51
|
Wu Y, Xia F, Chen M, Zhang S, Yang Z, Gong Z, Zhou X, Chen L, Wang T. Disease burden and attributable risk factors of neonatal disorders and their specific causes in China from 1990 to 2019 and its prediction to 2024. BMC Public Health 2023; 23:122. [PMID: 36650483 PMCID: PMC9845098 DOI: 10.1186/s12889-023-15050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Neonatal health is a cornerstone for the healthy development of the next generation and a driving force for the progress of population and society in the future. Updated information on the burden of neonatal disorders (NDs) are of great importance for evidence-based health care planning in China, whereas such an estimate has been lacking at national level. This study aims to estimate the temporal trends and the attributable burdens of selected risk factors of NDs and their specific causes in China from 1990 to 2019, and to predict the possible trends between 2020 and 2024. METHODS Data was explored from the Global Burden of Disease study (GBD) 2019. Six measures were used: incidence, mortality, prevalence, disability-adjusted life years (DALYs), years lived with disability (YLDs), and years of life lost (YLLs). Absolute numbers and age-standardized rates (with 95% uncertainty intervals) were calculated. The specific causes of NDs mainly included neonatal preterm birth (NPB), neonatal encephalopathy due to birth asphyxia and trauma (NE), neonatal sepsis and other neonatal infections (NS), and hemolytic disease and other neonatal jaundice (HD). An autoregressive integrated moving average (ARIMA) model was used to forecast disease burden from 2020 to 2024. RESULTS There were notable decreasing trends in the number of deaths (84.3%), incidence (30.3%), DALYs (73.5%) and YLLs (84.3%), while increasing trends in the number of prevalence (102.3%) and YLDs (172.7%) from 1990 to 2019, respectively. The corresponding age-standardized rates changed by -74.9%, 0.1%, -65.8%, -74.9%, 86.8% and 155.1%, respectively. Four specific causes of NDs followed some similar and different patterns. The prediction results of the ARIMA model shown that all measures still maintained the original trends in the next five years. Low birth weight, short gestation, ambient particulate matter pollution and household air pollution from solid fuels were the four leading risk factors. CONCLUSION The health burden due to NDs is declining and is likely to continue to decline in the future in China. Delaying the increasing burden of disability may be the next target of concern. Targeted prevention and control strategies for specific causes of NDs are urgently needed to reduce the disease burden.
Collapse
Affiliation(s)
- Yuhang Wu
- grid.216417.70000 0001 0379 7164Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fan Xia
- grid.216417.70000 0001 0379 7164Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mengshi Chen
- grid.216417.70000 0001 0379 7164Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410008 China
| | - Senmao Zhang
- grid.216417.70000 0001 0379 7164Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ziqi Yang
- grid.216417.70000 0001 0379 7164Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ziqiang Gong
- grid.216417.70000 0001 0379 7164Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xuan Zhou
- grid.216417.70000 0001 0379 7164Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lizhang Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China. .,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410008, China.
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.
| |
Collapse
|
52
|
Tao S, Yang M, Pan B, Wang Y, Tian F, Han D, Shao W, Yang W, Xie Y, Fang X, Xia M, Hu J, Kan H, Li W, Xu Y. Maternal exposure to ambient PM 2.5 perturbs the metabolic homeostasis of maternal serum and placenta in mice. ENVIRONMENTAL RESEARCH 2023; 216:114648. [PMID: 36341790 DOI: 10.1016/j.envres.2022.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Epidemiological and animal studies have shown that maternal fine particulate matters (PM2.5) exposure correlates with various adverse pregnancy outcomes such as low birth weight (LBW) of offspring. However, the underlying biological mechanisms have not been fully understood. In this study, female C57Bl/6 J mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) during pregestational and gestational periods, and metabolomics was performed to analyze the metabolic features in maternal serum and placenta by liquid chromatography-mass spectrometry (LC-MS). The partial least squares discriminate analysis (PLS-DA) displayed evident clustering of FA- and CAP-exposed samples for both maternal serum and placenta. In addition, pathway analysis identified that vitamin digestion and absorption was perturbed in maternal serum, while metabolic pathways including arachidonic acid metabolism, serotonergic synapse, 2-oxocarboxylic acid metabolism and cAMP signaling pathway were perturbed in placenta. Further analysis indicated that CAP exposure influenced the nutrient transportation capacity of placenta, by not only changing the ratios of some critical metabolites in placenta to maternal serum but also significantly altering the expressions of nutrition transporters in placenta. These findings reaffirm the importance of protecting women from PM2.5 exposure, and also advance our understanding of the toxic actions of ambient PM2.5.
Collapse
Affiliation(s)
- Shimin Tao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Mingjun Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Yuzhu Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Wenpu Shao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Wenhui Yang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Yuanting Xie
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Xinyi Fang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Minjie Xia
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Jingying Hu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
53
|
Zheng Y, Bian J, Hart J, Laden F, Soo-Tung Wen T, Zhao J, Qin H, Hu H. PM 2.5 Constituents and Onset of Gestational Diabetes Mellitus: Identifying Susceptible Exposure Windows. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2022; 291:119409. [PMID: 37151750 PMCID: PMC10162772 DOI: 10.1016/j.atmosenv.2022.119409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fine particulate matter (PM2.5) has been linked to gestational diabetes mellitus (GDM). However, PM2.5 is a complex mixture with large spatiotemporal heterogeneities, and women with early-onset GDM (i.e., diagnosed before 24th gestation week) have distinct maternal characteristics and a higher risk of worse health outcomes compared with those with late-onset GDM (i.e., diagnosed in or after 24th gestation week). We aimed to examine differential impacts of PM2.5 and its constituents on early- vs. late-onset GDM, and to identify corresponding susceptible exposure windows. We leveraged statewide linked electronic health records and birth records data in Florida in 2012-2017. Exposures to PM2.5 and its constituents (i.e., sulfate [SO4 2-], ammonium [NH4 +], nitrate [NO3 -], organic matter [OM], black carbon [BC], mineral dust [DUST], and sea-salt [SS]) were spatiotemporally linked to pregnant women based on their residential histories. Cox proportional hazards models and multinomial logistic regression were used to examine the associations of PM2.5 and its constituents with GDM and its onsets. Distributed non-linear lag models were implemented to identify susceptible exposure windows. Exposures to PM2.5, SO4 2-, NH4 +, and BC were statistically significantly associated with higher hazards of GDM. Exposures to PM2.5 during weeks 1-12 of gestation were positively associated with GDM. Associations of early-onset GDM with PM2.5 in the 1st and 2nd trimesters, SO4 2- in the 1st and 2nd trimesters, and NO3 - in the preconception and 1st trimester were considerably stronger than observations for late-onset GDM. Our findings suggest there are differential associations of PM2.5 and its constituents with early- vs. late-onset GDM, with different susceptible exposure windows. This study helps better understand the impacts of air pollution on GDM accounting for its physiological heterogeneity.
Collapse
Affiliation(s)
- Yi Zheng
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jaime Hart
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Francine Laden
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tony Soo-Tung Wen
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Huaizhen Qin
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hui Hu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
54
|
Yin F, Ge P, Wei W, Wang H, Cheng Y, Zhao F, Li D. WITHDRAWN: Human placental barrier-brain organoid-on-a-chip for modeling maternal PM2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022:160565. [PMID: 36464052 DOI: 10.1016/j.scitotenv.2022.160565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Fangchao Yin
- Medical School, Nantong University, Nantong 226001, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, 250014, China
| | - Pinghua Ge
- Shanghai Yuanhao Environmental Technology Co., Ltd., Shanghai 201100, China
| | - Wenbo Wei
- First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Hui Wang
- Medical School, Nantong University, Nantong 226001, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yan Cheng
- Medical School, Nantong University, Nantong 226001, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Dong Li
- Medical School, Nantong University, Nantong 226001, China.
| |
Collapse
|
55
|
Jiang L, Tang K, Magee LA, von Dadelszen P, Ekeroma A, Li X, Zhang E, Bhutta ZA. A global view of hypertensive disorders and diabetes mellitus during pregnancy. Nat Rev Endocrinol 2022; 18:760-775. [PMID: 36109676 PMCID: PMC9483536 DOI: 10.1038/s41574-022-00734-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/23/2022]
Abstract
Two important maternal cardiometabolic disorders (CMDs), hypertensive disorders in pregnancy (HDP) (including pre-eclampsia) and gestational diabetes mellitus (GDM), result in a large disease burden for pregnant individuals worldwide. A global consensus has not been reached about the diagnostic criteria for HDP and GDM, making it challenging to assess differences in their disease burden between countries and areas. However, both diseases show an unevenly distributed disease burden for regions with a low income or middle income, or low-income and middle-income countries (LMICs), or regions with lower sociodemographic and human development indexes. In addition to many common clinical, demographic and behavioural risk factors, the development and clinical consequences of maternal CMDs are substantially influenced by the social determinants of health, such as systemic marginalization. Although progress has been occurring in the early screening and management of HDP and GDM, the accuracy and long-term effects of such screening and management programmes are still under investigation. In addition to pharmacological therapies and lifestyle modifications at the individual level, a multilevel approach in conjunction with multisector partnership should be adopted to tackle the public health issues and health inequity resulting from maternal CMDs. The current COVID-19 pandemic has disrupted health service delivery, with women with maternal CMDs being particularly vulnerable to this public health crisis.
Collapse
Affiliation(s)
- Li Jiang
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
| | - Kun Tang
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Laura A Magee
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Peter von Dadelszen
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Alec Ekeroma
- Department of Obstetrics and Gynecology, Wellington School of Medicine, University of Otago, Wellington, New Zealand
- National University of Samoa, Apia, Samoa
| | - Xuan Li
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Enyao Zhang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zulfiqar A Bhutta
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada.
- Center of Excellence in Women and Child Health, the Aga Khan University, Karachi, Pakistan.
- Institute for Global Health & Development, the Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
56
|
Yue H, Yang X, Wu X, Geng X, Ji X, Li G, Sang N. Maternal NO 2 exposure disturbs the long noncoding RNA expression profile in the lungs of offspring in time-series patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114140. [PMID: 36209526 DOI: 10.1016/j.ecoenv.2022.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Gestation is a sensitive window to nitrogen dioxide (NO2) exposure, which may disturb fetal lung development and lung function later in life. Animal and epidemiological studies indicated that long noncoding RNAs (lncRNAs) participate in abnormal lung development induced by environmental pollutant exposure. In the present study, pregnant C57BL/6J mice were exposed to 2.5 ppm NO2 (mimicking indoor occupational exposure) or clean air, and lncRNAs expression profiles in the lungs of offspring mice were determined by lncRNA-seq on embryonic day 13.5 (E13.5), E18.5, postnatal day 1 (P1), and P14. The lung histopathology examination of offspring was performed, followed by weighted gene coexpression network analysis (WGCNA), prediction of lncRNAs-target genes, and the biological processes enrichment analysis of lncRNAs. Our results indicated that maternal NO2 exposure induced hypoalveolarization on P14 and differentially expressed lncRNAs showed a time-series pattern. Following WGCNA and enrichment analysis, 2 modules participated in development-related pathways. Importantly, the expressions of related genes were altered, some of which were confirmed to be related to abnormal vascular development and even lung diseases. The research points out that the maternal NO2 exposure leads to abnormal lung development in offspring that might be related to altered lncRNAs expression profiles with time-series-pattern.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xilin Geng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
57
|
Assavanopakun P, Sapbamrer R, Kumfu S, Chattipakorn N, Chattipakorn SC. Effects of air pollution on telomere length: Evidence from in vitro to clinical studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120096. [PMID: 36067971 DOI: 10.1016/j.envpol.2022.120096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Air pollution remains the major environmental problem globally. There is extensive evidence showing that the variety of air pollutants from environmental and occupational exposures cause adverse effects to our health. The clinical symptoms of those effects may present at a late stage, so surveillance is difficult to manage. Several biomarkers have been used for the early detection of health issues following exposure to air pollution, including the use of telomere length which indicates cellular senescence in response to oxidative stress. Oxidative stress is one of the most plausible mechanisms associated with exposure to air pollutants. Some specific contexts including age groups, gender, ethnicity, occupations, and health conditions, showed significant alterations in telomere length after exposure to air pollutants. Several reports demonstrated both negative and positive associations between telomere length and air pollution, the studies using different concentrations and exposure times to air pollution on the study of telomere lengths. Surprisingly, some studies reported that low levels of exposure to air pollutants (lower than regulated levels) caused the alterations in telomere length. Those findings suggest that telomere length could be one of most practical biomarkers in air pollution surveillance. Therefore, this review aimed to summarize and discuss the relationship between telomere length and exposure to air pollution. The knowledge from this review will be beneficial for the planning of public health to reduce health problems in the general population, particularly in vulnerable people, who still live in areas with high air pollution.
Collapse
Affiliation(s)
- Pheerasak Assavanopakun
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
58
|
Genin M, Lecoeuvre A, Cuny D, Subtil D, Chevalier G, Ficheur G, Occelli F, Garabedian C. The association between the incidence of preterm birth and overall air pollution: A nationwide, fine-scale, spatial study in France from 2012 to 2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120013. [PMID: 36007792 DOI: 10.1016/j.envpol.2022.120013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Michael Genin
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France.
| | - Adrien Lecoeuvre
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France
| | - Damien Cuny
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000 Lille, France
| | - Damien Subtil
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France; CHU Lille, Department of Obstetrics, F-59000, Lille, France
| | - Geoffroy Chevalier
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France; CHU Lille, Department of Obstetrics, F-59000, Lille, France
| | - Grégoire Ficheur
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France
| | - Florent Occelli
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000 Lille, France
| | - Charles Garabedian
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France; CHU Lille, Department of Obstetrics, F-59000, Lille, France
| |
Collapse
|
59
|
O’Sharkey K, Xu Y, Chavez T, Johnson M, Cabison J, Rosales M, Grubbs B, Toledo-Corral CM, Farzan SF, Bastain T, Breton CV, Habre R. In-utero personal exposure to PM 2.5 impacted by indoor and outdoor sources and birthweight in the MADRES cohort. ENVIRONMENTAL ADVANCES 2022; 9:100257. [PMID: 36778968 PMCID: PMC9912940 DOI: 10.1016/j.envadv.2022.100257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND In-utero exposure to outdoor particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) is linked with low birthweight. However, previous results are mixed, likely due to measurement error introduced by estimating personal exposure from ambient data. This study investigated the effect of total personal PM2.5 exposure on birthweight and whether it differed when it was more heavily impacted by sources of indoor vs outdoor origin in the MADRES cohort study. METHODS Personal PM2.5 exposure was measured in 205 pregnant women in the 3rd trimester using 48 h integrated, filter-based sampling. Linear regression was used to test the association between personal PM2.5 exposure and birthweight, adjusting for key covariates. Interactions of PM2.5 with variables representing indoor sources of PM2.5, home ventilation, or time spent indoors tested whether the effect of total PM2.5 on birthweight varied when it was more impacted by sources of indoor vs outdoor origin. RESULTS In a sample of largely Hispanic (81%) pregnant women, total personal PM2.5 was not significantly associated with birthweight (β = 38.6 per 1SD increase in PM2.5; 95% CI:-21.1, 98.2). This association however, differed by home type (single family home: 156.9 (26.9, 287.0), 2-4 attached units:-16.6 (-111.9, 78.7), 5+ units:-62.6 (-184.9, 59.6), missing: 145.4 (-4.1, 294.9), interaction p = 0.028) and by household air conditioner use (none of the time: -27.6 (-101.5, 46.3) vs. some of the time: 139.9 (42.9, 237.0), interaction p = 0.008) Additionally, the effect of personal PM2.5 on birthweight varied by time spent indoors (none or little of the time: - 45.1 (-208.3, 118.1) vs. most or all of the time: 57.1 (-7.3, 121.6), interaction p = 0.255). CONCLUSIONS While no significant association between total personal PM2.5 exposure and birthweight was found, there was evidence that multi-unit housing (vs. single-family homes), candle and/or incense smoke, and greater outdoor source contributions to personal PM2.5 were more strongly associated with lower birthweight.
Collapse
Affiliation(s)
- Karl O’Sharkey
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
| | - Yan Xu
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, United States
| | - Thomas Chavez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
| | - Mark Johnson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
| | - Jane Cabison
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
| | - Marisela Rosales
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
| | - Brendan Grubbs
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
| | - Claudia M. Toledo-Corral
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
- Department of Health Sciences, California State University Northridge, Northridge, CA, United States
| | - Shohreh F. Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
| | - Theresa Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2001 N Soto St Rm 102M, Los Angeles, CA 90089, United States
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
60
|
He J, Cao N, Hei J, Wang H, He J, Liu Y, Ren Y. Relationship between ambient air pollution and preterm birth: a retrospective birth cohort study in Yan'an, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73271-73281. [PMID: 35624365 DOI: 10.1007/s11356-022-20852-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Preterm birth (PTB) has been associated with exposure to air pollution, but it is unclear whether effects might vary among air pollution sources in a valley city, and yet few studies have investigated refined susceptible windows for PTB. We performed a retrospective birth cohort study in Yan'an city, a typical valley city in the west of China, and analyze the effects of air pollutants on premature delivery, identify critical windows for maternal air pollutants exposure and PTB. The pregnant women who gave birth in the Affiliated Hospital of Yan'an University and Yan'an people's Hospital from January 1, 2018 to December 31, 2019 were selected as the research objects. A questionnaire survey and medical records were conducted. The daily average concentrations of particulate matter with aerodynamic diameters of ≤ 2.5 μm (PM2.5) and ≤ 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2) and ozone (O3) in Yan'an City from January 1, 2017 to December 31, 2019 were collected. After controlling the confounding factors of PTB by logistic regression model, the effect of air pollutants on preterm birth was analyzed. After controlling the confounding factors such as maternal age, gestational times and gestational hypertension syndrome, PTB was associated with exposure to third trimester PM10 (adjusted odds ratio [aOR] = 1.019, 95% confidence interval [95%CI] = 1.004-1.035). PTB risk increased with second trimester exposure to SO2 (aOR = 1.039, CI = 1.011-1.068), also with third trimester (aOR = 1.031, CI = 1.010-1.053). PTB was also associated with third trimester O3 (aOR = 1.023, CI = 1.005-1.041). This study indicates that maternal exposure to PM10, SO2 and O3 might lead to increased risk of PTB, and critical exposure windows were inconsistent.
Collapse
Affiliation(s)
- Jinwei He
- Medical School of Yan'an University, No. 580 Shengdi Road, Yan'an, 716000, Shaanxi Province, China.
| | - Na Cao
- Medical School of Yan'an University, No. 580 Shengdi Road, Yan'an, 716000, Shaanxi Province, China
| | - Jiangrong Hei
- Affiliated Hospital of Yan'an University, No. 34 North Street, Yan'an, Shaanxi Province, China
| | - Huiling Wang
- Yan'an People's Hospital, No. 16 Qilipu Street, Yan'an, Shaanxi Province, China
| | - Jinrong He
- College of Mathematics and Computer Science, No. 580 Shengdi Road, Yan'an, 716000, Shaanxi Province, China
| | - Yizhao Liu
- Medical School of Yan'an University, No. 580 Shengdi Road, Yan'an, 716000, Shaanxi Province, China
| | - Yuanyuan Ren
- Medical School of Yan'an University, No. 580 Shengdi Road, Yan'an, 716000, Shaanxi Province, China
| |
Collapse
|
61
|
Estimating the burden of disease attributable to household air pollution from cooking with solid fuels in South Africa for 2000, 2006 and 2012. S Afr Med J 2022; 112:718-728. [DOI: 10.7196/samj.2022.v112i8b.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 02/22/2023] Open
Abstract
Background. Household air pollution (HAP) due to the use of solid fuels for cooking is a global problem with significant impacts on human health, especially in low- and middle-income countries. HAP remains problematic in South Africa (SA). While electrification rates have improved over the past two decades, many people still use solid fuels for cooking owing to energy poverty.Objectives. To estimate the disease burden attributable to HAP for cooking in SA over three time points: 2000, 2006 and 2012. Methods. Comparative risk assessment methodology was used. The proportion of South Africans exposed to HAP was assessed and assigned the estimated concentration of particulate matter with a diameter <2.5 μg/m3(PM2.5) associated with HAP exposure. Health outcomes and relative risks associated with HAP exposure were identified. Population-attributable fractions and the attributable burden of disease due to HAP exposure (deaths, years of life lost, years lived with disability and disability-adjusted life years (DALYs)) for SA were calculated. Attributable burden was estimated for 2000, 2006 and 2012. For the year 2012, we estimated the attributable burden at provincial level.Results. An estimated 17.6% of the SA population was exposed to HAP in 2012. In 2012, HAP exposure was estimated to have caused 8 862 deaths (95% uncertainty interval (UI) 8 413 - 9 251) and 1.7% (95% UI 1.6% - 1.8%) of all deaths in SA, respectively. Loss of healthy life years comprised 208 816 DALYs (95% UI 195 648 - 221 007) and 1.0% of all DALYs (95% UI 0.95% - 1.0%) in 2012, respectively. Lower respiratory infections and cardiovascular disease contributed to the largest proportion of deaths and DALYs. HAP exposure due to cooking varied across provinces, and was highest in Limpopo (50.0%), Mpumalanga (27.4%) and KwaZulu-Natal (26.4%) provinces in 2012. Age standardised burden measures showed that these three provinces had the highest rates of death and DALY burden attributable to HAP.Conclusion. The burden of disease from HAP due to cooking in SA is of significant concern. Effective interventions supported by legislation and policy, together with awareness campaigns, are needed to ensure access to clean household fuels and improved cook stoves. Continued and enhanced efforts in this regard are required to ensure the burden of disease from HAP is curbed in SA.
Collapse
|
62
|
Zhu W, Gu Y, Li M, Zhang Z, Liu J, Mao Y, Zhu Q, Zhao L, Shen Y, Chen F, Xia L, He L, Du J. Integrated single-cell RNA-seq and DNA methylation reveal the effects of air pollution in patients with recurrent spontaneous abortion. Clin Epigenetics 2022; 14:105. [PMID: 35999615 PMCID: PMC9400245 DOI: 10.1186/s13148-022-01327-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Maternal air pollutants exposure is associated with a number of adverse pregnancy outcomes, including recurrent spontaneous abortion (RSA). However, the underlying mechanisms are still unknown. The present study aimed to understand the mechanism of RSA and its relationship with air pollution exposure. We compared data of decidual tissue from individuals with induced abortions and those with RSA by bulk RNA sequencing (RNA-seq), reduced representation bisulfite sequencing (RRBS), and single-cell RNA sequencing (scRNA-seq). Differentially expressed genes (DEGs) were verified using RT-qPCR and pyrosequencing. A logistic regression model was used to investigate the association between air pollutants exposure and RSA. Results We identified 98 DEGs with aberrant methylation by overlapping the RRBS and RNA-seq data. Nineteen immune cell subsets were identified. Compared with normal controls, NK cells and macrophages accounted for different proportions in the decidua of patients with RSA. We observed that the methylation and expression of IGF2BP1 were different between patients with RSA and controls. Furthermore, we observed significant positive associations between maternal air pollutants exposure during the year prior to pregnancy and in early pregnancy and the risk of RSA. Mediation analyses suggested that 24.5% of the effects of air pollution on the risk of RSA were mediated through IGF2BP1 methylation. Conclusion These findings reveal a comprehensive cellular and molecular mechanism of RSA and suggest that air pollution might cause pregnancy loss by affecting the methylation level of the IGF2BP1 promoter. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01327-2.
Collapse
Affiliation(s)
- Weiqiang Zhu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Yan Gu
- Department of Gynecology and Obstetrics Outpatient, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Min Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Junwei Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Yanyan Mao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Qianxi Zhu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.,Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yupei Shen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Fujia Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Lingjin Xia
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
63
|
de Prado-Bert P, Warembourg C, Dedele A, Heude B, Borràs E, Sabidó E, Aasvang GM, Lepeule J, Wright J, Urquiza J, Gützkow KB, Maitre L, Chatzi L, Casas M, Vafeiadi M, Nieuwenhuijsen MJ, de Castro M, Grazuleviciene R, McEachan RRC, Basagaña X, Vrijheid M, Sunyer J, Bustamante M. Short- and medium-term air pollution exposure, plasmatic protein levels and blood pressure in children. ENVIRONMENTAL RESEARCH 2022; 211:113109. [PMID: 35292243 DOI: 10.1016/j.envres.2022.113109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 05/26/2023]
Abstract
Exposure to air pollution influences children's health, however, the biological mechanisms underlying these effects are not completely elucidated. We investigated the association between short- and medium-term outdoor air pollution exposure with protein profiles and their link with blood pressure in 1170 HELIX children aged 6-11 years. Different air pollutants (NO2, PM10, PM2.5, and PM2.5abs) were estimated based on residential and school addresses at three different windows of exposure (1-day, 1-week, and 1-year before clinical and molecular assessment). Thirty-six proteins, including adipokines, cytokines, or apolipoproteins, were measured in children's plasma using Luminex. Systolic and diastolic blood pressure (SBP and DBP) were measured following a standardized protocol. We performed an association study for each air pollutant at each location and time window and each outcome, adjusting for potential confounders. After correcting for multiple-testing, hepatocyte growth factor (HGF) and interleukin 8 (IL8) levels were positively associated with 1-week home exposure to some of the pollutants (NO2, PM10, or PM2.5). NO2 1-week home exposure was also related to higher SBP. The mediation study suggested that HGF could explain 19% of the short-term effect of NO2 on blood pressure, but other study designs are needed to prove the causal directionality between HGF and blood pressure.
Collapse
Affiliation(s)
- Paula de Prado-Bert
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Audrius Dedele
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004 Paris, France
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Gunn Marit Aasvang
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, 38000, Grenoble, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal, UK
| | - Jose Urquiza
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Léa Maitre
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA; Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Maribel Casas
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Mark J Nieuwenhuijsen
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal, UK
| | - Xavier Basagaña
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
64
|
Nyadanu SD, Dunne J, Tessema GA, Mullins B, Kumi-Boateng B, Lee Bell M, Duko B, Pereira G. Prenatal exposure to ambient air pollution and adverse birth outcomes: An umbrella review of 36 systematic reviews and meta-analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119465. [PMID: 35569625 DOI: 10.1016/j.envpol.2022.119465] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Multiple systematic reviews and meta-analyses linked prenatal exposure to ambient air pollutants to adverse birth outcomes with mixed findings, including results indicating positive, negative, and null associations across the pregnancy periods. The objective of this study was to systematically summarise systematic reviews and meta-analyses on air pollutants and birth outcomes to assess the overall epidemiological evidence. Systematic reviews with/without meta-analyses on the association between air pollutants (NO2, CO, O3, SO2, PM2.5, and PM10) and birth outcomes (preterm birth; stillbirth; spontaneous abortion; birth weight; low birth weight, LBW; small-for-gestational-age) up to March 30, 2022 were included. We searched PubMed, CINAHL, Scopus, Medline, Embase, and the Web of Science Core Collection, systematic reviews repositories, grey literature databases, internet search engines, and references of included studies. The consistency in the directions of the effect estimates was classified as more consistent positive or negative, less consistent positive or negative, unclear, and consistently null. Next, the confidence in the direction was rated as either convincing, probable, limited-suggestive, or limited non-conclusive evidence. Final synthesis included 36 systematic reviews (21 with and 15 without meta-analyses) that contained 295 distinct primary studies. PM2.5 showed more consistent positive associations than other pollutants. The positive exposure-outcome associations based on the entire pregnancy period were more consistent than trimester-specific exposure averages. For whole pregnancy exposure, a more consistent positive association was found for PM2.5 and birth weight reductions, particulate matter and spontaneous abortion, and SO2 and LBW. Other exposure-outcome associations mostly showed less consistent positive associations and few unclear directions of associations. Almost all associations showed probable evidence. The available evidence indicates plausible causal effects of criteria air pollutants on birth outcomes. To strengthen the evidence, more high-quality studies are required, particularly from understudied settings, such as low-and-middle-income countries. However, the current evidence may warrant the adoption of the precautionary principle.
Collapse
Affiliation(s)
- Sylvester Dodzi Nyadanu
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia; Education, Culture, and Health Opportunities (ECHO) Ghana, ECHO Research Group International, P. O. Box 424, Aflao, Ghana.
| | - Jennifer Dunne
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia
| | - Gizachew Assefa Tessema
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia; School of Public Health, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Ben Mullins
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia
| | - Bernard Kumi-Boateng
- Department of Geomatic Engineering, University of Mines and Technology, P. O. Box 237, Tarkwa, Ghana
| | - Michelle Lee Bell
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Bereket Duko
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia; Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway; enAble Institute, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia
| |
Collapse
|
65
|
Zhang B, Gong X, Han B, Chu M, Gong C, Yang J, Chen L, Wang J, Bai Z, Zhang Y. Ambient PM 2.5 exposures and systemic inflammation in women with early pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154564. [PMID: 35302014 DOI: 10.1016/j.scitotenv.2022.154564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The association between ambient fine particulate matter (PM2.5) and systemic inflammation in women with early pregnancy is unclear. This study estimated the effects of PM2.5 exposures on inflammatory biomarkers in women with normal early pregnancy (NEP) or clinically recognized early pregnancy loss (CREPL). Serum interleukin-1beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured in 228 early pregnant women recruited in Tianjin, China. Maternal PM2.5 exposures at lag 0 through lag 30 before blood collection were estimated using temporally-adjusted land use regression models. Daily exposures to ambient PM10, NO2, SO2, CO and 8-hours maximum ozone were estimated using city-level concentrations. Single-day lag effects at lag 0 through lag 7 were estimated using multivariable linear regression models. Distributed lag effects and cumulative effects over the preceding seven days and 30 days were estimated using distributed lag non-linear models. Serum IL-1β (8.0% increase at lag 3), IL-6 (33.9% increase at lag 5) and TNF-α (12.7% increase at lag 5) in early pregnant women were significantly increased with an interquartile range increase in PM2.5 exposures adjusted for temporal confounders and demographic characteristics. These effects were robust in several two-pollutant models. Distributed lag effects over the preceding 30 days also showed that the three cytokines were significantly increased with PM2.5 on some lag days. Among all cumulative effects of PM2.5 on the three cytokines in all subjects or in the two groups, only IL-6 was significantly increased in CREPL women over the preceding seven days and 30 days. No significant cumulative effect of PM2.5 was observed in NEP women. In conclusion, exposure to ambient PM2.5 may induce systemic inflammation in women in the first trimester of pregnancy. Whether the PM2.5-related cumulative increase in maternal IL-6 is involved in the pathogenic mechanisms of early pregnancy loss needs to be identified in future research.
Collapse
Affiliation(s)
- Bumei Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Mengyu Chu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Junnan Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
66
|
Zeng Z, Xu X, Wang Q, Zhang Z, Meng P, Huo X. Maternal exposure to atmospheric PM 2.5 and fetal brain development: Associations with BAI1 methylation and thyroid hormones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119665. [PMID: 35738517 DOI: 10.1016/j.envpol.2022.119665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023]
Abstract
Maternal exposure to atmospheric fine particulate matter (PM2.5) during pregnancy is associated with adverse fetal development, including abnormal brain development. However, the underlying mechanisms and influencing factors remain uncertain. This study investigated the roles of DNA methylation in genes involving neurodevelopment and thyroid hormones (THs) in fetal brain development after maternal exposure to PM2.5 from e-waste. Among 939 healthy pregnant women recruited from June 2011 to September 2012, 101 e-waste-exposed and 103 reference mother-infant pairs (204 pairs totally) were included. Annual ground-level PM2.5 concentrations over e-waste-exposed area (116.38°E, 23.29°N) and reference area (116.67°E, 23.34°N) in 2011, 2012 were obtained by estimates and maternal exposure was evaluated by calculating individual chronic daily intakes (CDIs) of PM2.5. Methylation and THs including thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) level were measured in umbilical cord blood collected shortly after delivery. We found higher ground-level PM2.5 concentrations led to greater individual CDI of PM2.5 in e-waste-exposed pregnant women. After adjustment for gender and birth BMI, significant mediation effects on the adverse associations of maternal PM2.5 exposure with birth head circumference were observed for methylations at positions +13 and + 32 (respectively mediated proportion of 9.8% and 5.3%, P < 0.05 and P < 0.01) in the brain-specific angiogenesis inhibitor 1 (BAI1) gene, but not for methylations in the catenin cadherin-associated protein, alpha 2 (CTNNA2) gene. BAI1 (position +13) methylation was also significantly correlated with FT3 levels (rs = -0.156, P = 0.032), although maternal CDI of PM2.5 was positively associated with higher odds of abnormal TSH levels (OR = 5.03, 95% CI: 1.00, 25.20, P = 0.05) rather than FT3 levels. Our findings suggest that methylation (likely linked to THs) in neonates may play mediation roles associated with abnormal brain development risk due to maternal exposure to atmospheric PM2.5 from e-waste.
Collapse
Affiliation(s)
- Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Peipei Meng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW Climate change is the biggest public health threat of the twenty-first century but its impact on the perinatal period has only recently received attention. This review summarizes recent literature regarding the impacts of climate change and related environmental disasters on pregnancy health and provides recommendations to inform future adaptation and mitigation efforts. RECENT FINDINGS Accumulating evidence suggests that the changing climate affects pregnancy health directly via discrete environmental disasters (i.e., wildfire, extreme heat, hurricane, flood, and drought), and indirectly through changes in the natural and social environment. Although studies vary greatly in design, analytic methods, and assessment strategies, they generally converge to suggest that climate-related disasters are associated with increased risk of gestational complication, pregnancy loss, restricted fetal growth, low birthweight, preterm birth, and selected delivery/newborn complications. Window(s) of exposure with the highest sensitivity are not clear, but both acute and chronic exposures appear important. Furthermore, socioeconomically disadvantaged populations may be more vulnerable. Policy, clinical, and research strategies for adaptation and mitigation should be continued, strengthened, and expanded with cross-disciplinary efforts. Top priorities should include (a) reinforcing and expanding policies to further reduce emission, (b) increasing awareness and education resources for healthcare providers and the public, (c) facilitating access to quality population-based data in low-resource areas, and (d) research efforts to better understand mechanisms of effects, identify susceptible populations and windows of exposure, explore interactive impacts of multiple exposures, and develop novel methods to better quantify pregnancy health impacts.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, 5200 N Lake Rd, Merced, CA, 95343, USA.
| |
Collapse
|
68
|
Jabin N, Salam MT, Rahman MM, Sharna TI, Franklin M, Ahmed A, Quaiyum MA, Islam T. Social inequality influences the impact of household air pollution on birth outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153405. [PMID: 35092774 PMCID: PMC8969117 DOI: 10.1016/j.scitotenv.2022.153405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Studies demonstrated associations between maternal exposure to household air pollution from cooking and increased risk of adverse birth outcomes in offspring; however, the modifying effect of socioeconomic status (SES) on this association has not been explored. OBJECTIVES In a cohort of pregnant women with 800 single live births between 2016 and 2017 in rural and semi urban areas of Bangladesh, we tested the hypotheses that kitchen location and cooking fuel type affect birth outcomes (birth weight, low birth weight [LBW] and small for gestational age [SGA]) and these associations vary by SES. METHODS Demographic characteristics including SES, kitchen location and fuel type were assessed in prenatal visits. Neonatal anthropometric measurements were recorded within 72 h of births. We performed multivariable linear and logistic regressions adjusting for potential confounders to test the study hypotheses. RESULTS For newborns from households with indoor kitchens, adjusted mean birth weight was 65.13 g (95% confidence interval [CI]: -118.37, -11.90) lower and the odds of LBW and SGA were 58% (odds ratio [OR]:1.58, 95% CI: 1.12, 2.24) and 41% (OR: 1.41, 95% CI: 1.05, 1.92) higher compared to those born in households with outdoor kitchens. We found SES significantly modified the associations between kitchen location and birth outcomes in households using biomass fuels. Newborns from low SES households with indoor kitchens had 89 g lower birth weight and a higher odds of being born with LBW (OR: 2.08, 95% CI 1.23, 3.58), and SGA (OR: 1.70, 95% CI 1.06, 2.76) than those born in high SES households using outdoor kitchens. CONCLUSIONS In areas with poor access or affordability to clean fuel such as in our study population, cooking in an outdoor kitchen can reduce the burden of LBW and SGA, particularly for low SES households. Promoting outdoor kitchens is a possible intervention strategy to mitigate adverse birth outcomes.
Collapse
Affiliation(s)
- Nusrat Jabin
- Department of Population and Public Health Sciences, University of Southern California, USA
| | - Muhammad T Salam
- Department of Population and Public Health Sciences, University of Southern California, USA; Department of Psychiatry, Kern Medical, Bakersfield, CA, USA
| | - Md Mostafijur Rahman
- Department of Population and Public Health Sciences, University of Southern California, USA
| | - Tasnia Ishaque Sharna
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - Meredith Franklin
- Department of Population and Public Health Sciences, University of Southern California, USA
| | - Anisuddin Ahmed
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - M A Quaiyum
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - Talat Islam
- Department of Population and Public Health Sciences, University of Southern California, USA.
| |
Collapse
|
69
|
Chen J, Wu S, Fang J, Liu Z, Shang X, Guo X, Deng F, Guo L. Association of exposure to fine particulate matter wave over the preconception and pregnancy periods with adverse birth outcomes: Results from the project ELEFANT. ENVIRONMENTAL RESEARCH 2022; 205:112473. [PMID: 34863986 DOI: 10.1016/j.envres.2021.112473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND No study has explored the effects of sustained maternal exposure to high-level ambient fine particulate matter (PM2.5) within a short period, i.e., PM2.5 wave, on adverse birth outcomes, though increasing epidemiological studies demonstrated that exposure to single days of high ambient PM2.5 could increase risks of adverse birth outcomes. In this study, we aim to evaluate associations of maternal PM2.5 wave exposure around pregnancy with preterm birth (PTB), small for gestational age (SGA), and large for gestational age (LGA). METHODS Totally 10,916 singleton pregnant women from all 16 districts in Tianjin, China, and their followed-up birth outcomes were included in this study. We defined PM2.5 wave as at least 2 consecutive days with daily average PM2.5 concentration exceeding 75 μg/m3, and 90th, 92.5th, 95th, 97.5th, 99th percentiles of PM2.5 distribution during the study period in Tianjin, respectively. Cox proportional hazard model was applied to evaluate the durational effects of PM2.5 wave during each exposure window on PTB, SGA, and LGA after adjusting for potential confounders. RESULTS Exposure to PM2.5 wave over the preconception and pregnancy periods was associated with increased risks of adverse birth outcomes. For PTB, the strongest association was found during the first trimester when PM2.5 wave was defined as at least 4 consecutive days with daily average PM2.5 concentration >90th (HR, 10.46; 95% CI, 6.23-17.54); and for SGA (HR, 6.23; 95% CI, 3.34-11.64) and LGA (HR, 4.70; 95% CI, 3.35-6.59), the strongest associations both were found when PM2.5 wave was defined as at least 2 consecutive days with daily average PM2.5 concentration >99th. Additionally, the risks of adverse birth outcomes generally increased at higher PM2.5 thresholds or longer durations of PM2.5 wave. CONCLUSION Prolonged exposure to high-level PM2.5 over preconception and pregnancy periods was associated with increasing risks of PTB, SGA and LGA.
Collapse
Affiliation(s)
- Juan Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Junkai Fang
- Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China.
| |
Collapse
|
70
|
He Y, Jiang Y, Yang Y, Xu J, Zhang Y, Wang Q, Shen H, Zhang Y, Yan D, Peng Z, Liu C, Wang W, Schikowski T, Li H, Yan B, Ji JS, Chen A, van Donkelaar A, Martin R, Chen R, Kan H, Cai J, Ma X. Composition of fine particulate matter and risk of preterm birth: A nationwide birth cohort study in 336 Chinese cities. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127645. [PMID: 34920912 DOI: 10.1016/j.jhazmat.2021.127645] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Potential hazards of fine particulate matter (PM2.5) constituents on preterm birth (PTB) have rarely been explored in China. OBJECTIVE To quantify the associations of PM2.5 constituents with PTB. METHODS This study was based on a nationwide cohort of 3,723,169 live singleton births delivered between January 2010 and December 2015 in China. We applied satellite-based estimates of 5 PM2.5 constituents (organic carbon; black carbon; sulfate; ammonium; and nitrate). We used Cox proportional hazards regression models adjusted for individual covariates, temperature, humidity, and seasonality to evaluate the associations. RESULTS During the entire pregnancy, each interquartile range (29 μg/m3) increase in PM2.5 concentrations was associated with a 7% increase in PTB risk [hazard ratio (HR): 1.07; 95% confidence interval (CI): 1.07-1.08). We observed the largest effect estimates on carbonaceous components (HR: 1.09; 95% CI: 1.08-1.10 for organic carbon and black carbon). Early pregnancy appeared to be the critical exposure window for most constituents. Women who were older, exposed to second-hand smoke, overweight or obese before pregnancy, conceived during winter, and living in northern China or rural areas were more susceptible. CONCLUSIONS Carbonaceous components of PM2.5 were associated with higher PTB risk. Findings on characteristics of vulnerability underlined targeted protections on susceptible subgroups.
Collapse
Affiliation(s)
- Yuan He
- National Research Institute for Health and Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ying Yang
- National Research Institute for Health and Family Planning, Beijing, China
| | - Jihong Xu
- National Research Institute for Health and Family Planning, Beijing, China
| | - Ya Zhang
- National Research Institute for Health and Family Planning, Beijing, China
| | - Qiaomei Wang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Haiping Shen
- National Research Institute for Health and Family Planning, Beijing, China
| | - Yiping Zhang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Donghai Yan
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Zuoqi Peng
- National Research Institute for Health and Family Planning, Beijing, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Beizhan Yan
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, USA
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Xu Ma
- National Research Institute for Health and Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China.
| |
Collapse
|
71
|
MoghaddamHosseini V, Dowlatabadi A, Najafi ML, Ghalenovi M, Pajohanfar NS, Ghezi S, Mehrabadi S, Estiri EH, Miri M. Association of traffic-related air pollution with Newborn's anthropometric indexes at birth. ENVIRONMENTAL RESEARCH 2022; 204:112000. [PMID: 34480947 DOI: 10.1016/j.envres.2021.112000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
An emerging body of evidence has associated exposure to traffic-related air pollution (TRAP) during pregnancy with birth outcomes. However, the evidence on the association of TRAP exposure and neonatal anthropometric measurements (NAPM) in low and middle-income countries is very scarce yet. Therefore, we investigate the association of prenatal exposure to indicators of traffic and ambient particulate matter (PM) with NAPM. This cross-sectional study was based on hospital medical records of 4053 mother-neonate pairs between May 16, 2016, and December 5, 2018. PMs were estimated at residential addresses based on validated spatiotemporal models. Moreover, total street length in 100, 300 and 500m buffers around the home, residential distance to the ring road, major roads, heavy-traffic lights, gas station, motorway junction, bank, square, bus terminal, public parking and industrial land-use were calculated as indicators of traffic. The head circumference (HC), birth weight (BW) and birth length (BL) of neonates were collected as NAPM. Multivariate regression models were applied to evaluate the relationship between PMs and indicators of traffic with NAPM, controlled for relevant covariates. The median (IQR) of BW, BL, and HC of newborns were 3250 (592) gr, 51.0 (3.5) cm, 35 (2) cm, respectively. The adjusted models revealed that higher exposure to PM2.5 and PM10 was significantly related with lower BW and BL. Similar results were observed for total street length in a 100 m buffer around maternal home with BW and BL. Moreover, higher distance to heavy traffic lights was significantly associated with higher BW and BL. An IQR increase in PM10 was significantly related to lower HC (95% CI: 0.11, -0.01, P-value = 0.03). An increase in distance from residential address to heavy traffic lights, ring roads, bus terminal, and transportation land-use was associated with higher HC. Overall, our findings suggested that higher prenatal exposure to TRAP was related with lower BW, BL and HC.
Collapse
Affiliation(s)
| | - Afshin Dowlatabadi
- Environmental Science and Technology Research Center, Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Ghalenovi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nasim Sadat Pajohanfar
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Saeede Ghezi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Saide Mehrabadi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Elahe Hasannejad Estiri
- Non-communicable Disease Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Miri
- Non-communicable Disease Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
72
|
Wang L, Fang L, Fang Z, Zhang M, Zhang L. Assessment of the association between prenatal exposure to multiple ambient pollutants and preterm birth: A prospective cohort study in Jinan, east China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113297. [PMID: 35149411 DOI: 10.1016/j.ecoenv.2022.113297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Air pollution has been documented with a series of adverse pregnancy outcomes, yet their reproductive and developmental toxicity on human beings has not been fully elucidated. Here, we analyzed the geographic distribution of Jinan and examined its contribution to air pollution. After adjusting demographic variables and environmental co-pollutants, we built statistical models based on 424 couples and checked different air pollutants on their pregnancy outcomes. We find that Jinan is tightly surrounded by mountains from 3 of 4 sides, geographically resulting in a typical basin texture that hinders the diffusion of ambient pollutants. Of 424 pregnant women enrolled in this study, 17 subjects were diagnosed with preterm birth. Using air quality index (AQI) as an integrated indicator of PM10, PM2.5, SO2, NO2, CO, and O3, we found that each interquartile range (IQR) increase in AQI was associated with 11% increased odds of preterm birth. Also, elevating PM2.5, PM10, SO2, and O3 led to different increased risk levels of preterm birth. By running the generalized additive model analyses, the association of AQI and preterm birth was further confirmed. In conclusion, based on samples in Jinan, east China, prenatal exposure to multiple ambient pollutants is associated with reduced gestational age and increased risk of preterm birth.
Collapse
Affiliation(s)
- Lifeng Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Lei Fang
- School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
73
|
Zhou W, Ming X, Yang Y, Hu Y, He Z, Chen H, Li Y, Zhou X, Yin P. Association between Maternal Exposure to Ambient Air Pollution and the Risk of Preterm Birth: A Birth Cohort Study in Chongqing, China, 2015-2020. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042211. [PMID: 35206398 PMCID: PMC8871940 DOI: 10.3390/ijerph19042211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
Recent study results on the association between maternal exposure to ambient air pollution with preterm birth have been inconsistent. The sensitive window of exposure and influence level of air pollutants varied greatly. We aimed to explore the association between maternal exposure to ambient air pollutants and the risk of preterm birth, and to estimate the sensitive exposure time window. A total of 572,116 mother–newborn pairs, daily concentrations of air pollutants from nearest monitoring stations were used to estimate exposures for each participant during 2015–2020 in Chongqing, China. We applied a generalized additive model and estimated RRs and 95% CIs for preterm birth in each trimester and the entire pregnancy period. In the single-pollutant model, we observed that each 10 μg/m3 increase in PM2.5 had a statistically significant effect on the third trimester and entire pregnancy, with RR = 1.036 (95% CI: 1.021, 1.051) and RR = 1.101 (95% CI: 1.075, 1.128), respectively. Similarly, for each 10 μg/m3 increase in PM10, there were 2.7% (RR = 1.027, 95% CI: 1.016, 1.038) increase for PTB on the third trimester, and 3.8% (RR = 1.038, 95% CI: 1.020, 1.057) increase during the whole pregnancy. We found that for each 10 mg/m3 CO increases, the relative risk of PTB increased on the first trimester (RR = 1.081, 95% CI: 1.007, 1.162), second trimester (RR = 1.116, 95% CI: 1.035, 1.204), third trimester (RR = 1.167, 95% CI: 1.090, 1.250) and whole pregnancy (RR = 1.098, 95% CI: 1.011, 1.192). No statistically significant RR was found for SO2 and NO2 on each trimester of pregnancy. Our study indicates that maternal exposure to high levels of PM2.5 and PM10 during pregnancy may increase the risk for preterm birth, especially for women at the late stage of pregnancy. Statistically increased risks of preterm birth were associated with CO exposure during each trimester and entire pregnancy. Reducing exposure to ambient air pollutants for pregnant women is clearly necessary to improve the health of infants.
Collapse
Affiliation(s)
- Wenzheng Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Xin Ming
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Yunping Yang
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Yaqiong Hu
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Ziyi He
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Hongyan Chen
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Yannan Li
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Xiaojun Zhou
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
- Correspondence: (X.Z.); (P.Y.)
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Correspondence: (X.Z.); (P.Y.)
| |
Collapse
|
74
|
Hood RB, Liang D, Tang Z, Kloog I, Schwartz J, Laden F, Jones D, Gaskins AJ. Length of PM 2.5 exposure and alterations in the serum metabolome among women undergoing infertility treatment. Environ Epidemiol 2022; 6:e191. [PMID: 35169669 PMCID: PMC8835541 DOI: 10.1097/ee9.0000000000000191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Both acute and chronic exposure to fine particulate matter (PM2.5) have been linked to negative health outcomes. Studies have used metabolomics to describe the biological pathways linking PM2.5 with disease but have focused on a single exposure window. We compared alterations in the serum metabolome following various short- and long-term PM2.5 exposures. METHODS Participants were women undergoing in vitro fertilization at a New England fertility clinic (n = 200). Women provided their residential address and provided a blood sample during controlled ovarian stimulation. PM2.5 exposure was estimated in the 1, 2, and 3 days, 2 weeks, and 3 months prior to blood collection using a validated spatiotemporal model. We utilized liquid chromatography with high-resolution mass spectrometry. We used generalized linear models to test for associations between metabolomic features and PM2.5 exposures after adjusting for potential confounders. Significant features (P < 0.005) were used for pathway analysis and metabolite identification. RESULTS We identified 17 pathways related to amino acid, lipid, energy, and nutrient metabolism that were solely associated with acute PM2.5 exposure. Fifteen pathways, mostly, pro-inflammatory, anti-inflammatory, amino acid, and energy metabolism, were solely associated with long-term PM2.5 exposure. Seven pathways were associated with the majority of exposure windows and were mostly related to anti-inflammatory and lipid metabolism. Among the significant features, we confirmed seven metabolites with level-1 evidence. CONCLUSIONS We identified serum metabolites and metabolic pathways uniquely associated with acute versus chronic PM2.5 exposure. These different biologic pathways may help explain differences in disease states when investigating different lengths of PM2.5 exposure.
Collapse
Affiliation(s)
- Robert B. Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Donghai Liang
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Ziyin Tang
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Itai Kloog
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dean Jones
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Audrey J. Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| |
Collapse
|
75
|
Lau CH, Pendleton D, Drury NL, Zhao J, Li Y, Zhang R, Wright GA, Hoffmann AR, Johnson NM. NRF2 Protects against Altered Pulmonary T Cell Differentiation in Neonates Following In Utero Ultrafine Particulate Matter Exposure. Antioxidants (Basel) 2022; 11:202. [PMID: 35204086 PMCID: PMC8868442 DOI: 10.3390/antiox11020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Early life exposure to particulate matter (PM) air pollution negatively impacts neonatal health. The underlying mechanisms following prenatal exposure, particularly to ultrafine particles (UFP, diameter ≤ 0.1 μm), are not fully understood; To evaluate the role of Nrf2 in response to in utero UFP exposure, we exposed time-mated Nrf2-deficient (Nrf2-/-) or wildtype (WT) mice to filtered air (FA) or 100 μg/m3 ultrafine PM daily throughout pregnancy. Offspring were evaluated for pulmonary immunophenotypes and pulmonary/systemic oxidative stress on postnatal day 5, a timepoint at which we previously demonstrated viral respiratory infection susceptibility; Nrf2-/- offspring exposed to FA had significantly lower average body weights compared to FA-exposed WT pups. Moreover, PM-exposed Nrf2-/- offspring weighed significantly less than PM-exposed WT pups. Notably, PM-exposed Nrf2-/- offspring showed a decreased pulmonary Th1/Th2 ratio, indicating a Th2 bias. Th17 cells were increased in FA-exposed Nrf2-/- neonates yet decreased in PM-exposed Nrf2-/- neonates. Analysis of oxidative stress-related genes in lung and oxidative stress biomarkers in liver tissues did not vary significantly across exposure groups or genotypes. Collectively, these findings indicate that the lack of Nrf2 causes growth inhibitory effects in general and in response to gestational UFP exposure. Prenatal UFP exposure skews CD4+ T lymphocyte differentiation toward Th2 in neonates lacking Nrf2, signifying its importance in maternal exposure and infant immune responses.
Collapse
Affiliation(s)
- Carmen H. Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (C.H.L.); (G.A.W.)
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA; (D.P.); (N.L.D.)
| | - Nicholas L. Drury
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA; (D.P.); (N.L.D.)
| | - Jiayun Zhao
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (J.Z.); (Y.L.); (R.Z.)
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (J.Z.); (Y.L.); (R.Z.)
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (J.Z.); (Y.L.); (R.Z.)
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Gus A. Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (C.H.L.); (G.A.W.)
- Flow Cytometry Facility, Texas A&M University, College Station, TX 77843, USA
| | - Aline Rodrigues Hoffmann
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL 32653, USA;
| | - Natalie M. Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA; (D.P.); (N.L.D.)
| |
Collapse
|
76
|
Shang J, Zhang Y, Schauer JJ, Chen S, Yang S, Han T, Zhang D, Zhang J, An J. Prediction of the oxidation potential of PM 2.5 exposures from pollutant composition and sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118492. [PMID: 34785286 DOI: 10.1016/j.envpol.2021.118492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The inherent oxidation potential (OP) of atmospheric particulate matter has been shown to be an important metric in assessing the biological activity of inhaled particulate matter and is associated with the composition of PM2.5. The current study examined the chemical composition of 388 personal PM2.5 samples collected from students and guards living in urban and suburban areas of Beijing, and assessed the ability to predict OP from the calculated metrics of carcinogenic risk, represented by ELCR (excess lifetime cancer risk), non-carcinogenic risk represented by HI (hazard index), and the composition and sources of the particulate matter using multiple linear regression methods. The correlations between calculated ELCR and HI and the measured OP were 0.37 and 0.7, respectively. HI was a better predictor of OP than ELCR. The prediction models based on pollutants (Model_1) and pollution sources (Model_2) were constructed by multiple linear regression method, and Pearson correlation coefficients between the predicted results of Model_1 and Model_2 with the measured volume normalized OP are 0.81 and 0.80, showing good prediction ability. Previous investigations in Europe and North America have developed location-specific relationships between the chemical composition of particulate matter and OP using regression methods. We also examined the ability of relationships between OP and composition, sources, developed in Europe and North America, to predict the OP of particulate matter in Beijing from the composition and sources determined in Beijing. The relationships developed in Europe and North America provided good predictive ability in Beijing and it suggests that these relationships can be used to predict OP from the chemical composition measured in other regions of the world.
Collapse
Affiliation(s)
- Jing Shang
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, China.
| | - James J Schauer
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53718, USA
| | - Sumin Chen
- Beijing Municipal Research Institute of Environmental Protection, China
| | - Shujian Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tingting Han
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
| | - Dong Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jinjian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianxiong An
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing, China
| |
Collapse
|
77
|
Yen HC, Lin CH, Lin MC, Hsu YC, Lin YH. Prenatal Exposure to Air Pollution and Immune Thrombocytopenia: A Nationwide Population-Based Cohort Study. Front Pediatr 2022; 10:837101. [PMID: 35372164 PMCID: PMC8975147 DOI: 10.3389/fped.2022.837101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Immune thrombocytopenia (ITP) is one of the most common hematologic disorders in children. However, its etiology is still unclear. Epidemiological studies have shown that air pollution is a plausible risk factor in stimulation of oxidative stress, induction of inflammation, and onset of autoimmune diseases. The objective of this article is to examine the effects of prenatal exposure to air pollution on the occurrence of immune thrombocytopenia (ITP) in children. MATERIALS AND METHODS This is a nationwide, population-based, matched case-control study. Using data from Taiwan's Maternal and Child Health Database (MCHD), we identified 427 children with ITP less than 6 years of age and age-matched controls without ITP between 2004 and 2016. Levels of prenatal exposure to air pollutants were obtained from 71 Environmental Protection Administration monitoring stations across Taiwan according to the maternal residence during pregnancy. Patients who had outpatient visits or admission with diagnosis of ITP and subsequently received first-line treatment of intravenous immunoglobulin or oral glucocorticoids were defined as incidence cases. RESULTS Prenatal exposure to particulate matter <10 μm (PM10) in diameter and the pollutant standard index (PSI) increased the risk of childhood ITP. Conversely, carbon monoxide (CO) exposure during pregnancy was negatively associated with the development of ITP. CONCLUSION Certain prenatal air pollutant exposure may increase the incidence of ITP in children.
Collapse
Affiliation(s)
- Hsin-Chien Yen
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chien-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Ming-Chih Lin
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan.,Department of Food and Nutrition, Providence University, Taichung City, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung City, Taiwan.,Department of Post-baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Ya-Chi Hsu
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yi-Hsuan Lin
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan
| |
Collapse
|
78
|
Ambient air pollution and inflammatory effects in a Canadian pregnancy cohort. Environ Epidemiol 2021; 5:e168. [PMID: 34934889 PMCID: PMC8683146 DOI: 10.1097/ee9.0000000000000168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/05/2021] [Indexed: 12/04/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background: Epidemiologic studies have consistently reported associations between air pollution and pregnancy outcomes including preeclampsia and gestational diabetes. However, the biologic mechanisms underlying these relationships remain unclear as few studies have collected relevant biomarker data. We examined relationships between ambient PM2.5 and NO2 with markers of inflammation during pregnancy in a prospective cohort of Canadian women. Methods: We analyzed data from 1170 women enrolled in the Maternal-Infant Research on Environmental Chemicals study. Daily residential PM2.5 and NO2 exposures during pregnancy were estimated using satellite-based and land-use regression models and used to create 14-day and 30-day exposure windows before blood-draw. Inflammatory markers C-reactive protein, interleukin-6, interleukin-8, and tumor necrosis factor-α were measured in third trimester plasma samples. Multivariable linear regression was used to estimate associations for an interquartile range (IQR) increase in PM2.5 and NO2 and markers of inflammation, while adjusting for individual-level confounders. Results: Fourteen-day (IQR: 6.85 µg/m3) and 30-day (IQR: 6.15 µg/m3) average PM2.5 exposures before blood-draw were positively associated with C-reactive protein after adjustment for covariates (24.6% [95% CI = 9.4, 41.9] and 17.4% [95% CI = 1.0, 35.0] increases, respectively). This association was found to be robust in several sensitivity analyses. Neither PM2.5 nor NO2 exposures were associated with interleukin-6, interleukin-8, or tumor necrosis factor-α. Conclusion: Exposure to ambient PM2.5 is positively associated with maternal inflammatory pathways in late pregnancy. This may contribute to positive associations between ambient PM2.5 and risk of adverse pregnancy outcomes.
Collapse
|
79
|
Chu C, Zhu Y, Liu C, Chen R, Yan Y, Ren Y, Li X, Wang J, Ge W, Kan H, Gui Y. Ambient fine particulate matter air pollution and the risk of preterm birth: A multicenter birth cohort study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117629. [PMID: 34182393 DOI: 10.1016/j.envpol.2021.117629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 05/07/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Preterm birth (PTB), defined as live birth before the 37th week of gestation, is believed to have profound impacts on the infant's health in later life. Air pollution has been suggested to be a potential risk factor of PTB, but the evidence was inconsistent. In this multicenter birth cohort study, we aimed to examine the association between fine particulate matter (PM2.5) exposure during pregnancy and PTB in China. A total of 5976 live births were identified between Jan. 2009 and Feb. 2011 from 8 provinces in China. Residential exposures to PM2.5 were assigned based on satellite remote sensing estimates. Cox proportional hazards regressions were employed to explore the correlation for each trimester as well as the entire pregnancy. A total of 443 (7.4%) preterm births were observed. The average PM2.5 during pregnancy was 57.2 ± 8.8 μg/m3. We found exposure to PM2.5 during the whole pregnancy (hazard ratio, HR = 1.262; 95% CI: 1.087-1.465) and in the first trimester (HR = 1.114; 95% CI: 1.007-1.232) was associated with higher risk of PTB. The associations of PM2.5 were stronger for subjects with older maternal or paternal age, lower maternal pre-pregnancy BMI, and lower family income. This study adds supports to the cumulating evidence linking PM2.5 exposure and elevated PTB risk. Measures of air pollution reduction are needed during pregnancy, especially at early stage of pregnancy to prevent adverse birth outcomes.
Collapse
Affiliation(s)
- Chen Chu
- Heart Center, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yingliu Yan
- Ultrasound Department, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yunyun Ren
- Ultrasound Department, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaotian Li
- Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jimei Wang
- Neonatology Department, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wenzhen Ge
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10605, United States
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yonghao Gui
- Heart Center, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
80
|
Zhang T, Sun L, Wang T, Liu C, Zhang H, Zhang C, Yu L. Gestational exposure to PM 2.5 leads to cognitive dysfunction in mice offspring via promoting HMGB1-NLRP3 axis mediated hippocampal inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112617. [PMID: 34385058 DOI: 10.1016/j.ecoenv.2021.112617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 is recently identified as a kind of material possessing severe biohazard. It can enter human body and exerts pathological effects on lung, eyes, and the central nervous system (CNS). Maternal exposure to PM2.5 can affect neural development and cause cognitive decline in offspring, with the underlying mechanisms unclear, however. The inflammasome monitors and responds to biological stressors, with HMGB1-NLRP3 inflammatory axis as an essential pathophysiological player outside the brain. The present work is to investigate its role in cognitive impairment induced by gestational exposure to PM2.5 in mice offspring. We found that HMGB1-NLRP3 pathway was activated in the hippocampus of mice offspring by gestational exposure to PM2.5 in a dose-dependent manner, with protein levels of HMGB1, NLRP3, and cleaved caspase-1 as approximately three times as high as those of control. And down-regulating HMGB1 during pregnancy could alleviate the resultant impairment on learning and working memory as well as hippocampal neurons, up-regulate the synapse related proteins of SYP and PSD-95 and correct the increased expression of 5-HT2A to comparable levels to control, as well as inhibiting the activation of microglia and decreasing the expression of HMGB1 and Iba1/HMGB1 double positive cells in the hippocampus of mice offspring. Meanwhile, protein levels of NLRP3, cleaved caspase-1, IL-1β and IL-18, as well as TLR4, phosphorylated NF-κB, and MAPKs, were almost down-regulated to those of control. Therefore, HMGB1 intervention inhibits the NLRP3 inflammasome mediated hippocampal inflammatory response through TLR4/MAPKs/NF-κB signaling pathway, alleviating PM2.5-induced cognitive dysfunction. Further in vitro results suggest that PM2.5 can activate microglia and HMGB1-NLRP3 inflammatory axis. Pretreatment with HMGB1 inhibitor significantly reduced the phosphorylation of MAPKs and NF-κB, and inhibited the inflammatory response mediated by NLRP3 inflammasome similarly to those in vivo. These results suggest that PM2.5 exposure promotes the inflammatory response in hippocampus mediated by HMGB1-NLRP3 inflammatory axis in microglia, resulting in cognitive dysfunction in offspring, which could be alleviated by simultaneous HMGB1 suppression. These findings provide a theoretical basis for preventing cognitive impairment in offspring caused by environmental pollution during pregnancy.
Collapse
Affiliation(s)
- Tianliang Zhang
- Experimental Center for Medical Research, Weifang Medical University, Weifang, China
| | - Lijuan Sun
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Tingting Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Chong Liu
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Haoyun Zhang
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Li Yu
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China.
| |
Collapse
|
81
|
Liu J, Zhao M, Zhang H, Zhao J, Kong H, Zhou M, Guan Y, Li TC, Wang X, Chan DYL. Associations between ambient air pollution and IVF outcomes in a heavily polluted city in China. Reprod Biomed Online 2021; 44:49-62. [PMID: 34836814 DOI: 10.1016/j.rbmo.2021.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
RESEARCH QUESTION Is air pollution related to IVF outcomes in a heavily polluted city in China? DESIGN A retrospective cohort study of 8628 fresh, autologous IVF cycles was conducted for the first time at the Reproductive Medicine Center of The Third Affiliated Hospital of Zhengzhou University between May 2014 and December 2018 (oocyte retrieval date). The exposure was divided into four periods (gonadotrophin injection to oocyte retrieval [P1], oocyte retrieval to embryo transfer [P2], 1 day after embryo transfer to embryo transfer +14 days [P3] and gonadotrophin injection to embryo transfer +14 days [P4]) and four levels (Q1-Q4 according to their 25th, 50th and 75th percentiles). RESULTS An interquartile range increase (Q2 versus Q1) in particulate matter ≤10 µm (PM10) during P3 and P4 and sulphur dioxide (SO2) during P3 significantly decreased the clinical pregnancy rate (adjusted odds ratio [aOR] 0.81, 95% confidence interval [CI] 0.71-0.92 for PM10 of P3; aOR 0.87, 95% CI 0.76-1.00 for PM10 of P4; aOR 0.82, 95% CI 0.73-0.93 for SO2 of P3). In addition, PM10 was associated with an increased biochemical pregnancy rate (Q3 versus Q1: aOR 1.55, 95% CI 1.09-2.19 for PM10 of P1) and decreased live birth rate (Q2 versus Q1: aOR 0.88, 95% CI 0.77-0.99 for PM10 of P3). The multivariate regression results were consistent with that of multiple treatments propensity score method (PSM) for SO2 pollutants in P3 and PM10 pollutants in P4. CONCLUSION From the early follicular stage to the pregnancy test period, high concentrations of PM10 and SO2 may have a negative impact on IVF treatment outcomes in the study area.
Collapse
Affiliation(s)
- Jing Liu
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Haoyang Zhang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Junliang Zhao
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjiao Kong
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengge Zhou
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yichun Guan
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xingling Wang
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - David Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
82
|
Morton S, Honda T, Zimmerman E, Kirwa K, Huerta-Montanez G, Martens A, Hines M, Ondras M, Eum KD, Cordero JF, Alshawabekeh A, Suh HH. Non-nutritive suck and airborne metal exposures among Puerto Rican infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148008. [PMID: 34082200 PMCID: PMC8295239 DOI: 10.1016/j.scitotenv.2021.148008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Air pollution has been shown to impact multiple measures of neurodevelopment in young children. Its effects on particularly vulnerable populations, such as ethnic minorities, however, is less studied. To address this gap in the literature, we assess the associations between infant non-nutritive suck (NNS), an early indicator of central nervous system integrity, and air pollution exposures in Puerto Rico. Among infants aged 0-3 months enrolled in the Center for Research on Early Childhood Exposure and Development (CRECE) cohort from 2017 to 2019, we examined associations between exposure to fine particulate matter (PM2.5) and its components on infant NNS in Puerto Rico. NNS was assessed using a pacifier attached to a pressure transducer, allowing for real-time visualization of NNS amplitude, frequency, duration, cycles/burst, cycles/min and bursts/min. These data were linked to 9-month average prenatal concentrations of PM2.5 and components, measured at three community monitoring sites. We used linear regression to examine the PM2.5-NNS association in single pollutant models, controlling for infant sex, maternal age, gestational age, and season of birth in base and additionally for household smoke exposure, age at testing, and NNS duration in full models. Among 198 infants, the average NNS amplitude and burst duration was 17.1 cmH2O and 6.1 s, respectively. Decreased NNS amplitude was consistently and significantly associated with 9-month average exposure to sulfur (-1.026 ± 0.507), zinc (-1.091 ± 0.503), copper (-1.096 ± 0.535) vanadium (-1.157 ± 0.537), and nickel (-1.530 ± 0.501). Decrements in NNS frequency were associated with sulfur exposure (0.036 ± 0.018), but not other examined PM components. Our findings provide new evidence that prenatal maternal exposure to specific PM components are associated with impaired neurodevelopment in Puerto Rican infants soon after birth.
Collapse
Affiliation(s)
- Sarah Morton
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford, MA 02155, USA
| | - Trenton Honda
- Bouvé College of Health Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Kipruto Kirwa
- Department of Environmental and Occupational Health Sciences, University of Washington, Box 351618, Seattle, WA 98195, USA
| | - Gredia Huerta-Montanez
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Alaina Martens
- Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Morgan Hines
- Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Martha Ondras
- Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110, USA
| | - Ki-Do Eum
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford, MA 02155, USA
| | - Jose F Cordero
- Departmentof Epidemiology, University of Georgia, 101 Buck Rd, Athens, GA 30602, USA
| | - Akram Alshawabekeh
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Helen H Suh
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford, MA 02155, USA.
| |
Collapse
|
83
|
Yitshak-Sade M, Kloog I, Schwartz JD, Novack V, Erez O, Just AC. The effect of prenatal temperature and PM 2.5 exposure on birthweight: Weekly windows of exposure throughout the pregnancy. ENVIRONMENT INTERNATIONAL 2021; 155:106588. [PMID: 33940393 PMCID: PMC8292186 DOI: 10.1016/j.envint.2021.106588] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Birthweight is a strong predictor of normal growth, healthy development, and survival. Several studies have found associations between temperature, fine particulate matter (PM2.5), and birth weight. However, the relevant timing of exposures varies between studies and is yet unclear. Therefore, we assessed the difference in term birthweight (TBW) associated with weekly exposure to temperature and PM2.5 throughout 37 weeks of gestation. METHODS We included all singleton live term births in Massachusetts, U.S between 2004 and 2015 (n = 712,438). Weekly PM2.5 and temperature predictions were estimated on a 1 km grid from satellite-based models. We utilized a distributed lag nonlinear model (DLNM) to estimate the difference in TBW associated with weekly exposures from the last menstrual period to 37 weeks of gestation. RESULTS We found a nonlinear association with prenatal temperature exposure. Larger effects were observed in warmer temperatures, where higher temperatures were negatively associated with TBW. Temperature effects were larger in the first and final weeks of gestation. We observed a negative difference in TBW associated with PM2.5 exposure. Overall, a 1 µg/m3 increase in prenatal exposure was associated with 3.9 g lower TBW (95% CI -5.0 g; -2.9 g). PM2.5 effects were larger in the final weeks of gestation. CONCLUSION We found heat and PM2.5 exposure to be related to lower TBW. Our findings suggest that women are more susceptible to both exposures towards the end of pregnancy. Susceptibility to heat was higher in the initial weeks of pregnancy as well. These critical windows of susceptibility can be communicated to pregnant women during routine prenatal visits to increase awareness and target interventions to reduce exposures.
Collapse
Affiliation(s)
- Maayan Yitshak-Sade
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA.
| | - Itai Kloog
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA; Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Joel D Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Victor Novack
- Negev Environmental Health Research Institute, Beer Sheva, Israel; Department of Medicine, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel; Soroka University Medical Center, Beer Sheva, Israel
| | - Offer Erez
- Soroka University Medical Center, Beer Sheva, Israel
| | - Allan C Just
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| |
Collapse
|
84
|
Harville EW, Shankar A, Buekens P, Wickliffe JK, Lichtveld MY. Self-reported oil spill exposure and birth outcomes among southern Louisiana women at the time of the Gulf oil spill: The GROWH study. Int J Hyg Environ Health 2021; 237:113829. [PMID: 34450543 DOI: 10.1016/j.ijheh.2021.113829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The chemical, physical, economic, and social effects of a major oil spill might adversely affect pregnancy health. OBJECTIVES To examine the relationship between oil spill exposure and birth outcomes in a cohort of women living near the Gulf of Mexico at the time of the 2010 oil spill. METHODS Between 2012 and 2016, 1375 women reported their exposure to the oil spill, and at least one livebirth. Five hundred and three had births both before and after the oil spill. Indicators of oil spill exposure included self-reported financial consequences, direct contact with oil, traumatic experiences, loss of use of the coast, and involvement in litigation. Birth outcomes were low birthweight (LBW; birthweight <2500 g) and preterm birth (PTB; >3 weeks early). Women who were not pregnant at the time of the interview (n = 1001) self-reported outcomes, while women who were pregnant (n = 374) primarily had them abstracted from medical records (n = 374). All pregnancies prior to the oil spill were considered unexposed; those after the oil spill were considered exposed or unexposed depending on interview responses. Generalized estimating equations were used to control for clustering within women, with control for confounders. RESULTS The most common type of exposure was economic (49%), but 302 women (22.0%) reported some degree of direct contact with the oil. Associations between most indicators of oil spill exposure and pregnancy outcomes were null, although when all pregnancies were examined, associations were seen with high levels of contact with oil for LBW (adjusted Odds Ratio [aOR] 2.19, 95% CI, 1.29-3.71) and PTB (aOR 2.27, 1.34-3.87). DISCUSSION In this community-based cohort, we did not find associations between report of exposure to the oil spill, with the possible exception of high oil contact in some analyses, and birth outcomes. Research incorporating specific biomarkers of oil spill exposure and stress biomarkers would be valuable, to allow for assessing both perceived and actual exposure, especially when direct toxicant exposure is minimal.
Collapse
Affiliation(s)
- Emily W Harville
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Arti Shankar
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Pierre Buekens
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Jeffrey K Wickliffe
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Maureen Y Lichtveld
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
85
|
Chen J, Li PH, Fan H, Li C, Zhang Y, Ju D, Deng F, Guo X, Guo L, Wu S. Weekly-specific ambient fine particular matter exposures before and during pregnancy were associated with risks of small for gestational age and large for gestational age: results from Project ELEFANT. Int J Epidemiol 2021; 51:202-212. [PMID: 34432047 DOI: 10.1093/ije/dyab166] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Investigations on the potential effects of ambient fine particulate matter (PM2.5) on large for gestational age (LGA) are limited. Furthermore, no study has explored weekly-specific susceptible exposure windows for small for gestational age (SGA) and LGA. This study evaluated the associations of exposure to ambient PM2.5 over the preconception and entire-pregnancy periods with risks of SGA and LGA, as well as explored critical weekly-specific exposure windows. METHODS 10 916 singleton pregnant women with 24-42 completed gestational weeks from the Project Environmental and LifEstyle FActors iN metabolic health throughout life-course Trajectories between 2014 and 2016 were included in this study. Distributed lag models (DLMs) incorporated in Cox proportional-hazards models were applied to explore the associations of maternal exposure to weekly ambient PM2.5 throughout 12 weeks before pregnancy and pregnancy periods with risks of SGA and LGA after controlling for potential confounders. RESULTS For a 10-μg/m3 increase in maternal exposure to PM2.5, positive associations with SGA were observed during the 1st to 9th preconceptional weeks and the 1st to 2nd gestational weeks (P<0.05), with the strongest association in the 5th preconceptional week [hazard ratio (HR), 1.06; 95% confidential interval (CI), 1.03-1.09]. For LGA, positive associations were observed during the 1st to 12th preconceptional weeks and the 1st to 5th gestational weeks (P<0.05), with the strongest association in the 7th preconceptional week (HR, 1.10; 95% CI, 1.08-1.12). CONCLUSIONS Exposure to high-level ambient PM2.5 is associated with increased risks of both SGA and LGA, and the most susceptible exposure windows are the preconception and early-pregnancy periods.
Collapse
Affiliation(s)
- Juan Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Peng-Hui Li
- Department of Environmental Science, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Chen Li
- Department of Occupational & Environmental Health, Tianjin Medical University, Tianjin, China
| | - Ying Zhang
- Medical Genetic Laboratory, Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Duan Ju
- Medical Genetic Laboratory, Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
86
|
Wang H, Li J, Liu H, Guo F, Xue T, Guan T, Li J. Association of maternal exposure to ambient particulate pollution with incident spontaneous pregnancy loss. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112653. [PMID: 34411818 DOI: 10.1016/j.ecoenv.2021.112653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Maternal exposure to ambient fine particulate matter (PM2.5) is a potential risk factor for pregnancy loss, but the extant findings are inconsistent. One reason for the inconsistency is the difficulty of distinguishing spontaneous from induced pregnancy losses, particularly in countries with planning policies. OBJECTIVE To examine the association between maternal PM2.5 exposure and spontaneous incident pregnancy loss in China. METHODS A total of 18,513 women of reproductive age was recruited from Jiangsu Province, China, in 2007. Among them, 2451 women reported 2613 valid records of incident pregnancies from 2007 to 2010. We used Cox regression to link the outcomes (live birth, spontaneous pregnancy loss, or induced abortion) of those incident pregnancies with maternal PM2.5 exposures, assessed using well-developed estimates of historical concentrations at the county level. RESULTS Among the 2613 incident pregnancies, 69 spontaneous pregnancy losses, 596 induced abortions, and 1948 live births occurred. According to the adjusted model, each 10-μg/m3 increment in the average PM2.5 concentration during pregnancy was associated with a 43.3% (95% confidence interval, 6.6-92.5%) increased probability of spontaneous pregnancy loss. Advanced maternal age, a potential competing risk factor, weakened the association between PM2.5 and spontaneous pregnancy loss. The association was nonsignificant for unintended pregnancies. CONCLUSION Maternal PM2.5 exposure was associated significantly with incident spontaneous pregnancy loss. Our findings provide insight into the harmful effect of air pollution on human reproduction.
Collapse
Affiliation(s)
- Huiyu Wang
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jiajianghui Li
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Hengyi Liu
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Fuyu Guo
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Tao Xue
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Tianjia Guan
- Department of Health Policy, School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiwei Li
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China; Shannon.AI, Beijing 100080, China
| |
Collapse
|
87
|
Exposure to Stress and Air Pollution from Bushfires during Pregnancy: Could Epigenetic Changes Explain Effects on the Offspring? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147465. [PMID: 34299914 PMCID: PMC8305161 DOI: 10.3390/ijerph18147465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
Due to climate change, bushfires are becoming a more frequent and more severe phenomenon which contributes to poor health effects associated with air pollution. In pregnancy, environmental exposures can have lifelong consequences for the fetus, but little is known about these consequences in the context of bushfire smoke exposure. In this review we summarise the current knowledge in this area, and propose a potential mechanism linking bushfire smoke exposure in utero to poor perinatal and respiratory outcomes in the offspring. Bushfire smoke exposure is associated with poor pregnancy outcomes including reduced birth weight and an increased risk of prematurity. Some publications have outlined the adverse health effects on young children, particularly in relation to emergency department presentations and hospital admissions for respiratory problems, but there are no studies in children who were exposed to bushfire smoke in utero. Prenatal stress is likely to occur as a result of catastrophic bushfire events, and stress is known to be associated with poor perinatal and respiratory outcomes. Changes to DNA methylation are potential epigenetic mechanisms linking both smoke particulate exposure and prenatal stress to poor childhood respiratory health outcomes. More research is needed in large pregnancy cohorts exposed to bushfire events to explore this further, and to design appropriate mitigation interventions, in this area of global public health importance.
Collapse
|
88
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
89
|
Input Parameters for Airborne Brake Wear Emission Simulations: A Comprehensive Review. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-exhaust emissions, generated by the wear of brake systems, tires, roads, clutches, and road resuspension, are responsible for a large part of airborne pollutants in urban areas. Brake wear accounts for 55% of non-exhaust emissions and significantly contributes to urban health diseases related to air pollution. A major part of the studies reported in the scientific literature are focused on experimental methods to sample and characterize brake wear particles in a reliable, representative, and repeatable way. In this framework, simulation is an important tool, which makes it possible to give interpretations of the experimental results, formulate new testing approaches, and predict the emission produced by brakes. The present comprehensive literature review aims to introduce the state of the art of the research on the different aspects of airborne wear debris resulting from brake systems which can be used as inputs in future simulation models. In this review, previous studies focusing on airborne emissions produced by brake systems are investigated in three main categories: the subsystem level, system level, and environmental level. As well as all the information provided in the literature, the simulation methodologies are also investigated at all levels. It can be concluded from the present review study that various factors, such as the uncertainty and repeatability of the brake wear experiments, distinguish the results of the subsystem and system levels. This gap should be taken into account in the development of future experimental and simulation methods for the investigation of airborne brake wear emissions.
Collapse
|
90
|
Burrage EN, Aboaziza E, Hare L, Reppert S, Moore J, Goldsmith WT, Kelley EE, Mills A, Dakhlallah D, Chantler PD, Olfert IM. Long-term cerebrovascular dysfunction in the offspring from maternal electronic cigarette use during pregnancy. Am J Physiol Heart Circ Physiol 2021; 321:H339-H352. [PMID: 34170194 DOI: 10.1152/ajpheart.00206.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electronic cigarettes (E-cigs) have been promoted as harm-free or less risky than smoking, even for women during pregnancy. These claims are made largely on E-cig aerosol having fewer number of toxic chemicals compared with cigarette smoke. Given that even low levels of smoking are found to produce adverse birth outcomes, we sought to test the hypothesis that vaping during pregnancy (with or without nicotine) would not be harm-free and would result in vascular dysfunction that would be evident in offspring during adolescent and/or adult life. Pregnant female Sprague Dawley rats were exposed to E-cig aerosol (1 h/day, 5 days/wk, starting on gestational day 2 until pups were weaned) using e-liquid with 0 mg/mL (E-cig0) or 18 mg/mL nicotine (E-cig18) and compared with ambient air-exposed controls. Body mass at birth and at weaning were not different between groups. Assessment of middle cerebral artery (MCA) reactivity revealed a 51%-56% reduction in endothelial-dependent dilation response to acetylcholine (ACh) for both E-cig0 and E-cig18 in 1-mo, 3-mo (adolescent), and 7-mo-old (adult) offspring (P < 0.05 compared with air, all time points). MCA responses to sodium nitroprusside (SNP) and myogenic tone were not different across groups, suggesting that endothelial-independent responses were not altered. The MCA vasoconstrictor response (5-hydroxytryptamine, 5-HT) was also not different across treatment and age groups. These data demonstrate that maternal vaping during pregnancy is not harm-free and confers significant cerebrovascular health risk/dysfunction to offspring that persists into adult life. NEW & NOTEWORTHY These data established that vaping electronic cigarettes during pregnancy, with or without nicotine, is not safe and confers significant risk potential to the cerebrovascular health of offspring in early and adult life. A key finding is that vaping without nicotine does not protect offspring from cerebrovascular dysfunction and results in the same level of cerebrovascular dysfunction (compared with maternal vaping with nicotine), indicating that the physical and/or chemical properties from the base solution (other than nicotine) are responsible for the cerebrovascular dysfunction that we observed. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/maternal-vaping-impairs-vascular-function-in-theoffspring/.
Collapse
Affiliation(s)
- E N Burrage
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| | - E Aboaziza
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia
| | - L Hare
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - S Reppert
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - J Moore
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia
| | - W T Goldsmith
- Center for Inhalation Toxicology, West Virginia University, Morgantown, West Virginia.,Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - E E Kelley
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - A Mills
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - D Dakhlallah
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia
| | - P D Chantler
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University, Morgantown, West Virginia.,West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia.,Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - I M Olfert
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia.,Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia.,Center for Inhalation Toxicology, West Virginia University, Morgantown, West Virginia.,Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
91
|
Kim JH, Choi YY, Yoo SI, Kang DR. Association between ambient air pollution and high-risk pregnancy: A 2015-2018 national population-based cohort study in Korea. ENVIRONMENTAL RESEARCH 2021; 197:110965. [PMID: 33722528 DOI: 10.1016/j.envres.2021.110965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Several studies have indicated that prenatal exposure to ambient air pollution is associated with an increased risk of gestational diabetes mellitus, hypertensive disorder during pregnancy, preterm birth, and stillbirth. However, no previous study has focused on the association between the number of pregnancy complications and exposure to ambient air pollution. OBJECTIVES To investigate the association between prenatal exposure to ambient air pollutants and the number of pregnancy complications in high-risk pregnancies. METHODS We collected data on gestational diabetes mellitus, hypertensive disorder during pregnancy, preterm birth, and stillbirth from the National Health Information Databases, provided by the Korean National Health Insurance Service.R To assess individual-level exposure to air pollutants, a spatial prediction model and area-averaging approach were used. RESULTS From 2015 to 2018, data of 789,595 high-risk pregnancies were analyzed. The ratio of gestational diabetes mellitus in the country was the highest, followed by preterm birth, hypertensive disorder during pregnancy, and stillbirth. Approximately 71.7% of pregnant women (566,143) presented with one pregnancy complication in identical pregnancies, 27.5% (216,714) presented with two, and 0.9% (6738) presented with three or more. Multiple logistic regression models with adjustments for age, residence, and income variables indicated that the risk of having two or more pregnancy complications was positively associated with the exposure to higher levels of PM10 (odds ratio [OR], 1.11; 95% confidence interval [CI], 1.09-1.12) and PM2.5 (OR, 1.14; 95% CI, 1.12-1.15). The highest quartile presented higher odds of two or more pregnancy complications compared with the lower three quartiles of PM10, PM2.5, CO, NO2, and SO2 exposures (p < 0.001). CONCLUSION The results indicate that the risk of pregnancy complications is positively associated with the exposure to the high concentrations of PM10, PM2.5, CO, NO2, and SO2.
Collapse
Affiliation(s)
- Ju Hee Kim
- Department of Nursing, College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Yoon Young Choi
- Artificial Intelligence Big Data Medical Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Soo-In Yoo
- Department of Nursing, College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae Ryong Kang
- Department of Precision Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| |
Collapse
|
92
|
Chen H, Oliver BG, Pant A, Olivera A, Poronnik P, Pollock CA, Saad S. Particulate Matter, an Intrauterine Toxin Affecting Foetal Development and Beyond. Antioxidants (Basel) 2021; 10:antiox10050732. [PMID: 34066412 PMCID: PMC8148178 DOI: 10.3390/antiox10050732] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Air pollution is the 9th cause of the overall disease burden globally. The solid component in the polluted air, particulate matters (PMs) with a diameter of 2.5 μm or smaller (PM2.5) possess a significant health risk to several organ systems. PM2.5 has also been shown to cross the blood–placental barrier and circulate in foetal blood. Therefore, it is considered an intrauterine environmental toxin. Exposure to PM2.5 during the perinatal period, when the foetus is particularly susceptible to developmental defects, has been shown to reduce birth weight and cause preterm birth, with an increase in adult disease susceptibility in the offspring. However, few studies have thoroughly studied the health outcome of foetuses due to intrauterine exposure and the underlying mechanisms. This perspective summarises currently available evidence, which suggests that intrauterine exposure to PM2.5 promotes oxidative stress and inflammation in a similar manner as occurs in response to direct PM exposure. Oxidative stress and inflammation are likely to be the common mechanisms underlying the dysfunction of multiple systems, offering potential targets for preventative strategies in pregnant mothers for an optimal foetal outcome.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (B.G.O.); (A.O.)
- Correspondence: (H.C.); (S.S.)
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (B.G.O.); (A.O.)
| | - Anushriya Pant
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (A.P.); (P.P.)
| | - Annabel Olivera
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (B.G.O.); (A.O.)
| | - Philip Poronnik
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (A.P.); (P.P.)
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, Sydney, NSW 2065, Australia;
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, Sydney, NSW 2065, Australia;
- Correspondence: (H.C.); (S.S.)
| |
Collapse
|
93
|
Chen J, Fang J, Zhang Y, Xu Z, Byun HM, Li PH, Deng F, Guo X, Guo L, Wu S. Associations of adverse pregnancy outcomes with high ambient air pollution exposure: Results from the Project ELEFANT. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143218. [PMID: 33190892 DOI: 10.1016/j.scitotenv.2020.143218] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/18/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Investigations on the potential effects of high air pollution exposure before pregnancy on adverse pregnancy outcomes are limited, and it is unknown whether air quality standards looser than that set by World Health Organization (WHO) still can provide sufficient protection pregnant women from adverse pregnancy outcomes. OBJECTIVES To evaluate the potential effects of high ambient air pollution around pregnancy on preterm birth (PTB) and low birth weight (LBW), and assess the risk of PTB and LBW associated with air pollutants with reference to different air quality standards of WHO and China. METHODS Our study leveraged 10,960 pregnant women from the Project ELEFANT. Daily average particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) and ≤10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO) and ozone (O3) concentrations were collected based on Chinese Air Quality Reanalysis datasets. Hazard ratios (HR) of PTB and LBW were estimated for maternal PM2.5, PM10, NO2, SO2, CO and O3 exposures and related proportions of days with daily average air pollution concentrations exceeding air quality standards of WHO and China around pregnancy using Cox proportional hazards regression models with adjustment for potential confounders. RESULTS Ambient PM2.5, PM10, NO2, SO2 and CO exposure during the before pregnancy and pregnancy period were both significantly and positively associated with increased risk of PTB, PTB subtypes and LBW. A 10% increase in proportion of days with daily average PM2.5 exceeding 25 μg/m3 over the entire pregnancy was most apparently associated with risk of PTB (HR, 12.66; 95% CI, 8.20-19.53) and LBW (HR, 17.42; 95% CI, 6.88-44.10) among all PM2.5 proportion variables based on different air quality standards. CONCLUSION Air quality standards of WHO are necessary to be implemented to control for risks of adverse pregnancy outcomes associated with ambient air pollution in areas with high air pollution levels.
Collapse
Affiliation(s)
- Juan Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Junkai Fang
- Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, China
| | - Ying Zhang
- Medical Genetic Laboratory, Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhouyang Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Hyang-Min Byun
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peng-Hui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Liqiong Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, China.
| |
Collapse
|
94
|
Zhao N, Wu W, Feng Y, Yang F, Han T, Guo M, Ren Q, Li W, Li J, Wang S, Zhang Y. Polymorphisms in oxidative stress, metabolic detoxification, and immune function genes, maternal exposure to ambient air pollution, and risk of preterm birth in Taiyuan, China. ENVIRONMENTAL RESEARCH 2021; 194:110659. [PMID: 33359674 DOI: 10.1016/j.envres.2020.110659] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/06/2020] [Accepted: 12/20/2020] [Indexed: 05/27/2023]
Abstract
Exposure to air pollutants may be associated with preterm birth (PB) through oxidative stress, metabolic detoxification, and immune system processes. However, no study has investigated the interactive effects of maternal air pollution and genetic polymorphisms in these pathways on risk of PB. The study included 126 PB and 310 term births. A total of 177 single nucleotide polymorphisms (SNPs) in oxidative stress, immune function, and metabolic detoxification-related genes were examined and analyzed. The China air quality index (AQI) was used as an overall estimation of ambient air pollutants. Among 177 SNPs, four SNPs (GPX4-rs376102, GLRX-rs889224, VEGFA-rs3025039, and IL1A-rs3783550) were found to have significant interactions with AQI on the risk of PB (Pinteraction were 0.001, 0.003, 0.03, and 0.04, respectively). After being stratified by the maternal genotypes in these four SNPs, 1.38 to 1.76 times of the risk of PB were observed as per interquartile range increase in maternal AQI among women who carried the GPX4-rs376102 AC/CC genotypes, the GLRX-rs889224 TT genotype, the VEGFA-rs3025039 CC genotype, or the IL1A-rs3783550 GT/TT genotypes. After adjustment for multiple comparisons, only GPX4-rs376102 and AQI interaction remained statistically significant (false discovery rate (FDR)=0.17). After additional stratification by preeclampsia (PE) status, a strongest association was observed in women who carried the GPX4-rs376102 AC/CC genotypes (OR, 2.26; 95% CI, 1.41-3.65, Pinteraction=0.0002, FDR=0.035) in the PE group. Our study provided the first evidence that association between maternal air pollution and PB risk may be modified by the genetic polymorphisms in oxidative stress and immune function genes. Future large studies are necessary to replicate and confirm the observed associations.
Collapse
Affiliation(s)
- Nan Zhao
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Weiwei Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feifei Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tianbi Han
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mengzhu Guo
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingwen Ren
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wangjun Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinbo Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Suping Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Section of Surgical Outcomes and Epidemiology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
95
|
Zou Z, Liu W, Huang C, Cai J, Fu Q, Sun C, Zhang J. Gestational exposures to outdoor air pollutants in relation to low birth weight: A retrospective observational study. ENVIRONMENTAL RESEARCH 2021; 193:110354. [PMID: 33098816 DOI: 10.1016/j.envres.2020.110354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Findings for impacts of outdoor air pollutants on birth outcomes were controversial. We performed a retrospective observational study in 2527 preschoolers of Shanghai, China and investigated associations of duration-averaged concentrations of outdoor sulphur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with an aerodynamic diameter ≤ 10 μm (PM10) in different months and trimesters of gestation, with preterm birth (PB), low birth weight (LBW), term low birth weight (T-LBW), and small for gestational age (SGA). Daily concentrations of outdoor air pollutants were collected in each residence-located district. Parents reported health information. In the multivariate logistic regression analyses, exposures to outdoor NO2 were consistently associated with the higher odds of LBW and T-LBW. These associations were generally stronger for early months than for later months of the gestation. Adjusted odds ratios generally were larger in multi-pollutant model than in single-pollutant model. Exposure to NO2 in the first month of the gestation was significantly associated with T-LBW (adjusted OR, 95%CI: 1.91, 1.02-3.58 for increment of interquartile range (18.5 μg/m3); p-value = 0.044) in multi-pollutant model. This association was stronger in girls, renters, and children whose mothers ≥30 years-old, with household dampness-related exposures, and with parental smoking during pregnancy. Our results indicate that exposure to NO2 during gestation perhaps is a risk factor for LBW and T-LBW, and effects of NO2 exposures could be greater during early periods than during later periods of gestation.
Collapse
Affiliation(s)
- Zhijun Zou
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China.
| | - Chen Huang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiao Cai
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Chanjuan Sun
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jialing Zhang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
96
|
Wang L, Luo D, Liu X, Zhu J, Wang F, Li B, Li L. Effects of PM 2.5 exposure on reproductive system and its mechanisms. CHEMOSPHERE 2021; 264:128436. [PMID: 33032215 DOI: 10.1016/j.chemosphere.2020.128436] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
With the development of human society, haze has become an important form of air pollution. Haze is a mixture of fog and haze, and the main component of haze is fine particulate matter (PM2.5), which is the most important indicator of composite air pollution. Epidemiological studies proved that PM2.5 can break through the respiratory mucosal barrier and enter the human body, causing pathological effects on multiple systems of the body. In the past, people put more attention to PM2.5 in the respiratory system, cardiovascular system, nervous system, etc, and relatively paid less attention to the reproductive system. Recent studies have shown that PM2.5 will accumulate in the reproductive organs through blood-testis barrier, placental barrier, epithelial barrier and other barriers protecting reproductive tissues. In addition, PM2.5 can disrupt hormone levels, ultimately affecting fertility. Prior studies have shown that oxidative stress, inflammation, apoptosis, and the breakdown of barrier structures are now considered to contribute to reproductive toxicity and may cause damage at the molecular and genetic levels. However, the exact mechanism remains to be elucidated. Our review aims to provide an understanding of the pathological effects of PM2.5 on reproductive system and the existing injury mechanism.
Collapse
Affiliation(s)
- Lingjuan Wang
- Tianjin Medical University General Hospital, Tianjin, 300211, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Luo
- Department of Cardiovascular Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, 730000, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin, 300211, China
| | - Jianqiang Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, 300211, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, 300211, China.
| | - Liming Li
- Tianjin Medical University General Hospital, Tianjin, 300211, China
| |
Collapse
|
97
|
Cao ZJ, Zhao Y, Wang SM, Zhang DL, Zhou YC, Liu WN, Yang YY, Hua J. Prenatal exposure to fine particulate matter and fetal growth: a cohort study from a velocity perspective. CHEMOSPHERE 2021; 262:128404. [PMID: 33182127 DOI: 10.1016/j.chemosphere.2020.128404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Reduced growth velocity before birth increases the risk of adverse health outcomes in adult life. However, until recently, there has been a lack of studies demonstrating the impact of prenatal PM2.5 exposure on fetal growth velocity. METHODS The current study was embedded in a previous cohort built between January 1, 2014, and April 30, 2015, in Shanghai First Maternity and Infant Hospital, China, in 6129 eligible singleton pregnancies. The PM2.5 concentration was estimated by an inverse distance weighted method according to the residential addresses of the participants. Repeated fetal biometry measurements, including head circumference (HC), abdominal circumference (AC), femur length (FL), and biparietal diameter (BPD), were measured through ultrasound between 14 and 41 gestational weeks. A principal component analysis through conditional expectation for sparse longitudinal data was used to estimate the corresponding velocities. RESULTS A total of 22782 ultrasound measurements were conducted among 6129 participants with a median of 2 and a maximum of 9 measurements. With each 10 μg/m3 increase in cumulative PM2.5 exposure, the velocity of HC, AC FL and BPD decreased by 0.12 mm/week, 0.17 mm/week, 0.02 mm/week and 0.02 mm/week, respectively, on average. The results of the Generalized Functional Concurrent Model showed that the velocity decreased significantly with PM2.5 exposure between 22 and 32 gestational weeks, which might be the potential sensitive exposure window. CONCLUSIONS There are negative associations between prenatal exposure to PM2.5 and fetal growth velocity, and the late second trimester and early third trimester might be the potential sensitive window.
Collapse
Affiliation(s)
- Zhi-Juan Cao
- The Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yan Zhao
- The Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Shu-Mei Wang
- Department of Child and Adolescent Health, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.
| | - Dong-Lan Zhang
- The Department of Health Policy and Management, College of Public Health, University of Georgia, Georgia, USA.
| | - Ying-Chun Zhou
- The Department of Statistics and Actuarial Sciences, East China Normal University, Shanghai, China.
| | - Wen-Na Liu
- The Department of Statistics and Actuarial Sciences, East China Normal University, Shanghai, China.
| | - Ying-Ying Yang
- The Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jing Hua
- The Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
98
|
Dong Z, Li L, Lei Y, Wu S, Yan D, Chen H. The economic loss of public health from PM 2.5 pollution in the Fenwei Plain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2415-2425. [PMID: 32888149 DOI: 10.1007/s11356-020-10651-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
At present, the concentration of PM2.5 in the Fenwei Plain has become the second highest in China, ranking second to the Beijing-Tianjin-Hebei region. At the same time, China began to monitor and control the PM2.5 concentration in the Fenwei Plain, but the data indicated that the concentration of PM2.5 in the Fenwei Plain rose instead of falling. PM2.5 concentrations in 6 cities from the Fenwei Plain ranked highest among the 20 cities in 2018 in China, and PM2.5 pollution can cause some health economic loss. Based on this background, the exposure-response model is used to estimate the impact of PM2.5 pollution on the health economic loss in the Fenwei Plain, and PM2.5 concentration in 2020, 2025, and 2030 is also predicted based on the setting of three scenarios: baseline scenario, emission reduction scenario, and enhanced emission reduction scenario. Then, according to the estimated results, the paper provides suggestions for reducing public health loss in the Fenwei Plain in the future.
Collapse
Affiliation(s)
- Ziyu Dong
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China
| | - Li Li
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China.
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China.
- State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing, 100011, China.
| | - Yalin Lei
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China
| | - Sanmang Wu
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China
| | - Dan Yan
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Hong Chen
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, 100083, China
| |
Collapse
|
99
|
Zhang Y, Wang J, Gong X, Chen L, Zhang B, Wang Q, Han B, Zhang N, Xue F, Vedal S, Bai Z. Ambient PM 2.5 exposures and systemic biomarkers of lipid peroxidation and total antioxidant capacity in early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115301. [PMID: 32827983 DOI: 10.1016/j.envpol.2020.115301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Evidence for effects of PM2.5 on systemic oxidative stress in pregnant women is limited, especially in early pregnancy. To estimate the associations between ambient PM2.5 exposures and biomarkers of lipid peroxidation and total antioxidant capacity (T-AOC) in women with normal early pregnancy (NEP) and women with clinically recognized early pregnancy loss (CREPL), 206 early pregnant women who had measurements of serum malondialdehyde (MDA) and T-AOC were recruited from a larger case-control study in Tianjin, China from December 2017 to July 2018. Ambient PM2.5 concentrations of eight single-day lags exposure time windows before blood collection at the women's residential addresses were estimated using temporally-adjusted land use regression models. Effects of PM2.5 exposures on percentage change in the biomarkers were estimated using multivariable linear regression models adjusted for month, temperature, relative humidity, gestational age and other covariates. Unconstrained distributed lag models were used to estimate net cumulative effects. Increased serum MDA and T-AOC were significantly associated with increases in PM2.5 at several lag exposure time windows in both groups. The net effects of each interquartile range increase in PM2.5 over the preceding 8 days on MDA were significantly higher (p < 0.001) in CREPL [52% (95% CI: 41%, 62%)] than NEP [22% (95% CI: 9%, 36%)] women. Net effects of each interquartile range increase in PM2.5 over the preceding 5 days on T-AOC were significantly lower (p = 0.010) in CREPL [14% (95% CI: 9%, 19%)] than NEP [24% (95% CI: 18%, 29%)] women. Exposure to ambient PM2.5 may induce systemic lipid peroxidation and antioxidant response in early pregnant women. More severe lipid peroxidation and insufficient antioxidant capacity associated with PM2.5 was found in CREPL women than NEP women. Future studies should focus on mechanisms of individual susceptibility and interventions to reduce PM2.5-related oxidative stress in the first trimester.
Collapse
Affiliation(s)
- Yujuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Bumei Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qina Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Sverre Vedal
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
100
|
Rammah A, Whitworth KW, Symanski E. Particle air pollution and gestational diabetes mellitus in Houston, Texas. ENVIRONMENTAL RESEARCH 2020; 190:109988. [PMID: 32745750 DOI: 10.1016/j.envres.2020.109988] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND There is mixed evidence implicating prenatal exposure to particulate matter <2.5 μm in aerodynamic diameter (PM2.5) in the risk of gestational diabetes mellitus (GDM) and only one study has examined exposure to PM2.5 constituents, which vary with location because of different emission sources. METHODS We conducted a retrospective cohort study of singleton live births in Harris County, Texas from 2008 to 2013. With data from the Texas Commission on Environmental Quality (TCEQ), we spatially interpolated maternal exposures to total and speciated PM2.5, nitrogen dioxide (NO2) and ozone (O3) over the 12-week preconception period and trimesters 1 and 2. We estimated odds ratios (OR) and 95% confidence intervals (CI) for the association between pre-conception and pregnancy exposures to total and speciated PM2.5 and odds of GDM, adjusted for temperature and maternal covariates. We also evaluated confounding from NO2 and O3 exposures in multi-pollutant models. RESULTS An interquartile range (IQR) increase in total PM2.5 exposure was associated with elevated odds for developing GDM over the preconception (adjusted OR = 1.09, 95% CI: 1.06, 1.12), first trimester (OR = 1.13, 95% CI: 1.10, 1.17) and second trimester (OR = 1.13, 95% CI: 1.09, 1.17) periods. Effect estimates increased with adjustment for NO2 and O3. We observed modest increases in odds of GDM for IQR increases in first trimester ammonium ion PM2.5 (OR = 1.03, 95% CI: 1.00, 1.05) and sulfate PM2.5 (OR = 1.03, 95% CI: 1.00, 1.05) exposures, as well as preconception Cr PM2.5 exposures (OR = 1.05, 95% CI: 1.02, 1.07). CONCLUSION Exposures to PM2.5, before and during pregnancy were associated with elevated odds of GDM. Mitigating air pollution exposures may reduce the risk of GDM and its long-term implications for maternal and child health.
Collapse
Affiliation(s)
- Amal Rammah
- Center for Precision Environmental Health, Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Kristina W Whitworth
- Center for Precision Environmental Health, Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Elaine Symanski
- Center for Precision Environmental Health, Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|