reduced from 61.51 to 0.49 μmol/L. The enhanced cytotoxic effects of PTX/PSST-M against A2780/PTX cells were attributed to their synergistic effects on reducing the mitochondrial transmembrane potential, ATP depletion, ROS production, and activation of apoptotic pathways. Furthermore, PTX/PSST-M significantly increased cell apoptosis/necrosis and cell cycle arrest at the G2/M phase in A2780/PTX cells. These results demonstrate that the redox-responsive PSST micelles inhibit P-gp activity and have a good potential to effectively reverse PTX resistance in human ovarian carcinoma cells by activating intrinsic apoptotic pathways.
Collapse
|
95
|
G protein-coupled KISS1 receptor is overexpressed in triple negative breast cancer and promotes drug resistance. Sci Rep 2017; 7:46525. [PMID: 28422142 PMCID: PMC5395950 DOI: 10.1038/srep46525] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptor α, progesterone receptor and human epidermal growth factor receptor 2 (HER2). TNBC patients lack targeted therapies, as they fail to respond to endocrine and anti-HER2 therapy. Prognosis for this aggressive cancer subtype is poor and survival is limited due to the development of resistance to available chemotherapies and resultant metastases. The mechanisms regulating tumor resistance are poorly understood. Here we demonstrate that the G protein-coupled kisspeptin receptor (KISS1R) promotes drug resistance in TNBC cells. KISS1R binds kisspeptins, peptide products of the KISS1 gene and in numerous cancers, this signaling pathway plays anti-metastatic roles. However, in TNBC, KISS1R promotes tumor invasion. We show that KISS1 and KISS1R mRNA and KISS1R protein are upregulated in TNBC tumors, compared to normal breast tissue. KISS1R signaling promotes drug resistance by increasing the expression of efflux drug transporter, breast cancer resistance protein (BCRP) and by inducing the activity and transcription of the receptor tyrosine kinase, AXL. BCRP and AXL transcripts are elevated in TNBC tumors, compared to normal breast, and TNBC tumors expressing KISS1R also express AXL and BCRP. Thus, KISS1R represents a potentially novel therapeutic target to restore drug sensitivity in TNBC patients.
Collapse
|
96
|
Zhang YK, Zhang XY, Zhang GN, Wang YJ, Xu H, Zhang D, Shukla S, Liu L, Yang DH, Ambudkar SV, Chen ZS. Selective reversal of BCRP-mediated MDR by VEGFR-2 inhibitor ZM323881. Biochem Pharmacol 2017; 132:29-37. [PMID: 28242251 DOI: 10.1016/j.bcp.2017.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
The expression of breast cancer resistant protein (BCRP) in lung cancer is correlated with development of multidrug resistance (MDR) and therefore leads to lower response to chemotherapy. ZM323881, a previously developed selective VEGFR-2 inhibitor, was found to have inhibitory effects on BCRP-mediated MDR in this investigation. ZM323881 significantly decreased the cytotoxic doses of mitoxantrone and SN-38 in BCRP-overexpressing NCI-H460/MX20 cells. Mechanistic studies revealed that ZM323881 effected by inhibiting BCRP-mediated drug efflux, leading to intracellular accumulation of BCRP substrates. No significant alteration in the expression levels and localization pattern of BCRP was observed when BCRP-overexpressing cells were exposed to ZM323881. Stimulated bell-shaped ATPase activities were observed. Molecular docking suggested that ZM323881 binds to the modulator site of BCRP and the binding pose is stable validated by 100ns molecular dynamic simulation. Overall, our results indicated that ZM323881 reversed BCRP-related MDR by inhibiting its efflux function. These findings might be useful in developing combination chemotherapy for MDR cancer treatment.
Collapse
Affiliation(s)
- Yun-Kai Zhang
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xiao-Yu Zhang
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Guan-Nan Zhang
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yi-Jun Wang
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Huizhong Xu
- College of Liberal Arts and Sciences, St. John's University, Queens, NY 11439, USA
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lili Liu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
97
|
Lycorine inhibits breast cancer growth and metastasis via inducing apoptosis and blocking Src/FAK-involved pathway. SCIENCE CHINA-LIFE SCIENCES 2017; 60:417-428. [PMID: 28251459 DOI: 10.1007/s11427-016-0368-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 01/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer type worldwide among women and more than 90% of patients die from tumor metastasis. Lycorine, a natural alkaloid, has been widely reported possessing potential efficacy against cancer proliferation and metastasis. In our study, the anti-tumor potency on breast cancer was evaluated in vitro and in vivo for the first time. Our results indicated that lycorine inhibited breast cancer cells growth, migration and invasion as well as induced their apoptosis. In in vivo study, lycorine not only suppressed breast tumor growth in xenograft models and inhibited breast tumor metastasis in MDA-MB-231 tail vein model. More importantly, we found lycorine had less toxicity than first-line chemotherapy drug paclitaxel at the same effective dose in vivo. Furthermore, on mechanism, lycorine inhibited tumor cell migration and invasion via blocking the Src/FAK (focal adhesion kinase)-involved pathway. In conclusion, our study implied lycorine was a potential candidate for the treatment of breast cancer by inhibition of tumor growth and metastasis.
Collapse
|
98
|
Mlejnek P, Dolezel P, Ruzickova E. Drug resistance of cancer cells is crucially affected by expression levels of ABC-transporters. BIODISCOVERY 2017. [DOI: 10.3897/biodiscovery.20.e11211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
99
|
Efferth T, Volm M. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 2017; 91:2515-2538. [DOI: 10.1007/s00204-017-1938-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|
100
|
Elnaggar MA, Subbiah R, Han DK, Joung YK. Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin Drug Deliv 2017; 14:1341-1353. [PMID: 28117595 DOI: 10.1080/17425247.2017.1285904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahmoud A. Elnaggar
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|