51
|
Aziz AH, Wilmoth RL, Ferguson VL, Bryant SJ. IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel. ACS APPLIED BIO MATERIALS 2020; 3:1666-1680. [PMID: 32719827 DOI: 10.1021/acsabm.9b01227] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Osteocytes reside within a heavily mineralized matrix making them difficult to study in vivo and to extract for studies in vitro. IDG-SW3 cells are capable of producing mineralized collagen matrix and transitioning from osteoblasts to mature osteocytes, thus offering an alternative to study osteoblast to late osteocyte differentiation in vitro. The goal for this work was to develop a 3D degradable hydrogel to support IDG-SW3 differentiation and deposition of bone ECM. In 2D, the genes Mmp2 and Mmp13 increased during IDG-SW3 differentiation and were used as targets to create a MMP-sensitive poly(ethylene glycol) hydrogel containing the peptide crosslink GCGPLG-LWARCG and RGD to promote cell attachment. IDG-SW3 differentiation in the MMP-sensitive hydrogels improved over non-degradable hydrogels and standard 2D culture. Alkaline phosphatase activity at day 14 was higher, Dmp1 and Phex were 8.1-fold and 3.8-fold higher, respectively, and DMP1 protein expression was more pronounced in the MMP-sensitive hydrogels compared to non-degradable hydrogels. Cell-encapsulation density (cells/ml precursor) influenced formation of dendrite-like cellular process and mineral and collagen deposition with 80×106 performing better than 2×106 or 20×106, while connexin 43 was not affected by cell density. The cell density effects were more pronounced in the MMP-sensitive hydrogels over non-degradable hydrogels. This study identified that high cell encapsulation density and a hydrogel susceptible to cell-mediated degradation enhanced mineralized collagen matrix and osteocyte differentiation. Overall, a promising hydrogel is presented that supports IDG-SW3 cell maturation from osteoblasts to osteocytes in 3D.
Collapse
Affiliation(s)
- Aaron H Aziz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA
| | - Rachel L Wilmoth
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309 USA
| | - Virginia L Ferguson
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA.,Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309 USA.,Material Science and Engineering, University of Colorado, Boulder, CO 80309 USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA.,Material Science and Engineering, University of Colorado, Boulder, CO 80309 USA
| |
Collapse
|
52
|
Tresguerres F, Torres J, López-Quiles J, Hernández G, Vega J, Tresguerres I. The osteocyte: A multifunctional cell within the bone. Ann Anat 2020; 227:151422. [DOI: 10.1016/j.aanat.2019.151422] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 01/09/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
|
53
|
Chin KY, Wong SK, Ekeuku SO, Pang KL. Relationship Between Metabolic Syndrome and Bone Health - An Evaluation of Epidemiological Studies and Mechanisms Involved. Diabetes Metab Syndr Obes 2020; 13:3667-3690. [PMID: 33116718 PMCID: PMC7569044 DOI: 10.2147/dmso.s275560] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) and osteoporosis are two medical problems plaguing the ageing populations worldwide. Though seemingly distinctive to each other, metabolic derangements are shown to influence bone health. This review summarises the relationship between MetS and bone health derived from epidemiological studies and explains the mechanistic basis of this relationship. The discourse focuses on the link between MetS and bone mineral density, quantitative sonometric indices, geometry and fracture risk in humans. The interesting sex-specific trend in the relationship, probably due to factors related to body composition and hormonal status, is discussed. Mechanistically, each component of MetS affects the bone distinctly, forming a complex interacting network influencing the skeleton. Lastly, the effects of MetS management, such as pharmacotherapies, exercise and bariatric surgery, on bone, are presented. This review aims to highlight the significant relationship between MetS and bone, and proper management of MetS with the skeletal system in mind could prevent cardiovascular and bone complications.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Correspondence: Kok-Yong Chin Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, MalaysiaTel +60 3-9145 9573 Email
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
54
|
Pathak JL, Bravenboer N, Klein-Nulend J. The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Front Endocrinol (Lausanne) 2020; 11:405. [PMID: 32733380 PMCID: PMC7360678 DOI: 10.3389/fendo.2020.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
Osteocytes are the most abundant (~95%) cells in bone with the longest half-life (~25 years) in humans. In the past osteocytes have been regarded as vestigial cells in bone, since they are buried inside the tough bone matrix. However, during the last 30 years it has become clear that osteocytes are as important as bone forming osteoblasts and bone resorbing osteoclasts in maintaining bone homeostasis. The osteocyte cell body and dendritic processes reside in bone in a complex lacuno-canalicular system, which allows the direct networking of osteocytes to their neighboring osteocytes, osteoblasts, osteoclasts, bone marrow, blood vessels, and nerves. Mechanosensing of osteocytes translates the applied mechanical force on bone to cellular signaling and regulation of bone adaptation. The osteocyte lacuno-canalicular system is highly efficient in transferring external mechanical force on bone to the osteocyte cell body and dendritic processes via displacement of fluid in the lacuno-canalicular space. Osteocyte mechanotransduction regulates the formation and function of the osteoblasts and osteoclasts to maintain bone homeostasis. Osteocytes produce a variety of proteins and signaling molecules such as sclerostin, cathepsin K, Wnts, DKK1, DMP1, IGF1, and RANKL/OPG to regulate osteoblast and osteoclast activity. Various genetic abnormality-associated rare bone diseases are related to disrupted osteocyte functions, including sclerosteosis, van Buchem disease, hypophosphatemic rickets, and WNT1 and plastin3 mutation-related disorders. Meticulous studies during the last 15 years on disrupted osteocyte function in rare bone diseases guided for the development of various novel therapeutic agents to treat bone diseases. Studies on genetic, molecular, and cellular mechanisms of sclerosteosis and van Buchem disease revealed a role for sclerostin in bone homeostasis, which led to the development of the sclerostin antibody to treat osteoporosis and other bone degenerative diseases. The mechanism of many other rare bone diseases and the role of the osteocyte in the development of such conditions still needs to be investigated. In this review, we mainly discuss the knowledge obtained during the last 30 years on the role of the osteocyte in rare bone diseases. We speculate about future research directions to develop novel therapeutic drugs targeting osteocyte functions to treat both common and rare bone diseases.
Collapse
Affiliation(s)
- Janak L. Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jenneke Klein-Nulend
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Jenneke Klein-Nulend
| |
Collapse
|
55
|
Ellegaard M, Bieler T, Beyer N, Kjaer M, Jørgensen NR. The effect of 4 months exercise training on systemic biomarkers of cartilage and bone turnover in hip osteoarthritis patients. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Maria Ellegaard
- Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark
| | - Theresa Bieler
- Department of Physical & Occupational Therapy Bispebjerg and Frederiksberg Hospital, University of Copenhagen Copenhagen Denmark
| | - Nina Beyer
- Institute for Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen Bispebjerg and Frederiksberg Hospital, University of Copenhagen Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Niklas R. Jørgensen
- Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark
- University of Southern Denmark Odense Denmark
| |
Collapse
|
56
|
Yajima A, Tsuchiya K, Burr DB, Wallace JM, Damrath JD, Inaba M, Tominaga Y, Satoh S, Nakayama T, Tanizawa T, Ogawa H, Ito A, Nitta K. The Importance of Biologically Active Vitamin D for Mineralization by Osteocytes After Parathyroidectomy for Renal Hyperparathyroidism. JBMR Plus 2019; 3:e10234. [PMID: 31768492 PMCID: PMC6874232 DOI: 10.1002/jbm4.10234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 11/10/2022] Open
Abstract
Hypomineralized matrix is a factor determining bone mineral density. Increased perilacunar hypomineralized bone area is caused by reduced mineralization by osteocytes. The importance of vitamin D in the mineralization by osteocytes was investigated in hemodialysis patients who underwent total parathyroidectomy (PTX) with immediate autotransplantation of diffuse hyperplastic parathyroid tissue. No previous reports on this subject exist. The study was conducted in 19 patients with renal hyperparathyroidism treated with PTX. In 15 patients, the serum calcium levels were maintained by subsequent administration of alfacalcidol (2.0 μg/day), i.v. calcium gluconate, and oral calcium carbonate for 4 weeks after PTX (group I). This was followed in a subset of 4 patients in group I by a reduced dose of 0.5 μg/day until 1 year following PTX; this was defined as group II. In the remaining 4 patients, who were not in group I, the serum calcium (Ca) levels were maintained without subsequent administration of alfacalcidol (group III). Transiliac bone biopsy specimens were obtained in all groups before and 3 or 4 weeks after PTX to evaluate the change of the hypomineralized bone area. In addition, patients from group II underwent a third bone biopsy 1 year following PTX. A significant decrease of perilacunar hypomineralized bone area was observed 3 or 4 weeks after PTX in all group I and II patients. The area was increased again in the group II patients 1 year following PTX. In group III patients, an increase of the hypomineralized bone area was observed 4 weeks after PTX. The maintenance of a proper dose of vitamin D is necessary for mineralization by osteocytes, which is important to increase bone mineral density after PTX for renal hyperparathyroidism. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Aiji Yajima
- Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA.,Department of Medicine, Kidney Center Tokyo Women's Medical University Shinjuku-ku, Tokyo Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Kidney Center Tokyo Women's Medical University, Shinjuku-ku Tokyo Japan
| | - David B Burr
- Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA
| | - Joseph M Wallace
- Department of Biomedical Engineering Indiana University, Purdue University Indianapolis IN USA
| | - John D Damrath
- Department of Biomedical Engineering Indiana University, Purdue University Indianapolis IN USA
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine Osaka City University Graduate School of Medicine Osaka Japan
| | - Yoshihiro Tominaga
- Department of Transplant Surgery Nagoya Second Red Cross Hospital Nagoya, Aichi Japan
| | - Shigeru Satoh
- Center for Kidney Disease and Transplantation Akita University Hospital Akita Japan
| | - Takashi Nakayama
- Department of Orthopedic Surgery Towa Hospital Adachi-ku, Tokyo Japan
| | | | - Hajime Ogawa
- Department of Medicine, Division of Nephrology Ogawa Clinic Shinagawa-ku, Tokyo Japan
| | - Akemi Ito
- Ito Bone Histomorphometry Institute Niigata Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center Tokyo Women's Medical University Shinjuku-ku, Tokyo Japan
| |
Collapse
|
57
|
Zhai J, He F, Wang J, Chen J, Tong L, Zhu G. Influence of radiation exposure pattern on the bone injury and osteoclastogenesis in a rat model. Int J Mol Med 2019; 44:2265-2275. [PMID: 31638191 PMCID: PMC6844641 DOI: 10.3892/ijmm.2019.4369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy, one of the clinical treatments of cancer, is accompanied by a high risk of damage to healthy tissues, such as bone loss and increased risk of fractures. The aim of the present study was to establish a rat model of local and systemic bone injury by focal irradiation, in order to study the etiological mechanism and intervention. The proximal metaphyseal region of the left hindlimb of male Sprague-Dawley rats were exposed to a single 2 Gy or three 8 Gy doses delivered on days 1, 3 and 5 using a small animal irradiator, the changes in bone volume and microarchitecture were evaluated, and the mineral apposition rate (MAR) was assessed. Furthermore, bone marrow-derived macrophages (BMMs) were isolated and induced to osteoclasts. It has been demonstrated that a single dose of 2 Gy may result in a significant loss of lumbar bone density at 3 days post-irradiation, however this is restored at 30 days post-irradiation. In the 3x8 Gy irradiation rat model, there was a rapid decrease in the aBMD of lumbar spine at 3 days and at 7 days post-irradiation, and the aBMD decline persisted even at 60 days post-irradiation. In addition, microCT analysis revealed a persistent decline in bone volume and damage in microarchitecture in the 3x8 Gy irradiation model, accompanied by a decrease in MAR, index of the decline in bone-forming ability. In the cellular mechanism, a single 2 Gy local irradiation mainly manifested as an enhancement of the BMMs osteoclastogenesis potential, which was different from the osteoclastogenesis inhibition after high-dose focal irradiation (3x8 Gy). In summary, the irradiation with simulated clinical focal fractionated radiotherapy exerts short- and long-term systemic injury on bone tissue, characterized by different osteoclastogenesis potential between the high dose mode and a single 2 Gy focal irradiation. Physicians must consider the irreversibility of bone damage in clinical radiotherapy.
Collapse
Affiliation(s)
- Jianglong Zhai
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Feilong He
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Jianping Wang
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Junxiang Chen
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Ling Tong
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Guoying Zhu
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
58
|
Rony L, Perrot R, Hubert L, Chappard D. Osteocyte staining with rhodamine in osteonecrosis and osteoarthritis of the femoral head. Microsc Res Tech 2019; 82:2072-2078. [PMID: 31576638 DOI: 10.1002/jemt.23379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023]
Abstract
Death of osteocytes is synonymous of bone death. Aseptic osteonecrosis of the femoral head is a lesion characterized by the death of osteocytes occurring after major vascular changes. The evolution may lead to hip osteoarthritis, which requires total hip arthroplasty in most cases. Evolution of aseptic osteonecrosis in four radiological stages is well known. We analyzed 24 femoral heads from patients with osteonecrosis or osteoarthritis, retrieved at the time of surgery for a hip arthroplasty. The aim of the study was to clearly identify the necrotic bone from the living bone in the histological samples. The femoral heads were sawed, and a large sample was harvested in the superior zone; it was stained en-bloc with rhodamine dissolved in formalin to make the osteocytes fluorescent under UV light microscopy. Undecalcified sections, 7 μm thick, were obtained on a heavy-duty microtome. A micrographic analysis using two UV excitation wavelengths visualized the living osteocytes (in green) and the bone matrix (in blue). A simple method to prepare combined images is described. In addition, the blocks can be analyzed by confocal microscopy to visualize more details. It is possible to identify at low magnification the osteocytes within the bone matrix and the osteonecrotic areas where osteocytes have disappeared. Identification of osteocytes showed that newly formed bone packets are laid on dead trabeculae in patients with aseptic osteonecrosis or with osteoarthritis. In the osteosclerotic areas, the enlarged trabeculae have a dead central core surrounded by recently apposed bone structure units.
Collapse
Affiliation(s)
- Louis Rony
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM, EA-4658, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU-Angers, Angers, France.,Service Commun d'Imagerie et Analyses Microscopiques, SCIAM, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Département de Chirurgie Osseuse, CHU-Angers, Angers, France
| | - Rodolphe Perrot
- Service Commun d'Imagerie et Analyses Microscopiques, SCIAM, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Angers, France
| | - Laurent Hubert
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM, EA-4658, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU-Angers, Angers, France.,Département de Chirurgie Osseuse, CHU-Angers, Angers, France
| | - Daniel Chappard
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM, EA-4658, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU-Angers, Angers, France.,Service Commun d'Imagerie et Analyses Microscopiques, SCIAM, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Angers, France
| |
Collapse
|
59
|
McKenzie J, Smith C, Karuppaiah K, Langberg J, Silva MJ, Ornitz DM. Osteocyte Death and Bone Overgrowth in Mice Lacking Fibroblast Growth Factor Receptors 1 and 2 in Mature Osteoblasts and Osteocytes. J Bone Miner Res 2019; 34:1660-1675. [PMID: 31206783 PMCID: PMC6744314 DOI: 10.1002/jbmr.3742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 01/11/2023]
Abstract
Fibroblast growth factor (FGF) signaling pathways have well-established roles in skeletal development, with essential functions in both chondrogenesis and osteogenesis. In mice, previous conditional knockout studies suggested distinct roles for FGF receptor 1 (FGFR1) signaling at different stages of osteogenesis and a role for FGFR2 in osteoblast maturation. However, the potential for redundancy among FGFRs and the mechanisms and consequences of stage-specific osteoblast lineage regulation were not addressed. Here, we conditionally inactivate Fgfr1 and Fgfr2 in mature osteoblasts with an Osteocalcin (OC)-Cre or Dentin matrix protein 1 (Dmp1)-CreER driver. We find that young mice lacking both receptors or only FGFR1 are phenotypically normal. However, between 6 and 12 weeks of age, OC-Cre Fgfr1/Fgfr2 double- and Fgfr1 single-conditional knockout mice develop a high bone mass phenotype with increased periosteal apposition, increased and disorganized endocortical bone with increased porosity, and biomechanical properties that reflect increased bone mass but impaired material properties. Histopathological and gene expression analyses show that this phenotype is preceded by a striking loss of osteocytes and accompanied by activation of the Wnt/β-catenin signaling pathway. These data identify a role for FGFR1 signaling in mature osteoblasts/osteocytes that is directly or indirectly required for osteocyte survival and regulation of bone mass during postnatal bone growth. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jennifer McKenzie
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig Smith
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kannan Karuppaiah
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua Langberg
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Ornitz
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
60
|
Yuan Y, Duan R, Wu B, Huang W, Zhang X, Qu M, Liu T, Yu X. Gene expression profiles and bioinformatics analysis of insulin-like growth factor-1 promotion of osteogenic differentiation. Mol Genet Genomic Med 2019; 7:e00921. [PMID: 31419079 PMCID: PMC7082822 DOI: 10.1002/mgg3.921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 02/04/2023] Open
Abstract
Background Insulin‐like growth factor‐1 (IGF‐1) promotes osteoblast differentiation and mineralization. The objective of this study was to investigate the effects of IGF‐1 on proliferation, mineralization, alkaline phosphatase (ALP) synthesis, and gene expression of osteoblast differentiation in MC3T3‐E1 osteoblasts cells, and to explore gene expression profiling differential genes. Methods MC3T3‐E1 osteoblasts cells were cultured in medium with or without IGF‐1. The ALP assay was employed to determine the osteoblast mineralization, and Alizarin red S to stain for calcium deposits, which were the indicators of mature osteocytes. The living cell number was assessed by the Cell Counting Kit‐8 method. RNA‐seq analysis was applied to identify genes that were differentially expressed in with or without IGF‐1 as well as genes that varied between these two groups. The expression of osteogenic marker genes was determined by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot analysis. Result The cell number of osteoblasts exposed to IGF‐1 at 200 μg/L significantly increased compared with the control group. The ALP activity in IGF‐1‐treated cells was higher than that in the control group. IGF‐1 can increase ALP synthesis in osteoblasts in vitro. RNA‐seq analysis showed that 677 triggered differentially expressed genes by IGF, of which 383 genes were downregulated and 294 genes were upregulated. Gene ontology (GO) analysis showed that IGF‐1 caused a significant change in gene expression patterns. Conclusions This result suggested that IGF‐1 could probably promote the synthesis of organic matrix and mineralize action of bone. Osteogenic‐related genes (DMP1, PHEX, SOST, BMP2, RUNX2, OPN, and OCN) were significantly upregulated both in GO analysis and in pathway analysis to perform qRT‐PCR. Western blot analysis demonstrated that the Notch pathway was highly upregulated in MC3T3‐E1 cells.
Collapse
Affiliation(s)
- Yashuai Yuan
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ruimeng Duan
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Baolin Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Wei Huang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiuzhi Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Mingjia Qu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tao Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaobing Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
61
|
Choy MHV, Wong RMY, Chow SKH, Li MC, Chim YN, Li TK, Ho WT, Cheng JCY, Cheung WH. How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review. J Orthop Translat 2019; 21:111-121. [PMID: 32309136 PMCID: PMC7152791 DOI: 10.1016/j.jot.2019.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/22/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Although emerging studies have provided evidence that osteocytes are actively involved in fracture healing, there is a general lack of a detailed understanding of the mechanistic pathway, cellular events and expression of markers at different phases of healing. Methods This systematic review describes the role of osteocytes in fracture healing from early to late phase. Literature search was performed in PubMed and Embase. Original animal and clinical studies with available English full-text were included. Information was retrieved from the selected studies. Results A total of 23 articles were selected in this systematic review. Most of the studies investigated changes of various genes and proteins expression patterns related to osteocytes. Several studies have described a constant expression of osteocyte-specific marker genes throughout the fracture healing cascade followed by decline phase with the progress of healing, denoting the important physiological role of the osteocyte and the osteocyte lacuno-canalicular network in fracture healing. The reports of various markers suggested that osteocytes could trigger coordinated bone healing responses from cell death and expression of proinflammatory markers cyclooxygenase-2 and interleukin 6 at early phase of fracture healing. This is followed by the expression of growth factors bone morphogenetic protein-2 and cysteine-rich angiogenic inducer 61 that matched with the neo-angiogenesis, chondrogenesis and callus formation during the intermediate phase. Tightly controlled regulation of osteocyte-specific markers E11/Podoplanin (E11), dentin matrix protein 1 and sclerostin modulate and promote osteogenesis, mineralisation and remodelling across different phases of fracture healing. Stabilised fixation was associated with the finding of higher number of osteocytes with little detectable bone morphogenetic proteins expressions in osteocytes. Sclerostin-antibody treatment was found to result in improvement in bone mass, bone strength and mineralisation. Conclusion To further illustrate the function of osteocytes, additional longitudinal studies with appropriate clinically relevant model to study osteoporotic fractures are crucial. Future investigations on the morphological changes of osteocyte lacuno-canalicular network during healing, osteocyte-mediated signalling molecules in the transforming growth factor-beta-Smad3 pathway, perilacunar remodelling, type of fixation and putative biomarkers to monitor fracture healing are highly desirable to bridge the current gaps of knowledge.The translational potential of this article: This systematic review provides an up-to-date chronological overview and highlights the osteocyte-regulated events at gene, protein, cellular and tissue levels throughout the fracture healing cascade, with the hope of informing and developing potential new therapeutic strategies that could improve the timing and quality of fracture healing in the future.
Collapse
Affiliation(s)
- Man Huen Victoria Choy
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Meng Chen Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Yu Ning Chim
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Tsz Kiu Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Wing Tung Ho
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Jack Chun Yiu Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Wing Ho Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
- Corresponding author. Department of Orthopaedics and Traumatology, 5/F, Lui Che Woo Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China.
| |
Collapse
|
62
|
Ofer L, Dumont M, Rack A, Zaslansky P, Shahar R. New insights into the process of osteogenesis of anosteocytic bone. Bone 2019; 125:61-73. [PMID: 31085351 DOI: 10.1016/j.bone.2019.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
The bone material of almost all vertebrates contains the same cellular components. These comprise osteoblasts that produce bone, osteoclasts that resorb bone and osteocytes, which are the master regulators of bone metabolism, particularly bone modeling and remodeling. It is thus surprising that the largest group of extant vertebrates, neoteleost fish, lacks osteocytes entirely (anosteocytic bone). Osteocytes are the progeny of osteoblasts, which become entrapped in the osteoid they secrete, then undergo several morphologic and functional changes, to finally form an intricate network of living cells in the bone matrix. While the process of osteogenesis of osteocytic bone has been thoroughly studied, osteogenesis of anosteocytic bone is less well understood. The current paradigm for formation of anosteocytic bone suggests that osteoblasts remain always on the external surface of the formed bone, and do not become entrapped in the osteoid. Such a process requires the osteoblasts to function in a fundamentally-different way from osteoblasts of all other bony vertebrates. Here we present a comparative structural study of the osteocytic bones of zebrafish and anosteocytic bones of medaka and show that they are remarkably similar in structure at several hierarchical levels. Scanning electron microscopy and phase contrast-enhanced μCT reveal the presence of numerous mineralized objects in the matrix of anosteocytic bone. These objects resemble osteocytic lacunae in zebrafish bone, and their locations and distribution are similar to those of osteocytes in zebrafish bone. Our findings provide support for the occurrence of a process of anosteocytic bone osteogenesis that has so far been rejected. In this process osteoblasts become entrapped in the bone matrix (as occurs in osteogenesis of osteocytic bone), but then undergo apoptosis, become mineralized and end up as part of the mineralized bone matrix.
Collapse
Affiliation(s)
- Lior Ofer
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Maitena Dumont
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Alexander Rack
- ESRF - The European Synchrotron, CS40220, F-38043 Grenoble, France
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité - Universitaetsmedizin Berlin, 13353 Berlin, Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|
63
|
Steffen U, Schett G, Bozec A. How Autoantibodies Regulate Osteoclast Induced Bone Loss in Rheumatoid Arthritis. Front Immunol 2019; 10:1483. [PMID: 31333647 PMCID: PMC6619397 DOI: 10.3389/fimmu.2019.01483] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease, characterized by autoimmunity that triggers joint inflammation and tissue destruction. Traditional concepts of RA pathogenesis have strongly been focused on inflammation. However, more recent evidence suggests that autoimmunity per se modulates the disease and in particular bone destruction during the course of RA. RA-associated bone loss is caused by increased osteoclast differentiation and activity leading to rapid bone resorption. Autoimmunity in RA is based on autoantibodies such as rheumatoid factor (RF) and autoantibodies against citrullinated proteins (ACPA). These autoantibodies exert effector functions on immune cells and on bone resorbing osteoclasts, thereby facilitating bone loss. This review summarizes potential pathways involved in increased destruction of bone tissue in RA, particularly focusing on the direct and indirect actions of autoantibodies on osteoclast generation and function.
Collapse
Affiliation(s)
- Ulrike Steffen
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
64
|
Robinson LJ, Blair HC, Barnett JB, Soboloff J. The roles of Orai and Stim in bone health and disease. Cell Calcium 2019; 81:51-58. [PMID: 31201955 PMCID: PMC7181067 DOI: 10.1016/j.ceca.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/17/2023]
Abstract
Orai and Stim proteins are the mediators of calcium release-activated calcium signaling and are important in the regulation of bone homeostasis and disease. This includes separate regulatory systems controlling mesenchymal stem cell differentiation to form osteoblasts, which make bone, and differentiation and regulation of osteoclasts, which resorb bone. These systems will be described separately, and their integration and relation to other systems, including Orai and Stim in teeth, will be briefly discussed at the end of this review.
Collapse
Affiliation(s)
- Lisa J Robinson
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, Morgantown WV 26505, United States; Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown WV 26505, United States.
| | - Harry C Blair
- Veteran's Affairs Medical Center, Pittsburgh PA 15206, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - John B Barnett
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown WV 26505, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology and the Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, United States.
| |
Collapse
|
65
|
Lotinun S, Ishihara Y, Nagano K, Kiviranta R, Carpentier VT, Neff L, Parkman V, Ide N, Hu D, Dann P, Brooks D, Bouxsein ML, Wysolmerski J, Gori F, Baron R. Cathepsin K-deficient osteocytes prevent lactation-induced bone loss and parathyroid hormone suppression. J Clin Invest 2019; 129:3058-3071. [PMID: 31112135 PMCID: PMC6668688 DOI: 10.1172/jci122936] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/10/2019] [Indexed: 02/02/2023] Open
Abstract
Lactation induces bone loss to provide sufficient calcium in the milk, a process that involves osteoclastic bone resorption but also osteocytes and perilacunar resorption. The exact mechanisms by which osteocytes contribute to bone loss remain elusive. Osteocytes express genes required in osteoclasts for bone resorption, including cathepsin K (Ctsk), and lactation elevates their expression. We show that Ctsk deletion in osteocytes prevented the increase in osteocyte lacunar area seen during lactation, as well as the effects of lactation to increase osteoclast numbers and decrease trabecular bone volume, cortical thickness and mechanical properties. In addition, Ctsk deletion in osteocytes increased bone Parathyroid Hormone related Peptide (PTHrP), prevented the decrease in serum Parathyroid Hormone (PTH) induced by lactation, but amplified the increase in serum 1,25(OH)2D. The net result of these changes is to maintain serum and milk calcium levels in the normal range, ensuring normal offspring skeletal development. Our studies confirm the fundamental role of osteocytic perilacunar remodeling in physiological states of lactation and provides genetic evidence that osteocyte-derived Ctsk contributes not only to osteocyte perilacunar remodeling, but also to the regulation of PTH, PTHrP, 1,25-Dyhydroxyvitamin D (1,25(OH)2D), osteoclastogenesis and bone loss in response to the high calcium demand associated with lactation.
Collapse
Affiliation(s)
- Sutada Lotinun
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yoshihito Ishihara
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Kenichi Nagano
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Riku Kiviranta
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Departments of Medical Biochemistry and Genetics and Medicine, University of Turku, Turku, Finland
| | - Vincent T. Carpentier
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Lynn Neff
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Virginia Parkman
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Noriko Ide
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel Brooks
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Harvard Medical School, Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
66
|
Gorustovich AA, Nielsen FH. Effects of Nutritional Deficiency of Boron on the Bones of the Appendicular Skeleton of Mice. Biol Trace Elem Res 2019; 188:221-229. [PMID: 30182352 DOI: 10.1007/s12011-018-1499-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 01/20/2023]
Abstract
Scientific evidence has shown the nutritional importance of boron (B) in the remodeling and repair of cancellous bone tissue. However, the effects of the nutritional deficiency of B on the cortical bone tissue of the appendicular skeleton have not yet been described. Thus, a study was performed to histomorphometrically evaluate the density of osteocyte lacunae of cortical bone of mouse femora under conditions of nutritional deficiency of B and to analyze the effects of the deficiency on the biomechanical properties of mouse tibiae. Weaning, 21-day-old male Swiss mice were assigned to the following two groups: controls (B+; n = 10) and experimental (B-; n = 10). Control mice were fed a basal diet containing 3 mg B/kg, whereas experimental mice were fed a B-deficient diet containing 0.07 mg B/kg for 9 weeks. The histological and histomorphometric evaluations of the mice fed a B-deficient diet showed a decrease in the density of osteocyte lacunae in the femoral cortical bone tissue and the evaluation of biomechanical properties showed lower bone rigidity in the tibia.
Collapse
Affiliation(s)
- Alejandro A Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD, Salta, Argentina.
| | | |
Collapse
|
67
|
Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R, Mäkitie O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 2019; 14:58. [PMID: 30808384 PMCID: PMC6390548 DOI: 10.1186/s13023-019-1014-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background X-linked hypophosphatemia (XLH) is an inherited disease of phosphate metabolism in which inactivating mutations of the Phosphate Regulating Endopeptidase Homolog, X-Linked (PHEX) gene lead to local and systemic effects including impaired growth, rickets, osteomalacia, bone abnormalities, bone pain, spontaneous dental abscesses, hearing difficulties, enthesopathy, osteoarthritis, and muscular dysfunction. Patients with XLH present with elevated levels of fibroblast growth factor 23 (FGF23), which is thought to mediate many of the aforementioned manifestations of the disease. Elevated FGF23 has also been observed in many other diseases of hypophosphatemia, and a range of animal models have been developed to study these diseases, yet the role of FGF23 in the pathophysiology of XLH is incompletely understood. Methods The role of FGF23 in the pathophysiology of XLH is here reviewed by describing what is known about phenotypes associated with various PHEX mutations, animal models of XLH, and non-nutritional diseases of hypophosphatemia, and by presenting molecular pathways that have been proposed to contribute to manifestations of XLH. Results The pathophysiology of XLH is complex, involving a range of molecular pathways that variously contribute to different manifestations of the disease. Hypophosphatemia due to elevated FGF23 is the most obvious contributor, however localised fluctuations in tissue non-specific alkaline phosphatase (TNAP), pyrophosphate, calcitriol and direct effects of FGF23 have been observed to be associated with certain manifestations. Conclusions By describing what is known about these pathways, this review highlights key areas for future research that would contribute to the understanding and clinical treatment of non-nutritional diseases of hypophosphatemia, particularly XLH.
Collapse
Affiliation(s)
| | - Zulf Mughal
- Royal Manchester Children's Hospital, Manchester, UK
| | | | - Ola Nilsson
- Karolinska Institutet, Stockholm, Sweden and Örebro University, Örebro, Sweden
| | | | - Gema Ariceta
- Hospital Universitario Materno-Infantil Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Dirk Schnabel
- University Children's Hospital of Berlin, Berlin, Germany
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
68
|
Hinton PV, Rackard SM, Kennedy OD. In Vivo Osteocyte Mechanotransduction: Recent Developments and Future Directions. Curr Osteoporos Rep 2018; 16:746-753. [PMID: 30406580 DOI: 10.1007/s11914-018-0485-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Mechanical loading is an essential stimulus for skeletal tissues. Osteocytes are primarily responsible for sensing mechanical stimuli in bone and for orchestrating subsequent responses. This is critical for maintaining homeostasis, and responding to injury/disease. The osteocyte mechanotransduction pathway, and the downstream effects it mediates, is highly complex. In vivo models have proved invaluable in understanding this process. This review summarizes the commonly used models, as well as more recently developed ones, and describes how they are used to address emerging questions in the field. RECENT FINDINGS Minimally invasive animal models can be used to determine mechanisms of osteocyte mechanotransduction, at the cell and molecular level, while simultaneously reducing potentially confounding responses such as inflammation/wound-healing. The details of osteocyte mechanotransduction in bone are gradually becoming clearer. In vivo model systems are a key tool in pursing this question. Advances in this field are explored and discussed in this review.
Collapse
Affiliation(s)
- Paige V Hinton
- Department of Anatomy & Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Susan M Rackard
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Dublin 4, Ireland
| | - Oran D Kennedy
- Department of Anatomy & Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
69
|
Yajima A, Tsuchiya K, Burr DB, Minner DE, Condon KW, Miller CA, Satoh S, Inaba M, Nakayama T, Tanizawa T, Ito A, Nitta K. Osteocytic perilacunar/canalicular turnover in hemodialysis patients with high and low serum PTH levels. Bone 2018; 113:68-76. [PMID: 29738853 DOI: 10.1016/j.bone.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 01/30/2023]
Abstract
Osteocytic perilacunar/canalicular turnover in hemodialysis patients has not yet been reported. Osteocyte lacunae in lamellar bone and woven bone were classified as eroded surface-, osteoid surface-, and quiescent surface-predominant osteocyte lacunae (ES-Lc, OS-Lc, QS-Lc, respectively) in 55 hemodialysis patients with either high- (n = 45) or low- (n = 10) parathyroid hormone levels, and 19 control subjects without chronic kidney disease. We calculated the area and number of ES-Lc, OS-Lc, and QS-Lc. The mineralized surface on the osteocyte lacunar walls was measured in each group, and compared among the three groups. The shapes of the osteocyte lacunar walls were validated by backscattered electron microscopy. While the number of ES-Lc per bone area (N.ES-Lc/B.Ar) was higher than the number of OS-Lc per bone area (N.OS-Lc/B.Ar) in all groups, N.ES-Lc/B.Ar and N.OS-Lc/B.Ar were greater in high-parathyroid hormone group than in low-parathyroid hormone and control groups. The total volume of ES-Lc per bone area (ES-Lc.Ar/B.Ar) was greater than the total volume of OS-Lc per bone area (OS-Lc.Ar/B.Ar) in both parathyroid hormone groups. However, both lacunar erosion and lacunar formation increased proportionally, suggesting that global coupling between them was maintained. N.ES-Lc/B.Ar was higher in woven bone than in lamellar bone. The rate of OS-Lc stained by tetracycline hydrochloride, the mineralized lacunar surface and the mean area of OS-Lc with Tc obtained from both parathyroid hormone groups were greater than those in the control group. We conclude that osteocytic perilacunar/canalicular turnover is increased in hemodialysis patients with high parathyroid hormone levels. Osteocytic perilacunar/canalicular turnover depends, at least in part, on serum parathyroid hormone level. However, the ideal PTH level for osteocytic perilacunar/canalicular turnover could not be determined but osteocytic osteolysis was predominant in both the high- and low-PTH groups in this study. Thus, attention should be paid to bone loss from the viewpoint of osteocytic perilacunar/canalicular turnover in hemodialysis patients.
Collapse
Affiliation(s)
- Aiji Yajima
- Department of Anatomy and Cell Biology, Indiana University, School of Medicine, Indianapolis, IN, USA; Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan.
| | - Ken Tsuchiya
- Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - David B Burr
- Department of Anatomy and Cell Biology, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Daniel E Minner
- Department of Integrated Nanosystems Development Institute, Indiana University, Purdue University, Indianapolis, IN, USA
| | - Keith W Condon
- Department of Anatomy and Cell Biology, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Caroline A Miller
- Department of Anatomy and Cell Biology, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Shigeru Satoh
- Center for Kidney Disease and Transplantation, Akita University Hospital, Akita, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | - Akemi Ito
- Ito Bone Histomorphometry Institute, Niigata, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
70
|
Yajima A, Tsuchiya K, Bonewald LF, Inaba M, Tominaga Y, Tanizawa T, Ito A, Nitta K. Case report: Electron microscopic evaluation of bone from a patient treated with cinacalcet hydrochloride, maxacalcitol, and alfacalcidol for hyperparathyroid bone disease with secondary hyperparathyroidism. Osteoporos Int 2018; 29:1203-1209. [PMID: 29492624 DOI: 10.1007/s00198-018-4402-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 01/18/2018] [Indexed: 11/27/2022]
Abstract
Evaluation of bone is of great importance in chronic kidney disease patients, as these patients are at an increased risk for fractures. We treated a hemodialysis patient suffering from hyperparathyroid bone disease with cinacalcet hydrochloride and concurrent administration of maxacalcitol and alfacalcidol for a year. Hyperparathyroid bone disease is characterized by cortical thinning, increased cortical porosity, reduced trabecular bone volume, and increased hypomineralized matrix volume, and there is little information to date about the effects of treatment with cinacalcet hydrochloride on the bone fragility in patients with hyperparathyroid bone disease. In the present study, histological and backscattered electron microscopic evaluation of this combination treatment revealed an excellent improvement of both bone volume and bone morphology. This treatment improved cortical thinning, cortical porosity, and trabecular thinning. Furthermore, the treatment also reduced hypomineralized matrix volume, indicative of improved mineralization by osteocytes. We speculate that the intermittent maxacalcitol administration may have effectively stimulated the vitamin D receptors expressed on osteocytes and osteoblasts, resulting in increased mineralization. Our approach for evaluating the bone in patients with chronic kidney disease by backscattered electron microscopy is novel.
Collapse
Affiliation(s)
- A Yajima
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - K Tsuchiya
- Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - L F Bonewald
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Oral and Craniofacial Sciences, University of Missouri, School of Dentistry, Kansas City, MI, USA
| | - M Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University, Abeno-ku, Osaka, Japan
| | - Y Tominaga
- Department of Endocrine Surgery, Nagoya Second Red Cross Hospital, Nagoya, Aichi, Japan
| | - T Tanizawa
- Department of Orthopedic Surgery, Tanizawa Clinic, Niigata, Niigata, Japan
| | - A Ito
- Ito Bone Histomorphometry Institute, Niigata, Niigata, Japan
| | - K Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
71
|
Wu J, Zhang W, Ran Q, Xiang Y, Zhong JF, Li SC, Li Z. The Differentiation Balance of Bone Marrow Mesenchymal Stem Cells Is Crucial to Hematopoiesis. Stem Cells Int 2018; 2018:1540148. [PMID: 29765406 PMCID: PMC5903338 DOI: 10.1155/2018/1540148] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/21/2018] [Indexed: 01/20/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs), the important component and regulator of bone marrow microenvironment, give rise to hematopoietic-supporting stromal cells and form hematopoietic niches for hematopoietic stem cells (HSCs). However, how BMSC differentiation affects hematopoiesis is poorly understood. In this review, we focus on the role of BMSC differentiation in hematopoiesis. We discussed the role of BMSCs and their progeny in hematopoiesis. We also examine the mechanisms that cause differentiation bias of BMSCs in stress conditions including aging, irradiation, and chemotherapy. Moreover, the differentiation balance of BMSCs is crucial to hematopoiesis. We highlight the negative effects of differentiation bias of BMSCs on hematopoietic recovery after bone marrow transplantation. Keeping the differentiation balance of BMSCs is critical for hematopoietic recovery. This review summarises current understanding about how BMSC differentiation affects hematopoiesis and its potential application in improving hematopoietic recovery after bone marrow transplantation.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Weiwei Zhang
- Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Qian Ran
- Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Xiang
- Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiang F. Zhong
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Shengwen Calvin Li
- CHOC Children's Hospital Research Institute, University of California, Irvine, 1201 West La Veta Ave, Orange, CA 92868, USA
| | - Zhongjun Li
- Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
72
|
IGF-I induced phosphorylation of PTH receptor enhances osteoblast to osteocyte transition. Bone Res 2018; 6:5. [PMID: 29507819 PMCID: PMC5827661 DOI: 10.1038/s41413-017-0002-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone (PTH) regulates bone remodeling by activating PTH type 1 receptor (PTH1R) in osteoblasts/osteocytes. Insulin-like growth factor type 1 (IGF-1) stimulates mesenchymal stem cell differentiation to osteoblasts. However, little is known about the signaling mechanisms that regulates the osteoblast-to-osteocyte transition. Here we report that PTH and IGF-I synergistically enhance osteoblast-to-osteocyte differentiation. We identified that a specific tyrosine residue, Y494, on the cytoplasmic domain of PTH1R can be phosphorylated by insulin-like growth factor type I receptor (IGF1R) in vitro. Phosphorylated PTH1R localized to the barbed ends of actin filaments and increased actin polymerization during morphological change of osteoblasts into osteocytes. Disruption of the phosphorylation site reduced actin polymerization and dendrite length. Mouse models with conditional ablation of PTH1R in osteoblasts demonstrated a reduction in the number of osteoctyes and dendrites per osteocyte, with complete overlap of PTH1R with phosphorylated-PTH1R positioning in osteocyte dendrites in wild-type mice. Thus, our findings reveal a novel signaling mechanism that enhances osteoblast-to-osteocyte transition by direct phosphorylation of PTH1R by IGF1R. A key hormone and growth factor work together to help turn bone-forming cells into mature bone. Janet Crane and colleagues from Johns Hopkins University School of Medicine in Baltimore, Maryland, USA, tested the effects of parathyroid hormone (PTH) and insulin like-growth factor type 1 (IGF-1) signaling on the differentiation of bone-forming osteoblasts by modulating the activity of their receptors in genetically engineered mice. They found a specific part of the PTH type 1 receptor has a phosphate group added to it by the IGF-1 receptor. This chemical tagging leads to changes in the cytoskeleton of osteoblasts that enhance the formation of mature bone cells known as osteocytes. Mice without this PTH receptor had reduced numbers of osteocytes in their bone. The findings reveal a novel signaling mechanism behind this cellular transition during bone building.
Collapse
|
73
|
Marie PJ, Cohen-Solal M. The Expanding Life and Functions of Osteogenic Cells: From Simple Bone-Making Cells to Multifunctional Cells and Beyond. J Bone Miner Res 2018; 33:199-210. [PMID: 29206311 DOI: 10.1002/jbmr.3356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
During the last three decades, important progress in bone cell biology and in human and mouse genetics led to major advances in our understanding of the life and functions of cells of the osteoblast lineage. Previously unrecognized sources of osteogenic cells have been identified. Novel cellular and molecular mechanisms controlling osteoblast differentiation and senescence have been determined. New mechanisms of communications between osteogenic cells, osteocytes, osteoclasts, and chondrocytes, as well as novel links between osteogenic cells and blood vessels have been identified. Additionally, cells of the osteoblast lineage were shown to be important components of the hematopoietic niche and to be implicated in hematologic dysfunctions and malignancy. Lastly, unexpected interactions were found between osteogenic cells and several soft tissues, including the central nervous system, gut, muscle, fat, and testis through the release of paracrine factors, making osteogenic cells multifunctional regulatory cells, in addition to their bone-making function. These discoveries considerably enlarged our vision of the life and functions of osteogenic cells, which may lead to the development of novel therapeutics with immediate applications in bone disorders. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Cohen-Solal
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
74
|
Ansari N, Ho PW, Crimeen-Irwin B, Poulton IJ, Brunt AR, Forwood MR, Divieti Pajevic P, Gooi JH, Martin TJ, Sims NA. Autocrine and Paracrine Regulation of the Murine Skeleton by Osteocyte-Derived Parathyroid Hormone-Related Protein. J Bone Miner Res 2018; 33:137-153. [PMID: 28914969 DOI: 10.1002/jbmr.3291] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/28/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) and parathyroid hormone (PTH) have N-terminal domains that bind a common receptor, PTHR1. N-terminal PTH (teriparatide) and now a modified N-terminal PTHrP (abaloparatide) are US Food and Drug Administration (FDA)-approved therapies for osteoporosis. In physiology, PTHrP does not normally circulate at significant levels, but acts locally, and osteocytes, cells residing within the bone matrix, express both PTHrP and the PTHR1. Because PTHR1 in osteocytes is required for normal bone resorption, we determined how osteocyte-derived PTHrP influences the skeleton. We observed that adult mice with low PTHrP in osteocytes (targeted with the Dmp1(10kb)-Cre) have low trabecular bone volume and osteoblast numbers, but osteoclast numbers were unaffected. In addition, bone size was normal, but cortical bone strength was impaired. Osteocyte-derived PTHrP therefore stimulates bone formation and bone matrix strength, but is not required for normal osteoclastogenesis. PTHrP knockdown and overexpression studies in cultured osteocytes indicate that osteocyte-secreted PTHrP regulates their expression of genes involved in matrix mineralization. We determined that osteocytes secrete full-length PTHrP with no evidence for secretion of lower molecular weight forms containing the N-terminus. We conclude that osteocyte-derived full-length PTHrP acts through both PTHR1 receptor-mediated and receptor-independent actions in a paracrine/autocrine manner to stimulate bone formation and to modify adult cortical bone strength. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Niloufar Ansari
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Patricia Wm Ho
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Athena R Brunt
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Mark R Forwood
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Paola Divieti Pajevic
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Jonathan H Gooi
- The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
75
|
|
76
|
Collignon AM, Lesieur J, Vacher C, Chaussain C, Rochefort GY. Strategies Developed to Induce, Direct, and Potentiate Bone Healing. Front Physiol 2017; 8:927. [PMID: 29184512 PMCID: PMC5694432 DOI: 10.3389/fphys.2017.00927] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Bone exhibits a great ability for endogenous self-healing. Nevertheless, impaired bone regeneration and healing is on the rise due to population aging, increasing incidence of bone trauma and the clinical need for the development of alternative options to autologous bone grafts. Current strategies, including several biomolecules, cellular therapies, biomaterials, and different permutations of these, are now developed to facilitate the vascularization and the engraftment of the constructs, to recreate ultimately a bone tissue with the same properties and characteristics of the native bone. In this review, we browse the existing strategies that are currently developed, using biomolecules, cells and biomaterials, to induce, direct and potentiate bone healing after injury and further discuss the biological processes associated with this repair.
Collapse
Affiliation(s)
- Anne-Margaux Collignon
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Julie Lesieur
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| | - Christian Vacher
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Maxillofacial Surgery, Beaujon Hospital, Assistance Publique Hopitaux De Paris, Paris, France
| | - Catherine Chaussain
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Gael Y Rochefort
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| |
Collapse
|
77
|
Zhang B, Hou R, Zou Z, Luo T, Zhang Y, Wang L, Wang B. Mechanically induced autophagy is associated with ATP metabolism and cellular viability in osteocytes in vitro. Redox Biol 2017; 14:492-498. [PMID: 29096322 PMCID: PMC5680519 DOI: 10.1016/j.redox.2017.10.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022] Open
Abstract
Both mechanical loading and intracellular autophagy play important roles in bone homeostasis; however, their relationship remains largely unexplored. The objectives of this study were to determine whether osteocytes undergo autophagy upon fluid shear stress (FSS) loading and to determine the correlation between mechanically induced autophagy and ATP metabolism. Autophagic vacuoles were observed by transmission electron microscopy (TEM) in osteocyte-like MLO-Y4 cells subjected to FSS. Increased autophagic flux was further confirmed by the increased amount of the LC3-II isoform and the degradation of p62. Fluorescent puncta distributed in the cytoplasm were observed in the GFP-LC3 transformed cells subjected to FSS. Furthermore, FSS-induced ATP release and synthesis in osteocytes were attenuated by inhibiting autophagy with 3-MA. After FSS exposure, a high ratio of cell death was observed in cultures pretreated with 3-MA, an autophagy inhibitor, with no significantly different Caspase 3/7 activity. Our results indicated that FSS induces protective autophagy in osteocytes and that mechanically induced autophagy is associated with ATP metabolism and osteocyte survival. From the clinical perspective, it may be possible to enhance skeletal cell survival with drugs that modulate the autophagic state, and the autophagy-related pathway could be a potential target for the prevention of ageing-related bone disorders. Fluid flow shear stress (FSS) induces activation of autophagic flux in MLO-Y4 osteocytes. FSS-induced autophagy promoted ATP metabolism in MLO-Y4 osteocytes. Inhibited autophagy decreased FSS-induced ATP release. FSS-induced autophagy was beneficial to the osteocyte survival after FSS exposure.
Collapse
Affiliation(s)
- Bingbing Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rutao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhen Zou
- Department of Medical Laboratory Technology, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Tiantian Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Bin Wang
- Department of Medical Laboratory Technology, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
78
|
Portal-Núñez S, Mediero A, Esbrit P, Sánchez-Pernaute O, Largo R, Herrero-Beaumont G. Unexpected Bone Formation Produced by RANKL Blockade. Trends Endocrinol Metab 2017; 28:695-704. [PMID: 28733136 DOI: 10.1016/j.tem.2017.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 01/22/2023]
Abstract
Denosumab (Dmab) is a humanized monoclonal antibody that blocks RANKL (receptor activator for nuclear factor κB ligand), thereby exerting a potent bone antiresorptive action. Dmab treatment leads to a dramatic and sustained increase in bone mass through mechanisms that are currently under debate. It is also a matter of controversy whether this potent action of Dmab could lead to intrabone dystrophic mineralization. Recent research has uncovered a possible anabolic role of Dmab involving RANKL-dependent reverse signaling in osteoblasts, and that bone marrow adipocytes can modulate osteoclastogenesis through the production of RANKL. We comment here on potential pathways which might account for the anabolic action of Dmab. The impact of this proposed mechanism needs to be addressed in further research.
Collapse
Affiliation(s)
- Sergio Portal-Núñez
- Bone and Joint Research Unit, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Avenida de los Reyes Católicos 2, 28040 Madrid, Spain.
| | - Aranzazu Mediero
- Bone and Joint Research Unit, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Avenida de los Reyes Católicos 2, 28040 Madrid, Spain
| | - Pedro Esbrit
- Bone and Joint Research Unit, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Avenida de los Reyes Católicos 2, 28040 Madrid, Spain
| | - Olga Sánchez-Pernaute
- Bone and Joint Research Unit, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Avenida de los Reyes Católicos 2, 28040 Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Avenida de los Reyes Católicos 2, 28040 Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Avenida de los Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
79
|
Popp KL, Hughes JM, Martinez-Betancourt A, Scott M, Turkington V, Caksa S, Guerriere KI, Ackerman KE, Xu C, Unnikrishnan G, Reifman J, Bouxsein ML. Bone mass, microarchitecture and strength are influenced by race/ethnicity in young adult men and women. Bone 2017; 103:200-208. [PMID: 28712877 DOI: 10.1016/j.bone.2017.07.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/18/2017] [Accepted: 07/12/2017] [Indexed: 02/05/2023]
Abstract
UNLABELLED Lower rates of fracture in both Blacks compared to Whites, and men compared to women are not completely explained by differences in bone mineral density (BMD). Prior evidence suggests that more favorable cortical bone microarchitecture may contribute to reduced fracture rates in older Black compared to White women, however it is not known whether these differences are established in young adulthood or develop during aging. Moreover, prior studies using high-resolution pQCT (HR-pQCT) have reported outcomes from a fixed-scan location, which may confound sex- and race/ethnicity-related differences in bone structure. PURPOSE We determined differences in bone mass, microarchitecture and strength between young adult Black and White men and women. METHODS We enrolled 185 young adult (24.2±3.4yrs) women (n=51 Black, n=50 White) and men (n=34 Black, n=50 White) in this cross-sectional study. We used dual-energy X-ray absorptiometry (DXA) to determine areal BMD (aBMD) at the femoral neck (FN), total hip (TH) and lumbar spine (LS), as well as HR-pQCT to assess bone microarchitecture and failure load by micro-finite element analysis (μFEA) at the distal tibia (4% of tibial length). We used two-way ANOVA to compare bone outcomes, adjusted for age, height, weight and physical activity. RESULTS The effect of race/ethnicity on bone outcomes did not differ by sex, and the effect of sex on bone outcomes did not differ by race/ethnicty. After adjusting for covariates, Blacks had significantly greater FN, TH and LS aBMD compared to Whites (p<0.05 for all). Blacks also had greater cortical area, vBMD, and thickness, and lower cortical porosity, with greater trabecular thickness and total vBMD compared to Whites. μFEA-estimated FL was significantly higher among Blacks compared to Whites. Men had significantly greater total vBMD, trabecular thickness and cortical area and thickness, but greater cortical porosity than women, the net effects being a higher failure load in men than women. CONCLUSION These findings demonstrate that more favorable bone microarchitecture in Blacks compared to Whites and in men compared to women is established by young adulthood. Advantageous bone strength among Blacks and men likely contributes to their lower risk of fractures throughout life compared to their White and women counterparts.
Collapse
Affiliation(s)
- Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, THR-1051, Boston, MA 02114, USA.
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA
| | | | - Matthew Scott
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA
| | - Victoria Turkington
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA
| | - Signe Caksa
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA
| | - Katelyn I Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA
| | - Kathryn E Ackerman
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Division of Sports Medicine, Boston Children's Hospital, 319 Longwood Avenue, Boston, MA, USA 02115
| | - Chun Xu
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Materiel Command, 2405 Whittier Drive, Suite 200, Frederick, MD 21702, USA
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Materiel Command, 2405 Whittier Drive, Suite 200, Frederick, MD 21702, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Materiel Command, 2405 Whittier Drive, Suite 200, Frederick, MD 21702, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, One Overland Street, Boston, MA 02215, USA; Department of Orthopedic Surgery, Harvard Medical School, One Overland Street, Boston, MA, 02215, USA
| |
Collapse
|
80
|
Thiel A, Reumann MK, Boskey A, Wischmann J, von Eisenhart-Rothe R, Mayer-Kuckuk P. Osteoblast migration in vertebrate bone. Biol Rev Camb Philos Soc 2017. [PMID: 28631442 DOI: 10.1111/brv.12345] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three-dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Antonia Thiel
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Marie K Reumann
- Siegfried Weller Institute, BG Hospital, University of Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Adele Boskey
- Mineralized Tissue Laboratory, Research Division, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, U.S.A
| | - Johannes Wischmann
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Rüdiger von Eisenhart-Rothe
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Philipp Mayer-Kuckuk
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| |
Collapse
|
81
|
Lin W, Izu Y, Smriti A, Kawasaki M, Pawaputanon C, Böttcher RT, Costell M, Moriyama K, Noda M, Ezura Y. Profilin1 is expressed in osteocytes and regulates cell shape and migration. J Cell Physiol 2017; 233:259-268. [PMID: 28233307 DOI: 10.1002/jcp.25872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023]
Abstract
Osteocytes are the most abundant cells in bone and regulate bone metabolism in coordination with osteoblasts and osteoclasts. However, the molecules that control osteocytes are still incompletely understood. Profilin1 is an actin-binding protein that is involved in actin polymerization. Osteocytes possess characteristic dendritic process formed based on actin cytoskeleton. Here, we examined the expression of profilin1 and its function in osteocytes. Profilin1 mRNA was expressed in osteocytic MLO-Y4 cells and its levels were gradually increased along with the time in culture. With regard to functional aspect, knockdown of profilin1 by siRNA enhanced BMP-induced increase in alkaline phosphatase expression levels in MLO-Y4 cells. Profilin1 knockdown suppressed the levels of dendritic processes and migration of MLO-Y4 cells. Since aging causes an increase in ROS in the body, we further examined the effects of hydrogen peroxide on the expression of profilin1. Hydrogen peroxide treatment increased the levels of profilin1 mRNA in MLO-Y4 cells in contrast to the decline in alkaline phosphatase. Profilin1 was expressed not only in MLO-Y4cells but also in the primary cultures of osteocytes. Importantly, profilin1 mRNA levels in primary cultures of osteocytes were higher than those in primary cultures of osteoblasts. To examine in vivo role of profilin1 in osteocytes, profilin1 was conditionally knocked out by using DMP1-cre and profilin1 floxed mice. This conditional deletion of profilin1 specifically in osteocytes resulted in reduction in the levels of bone volume and bone mineral density. These data indicate that profilin1 is expressed in osteocytes and regulates cell shape, migration and bone mass.
Collapse
Affiliation(s)
- Wanting Lin
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arayal Smriti
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makiri Kawasaki
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chantida Pawaputanon
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mercedes Costell
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Yokohama City Minato Red Cross Hospital, Yokohama, Kanagawa, Japan.,Department of Orthopedic Surgery, School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|