51
|
Djouina M, Waxin C, Dubuquoy L, Launay D, Vignal C, Body-Malapel M. Oral exposure to polyethylene microplastics induces inflammatory and metabolic changes and promotes fibrosis in mouse liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115417. [PMID: 37651791 DOI: 10.1016/j.ecoenv.2023.115417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Accumulating evidence shows widespread contamination of water sources and food with microplastics. Although the liver is one of the main sites of bioaccumulation within the human body, it is still unclear whether microplastics produce damaging effects. In particular, the hepatic consequences of ingesting polyethylene (PE) microplastics in mammals are unknown. In this study, female mice were fed with food contaminated with 36 and 116 µm diameter PE microbeads at a dosage of 100 µg/g of food for 6 and 9 weeks. Mice were exposed to each type of microbead, or co-exposed to the 2 types of microbeads. Mouse liver showed altered levels of genes involved in uptake, synthesis, and β-oxidation of fatty acids. Ingestion of PE microbeads disturbed the detoxification response, promoted oxidative imbalance, increased inflammatory foci and cytokine expression, and enhanced proliferation in liver. Since relative expression of the hepatic stellate cell marker Pdgfa and collagen deposition were increased following PE exposure, we assessed the effect of PE ingestion in a mouse model of CCl4-induced fibrosis and showed that PE dietary exposure exacerbated liver fibrogenesis. These findings provide the first demonstration of the adverse hepatic effects of PE ingestion in mammals and highlight the need for further health risk assessment in humans.
Collapse
Affiliation(s)
- Madjid Djouina
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| |
Collapse
|
52
|
Ye Z, Mai T, Cheng Y, Zhang X, Liu Z, Zhang Z, Li Y. Neurotoxicity of microplastics: a CiteSpace-based review and emerging trends study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:960. [PMID: 37453936 PMCID: PMC10349786 DOI: 10.1007/s10661-023-11559-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Microplastics, as a currently emerging pollutant, are gaining increasing attention from researchers in various fields. The purpose of this study is to summarize research development on microplastics in the field of neurotoxicity using bibliometric tools and visualization methods and to identify current research hotspots. The Web of Science Core Collection (WoSCC) was searched under the topics of "microplastics" and "neurotoxicity." A total of 33 published articles were obtained by exclusion and analyzed using CiteSpace (V6.1.R2). It was found that microplastic neurotoxicity research is currently on the rise, with the most research results being published in China, the most collaboration occurring between Italy and other countries, and the least collaboration occurring between authors. The focus and hotspots of future research on the neurotoxicity of microplastics may revolve around "accumulation" and "integrated biomarker response." These findings demonstrate the trends and frontiers in the field of microplastic neurotoxicity research and provide valuable information for subsequent research directions and potential collaborations.
Collapse
Affiliation(s)
- Zeyan Ye
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Zhiyuan Road No.1, Guilin, 541199, Guangxi Province, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, People's Republic of China
| | - Tingyu Mai
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Zhiyuan Road No.1, Guilin, 541199, Guangxi Province, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, People's Republic of China
| | - Yuqian Cheng
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Zhiyuan Road No.1, Guilin, 541199, Guangxi Province, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, People's Republic of China
| | - Xiashuang Zhang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Zhiyuan Road No.1, Guilin, 541199, Guangxi Province, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, People's Republic of China
| | - Zhe Liu
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Zhiyuan Road No.1, Guilin, 541199, Guangxi Province, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, People's Republic of China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Zhiyuan Road No.1, Guilin, 541199, Guangxi Province, People's Republic of China.
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, People's Republic of China.
| | - You Li
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Zhiyuan Road No.1, Guilin, 541199, Guangxi Province, People's Republic of China.
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, People's Republic of China.
| |
Collapse
|
53
|
Kang H, Zhang W, Jing J, Huang D, Zhang L, Wang J, Han L, Liu Z, Wang Z, Gao A. The gut-brain axis involved in polystyrene nanoplastics-induced neurotoxicity via reprogramming the circadian rhythm-related pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131949. [PMID: 37392641 DOI: 10.1016/j.jhazmat.2023.131949] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
The production of plastic is still increasing globally, which has led to an increasing number of plastic particles in the environment. Nanoplastics (NPs) can penetrate the blood-brain barrier and induce neurotoxicity, but in-depth mechanism and effective protection strategies are lacking. Here, C57BL/6 J mice were treated with 60 μg polystyrene NPs (PS-NPs, 80 nm) by intragastric administration for 42 days to establish NPs exposure model. We found that 80 nm PS-NPs could reach and cause neuronal damage in the hippocampus, and alter the expression of neuroplasticity-related molecules (5-HT, AChE, GABA, BDNF and CREB), and even affect the learning and memory ability of mice. Mechanistically, combined with the results of hippocampus transcriptome, gut microbiota 16 s ribosomal RNA and plasma metabolomics, we found that the gut-brain axis mediated circadian rhythm related pathways were involved in the neurotoxicity of NPs, especially Camk2g, Adcyap1 and Per1 may be the key genes. Both melatonin and probiotic can significantly reduce intestinal injury and restore the expression of circadian rhythm-related genes and neuroplasticity molecules, and the intervention effect of melatonin is more effective. Collectively, the results strongly suggest the gut-brain axis mediated hippocampal circadian rhythm changes involved in the neurotoxicity of PS-NPs. Melatonin or probiotics supplementation may have the application value in the prevention of neurotoxicity of PS-NPs.
Collapse
Affiliation(s)
- Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Danyang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
54
|
Matluba M, Ahmed MK, Chowdhury KMA, Khan N, Ashiq MAR, Islam MS. The pervasiveness of microplastic contamination in the gastrointestinal tract of fish from the western coast of Bangladesh. MARINE POLLUTION BULLETIN 2023; 193:115145. [PMID: 37331273 DOI: 10.1016/j.marpolbul.2023.115145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
This study investigated the prevalence of microplastics (MPs) in the gastrointestinal tract (GIT) of fish from the western coast of Bangladesh, the world's largest mangrove ecosystem. Altogether, 8 different species of fish (5 demersal and 3 pelagic) were examined. Microplastics were detected in every individual fish with an average abundance of 7.1 ± 3.14 particles per specimen. The demersal species were observed to consume more microplastics (7.78 ± 3.51) than the pelagic species (5.92 ± 2.06). Moreover, small-sized fish was found to accumulate higher MPs/body weight than large-sized fish. Polypropylene was the most abundant polymer type (45 %) and fiber was the most prevalent shape (71 %). SEM analysis revealed cracks, pits, and foreign particles on the microplastics' surface, representing their ability to bear organic pollutants and heavy metals. This study will be a source of information for future research and a guide for policy-makers to take better actions to protect and restore marine resources.
Collapse
Affiliation(s)
- Marhaba Matluba
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kawser Ahmed
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Nasim Khan
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh.
| |
Collapse
|
55
|
Lee JH, Kang JC, Kim JH. Toxic effects of microplastic (Polyethylene) on fish: Accumulation, hematological parameters and antioxidant responses in Korean Bullhead, Pseudobagrus fulvidraco. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162874. [PMID: 36933717 DOI: 10.1016/j.scitotenv.2023.162874] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
Plastic waste discharged into the aquatic environment decomposes into microplastics (MP), which have toxic effects on fish species. Korean bullhead, Pseudobagrus fulvidraco is widely distributed in freshwater ecosystems in Korea, and it is important as an ecological indicator species to evaluate MP toxicity in Korea. In this study, the accumulation and physiological effects of juvenile P. fulvidraco exposed to microplastics (Polyethylene: PE-MPs with white surface and spherical shape) at control (0 mg/L), 100, 200, 5000 and 10,000 mg/L for 96 h were confirmed. Exposure to PE-MPs showed significant bioaccumulation of P. fulvidraco, and the accumulation profile was in the order of gut > gills > liver. Hematological parameters such as the red blood cell (RBC), hemoglobin (Hb) and hematocrit (Ht) were significantly decreased over 5000 mg/L In plasma components, calcium, magnesium and total protein were significantly decreased over 5000 mg/L, whereas glucose, cholesterol, aspartate aminotransferase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were significantly increased over 5000 mg/L or at 10,000 mg/L In antioxidant responses, superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) were significantly increased over 5000 mg/L, whereas glutathione (GSH) was significantly decreased over 5000 mg/L. The results of this study suggest that acute exposure to PE-MPs induced all physiological changes in a concentration-dependent manner, and it affects the hematological parameters, plasma components and antioxidant response of juvenile P. fulvidraco after accumulation in specific tissues.
Collapse
Affiliation(s)
- Ju-Hyeong Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea.
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si, Republic of Korea.
| |
Collapse
|
56
|
Savuca A, Nicoara MN, Ciobica A, Gorgan DL, Ureche D, Balmus IM. Current Aspects on the Plastic Nano- and Microparticles Toxicity in Zebrafish-Focus on the Correlation between Oxidative Stress Responses and Neurodevelopment. Animals (Basel) 2023; 13:1810. [PMID: 37889690 PMCID: PMC10252065 DOI: 10.3390/ani13111810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Recent reports focusing on the extent of plastic pollution have shown that many types of fibers and polymers can now be found in most marine species. The severe contamination of plastic nano-/microparticles (NPs/MPs) mainly results in immediate negative outcomes, such as organic impairments and tissue damage, as well as long-termed negative effects, such as developmental retardation and defects, chronic inflammation, oxidative stress (OS), metabolic imbalance, mutagenesis, and teratogenesis. Oxidative responses are currently considered the first line molecular signal to potential toxic stimuli exposure, as the oxidative balance in electron exchange and reactive oxygen species signaling provides efficient harmful stimuli processing. Abnormal signaling or dysregulated ROS metabolism-OS-could be an important source of cellular toxicity, the source of a vicious cycle of environmental and oxidative signaling-derived toxicity. As chemical environmental pollutants, plastic NPs/MPs can also be a cause of such toxicity. Thus, we aimed to correlate the possible toxic effects of plastic NPs/MPs in zebrafish models, by focusing on OS and developmental processes. We found that plastic NPs/MPs toxic effects could be observed during the entire developmental span of zebrafish in close correlation with OS-related changes. Excessive ROS production and decreased antioxidant enzymatic defense due to plastic NPs/MPs exposure and accumulation were frequently associated with acetylcholinesterase activity inhibition, suggesting important neurodevelopmental negative outcomes (cognitive abnormalities, neurodevelopmental retardation, behavioral impairments) and extraneuronal effects, such as impaired digestive physiology.
Collapse
Affiliation(s)
- Alexandra Savuca
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (A.S.)
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Mircea Nicușor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- Academy of Romanian Scientists, No 54, Independence Street, Sector 5, 050094 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Dorel Ureche
- Department of Biology, Ecology and Environmental Protection, Faculty of Sciences, University “Vasile Alecsandri” of Bacau, 600115 Bacau, Romania
| | - Ioana Miruna Balmus
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (A.S.)
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 700057 Iasi, Romania
| |
Collapse
|
57
|
Chen Q, Zhao H, Liu Y, Jin L, Peng R. Factors Affecting the Adsorption of Heavy Metals by Microplastics and Their Toxic Effects on Fish. TOXICS 2023; 11:490. [PMID: 37368590 DOI: 10.3390/toxics11060490] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
Fish not only constitute an important trophic level in aquatic ecosystems but also serve as an important source of protein for human beings. The health of fish is related to the sustained and healthy development of their entire aquatic ecosystem. Due to the widespread use, mass production, high disposal frequency, and degradation resistance of plastics, these pollutants are released into aquatic environments on a large scale. They have become one of the fastest growing pollutants and have a substantial toxic effect on fish. Microplastics have intrinsic toxicity and can absorb heavy metals discharged into water. The adsorption of heavy metals onto microplastics in aquatic environments is affected by many factors and serves as a convenient way for heavy metals to migrate from the environment to organisms. Fish are exposed to both microplastics and heavy metals. In this paper, the toxic effects of heavy metal adsorption by microplastics on fish are reviewed, and the focus is on the toxic effects at the individual (survival, feeding activity and swimming, energy reserves and respiration, intestinal microorganisms, development and growth, and reproduction), cellular (cytotoxicity, oxidative damage, inflammatory response, neurotoxicity, and metabolism) and molecular (gene expression) levels. This facilitates an assessment of the pollutants' impact on ecotoxicity and contributes to the regulation of these pollutants in the environment.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yinai Liu
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Libo Jin
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renyi Peng
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
58
|
Choudhury A, Simnani FZ, Singh D, Patel P, Sinha A, Nandi A, Ghosh A, Saha U, Kumari K, Jaganathan SK, Kaushik NK, Panda PK, Suar M, Verma SK. Atmospheric microplastic and nanoplastic: The toxicological paradigm on the cellular system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115018. [PMID: 37216859 DOI: 10.1016/j.ecoenv.2023.115018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
The increasing demand for plastic in our daily lives has led to global plastic pollution. The improper disposal of plastic has resulted in a massive amount of atmospheric microplastics (MPs), which has further resulted in the production of atmospheric nanoplastics (NPs). Because of its intimate relationship with the environment and human health, microplastic and nanoplastic contamination is becoming a problem. Because microplastics and nanoplastics are microscopic and light, they may penetrate deep into the human lungs. Despite several studies demonstrating the abundance of microplastics and nanoplastics in the air, the potential risks of atmospheric microplastics and nanoplastics remain unknown. Because of its small size, atmospheric nanoplastic characterization has presented significant challenges. This paper describes sampling and characterization procedures for atmospheric microplastics and nanoplastics. This study also examines the numerous harmful effects of plastic particles on human health and other species. There is a significant void in research on the toxicity of airborne microplastics and nanoplastics upon inhalation, which has significant toxicological potential in the future. Further study is needed to determine the influence of microplastic and nanoplastic on pulmonary diseases.
Collapse
Affiliation(s)
- Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Saravana Kumar Jaganathan
- School of Engineering, College of Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
59
|
Zhang Q, Ma W, Zhu J. Combined Toxicities of Di-Butyl Phthalate and Polyethylene Terephthalate to Zebrafish Embryos. TOXICS 2023; 11:toxics11050469. [PMID: 37235283 DOI: 10.3390/toxics11050469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
The increasing concern for the ecological risks of microplastics (MPs) as carriers of hydrophobic organic contaminants is evident. Di-butyl phthalate (DBP) is extensively utilized as an additive in plastic products, and both DBP and MPs are widespread in the environment. However, the combined toxicity of these substances remains uncertain. In this study, zebrafish embryos were employed to assess the toxic effects of polyethylene terephthalate (PET, MPs) and DBP, with a focus on the DBP toxicities influenced by PET. The embryonic chorion was partially covered by PET particles, and PET led to a delayed hatching of zebrafish embryos without inducing death or teratogenesis. On the other hand, exposure to DBP considerably inhibited the hatching of embryos, leading to severe lethal and teratogenic effects. The most common phenotypes induced by DBP exposure were delayed yolk sac absorption and pericardial edema. The mortality increased in co-treatment with 100 particles/mL PET and 2 mg/L DBP at 24 hpf and 48 hpf. The malformation phenotype, bent notochord, and delayed yolk sac absorption became more severe in 1 mg/L DBP exposition with the co-exposure of 100 particles/mL PET at 72 hpf. PET might act as a carrier that enhances the bioavailability of ambient DBP.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Wenjie Ma
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Jingmin Zhu
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
60
|
Mondal T, Jho EH, Hwang SK, Hyeon Y, Park C. Responses of earthworms exposed to low-density polyethylene microplastic fragments. CHEMOSPHERE 2023; 333:138945. [PMID: 37196794 DOI: 10.1016/j.chemosphere.2023.138945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
The interest in the effect of microplastics (MPs) on the terrestrial environment has been increasing recently. Different species of earthworms have been used to study the effects of MPs on different aspects of earthworm health. However, there is still a need for more studies because different studies report different effects on earthworms depending on the properties (e.g., types, shapes, sizes) of MPs in the environment and exposure conditions (e.g., exposure period). This study used Eisenia fetida as a test earthworm species to investigate the effect of different concentrations of low-density polyethylene (LDPE) MPs (≤125 μm) in soil on the growth and reproduction of earthworms. The exposure of the earthworms to the different concentrations LDPE MPs (0-3% w/w) for 14 d and 28 d neither caused death of the earthworms nor showed significant effects on the earthworm weights in this study. The number of cocoons produced by the exposed earthworms were also similar to that of the controls (i.e., no exposure to MPs). Some previous studies reported similar results to what have been observe in this study, while some studies reported different results. On the other hand, the number of ingested MPs by the earthworms increased with increasing MPs concentrations in soil, suggesting a potential for damage to digestive tract. Also, the earthworm skin surface was damaged after exposure to MPs. The ingested MPs and the skin surface damage suggest that there is a potential for adverse effects on the earthworm growth after a longer-term exposure. Overall, the results of this study show that the effects of MPs on earthworms can be different depending on the properties of MPs and exposure conditions.
Collapse
Affiliation(s)
- Tanusree Mondal
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, South Korea
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| | - Sun Kyung Hwang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Yejin Hyeon
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
61
|
Lee S, Kim D, Kang KK, Sung SE, Choi JH, Sung M, Shin CH, Jeon E, Kim D, Kim D, Lee S, Kim HK, Kim K. Toxicity and Biodistribution of Fragmented Polypropylene Microplastics in ICR Mice. Int J Mol Sci 2023; 24:ijms24108463. [PMID: 37239816 DOI: 10.3390/ijms24108463] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Currently, polypropylene (PP) is used in various products, thus leading to high daily exposure in humans. Thus, it is necessary to evaluate the toxicological effects, biodistribution, and accumulation of PP microplastics in the human body. In this study, administration of two particle sizes of PP microplastics (approximately 5 and 10-50 µm) did not lead to any significant changes in several toxicological evaluation parameters, including body weight and pathological examination, compared with the control group in ICR mice. Therefore, the approximate lethal dose and no-observed-adverse-effect level of PP microplastics in ICR mice were established as ≥2000 mg/kg. Furthermore, we manufactured cyanine 5.5 carboxylic acid (Cy5.5-COOH)-labeled fragmented PP microplastics to monitor real-time in vivo biodistribution. After oral administration of the Cy5.5-COOH-labeled microplastics to the mice, most of the PP microplastics were detected in the gastrointestinal tract and observed to be out of the body after 24 h in IVIS Spectrum CT. Therefore, this study provides a new insight into the short-term toxicity, distribution, and accumulation of PP microplastics in mammals.
Collapse
Affiliation(s)
- Sijoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dongseon Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Republic of Korea
| | - Kyung-Ku Kang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Soo-Eun Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Joo-Hee Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Minkyoung Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Chang-Hoon Shin
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eunyoung Jeon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dongkyu Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dongmin Kim
- Korea Institute of Industrial Technology, Chenan 31056, Republic of Korea
| | - Sunjong Lee
- Korea Institute of Industrial Technology, Chenan 31056, Republic of Korea
| | - Hee-Kyung Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Kilsoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- College of Veterinary Medicine, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
62
|
Xiang C, Chen H, Liu X, Dang Y, Li X, Yu Y, Li B, Li X, Sun Y, Ding P, Hu G. UV-aged microplastics induces neurotoxicity by affecting the neurotransmission in larval zebrafish. CHEMOSPHERE 2023; 324:138252. [PMID: 36849020 DOI: 10.1016/j.chemosphere.2023.138252] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are nearly ubiquitous in aquatic ecosystems and may affect aquatic organisms. In this study, virgin and aged polystyrene MPs (PS-MPs) of size 1 μm were selected to analyze their adverse effects on larvae zebrafish. Exposure to PS-MPs significantly reduced the average swimming speed of zebrafish, and the behavioral effects caused by aged PS-MPs on zebrafish were more pronounced. Fluorescence microscopy revealed that 10-100 μg/L of PS-MPs accumulated in tissues of zebrafish. As an endpoint of neurotransmitter concentration, exposure to aged PS-MPs at doses ranging from 0.1 to 100 μg/L significantly increased the dopamine (DA), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), and acetylcholine (ACh) levels in zebrafish. Similarly, exposure to aged PS-MPs significantly altered the expression of genes related to these neurotransmitters (e.g., dat, 5ht1aa, and gabral genes). According to Pearson correlation analyses, neurotransmissions was significantly correlated with neurotoxic effects of aged PS-MPs. Thus, aged PS-MPs cause neurotoxicity in zebrafish through their effects on DA, 5-HT, GABA, and ACh neurotransmissions. The results highlight the importance of the neurotoxicity of aged PS-MPs in zebrafish, which has important implications for the risk assessment of aged MPs and the conservation of aquatic ecosystems.
Collapse
Affiliation(s)
- Chongdan Xiang
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaolin Liu
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bei Li
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yanan Sun
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guocheng Hu
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
63
|
Lei P, Zhang W, Ma J, Xia Y, Yu H, Du J, Fang Y, Wang L, Zhang K, Jin L, Sun D, Zhong J. Advances in the Utilization of Zebrafish for Assessing and Understanding the Mechanisms of Nano-/Microparticles Toxicity in Water. TOXICS 2023; 11:380. [PMID: 37112607 PMCID: PMC10142380 DOI: 10.3390/toxics11040380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
A large amount of nano-/microparticles (MNPs) are released into water, not only causing severe water pollution, but also negatively affecting organisms. Therefore, it is crucial to evaluate MNP toxicity and mechanisms in water. There is a significant degree of similarity between the genes, the central nervous system, the liver, the kidney, and the intestines of zebrafish and the human body. It has been shown that zebrafish are exceptionally suitable for evaluating the toxicity and action mechanisms of MNPs in water on reproduction, the central nervous system, and metabolism. Providing ideas and methods for studying MNP toxicity, this article discusses the toxicity and mechanisms of MNPs from zebrafish.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Wenxia Zhang
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Yuping Xia
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Junbo Zhong
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| |
Collapse
|
64
|
Min R, Ma K, Zhang H, Zhang J, Yang S, Zhou T, Zhang G. Distribution and risk assessment of microplastics in Liujiaxia Reservoir on the upper Yellow River. CHEMOSPHERE 2023; 320:138031. [PMID: 36739993 DOI: 10.1016/j.chemosphere.2023.138031] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPSs) distribution in global freshwater systems is extensively reported, but the distribution of MPSs in reservoirs of the Yellow River has rarely been studied. To fill in this gap, we systematically investigated the distribution of MPSs in surface water and bank sediments gleaned from Liujiaxia Reservoir of the upper Yellow River for the first time and conducted an ecological risk assessment in succession in this work. The results showed that the main polymer types of MPSs in the surface water and bank sediments of Liujiaxia Reservoir were polyethylene terephthalate (PET), polystyrene (PS), and polypropylene (PP), and the abundance of MPSs in the reservoir surface water and bank sediments ranged from 4.48 to 12.09 item/L and 447.27 to 1543.80 item/kg (dry weight), respectively. Further physical morphology analysis of MPSs in the samples revealed that MPSs in the surface water and bank sediments of Liujiaxia Reservoir were predominantly fibrous with small particle sizes (<1 mm), and there was abundant color, mainly exhibiting transparent, black, and blue. The results of the MPS pollution load index (PLI>1) and the hazard ranking of MPSs (HZone = 10.20 for surface water and HZone = 14.06 for bank sediments) yielded a hazard class II for MPS pollution in Liujiaxia Reservoir, the combined pollution risk index (PRIZone = 17.05 for surface water and PRIZone = 31.25 for bank sediments) stated clearly the potential ecological risk in the Liujiaxia Reservoir. Briefly, this study supplemented and enriched the data on the distribution of MPSs in the reservoirs of the Yellow River basin, and provide a benchmark for future pollution control and management in the reservoir area.
Collapse
Affiliation(s)
- Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jiaqian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Siyi Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
65
|
Kim MJ, Kim JA, Song JA, Kho KH, Choi CY. Synthetic microfiber exposure negatively affects reproductive parameters in male medaka (Oryzias latipes). Gen Comp Endocrinol 2023; 334:114216. [PMID: 36681254 DOI: 10.1016/j.ygcen.2023.114216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Microplastics not only accumulate in the bodies of fishes and cause damage to the organs, but also cause many other problems, such as reduced reproductive capacity, by acting directly or indirectly on the hypothalamus-pituitary-gonad axis (HPG axis). In this study, we investigated the changes in HPG axis-related genes in male medaka (Oryzias latipes) exposed to fiber-type microplastics. We confirmed the progression of vitellogenesis, a sign of endocrine disruption, in male fish. In the microfiber-exposed group, microfiber accumulation was confirmed in the gills and intestines. One week after exposure to two different concentrations of microfibers (500 and 1,000 fibers/L), the fish showed increased expression of gonadotropin-releasing hormone (GnRH) and luteinizing hormone receptor (LH-R) mRNA. From day 10 of exposure to the microfibers, there was an increase in the expression of the gonadotropin-inhibitory hormone (GnIH) mRNA and a decrease in the expression of GnRH and LH-R mRNA. There was an increase in the cytochrome P450 aromatase (CYP19a) mRNA expression and plasma estradiol (E2) concentration in the 1,000 fibers/L exposure group. High vitellogenin (VTG) mRNA expression was confirmed seven days after exposure in the 1,000 fibers/L group, which was consistent with the VTG mRNA expression signals detected in the liver using in situ hybridization. These results suggest that microfiber ingestion may cause short-term endocrinal disruption of the HPG axis in male medaka, which in turn may interfere with their normal maturation process.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Jin Ah Song
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea; Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| |
Collapse
|
66
|
Pratiwi HM, Takagi T, Rusni S, Inoue K. Euryhaline fish larvae ingest more microplastic particles in seawater than in freshwater. Sci Rep 2023; 13:3560. [PMID: 36899025 PMCID: PMC10006175 DOI: 10.1038/s41598-023-30339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Microplastic (MP) pollution is a major concern in aquatic environments. Many studies have detected MPs in fishes; however, little is known about differences of microplastic uptake by fish in freshwater (FW) and those in seawater (SW), although physiological conditions of fish differ significantly in the two media. In this study, we exposed larvae (21 days post-hatching) of Oryzias javanicus (euryhaline SW) and Oryzias latipes (euryhaline FW), to 1-µm polystyrene microspheres in SW and FW for 1, 3, or 7 days, after which, microscopic observation was conducted. MPs were detected in the gastrointestinal tracts in both FW and SW groups, and MP numbers were higher in the SW group in both species. Vertical distribution of MPs in the water, and body sizes of both species exhibited no significant difference between SW and FW. Detection of water containing a fluorescent dye revealed that O. javanicus larvae swallowed more water in SW than in FW, as has also been reported for O. latipes. Therefore, MPs are thought to be ingested with water for osmoregulation. These results imply that SW fish ingest more MPs than FW fish when exposed to the same concentration of MPs.
Collapse
Affiliation(s)
- Hilda Mardiana Pratiwi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan.
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan.
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Suhaila Rusni
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Koji Inoue
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| |
Collapse
|
67
|
Huang L, Zhang W, Zhou W, Chen L, Liu G, Shi W. Behaviour, a potential bioindicator for toxicity analysis of waterborne microplastics: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
68
|
Fernández-Míguez M, Puvanendran V, Burgerhout E, Presa P, Tveiten H, Vorkamp K, Hansen ØJ, Johansson GS, Bogevik AS. Effects of weathered polyethylene microplastic ingestion on sexual maturation, fecundity and egg quality in maturing broodstock Atlantic cod Gadus morhua. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121053. [PMID: 36632969 DOI: 10.1016/j.envpol.2023.121053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have become a global issue as they are omnipresent in the ocean. Fish ingesting MPs through feed could be affected in their physiological function, e.g., disrupted enzyme production and function, reduction of feeding and reproductive failure. This study assessed the effects of feed containing naturally weathered MPs from the Oslofjord (Norway) on the reproductive physiology of Atlantic cod (Gadus morhua). Farmed cod broodstock were fed either control (C-diet) or feeds containing 1% microplastic (MP-diet) starting nine months prior to spawning, from June until May. No major differences were found between diet groups in overall biometrics or gonad histology. Sex steroid levels (testosterone, 11-ketotestosterone and 17β-estradiol) resulted in expected profiles increasing over time without any significant differences between treatments. Gene expression levels of the steroidogenic enzyme 20β-hydroxysteroid dehydrogenase (20β-hsd) and vitellogenin1 (vtg1) showed significant differences between dietary treatments with lower expression in the control group. This can be a direct effect of MPs, but endocrine disrupting effects of potentially leachable plastic additives cannot be completely ruled out. Thus, these enzymes could be indicators of exposure to contaminants that disrupt sexual maturation by affecting the production of primarily maturation-inducing steroid. Although the concentration of MPs employed in this study may not be high enough to elicit any observable short-term biological effects, the observed gene expression suggests that long-term consequences should be considered caused by an expected increase of MPs in marine environments.
Collapse
Affiliation(s)
- M Fernández-Míguez
- Instituto de Investigaciones Marinas, CSIC, Vigo, Spain; Laboratory of Marine Genetic Resources, CIM-Universidad de Vigo, Spain
| | | | | | - P Presa
- Laboratory of Marine Genetic Resources, CIM-Universidad de Vigo, Spain
| | - H Tveiten
- Nofima AS, Norway; UiT The Arctic University of Norway, Tromsø, Norway
| | - K Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | | | | | | |
Collapse
|
69
|
Mehmood T, Mustafa B, Mackenzie K, Ali W, Sabir RI, Anum W, Gaurav GK, Riaz U, Liu X, Peng L. Recent developments in microplastic contaminated water treatment: Progress and prospects of carbon-based two-dimensional materials for membranes separation. CHEMOSPHERE 2023; 316:137704. [PMID: 36592840 DOI: 10.1016/j.chemosphere.2022.137704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Micro (nano)plastics pollution is a noxious menace not only for mankind but also for marine life, as removing microplastics (MPs) is challenging due to their physiochemical properties, composition, and response toward salinity and pH. This review provides a detailed assessment of the MPs pollution in different water types, environmental implications, and corresponding treatment strategies. With the advancement in nanotechnology, mitigation strategies for aqueous pollution are seen, especially due to the fabrication of nanosheets/membranes mostly utilized as a filtration process. Two-dimensional (2D) materials are increasingly used for membranes due to their diverse structure, affinity, cost-effectiveness, and, most importantly, removal efficiency. The popular 2D materials used for membrane-based organic and inorganic pollutants from water mainly include graphene and MXenes however their effectiveness for MPs removal is still in its infancy. Albeit, the available literature asserts a 70- 99% success rate in micro/nano plastics removal achieved through membranes fabricated via graphene oxide (GO), reduced graphene oxide (rGO) and MXene membranes. This review examined existing membrane separation strategies for MPs removal, focusing on the structural properties of 2D materials, composite, and how they adsorb pollutants and underlying physicochemical mechanisms. Since MPs and other contaminants commonly coexist in the natural environment, a brief examination of the response of 2D membranes to MPs removal was also conducted. In addition, the influencing factors regulate MPs removal performance of membranes by impacting their two main operating routes (filtration and adsorption). Finally, significant limitations, research gaps, and future prospects of 2D material-based membranes for effectively removing MPs are also proposed. The conclusion is that the success of 2D material is strongly linked to the types, size of MPs, and characteristics of aqueous media. Future perspectives talk about the problems that need to be solved to get 2D material-based membranes out of the lab and onto the market.
Collapse
Affiliation(s)
- Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany.
| | - Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Katrin Mackenzie
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Raja Irfan Sabir
- Faculty of Management Sciences, University of Central Punjab, Lahore; Pakistan
| | - Wajiha Anum
- Regional Agricultural Research Institute, Bahawalpur, Pakistan
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic; School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Umair Riaz
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
| | - Licheng Peng
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province, 570228, China.
| |
Collapse
|
70
|
Hu JL, Duan Y, Zhong HN, Lin QB, Zhang T, Zhao CC, Chen S, Dong B, Li D, Wang J, Mo MZ, Chen J, Zheng JG. Analysis of microplastics released from plastic take-out food containers based on thermal properties and morphology study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:305-318. [PMID: 36538705 DOI: 10.1080/19440049.2022.2157894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plastic take-out food containers may release microplastics (MPs) into food and pose a potential risk to food safety and human health. Here, after being subjected to hot water treatment, MPs released from three types of plastic food containers (polypropylene, PP; polyethylene, PE; expanded polystyrene, EPS) were identified by micro-Raman spectroscopy. The results showed that the size of released MPs ranged from 0.8-38 μm and over 96% MPs were smaller than 10 μm. Various MPs concentrations were found from the three types of containers, that is, 1.90 × 104, 1.01 × 105, and 2.82 × 106 particles/L on average from PP, PE, and EPS, respectively. Moreover, based on thermal and morphology analysis, we discovered that both relaxations of the polymer chains in the rubbery state and defects caused by processing techniques might contribute to the release of MPs. Thus, such release can be reduced by increasing the thermal stability of the materials and mitigating the defects generated during production.
Collapse
Affiliation(s)
- Jia-Ling Hu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, Jinan University, Zhuhai, China
| | - Yipin Duan
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Huai-Ning Zhong
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Qin-Bao Lin
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, Jinan University, Zhuhai, China
| | - Tianlong Zhang
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China.,School of Chemical Engineering, The University of Queensland, Brisbane, Qld, Australia
| | - Chuang-Chuang Zhao
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, Jinan University, Zhuhai, China
| | - Sheng Chen
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Ben Dong
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Dan Li
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Jing Wang
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Ming-Zhen Mo
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Jie Chen
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Jian-Guo Zheng
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| |
Collapse
|
71
|
Xiong F, Liu J, Xu K, Huang J, Wang D, Li F, Wang S, Zhang J, Pu Y, Sun R. Microplastics induce neurotoxicity in aquatic animals at environmentally realistic concentrations: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120939. [PMID: 36581239 DOI: 10.1016/j.envpol.2022.120939] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) draw international attention owing to their widespread distribution in water ecosystems, but whether MPs cause neurotoxic effects in aquatic animals at environmentally realistic concentrations is still controversial. This meta-analysis recompiled 35 studies to determine whether MPs could change the levels of brain (in vivo) neurotransmitters in aquatic animals at environmentally realistic concentrations (≤1 mg/L, median = 0.100 mg/L). Then, a group comparison was conducted to compare the effects of different factors on the effect size and to explore the significant factors affecting the neurotoxicity of MPs. The results demonstrated that MP exposure could considerably decrease the levels of acetylcholinesterase (AchE) in the brain of aquatic animals by 16.2%. However, the effects of MPs on cholinesterase (CHE), acetylcholine (ACh), dopamine (DA) and γ-aminobutyric acid (GABA) were not statistically significant due to the small number of studies and samples. The neurotoxicity of MPs was closely linked with particle size and exposure time but independent of animal species, MP compositions, MP morphology and MP concentrations. Further literatures review indicated that MP-induced neurotoxicity and behavioral changes are related with multiple biological processes, including nerve damage, oxidative stress, intestinal flora disturbance and metabolic disorder. Furthermore, some factors influencing MP neurotoxicity in the real environment (e.g. the aging of MPs, the release of MP additives, and the co-exposure of MPs and pollutants) were discussed. Overall, this study preliminarily explored whether MPs induced changes in neurotoxicity-related indicators in aquatic animals through meta-analysis and provided scientific evidence for evaluating the health risks and neurotoxicity of MPs at the environmental level.
Collapse
Affiliation(s)
- Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Daqin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Fuxian Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shiyuan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
72
|
Li H, Wang X, Mai Y, Lai Z, Zeng Y. Potential of microplastics participate in selective bioaccumulation of low-ring polycyclic aromatic hydrocarbons depending on the biological habits of fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159939. [PMID: 36336038 DOI: 10.1016/j.scitotenv.2022.159939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Currently, although the cumulative effects of microplastics (MPs) and organic pollutants (OPs) in the environment and within organisms are being investigated, whether and how MPs participate in bioaccumulation of OPs based on a carrier effect is still unclear. In the present study, water and aquatic organisms were collected from the Pearl River. Polycyclic aromatic hydrocarbons (PAHs) and MPs were separated by solid phase extraction and were measured by gas chromatography mass spectrometry and Fourier transform infrared spectroscopy, respectively. Higher PAH concentrations at the river outlet and higher MPs abundance in the inner river were observed, indicating a mismatched distribution between PAHs and MPs. No correlation between MP abundance and PAH concentration in fishes was detected, implying that MPs exerted limited influence on PAH concentrations. Interestingly, bioconcentration factors of one major low-ring PAH (phenanthrene) in fishes showed a significant correlation with MPs abundance, implying that although MPs did not affect the variation in PAH concentrations, they potentially participated in selective bioaccumulation of PAHs. Moreover, significant correlations between MPs abundance and PAHs in fishes with different feeding and living habits were found, indicating that MPs' participation in PAH bioaccumulation was dependent on fish biology and life history. Furthermore, the health risk posed by PAHs in fishes at the river outlet surpassed the line of potential high risk, while the ecological risk posed by MPs at the inner river was in the danger category, indicating the ecological risks posed by PAHs and MPs are uneven along the Pearl River. These findings deepen our understanding of the underlying mechanism of MPs participating in selective bioaccumulation of low-ring PAHs in fishes based on fish biology and point out the present risks posed by these two pollutants in the Pearl River and its estuary, which contribute to aquatic environmental protection and fishery production in this region.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Yongzhan Mai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zini Lai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yanyi Zeng
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
73
|
Urbina MA, da Silva Montes C, Schäfer A, Castillo N, Urzúa Á, Lagos ME. Slow and steady hurts the crab: Effects of chronic and acute microplastic exposures on a filter feeder crab. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159135. [PMID: 36191714 DOI: 10.1016/j.scitotenv.2022.159135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are a widespread environmental contaminant. Although detrimental effects on aquatic organisms are well documented, little is known about the long-term effects of microplastic exposure to filter-feeding organisms at ecologically realistic levels. This study investigates the effects of environmentally relevant concentrations of polyethylene micro beads ranging in size from 3 to 30 μm, on the physiology and energetics of a coastal filter-feeding crab Petrolisthes laevigatus. We evaluated the impact of microplastics by exposing P. laevigatus to two different concentrations and exposure times: i) a chronic exposure for five months at 250 particles L-1, and ii) an acute exposure for 48 h at 20,800 particles L-1, ~80 times higher than the chronic exposure. The results showed that only chronic exposures elicited negative effects on the coastal crab in both, metabolic and physiological parameters. Our findings demonstrate a strong correlation between the ingestion rate and weight loss, even at low concentrations, the crabs exhibited severe nutritional damage as a result of long-term microplastic exposure. By contrast, acute exposure revealed no significant effects to the crabs, a possible explanation for this being short-term compensatory responses. These results suggest that environmentally relevant concentrations of microplastics are harmful to marine organisms, and they should be evaluated during realistic temporal scales, as their effects strongly dependent on the exposure time. Our results also suggest that the effects of microplastics have been likely underestimated to date, due to the dominance of short-term exposures (acute) reported in the current literature.
Collapse
Affiliation(s)
- Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile.
| | - Caroline da Silva Montes
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Angela Schäfer
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Nicole Castillo
- Coastal Socio-Ecological Millennium Institute (SECOS), Universidad de Concepción & P. Universidad Católica de Chile, Chile; Coastal Ecosystems & Global Environmental Change Lab (ECCALab), Department of Aquatic System, Faculty of Environmental Sciences, Universidad de Concepción, Concepcion, Chile
| | - Ángel Urzúa
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Marcelo E Lagos
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile; SWIRE Institute of Marine Sciences & School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
74
|
Schmidt A, da Silva Brito WA, Singer D, Mühl M, Berner J, Saadati F, Wolff C, Miebach L, Wende K, Bekeschus S. Short- and long-term polystyrene nano- and microplastic exposure promotes oxidative stress and divergently affects skin cell architecture and Wnt/beta-catenin signaling. Part Fibre Toxicol 2023; 20:3. [PMID: 36647127 PMCID: PMC9844005 DOI: 10.1186/s12989-023-00513-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Nano- and microplastic particles (NMP) are strong environmental contaminants affecting marine ecosystems and human health. The negligible use of biodegradable plastics and the lack of knowledge about plastic uptake, accumulation, and functional consequences led us to investigate the short- and long-term effects in freshly isolated skin cells from mice. Using fluorescent NMP of several sizes (200 nm to 6 µm), efficient cellular uptake was observed, causing, however, only minor acute toxicity as metabolic activity and apoptosis data suggested, albeit changes in intracellular reactive species and thiol levels were observed. The internalized NMP induced an altered expression of various targets of the nuclear factor-2-related transcription factor 2 pathway and were accompanied by changed antioxidant and oxidative stress signaling responses, as suggested by altered heme oxygenase 1 and glutathione peroxide 2 levels. A highly increased beta-catenin expression under acute but not chronic NMP exposure was concomitant with a strong translocation from membrane to the nucleus and subsequent transcription activation of Wnt signaling target genes after both single-dose and chronic long-term NMP exposure. Moreover, fibroblast-to-myofibroblast transdifferentiation accompanied by an increase of α smooth muscle actin and collagen expression was observed. Together with several NMP-induced changes in junctional and adherence protein expression, our study for the first time elucidates the acute and chronic effects of NMP of different sizes in primary skin cells' signaling and functional biology, contributing to a better understanding of nano- and microplastic to health risks in higher vertebrates.
Collapse
Affiliation(s)
- Anke Schmidt
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Walison Augusto da Silva Brito
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany ,grid.411400.00000 0001 2193 3537Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina, Brazil
| | - Debora Singer
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Melissa Mühl
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Julia Berner
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany ,grid.5603.0Department Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., Greifswald, Germany
| | - Fariba Saadati
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Christina Wolff
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany ,grid.5603.0Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., Greifswald, Germany
| | - Kristian Wende
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
75
|
Hasan J, Dristy EY, Mondal P, Hoque MS, Sumon KA, Hossain MAR, Shahjahan M. Dried fish more prone to microplastics contamination over fresh fish - Higher potential of trophic transfer to human body. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114510. [PMID: 36608564 DOI: 10.1016/j.ecoenv.2023.114510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Globally, microplastics (MPs) contamination in aquatic organisms is emerging as an alarming phenomenon. In the present study, we investigated MPs in three commercially important fishes (Bombay duck Harpadon nehereus, ribbon fish Trichiurus lepturus and hairfin anchovy Setipinna phasa) in fresh and dried conditions collected from two sites (Chattogram and Kuakata) of the Bay of Bengal. It was evident that fresh T. lepturus ingested highest amount of MPs through the gills (6.41 mps/g) from Chattogram followed by in the gastrointestinal tract, GIT (6.20 mps/g) and in the muscle (1.20 mps/g) from Kuakata. Among the fresh fishes, H. nehereus from Kuakata accumulated highest amount of MPs (0.21 mps/g), while S. phasa from Kuakata contained the least amount of MPs (0.06 mps/g). On the other hand, among the dried fishes, T. lepturus from Kuakata contained highest amount of MPs (46.00 mps/g), while S. phasa from Kuakata retained lowest amount of MPs (2.17 mps/g). Strangely, all the dried fishes showed significantly higher amount of MPs compared to fresh fishes from both the locations. Fiber was the most dominant type of shape of MPs which accounted 66 %, followed by fragment (27.38 %), microbeads (3.59 %), film (1.48 %), foam (1.31 %) and pellet (0.25 %). Size-wise, the major portion (39.66 %) of MPs was present to be in size range less than 0.5 mm followed by 37.67 % in the size range of 0.5-1.0 mm group and rest 22.67 % within 1.0-5.0 mm. Red (41.55 %) colored MPs was the most prominent, followed by brown (22.11 %), blue (16.32 %), pink (11.69 %), purple (5.10 %), and green (2.25 %). Among polymer types, low-density polyethylene (LDPE) was the most common (38 %), followed by polystyrene (PS-22 %), polyvinyl chloride (PVC-16 %), polyamide (PA-13 %) and ethylene-vinyl acetate (EVA-9 %). The present study confirms high occurrence of MPs in the dried fishes over the fresh fishes from the Bay of Bengal, with high potential of trophic transfer to the human body.
Collapse
Affiliation(s)
- Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Evana Yesmin Dristy
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Pronoy Mondal
- Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Sazedul Hoque
- Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Kizar Ahmed Sumon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mostafa Ali Reza Hossain
- Department of Fish Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
76
|
Zhu X, Wang C, Duan X, Liang B, Genbo Xu E, Huang Z. Micro- and nanoplastics: A new cardiovascular risk factor? ENVIRONMENT INTERNATIONAL 2023; 171:107662. [PMID: 36473237 DOI: 10.1016/j.envint.2022.107662] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Exposure to micro- and nanoplastics (MNPs) is inevitable due to their omnipresence in the environment. A growing body of studies has advanced our understanding of the potential toxicity of MNPs but knowledge gaps still exist regarding the adverse effects of MNPs on the cardiovascular system and underlying mechanisms, particularly in humans. Here, we reviewed up-to-date data published in the past 10 years on MNP-driven cardiovascular toxicity and mechanisms. Forty-six articles concerning ADME (absorption, distribution, and aggregation behaviors) and toxicity of MNPs in the circulatory system of animals and human cells were analyzed and summarized. The results showed that MNPs affected cardiac functions and caused toxicity on (micro)vascular sites. Direct cardiac toxicity of MNPs included abnormal heart rate, cardiac function impairment, pericardial edema, and myocardial fibrosis. On (micro)vascular sites, MNPs induced hemolysis, thrombosis, blood coagulation, and vascular endothelial damage. The main mechanisms included oxidative stress, inflammation, apoptosis, pyroptosis, and interaction between MNPs and multiple cellular components. Cardiovascular toxicity was determined by the properties (type, size, surface, and structure) of MNPs, exposure dose and duration, protein presence, the life stage, sex, and species of the tested organisms, as well as the interaction with other environmental contamination. The limited quantitative information on MNPs' ADME and the lack of guidelines for MNP cardiotoxicity testing makes risk assessment on cardiac health impossible. Furthermore, the future directions of cardiovascular research on MNPs are recommended to enable more realistic health risk assessment.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chuanxuan Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyu Duan
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark.
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
77
|
Yuan Y, Sepúlveda MS, Bi B, Huang Y, Kong L, Yan H, Gao Y. Acute polyethylene microplastic (PE-MPs) exposure activates the intestinal mucosal immune network pathway in adult zebrafish (Danio rerio). CHEMOSPHERE 2023; 311:137048. [PMID: 36419273 DOI: 10.1016/j.chemosphere.2022.137048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Polyethylene is one of the most important plastic types with the highest consumption in the world. Plastics are prone to photodegradation and turn into microplastics, which are magnified as they move across trophic levels. Microplastics would be able to penetrate into lymph even cross cell membranes, causing harm to the lymphatic and/or circulatory systems, accumulating in secondary organs, and impacting the immune system and cell health. The objective of this study was to test that the activation of the intestinal immune network might be caused by disruption of intestinal microbiota after exposure to different polyethylene microplastics (PE-MPs) concentrations (1, 10, 100, and 1000 μg/mL) in adult zebrafish (Danio rerio) for 7 days. The concentrations of PE-MPs (100 and 1000 μg/mL) exposure decreased the goblet cell coverage. The intestinal microbial diversity index (Shannon and Simpson) was increased at 100 and 1000 μg/mL PE-MPs concentrations. The relative abundance of intestinal dominant microbiota phylum Proteobacteria and Actinobacteria increased significantly (P < 0.05); however, phylum Fusobacteria decreased significantly (P < 0.05). The relative abundance of intestinal microbiota at level of genera showed varying degrees of elevation such as Acinetobacter (6.31-fold), Plesiomonas (4.80-fold), Flavobacterium (10.54-fold) and Pseudomonas (5.17-fold) in 1000 μg/mL PE-MPs. Intestinal innate immunity-complement C3 and C4 content first increased and then declined in a dose-dependent manner. Expression of genes from the intestinal immune network for mucosal immunoglobulin production were increased also in a dose-dependent manner. The expression of immune-related genes (pigr, il10 and ighv4-5) were positively correlated with the relative abundance of genera Plesiomonas. In conclusion, PE-MPs increase the infection probability in the intestinal mucosa by altering the abundance of intestinal dominant microbiota at the level of phylum. PE-MPs exposure activated the intestinal immune network pathway for mucosal immunoglobulin production at a concentration of 100 or 1000 μg/mL for 7 days.
Collapse
Affiliation(s)
- Yin Yuan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Marisol S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Baoliang Bi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yadong Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lingfu Kong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Hui Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yu Gao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
78
|
Luo H, Du Q, Zhong Z, Xu Y, Peng J. Protein-coated microplastics corona complex: An underestimated risk of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157948. [PMID: 35963400 DOI: 10.1016/j.scitotenv.2022.157948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Traditionally, toxicity of microplastics is ascribed to the chemicals adsorbed on them. However, microplastics can also interact with biomolecules, such as secretory proteins from aquatic organisms, and form protein-coated microplastics corona complex with unknown toxic effects. Here, we investigated the toxic effects of polystyrene microplastics (PS) and bovine serum albumin (BSA) coated PS corona complex (PS + BSA) on adult zebrafish (Danio rerio) intestines. The food intake ratio, accumulation and distribution of microplastics, histopathological changes, and molecular effects related to the antioxidant system in the intestine were studied. For the first time, we observed that PS + BSA aggregated on the inner surface of the zebrafish intestine, whereas PS dispersed. The aggregation of PS + BSA resulted in increased microplastics accumulation and longer residence time in the zebrafish intestine, which inhibited food intake and generated reactive oxygen species (ROS) in the intestine. Furthermore, the functions of the Keap1-Nrf2-ARE antioxidant signaling pathway and the activation of antioxidant enzymes were significantly affected by PS + BSA after a 21-day exposure. Ultimately, a higher accumulation of ROS and stronger inhibition of antioxidants led to more severe intestinal injury. These results suggest that the increased toxicity of protein-coated microplastics corona complex may be affected by oxidative damage and can result in the inhibition of digestion due to their aggregation and longer residence time in the intestine. Therefore, the ecological risk of microplastics may be underestimated owing to the interactive mechanisms of microplastics and protein coronas.
Collapse
Affiliation(s)
- Hongwei Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qingping Du
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zuanjia Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jinping Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
79
|
Molecular Characterisation of Wnt4 and Wnt16 in the Water Flea (Daphnia pulex) and Their Expression Regulation by Polystyrene Nanoplastics. DIVERSITY 2022. [DOI: 10.3390/d14110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Wnt gene family is of ancient origin and is involved in various biological processes. In this study, Wnt4 and Wnt16 were cloned from Daphnia pulex, named DpWnt4 and DpWnt16, respectively. In DpWnt4 cDNA, full-length 1684 bp, the open reading frame was 1122 bp and it encodes a 373 amino acid polypeptide. In DpWnt16 cDNA, full-length 1941 bp, the open reading frame was 1293 bp and it encodes a 430 amino acid polypeptide. The sequence analysis result showed that both DpWnt4 and DpWnt16 sequences contain a Wnt1 domain. Multiple sequence alignment and phylogenetic analysis revealed that DpWnt4 and DpWnt16 were most closely related to arthropods. The expression of DpWnt4 decreased at 0.5 mg/L group and was induced at 2 mg/L, while DpWnt16 was only induced at 2 mg/L nanoplastics group. These results help us understand more about the character of Wnt4 and Wnt16 in crustaceans and how Wnt genes respond to pollutants, especially nanoplastics.
Collapse
|
80
|
Hodkovicova N, Hollerova A, Svobodova Z, Faldyna M, Faggio C. Effects of plastic particles on aquatic invertebrates and fish - A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104013. [PMID: 36375728 DOI: 10.1016/j.etap.2022.104013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This review summarises the current knowledge on the effects of microplastics and their additives on organisms living in the aquatic environment, particularly invertebrates and fish. To date, microplastics have been recognised to affect not only the behaviour of aquatic animals but also their proper development, causing variations in fertility, oxidative stress, inflammations and immunotoxicity, neurotoxicity, and changes in metabolic pathways and gene expression. The ability of microplastics to bind other xenobiotics and cause combined toxicity along side the effect of other agents is also discussed as well. Microplastics are highly recalcitrant materials in both freshwater and marine environments and should be considered extremely toxic to aquatic ecosystems. They are severely problematic from ecological, economic and toxicological standpoints.
Collapse
Affiliation(s)
- N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
81
|
El-Sherif DM, Eloffy MG, Elmesery A, Abouzid M, Gad M, El-Seedi HR, Brinkmann M, Wang K, Al Naggar Y. Environmental risk, toxicity, and biodegradation of polyethylene: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81166-81182. [PMID: 36205861 DOI: 10.1007/s11356-022-23382-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Polyethylene is the second-most-commonly-used commercial polymer. It is used in various industries, including agricultural mulches, composite materials, and packaging. Since polyethylene is not biodegradable, it can persist for a long time in water and soil, strangling otherwise fruitful land. The ecological and toxicological consequences and the fate of polyethylene have only recently been revealed. As a result, the primary goal of this review is to shed light on the reported toxicity of polyethylene to the environment and living creatures and highlight recent research on its degradation process through bibliometric analysis. To do that, we searched Web of Science database literature up to August 2021 and performed the bibliometric analysis using VOSviewer. We found that relative research interest showed a positive trend, particularly in the last 5 years. China and the Chinese Academy of Sciences had the highest published papers. Methods for polyethylene biodegradation by invertebrates, bacteria, and fungi were also reported indicating the need for future research to investigate and develop new biodegradation technologies.
Collapse
Affiliation(s)
- Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Manal G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Alaa Elmesery
- Industrial Biotechnology Unit, Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Mohammed Gad
- Zoology Department, Faculty of Science, Al-Azhar University, Asyut, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512, Egypt
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, 751 24, Uppsala, SE, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N 3H5, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
82
|
Patil PB, Maity S, Sarkar A. Potential human health risk assessment of microplastic exposure: current scenario and future perspectives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:898. [PMID: 36251091 DOI: 10.1007/s10661-022-10539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 06/16/2023]
Abstract
The vast usage of synthetic plastics has led to the global problem of plastic pollution which in turn has positively impacted the concerns regarding microplastic pollution. The major factor responsible for the increased level of pollution is the smaller size of microplastics which helps in its transportation across the globe. It has been found in most remote areas like glaciers and Antarctic regions where it is difficult for other contaminants to reach. This is ensured by the physicochemical cycle of plastic. They can either be produced for different applications or generated through the fragmentation of large plastic particles. Different studies have shown the accumulation of microplastics in different organisms, especially in aquatic animals leading to their entry into the food chain. The ultimate fate of the microplastics is accumulation inside the human body posing the risk of different health conditions like cancer, diabetes, and allergic reactions. The present review summarizes a detailed discussion on the current status of microplastic pollution, their effect on different organisms, and its impact on human health with a case study on the human health risk assessment for analyzing the global rate of microplastic ingestion.
Collapse
Affiliation(s)
- Pritam Bajirao Patil
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Sourav Maity
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
83
|
Jeong S, Jang S, Kim SS, Bae MA, Shin J, Lee KB, Kim KT. Size-dependent seizurogenic effect of polystyrene microplastics in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129616. [PMID: 36104895 DOI: 10.1016/j.jhazmat.2022.129616] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The effects of polystyrene microplastic (PS-MP) size on neurotoxicity remain to be evaluated at various microsizes, and the seizurogenic effects of PS-MPs are unknown. This study aimed to evaluate the swimming behavior of zebrafish larvae under light-dark transitions after exposure to four PS-MP sizes (i.e., 1, 6, 10, and 25 μm) at concentrations of 500, 5,000, and 50,000 particles/mL. Changes in electroencephalographic signals, seizure-related gene expression, and neurochemical concentrations were measured. Locomotor activity was inhibited only by 10-μm PS-MPs. According to electroencephalographic signals, the number and total duration of seizure-like events significantly increased by 10-μm PS-MPs, which was confirmed by the altered expression of seizure-related genes c-fos and pvalb5. Additionally, an increase in the levels of neurochemicals choline, betaine, dopamine, 3-methoxytyramine, and gamma-aminobutyric acid indicated that the observed hypoactivity and seizure-like behavior were associated with the dysregulation of the cholinergic, dopaminergic, and GABAergic systems. Overall, these findings demonstrate that exposure to PS-MPs can potentially cause seizurogenic effects in developing zebrafish embryos, and we highlight that PS-MPs 10 µm in size dominantly affect neurotoxicity.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea
| | - Soogyeong Jang
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, the Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, the Republic of Korea
| | | | - Ki-Baek Lee
- Zefit Inc., Daegu 42988, the Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea.
| |
Collapse
|
84
|
Liu L, Sun Y, Kleinmeyer Z, Habil G, Yang Q, Zhao L, Rosso D. Microplastics separation using stainless steel mini-hydrocyclones fabricated with additive manufacturing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156697. [PMID: 35710015 DOI: 10.1016/j.scitotenv.2022.156697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Microplastics have been widely detected in natural and engineered water systems and removing microplastics from various water matrices has become a major challenge. Mini-hydrocyclones (MHCs) have been previously applied to separate mediums of different phases. Given MHCs' capability of separating fine particles from liquid phase, three MHCs were designed and fabricated in stainless steel with 3D printing. Microplastics of densities that were both lower (<1 g·cm-3) and higher (>1 g·cm-3) than water's density were used to test the separation efficiency in ultra-purified water. The separation test was performed on single-stage MHC as well as MHCs in series in a closed hydraulic circuit. A range of important operational parameters, including split ratio, feed pressure, feed flow rate, and solid concentration, were evaluated to optimize the separation efficiency. The single-stage MHC experiment revealed that >80 % microplastics >20 μm can be effectively removed at the concentration tested, and the separation efficiency peaked at the split ratio of 35 %. MHCs in series demonstrated their ability to further enhance the separation efficiency of the ones with the same density, as well as separate microplastics of different densities. Mini-hydrocyclones' were also used to separate microplastics in synthetic stormwater, and separation efficiency reached 84 % and 98.1 % for low-density polyethylene (LDPE) and polyamide (PA). The results indicated the MHCs' potential for large-scale application in microplastic separation for industrial and municipal wastewater.
Collapse
Affiliation(s)
- Lin Liu
- Department of Mechanical Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318, PR China; Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yian Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Centre, University of California, Irvine, CA 92697-2175, USA.
| | - Zeth Kleinmeyer
- Department of Chemical Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Gina Habil
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Qinghai Yang
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, PR China
| | - Lixin Zhao
- Department of Mechanical Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318, PR China; Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, PR China.
| | - Diego Rosso
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Centre, University of California, Irvine, CA 92697-2175, USA
| |
Collapse
|
85
|
Secondary brain injury after polystyrene microplastic-induced intracerebral hemorrhage is associated with inflammation and pyroptosis. Chem Biol Interact 2022; 367:110180. [PMID: 36113630 DOI: 10.1016/j.cbi.2022.110180] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/21/2022]
Abstract
Unlike regular environmental pollutants, microplastics cannot dissolve in liquids. Physical contact of microplastic (MPs) with tissue can damage tissue structure, and it is unclear how this physical secondary injury affects brain tissue. Through CTD database analysis, it was determined that cerebral ischemia may be one of the main ways of brain tissue damage caused by MPs, and inflammatory response may play a key role in it. In the present study, PS-MPs (L-PS group:1 mg/L, M - PS group:10 mg/L, H-PS group: 100 mg/L in water) were assessed to brain tissue damage in chicken after six weeks of continuous exposure. Exposure to PS-MPs caused cerebral hemorrhage as well as generation of microthrombi and loss of Purkinje cells. Intracerebral hemorrhage caused a strong infiltration of inflammatory cells and activated the ASC-NLRP3-GSDMD signaling pathway to induce pyroptosis. Disruption of mitochondrial dynamics by PS-MPs exposure disrupts mitochondrial function and activates AMPK signaling. In conclusion, this study explored the mechanism regulation of subsequent brain injury from the perspective of physical injury (cerebral hemorrhage) of PS-MPs. To provide a reference for elucidating the neurotoxicity induced by microplastic exposure.
Collapse
|
86
|
Tarasco M, Gavaia PJ, Bensimon-Brito A, Cordelières FP, Santos T, Martins G, de Castro DT, Silva N, Cabrita E, Bebianno MJ, Stainier DYR, Cancela ML, Laizé V. Effects of pristine or contaminated polyethylene microplastics on zebrafish development. CHEMOSPHERE 2022; 303:135198. [PMID: 35660050 DOI: 10.1016/j.chemosphere.2022.135198] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The presence of microplastics in the aquatic ecosystem represents a major issue for the environment and human health. The capacity of organic pollutants to adsorb onto microplastic particles raises additional concerns, as it creates a new route for toxic compounds to enter the food web. Current knowledge on the impact of pristine and/or contaminated microplastics on aquatic organisms remains insufficient, and we provide here new insights by evaluating their biological effects in zebrafish (Danio rerio). Zebrafish larvae were raised in ZEB316 stand-alone housing systems and chronically exposed throughout their development to polyethylene particles of 20-27 μm, pristine (MP) or spiked with benzo[α]pyrene (MP-BaP), supplemented at 1% w/w in the fish diet. While they had no effect at 30 days post-fertilization (dpf), MP and MP-BaP affected growth parameters at 90 and 360 dpf. Relative fecundity, egg morphology, and yolk area were also impaired in zebrafish fed MP-BaP. Zebrafish exposed to experimental diets exhibited an increased incidence of skeletal deformities at 30 dpf as well as an impaired development of caudal fin/scales, and a decreased bone quality at 90 dpf. An intergenerational bone formation impairment was also observed in the offspring of parents exposed to MP or MP-BaP through a reduction of the opercular bone in 6 dpf larvae. Beside a clear effect on bone development, histological analysis of the gut revealed a reduced number of goblet cells in zebrafish fed MP-BaP diet, a sign of intestinal inflammation. Finally, exposure of larvae to MP-BaP up-regulated the expression of genes associated with the BaP response pathway, while negatively impacting the expression of genes involved in oxidative stress. Altogether, these data suggest that long-term exposure to pristine/contaminated microplastics not only jeopardizes fish growth, reproduction performance, and skeletal health, but also causes intergenerational effects.
Collapse
Affiliation(s)
- Marco Tarasco
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB) and Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Anabela Bensimon-Brito
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany; INSERM, ATIP-Avenir, Aix Marseille University, Marseille Medical Genetics, Marseille, France
| | - Fabrice P Cordelières
- Bordeaux Imaging Center (BIC), UMS 3420 CNRS - Université de Bordeaux - US4 INSERM, Pôle d'imagerie Photonique, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | - Tamára Santos
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Daniela T de Castro
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Nádia Silva
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Elsa Cabrita
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Maria J Bebianno
- Centre for Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB) and Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; S2AQUA, Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal.
| |
Collapse
|
87
|
Yao Z, Seong HJ, Jang YS. Environmental toxicity and decomposition of polyethylene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113933. [PMID: 35930840 DOI: 10.1016/j.ecoenv.2022.113933] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In the more than 100 years since the invention of plastics, various plastic polymers have been developed that exhibit different characteristics and have been widely used in production and life. In 2020 alone, nearly 400 million tons of plastics were produced globally. However, while plastic such as polyethylene brings us convenience, it also threatens environmental sustainability and human health. Due to insufficient recycling efficiency, millions of tons of polyethylene pollutants accumulate in terrestrial or marine environments each year. Polyethylene is elastic, chemically stable, and non-biodegradable, and the traditional disposal methods include landfilling and incineration. These methods are costly, unsustainable, and further increase the burden on the environment. Therefore, recent research has increasingly focused on the biodegradation of polyethylene. In this work, we briefly summarized polyethylene's properties and environmental toxicity. We also reviewed the recent advances in the biodegradation of polyethylene with a summary of traditional abiotic methods. Finally, we proposed a brief research direction in polyethylene study with the aspect of environmental toxicology and industrial applications of decomposition technology.
Collapse
Affiliation(s)
- Zhuang Yao
- Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon Jeong Seong
- Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Yu-Sin Jang
- Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
88
|
Yang H, Zhu Z, Xie Y, Zheng C, Zhou Z, Zhu T, Zhang Y. Comparison of the combined toxicity of polystyrene microplastics and different concentrations of cadmium in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106259. [PMID: 35932501 DOI: 10.1016/j.aquatox.2022.106259] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Microplastic particles (MPs) are widely distributed in the environment. The high surface ratio of MPs make them effective transmission mediums for many toxic pollutants. The combined toxicity of MPs and heavy metals have received increasing attention in recent years. In this study, effects of MPs (100 μg/L) on the toxicity of low (15 μg/L) and high (150 μg/L) concentrations of cadmium (Cd) to zebrafish were evaluated based on a 10-day subacute exposure. The survival rate, growth, antioxidant capacity, reactive oxygen species (ROS) accumulation, histology and Cd biological enrichment in different tissues were investigated with the objective to understand the effect and mechanism of MPs on Cd toxicity to zebrafish. The results showed that the effect of MPs on Cd toxicity mainly depended on the concentration of Cd. MPs significantly enhanced the toxicity of low concentrations of Cd (LCd), including lower antioxidant enzyme activities, higher ROS levels, more severe tissue damage, inhibited growth rate and lower survival rate. However, the effects of MPs on the toxicity of high concentrations of Cd (HCd) were exactly opposite to LCd. Cd enrichment analysis showed that MPs could significantly increase LCd accumulation in intestine, gill, skin and muscle tissues, while decrease the enrichment of HCd in liver, intestine, gill and muscle tissues. Free Cd in the exposure water was significantly decreased by MPs in the HCd and MPs combined exposure group. These results suggest that effect of MPs on Cd toxicity to zebrafish depending on Cd concentration, MPs can increase the enrichment of LCd in zebrafish and enhance its toxicity, but can decrease the enrichment of HCd in zebrafish and attenuate its toxicity. The present study will broaden our understanding of the interaction between MPs and heavy metals.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuexuan Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chen Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhenyuan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Tianhao Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
89
|
Yu C, Zeng H, Wang Q, Chen W, Chen W, Yu W, Lou H, Wu J. Multi-omics analysis reveals the molecular responses of Torreya grandis shoots to nanoplastic pollutant. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129181. [PMID: 35643006 DOI: 10.1016/j.jhazmat.2022.129181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Micro/nanoplastic has become an emerging pollutant of global concern. At present, ecotoxic researches on micro/nanoplastics mostly focus on marine aquatic organisms and freshwater algae. Research on the ecological impacts of plastics on higher terrestrial plants, especially on forest plants, is relatively limited. Torreya grandis cv. Merrillii, a species of conifer in the family Taxaceae, is a unique and economically valuable tree species in China. The physiological and biochemical responses of T. grandis seedlings to polystyrene nanoplastics (PSNPs) with a diameter of 100 nm were systematically studied inthe present study. The results showed that nanoplastics enhanced the accumulation of the thiobarbituric acid reactive substance and the activities of catalase and peroxidase. The concentrations of iron, sulfur, and zinc were reduced after nanoplastic exposure. PSNP treatment had an important effect on a series of chemical and genetic indicators of T. grandis, includingantioxidants, small RNA, gene transcription, protein expressions, and metabolite accumulation. Multi-omic analysis revealed that PSNPs modulate terpenoid- and flavonoid-biosynthesis pathways by regulating small RNA transcription and protein expression. Our study provided novelty insights into the responses of forest plants to nanoplastic treatment.
Collapse
Affiliation(s)
- Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China.
| |
Collapse
|
90
|
Warrier AK, Kulkarni B, Amrutha K, Jayaram D, Valsan G, Agarwal P. Seasonal variations in the abundance and distribution of microplastic particles in the surface waters of a Southern Indian Lake. CHEMOSPHERE 2022; 300:134556. [PMID: 35429497 DOI: 10.1016/j.chemosphere.2022.134556] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
Hazardous anthropogenic particles, such as microplastics (MPs) in the lake ecosystems, are a serious concern. In this work, we have investigated the seasonal occurrence and distribution of microplastics in the surface water samples of Lake Manipal in southwest India. The concentration of MPs was found to be higher during the monsoon season (0.423 particles/L) in comparison with the post-monsoon (0.117 particles/L) period. The higher abundance is attributed to the input of storm-water sewers connected to the lake as well as surface runoff during periods of high rainfall. The concentrations of small-sized (0.3-1 mm) microplastics were greater in both seasons. Approximately 96% of the microplastics were fibres, followed by smaller amounts of fragments, pellets, films, and foams. Polyethylene terephthalate (PET) was the principal polymer composition of the microplastics, followed by cellulose. The PET and cellulose fibres were mainly derived from the laundering of clothes in the residential colonies and hostels situated close to the lake. The storm-water sewers were the likely conduit for these PET fibres into the lake. The Pollution Load Index (PLI) data reveals that pollution due to microplastics in Lake Manipal falls within the Level I risk category. The PLI was higher during the monsoon season due to an increased flux of these particles from the nearby region. During the post-monsoon period, the PLI values decreased, suggesting that MPs in the water column may have settled and mixed with the sediments. The baseline data generated in this study is important as different types of birds, amphibians, and other microorganisms are present in the environment of Lake Manipal. We also propose certain policy measures that can be adopted by the regional population to mitigate microplastic pollution in the lake and its vicinity.
Collapse
Affiliation(s)
- Anish Kumar Warrier
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Centre for Climate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Bhavani Kulkarni
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - K Amrutha
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dhanasree Jayaram
- Department of Geopolitics and International Relations, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Centre for Climate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Gokul Valsan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Prashansa Agarwal
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
91
|
Balzani P, Galeotti G, Scheggi S, Masoni A, Santini G, Baracchi D. Acute and chronic ingestion of polyethylene (PE) microplastics has mild effects on honey bee health and cognition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119318. [PMID: 35447255 DOI: 10.1016/j.envpol.2022.119318] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The massive use of plastic has contributed to huge quantities of hazardous refuse at a global scale and represents one of the most prominent issues of the Anthropocene. Microplastics (MPs) have been detected in almost all environments and pose a potential threat to a variety of plant and animal species. Many studies have reported a variety of effects, from negligible to detrimental, of MPs to aquatic organisms. Conversely, much less is known about their effect on terrestrial biota, and particularly on animal behavior and cognition. We assessed the oral toxicity of polyethylene (PE) MPs at three different concentrations (0.5, 5, and 50 mg L-1), and at different timescales (1 day and 7 days of exposure) and tested for their effects on survival, food intake, sucrose responsiveness, habituation to sucrose and appetitive olfactory learning and memory in the honey bee Apis mellifera. We found that workers were not completely unaffected by acute and prolonged ingestion of this polymer. A significant effect of PE on bee mortality was found for the highest concentration but not for lower ones. PE affected feeding behavior in a concentration-dependent manner, with bees consuming more food than controls when exposed to low concentration PE. Regarding our behavioral and cognitive experiments, the high concentration PE was found to affect only bees' ability to respond consistently to sucrose but not sucrose sensitivity, habituation to sucrose or learning and memory abilities, even for prolonged exposure to PE. While these last results may look somewhat encouraging, we discussed why caution is warranted before ruling out the possibility that PE particles at environmental concentrations are harmful to honey bees.
Collapse
Affiliation(s)
- Paride Balzani
- Dipartimento di Biologia, Università delgi Studi di Firenze, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Giorgia Galeotti
- Dipartimento di Biologia, Università delgi Studi di Firenze, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| | - Sara Scheggi
- Dipartimento di Biologia, Università delgi Studi di Firenze, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| | - Alberto Masoni
- Dipartimento di Biologia, Università delgi Studi di Firenze, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| | - Giacomo Santini
- Dipartimento di Biologia, Università delgi Studi di Firenze, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| | - David Baracchi
- Dipartimento di Biologia, Università delgi Studi di Firenze, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
92
|
Bobori DC, Dimitriadi A, Feidantsis K, Samiotaki A, Fafouti D, Sampsonidis I, Kalogiannis S, Kastrinaki G, Lambropoulou DA, Kyzas GZ, Koumoundouros G, Bikiaris DN, Kaloyianni M. Differentiation in the expression of toxic effects of polyethylene-microplastics on two freshwater fish species: Size matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154603. [PMID: 35337874 DOI: 10.1016/j.scitotenv.2022.154603] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 05/12/2023]
Abstract
The built up of microplastic (MPs) remains is shaping a new aquatic habitat and imposes the necessity for research of the effects that these relatively new pollutants exert on organisms, environment, and human health. The purpose of the present study was to verify if there is a particle-size dependence of fish response to MPs. Thus, we exposed two freshwater fish species, the zebrafish (Danio rerio) and perch (Perca fluviatilis) for 21 days to polyethylene microplastics (PE-MPs) sized 10-45 μm and 106-125 μm. Thereafter, in the liver and gills tissues, biochemical and molecular parameters and the metabolic profile were examined. Ex-vivo characterization by ATR-FTIR spectroscopy exhibited increased concentration of 10-45 μm PE-MPs in the liver of the two fish species while 106-125 μm PE-MPs mostly concentrated in fish gills. The penetration of PE-MPs to fish and the induced oxidative stress triggered changes in lipid peroxidation, DNA damage and ubiquitination and furthermore stimulated signal transduction pathways leading to autophagy and apoptosis. The smaller PE-MPs were more potent in inducing alterations to all the latter parameters measured than the larger ones. Tissue response in both fish seems to depend on the parameter measured and does not seem to follow a specific pattern. Our results showed that there is no clear sensitivity of one fish species versus the other, against both sizes of PE-MPs they were exposed. In perch the metabolic changes in gills were distinct to the ones observed in liver, following a size dependent pattern, indicating that stress conditions are generated through different mechanisms. All the parameters employed can be suggested further as biomarkers in biomonitoring studies against PE-MPs.
Collapse
Affiliation(s)
- Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | | | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Athina Samiotaki
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Danai Fafouti
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400 Thessaloniki, Greece
| | - Georgia Kastrinaki
- Laboratory of Inorganic Materials, CERTH/CPERI, GR-570 01 Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-654 04 Kavala, Greece
| | | | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
93
|
Ilechukwu I, Ehigiator BE, Ben IO, Okonkwo CJ, Olorunfemi OS, Modo UE, Ilechukwu CE, Ohagwa NJ. Chronic toxic effects of polystyrene microplastics on reproductive parameters of male rats. Environ Anal Health Toxicol 2022; 37:e2022015-0. [PMID: 35878923 PMCID: PMC9314200 DOI: 10.5620/eaht.2022015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/26/2022] [Indexed: 01/24/2023] Open
Abstract
Microplastics have become a significant environmental concern. However, information on toxicity of microplastics in terrestrial organisms is limited. In this study, the chronic toxic effects of polystyrene microplastics (PS-MPs) on the reproductive system and serum antioxidants of male albino Wistar rats fed for 90 days with standard rat feed containing 1–10% granules of crushed polystyrene disposable plates were evaluated. Significant reductions in volume, motility, epididymal sperm count and serum testosterone level were observed. Histological examination of testicular architecture showed distorted testes with vacuolated seminiferous tubules at the highest percentage, together with increased catalase and decreased superoxide dismutase activities. This study showed that ingestion of PS-MPs caused reproductive dysfunction in male rats and contributes to understanding the potential toxicity of microplastics in terrestrial animals.
Collapse
Affiliation(s)
- Ifenna Ilechukwu
- Graduate School of Engineering and Science, Department of Marine and Environmental Science, University of the Ryukyus, Nishihara, Okinawa,
Japan
- Environmental Chemistry Unit, Department of Industrial Chemistry, Madonna University, Elele Campus, Rivers State,
Nigeria
| | - Ben Enoluomen Ehigiator
- Department of Pharmacology and Toxicology, Madonna University, Elele Campus, Rivers State,
Nigeria
| | - Inemesit Okon Ben
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho,
Ghana
- Correspondence:
| | | | - Oluwakemi S. Olorunfemi
- Department of Pharmacology and Toxicology, Madonna University, Elele Campus, Rivers State,
Nigeria
| | - Uchechukwu Emmanuel Modo
- Department of Biochemistry, PAMO University of Medical Sciences, Port Harcourt, Rivers State,
Nigeria
| | | | - Ngozika Juliet Ohagwa
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers State,
Nigeria
| |
Collapse
|
94
|
Zolotova N, Kosyreva A, Dzhalilova D, Fokichev N, Makarova O. Harmful effects of the microplastic pollution on animal health: a literature review. PeerJ 2022; 10:e13503. [PMID: 35722253 PMCID: PMC9205308 DOI: 10.7717/peerj.13503] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 01/17/2023] Open
Abstract
Background The environmental pollution by microplastics is a global problem arising from the extensive production and use of plastics. Small particles of different plastics, measured less than 5 mm in diameter, are found in water, air, soil, and various living organisms around the globe. Humans constantly inhale and ingest these particles. The associated health risks raise major concerns and require dedicated evaluation. Objectives In this review we systematize and summarize the effects of microplastics on the health of different animals. The article would be of interest to ecologists, experimental biologists, environmental physicians, and all those concerned with anthropogenic environmental changes. Methodology We searched PubMed and Scopus from the period of 01/2010 to 09/2021 for peer-reviewed scientific publications focused on (1) environmental pollution with microplastics; (2) uptake of microplastics by humans; and (3) the impact of microplastics on animal health. Results The number of published studies considering the effects of microplastic particles on aquatic organisms is considerable. In aquatic invertebrates, microplastics cause a decline in feeding behavior and fertility, slow down larval growth and development, increase oxygen consumption, and stimulate the production of reactive oxygen species. In fish, the microplastics may cause structural damage to the intestine, liver, gills, and brain, while affecting metabolic balance, behavior, and fertility; the degree of these harmful effects depends on the particle sizes and doses, as well as the exposure parameters. The corresponding data for terrestrial mammals are less abundant: only 30 papers found in PubMed and Scopus deal with the effects of microplastics in laboratory mice and rats; remarkably, about half of these papers were published in 2021, indicating the growing interest of the scientific community in this issue. The studies demonstrate that in mice and rats microplastics may also cause biochemical and structural damage with noticeable dysfunctions of the intestine, liver, and excretory and reproductive systems. Conclusions Microplastics pollute the seas and negatively affect the health of aquatic organisms. The data obtained in laboratory mice and rats suggest a profound negative influence of microplastics on human health. However, given significant variation in plastic types, particle sizes, doses, models, and modes of administration, the available experimental data are still fragmentary and controversial.
Collapse
Affiliation(s)
- Natalia Zolotova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Moscow, Russia,Medical Institute, RUDN University, Moscow, Russia
| | - Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Nikolai Fokichev
- Biological Department, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| |
Collapse
|
95
|
Embryotoxicity of Polystyrene Microspheres of Different Sizes to the Marine Medaka Oryzias melastigma (McClelland, 1839). WATER 2022. [DOI: 10.3390/w14121831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polystyrene microplastics (PS-MPs) are potentially harmful to marine organisms, especially during the early developmental stages, although the underlying mechanism remains unclear. The present study evaluated the growth and morphological characteristics of marine medaka Oryzias melastigma (McClelland, 1839) embryos exposed to PS-MP. PS-MPs of three different sizes (0.05, 0.5, and 6.0 μm with a concentration of 106 particles/L) were subjected to waterborne exposure for 19 d. The hatching time and rate of embryos exposed to 0.5 and 6.0 μm PS-MPs were significantly lower than those of the control, while no significant difference was observed in the 0.05 μm treatment. No significant differences were observed in the mortality rate of the embryos, embryo diameter, and relevant gene expression levels, including il6, il8, il-1β, jak, stat-3, nf-κb, hif-1α, epo, cyp1a1, ahr, sod, cat, and gpx, but with the exception of vtg. Fluorescent PS-MPs were found on the embryo surfaces when the embryos were exposed to 0.5 and 6.0 μm PS-MPs, but no signals were detected inside embryos using confocal microscopy. Therefore, the results indicate that PS-MPs having a diameter of 6.0 μm can only attach to the surface or villus of embryos and not enter the embryos through the membrane pores, whereas PS-MPs with diameters of 0.05 and 0.5 μm cannot enter the embryos.
Collapse
|
96
|
Ruangpanupan N, Ussawarujikulchai A, Prapagdee B, Chavanich S. Microplastics in the surface seawater of Bandon Bay, Gulf of Thailand. MARINE POLLUTION BULLETIN 2022; 179:113664. [PMID: 35490488 DOI: 10.1016/j.marpolbul.2022.113664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the microplastics abundance, composition and distribution in Bandon Bay's surface seawater, in southern Thailand. Samples of microplastics were collected from 48 transects using a surface manta trawl at four different estuaries that support human activities. The results showed that the highest microplastic abundance occurred in the fishery and aquaculture areas with a mean abundance of 0.33 particles/m3. Fragments were the dominant form at all stations. Microplastics with <1 mm were the dominant size, and white was the colour most found in all stations. Polypropylene was the major type of microplastic, accounting for 57% overall. This study is an important reference for understanding the microplastics status in the surface seawater of Bandon Bay, as it will allow relevant agencies to accurately assess the pollution level of microplastics in the bay. It is of practical significance to understand the sources and sinks of microplastics.
Collapse
Affiliation(s)
- Natenapa Ruangpanupan
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Achara Ussawarujikulchai
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand.
| | - Benjaphorn Prapagdee
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Suchana Chavanich
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
97
|
Lee S, Kang KK, Sung SE, Choi JH, Sung M, Seong KY, Lee J, Kang S, Yang SY, Lee S, Lee KR, Seo MS, Kim K. In Vivo Toxicity and Pharmacokinetics of Polytetrafluoroethylene Microplastics in ICR Mice. Polymers (Basel) 2022; 14:polym14112220. [PMID: 35683896 PMCID: PMC9182653 DOI: 10.3390/polym14112220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
The increased use of plastics has led to severe environmental pollution, particularly by microplastics—plastic particles 5 mm or less in diameter. These particles are formed by environmental factors such as weathering and ultraviolet irradiation, thereby making environmental pollution worse. This environmental pollution intensifies human exposure to microplastics via food chains. Despite potential negative effects, few toxicity assessments on microplastics are available. In this study, two sizes of polytetrafluoroethylene (PTFE) microplastics, approximately 5 μm and 10–50 μm, were manufactured and used for single and four-week repeated toxicity and pharmacokinetic studies. Toxicological effects were comprehensively evaluated with clinical signs, body weight, food and water consumption, necropsy findings, and histopathological and clinical-pathological examinations. Blood collected at 15, 30 60, and 120 min after a single administration of microplastics were analyzed by Raman spectroscopy. In the toxicity evaluation of single and four-week repeated oral administration of PTFE microplastics, no toxic changes were observed. Therefore, the lethal dose 50 (LD50) and no-observed-adverse-effect-level (NOAEL) of PTFE microplastics in ICR mice were established as 2000 mg/kg or more. PTFE microplastics were not detected in blood, so pharmacokinetic parameters could not be calculated. This study provides new insight into the long-term toxicity and pharmacokinetics of PTFE microplastics.
Collapse
Affiliation(s)
- Sijoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
- Institute of Animal Medicine & Department of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Kyung-Ku Kang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
| | - Soo-Eun Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (K.-Y.S.); (J.L.); (S.K.); (S.Y.Y.)
| | - Joo-Hee Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
| | - Minkyoung Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
| | - Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (K.-Y.S.); (J.L.); (S.K.); (S.Y.Y.)
| | - Jian Lee
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (K.-Y.S.); (J.L.); (S.K.); (S.Y.Y.)
| | - Subin Kang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (K.-Y.S.); (J.L.); (S.K.); (S.Y.Y.)
| | - Seong Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (K.-Y.S.); (J.L.); (S.K.); (S.Y.Y.)
| | - Sunjong Lee
- Korea Institute of Industrial Technology, Cheonan 31056, Korea;
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea;
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Min-Soo Seo
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
- Correspondence: (M.-S.S.); (K.K.); Tel.: +82-53-790-5727 (M.-S.S.); +82-53-790-5700 (K.K.)
| | - KilSoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
- College of Veterinary Medicine, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Korea
- Correspondence: (M.-S.S.); (K.K.); Tel.: +82-53-790-5727 (M.-S.S.); +82-53-790-5700 (K.K.)
| |
Collapse
|
98
|
Santos AL, Rodrigues CC, Oliveira M, Rocha TL. Microbiome: A forgotten target of environmental micro(nano)plastics? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153628. [PMID: 35124041 DOI: 10.1016/j.scitotenv.2022.153628] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are emerging pollutants in different environmental compartments (air, soil and water) and that may induce several ecotoxicological effects on organisms and their microbiota. A considerable number of studies has been addressing and highlighting the effects of MPs/NPs on biochemical, molecular and behavior effects of aquatic organisms. However, less attention has been focused on microbiota. Here, a critical overview of published studies focusing on microorganisms affected by MPs and NPs after in vitro or in vivo exposure is provided. Available studies regarding the properties of MPs/NPs, microbial phyla, experimental conditions, techniques employed, and effects are summarized. The link between microbiota disruption and other effects on other hosts (e.g., crustaceans, fish, and mammals) as also analyzed. Overall, the literature review shows that most studies with microorganisms were performed in vitro (MPs: 44.11%; NPs: 23.52%) in comparison with in vivo tests (MPs: 32.35%; NPs: 11.76%). The most studied MP/NPs were polystyrene particles, generally spheres, with sizes <50 μm and concentrations ranged between 100 and 1000 mg L-1. The most studied main phyla were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. MPs/NPs induced microbiome composition disruption, immune response (i.e., immune modulator release, immune cells activation and inflammatory response), enzyme activity changes (i.e., catalase, urease, dehydrogenase, alkaline phosphatase, and fluorescein diacetate hydrolase) and gene expression changes. The immune responses changes were related to microbiome disruption. Research gaps are highlighted and recommendations for future research indicated that microbiome is sensitive to MP/NPs and microbiome disruption can be a valuable tool to assess the risk of plastic particles to human and environmental health.
Collapse
Affiliation(s)
- Andressa Liberal Santos
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
99
|
Cunningham B, Harper B, Brander S, Harper S. Toxicity of micro and nano tire particles and leachate for model freshwater organisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128319. [PMID: 35236035 DOI: 10.1016/j.jhazmat.2022.128319] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental sampling has documented a diversity of microplastics, including high levels of black rubber- generally identified as tire debris. Though organisms have been shown to ingest tire particles (TPs), past research focused on toxicity of leachate alone, overlooking potential effects of particles. To address these gaps, we assessed the toxicity of micro (1-20 µm) and nano (<1 µm) TPs for two model organisms, embryonic Zebrafish Danio rerio and the crustacean Daphnia magna. To assess effects on development, Zebrafish embryos were exposed to concentrations of TPs or leachate ranging from 0 to 3.0 × 109 particles/ml and 0-100% respectively (n = 4). Greater mortality and sublethal malformations were observed following nano TP and leachate exposures as compared to micro TPs. Unique abnormalities between the exposures indicates that there is both chemical and particle-specific toxicity. We also observed D. magna mortality following a 48 h exposure of neonate to TPs or leachate, ranging from 0 to 3.3 × 109 particles/ml and 0-100% respectively (n = 3). Though, particle-enhancement of toxicity was observed for both Zebrafish and D. magna, overall sensitivity to TPs differed. It is important to identify differential toxicities across species to achieve an understanding of the environmental impacts of TPs and the chemicals they leach.
Collapse
Affiliation(s)
- Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Bryan Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Susanne Brander
- Coastal Oregon Marine Experiment Station, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, United States
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
100
|
Application of omics approaches for assessing microplastic and nanoplastic toxicity in fish and seafood species. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|