51
|
de Oliveira VM, Malospirito CC, da Silva FB, Videira NB, Dias MMG, Sanches MN, Leite VBP, Figueira ACM. Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants. J Chem Phys 2024; 161:165102. [PMID: 39440760 DOI: 10.1063/5.0232041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303-E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.
Collapse
Affiliation(s)
- Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | - Caique C Malospirito
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | | | - Natália B Videira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | - Marieli M G Dias
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | - Murilo N Sanches
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities, and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities, and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Ana Carolina M Figueira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| |
Collapse
|
52
|
Jin C, Zhao R, Hu W, Wu X, Zhou L, Shan L, Wu H. Topical hADSCs-HA Gel Promotes Skin Regeneration and Angiogenesis in Pressure Ulcers by Paracrine Activating PPARβ/δ Pathway. Drug Des Devel Ther 2024; 18:4799-4824. [PMID: 39478872 PMCID: PMC11523932 DOI: 10.2147/dddt.s474628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Background Pressure ulcer is common in the bedridden elderly with high mortality and lack of effective treatment. In this study, human-adipose-derived-stem-cells-hyaluronic acid gel (hADSCs-HA gel) was developed and applied topically to treat pressure ulcers, of which efficacy and paracrine mechanisms were investigated through in vivo and in vitro experiments. Methods Pressure ulcers were established on the backs of C57BL/6 mice and treated topically with hADSCs-HA gel, hADSCs, hyaluronic acid, and normal saline respectively. The rate of wound closure was observed continuously during the following 14 days and the wound samples were obtained for Western blot, histopathology, immunohistochemistry, and proteomic analysis. Human dermal fibroblasts (HDFs) and human venous endothelial cells (HUVECs) under normal or hypoxic conditions were treated with conditioned medium of human ADSCs (ADSC-CM), then CCK-8, scratch test, tube formation, and Western blot were conducted to evaluate the paracrine effects of hADSCs and to explore the underlying mechanism. Results The in vivo data demonstrated that hADSCs-HA gel significantly accelerated the healing of pressure ulcers by enhancing collagen expression, angiogenesis, and skin proliferation. The in vitro data revealed that hADSCs strengthened the proliferation and wound healing capabilities of HDFs and HUVECs, meanwhile promoted collagen secretion and tube formation through paracrine mode. ADSC-CM was also proved to exert protective effects on hypoxic HDFs and HUVECs. Besides, the results of proteomic analysis and Western blot elucidated that lipid metabolism and PPARβ/δ pathway mediated the healing effect of hADSCs-HA gel on pressure ulcers. Conclusion Our research showed that topical application of hADSCs-HA gel played an important role in dermal regeneration and angiogenesis. Therefore, hADSCs-HA gel exhibited the potential as a novel stem-cell-based therapeutic strategy of treating pressure ulcers in clinical practices.
Collapse
Affiliation(s)
- Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Ruolin Zhao
- Yichen Biotechnology Co., Ltd, Hangzhou, Zhejiang, 311200, People’s Republic of China
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Weihang Hu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People’s Republic of China
| | - Xiaolong Wu
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Letian Shan
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| |
Collapse
|
53
|
Sun M, Cheng H, Yang Z, Tang J, Sun S, Liu Z, Zhao S, Dong L, Huang Y. Preliminary investigation on the establishment of a new meibomian gland obstruction model and gene expression. Sci Rep 2024; 14:25018. [PMID: 39443496 PMCID: PMC11499931 DOI: 10.1038/s41598-024-73682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Meibomian gland dysfunction is a chronic ocular surface disease with a complex pathogenesis, whose main clinical manifestations are meibomian gland obstruction or/and lipid abnormalities. To explore the mechanism of MGD due to meibomian gland obstruction (MGO), we established a rat model of MGO by cauterizing the meibomian gland orifice. The morphology of the lid margins and meibomian gland orifices were visualized by slit lamp. The tear production of rats was measured by phenol red cotton thread, the tear film breakup time and corneal fluorescein staining scores of rats were detected under cobalt blue light of slit lamp. Changes in the histological structure of the meibomian gland (MG) were observed by HE staining, Oil Red O staining and immunofluorescence staining (collagen IV). RNA sequencing was used to detect differentially expressed genes in MGO and normal rats, which were validated by qPCR. In the MGO group after 4, 8, and 16 weeks, the meibomian gland orifices were closed, tear film break-up time decreased and corneal fluorescein staining score increased (p < 0.05). MG acini was smaller at 8-week and 16-week MGO rats in HE staining. Oil Red O staining showed less condensed staining in the 8- and 16-week MGO groups, while more condensed staining in the 4-week MGO group. Additionally, the basement membrane was destroyed in 16-week MGO group by immunofluorescence staining of collagen IV. Meanwhile, RNA sequencing and qPCR showed that lipid peroxidation (LPO), transient receptor potential vanilloid-3 (TRPV3) and genes in PPAR signaling pathway were differentially expressed in 16-week meibomian gland obstructive rats (p < 0.05). Consequently, meibomian gland obstruction model rats were established successfully with corneal damage and lower tear film stability. Meibomian gland obstruction is a causative factor of MGD, which led to abnormal histological structure in MG, differential expression of PPAR signaling pathway and TRPV3.
Collapse
Affiliation(s)
- Ming Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Huanmin Cheng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Zheng Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Jiangqin Tang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shengshu Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Zhanglin Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Yue Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
54
|
Qin J, Zhao Y, Li S, Liu Q, Huang S, Yu X. GDH1 exacerbates renal fibrosis by inhibiting the transcriptional activity of peroxisome proliferator-activated receptor gamma. FEBS J 2024; 291:4581-4601. [PMID: 39136063 DOI: 10.1111/febs.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/17/2024] [Accepted: 08/02/2024] [Indexed: 10/17/2024]
Abstract
Renal fibrosis is the common outcome of practically all progressive forms of chronic kidney disease (CKD), a significant societal health concern. Glutamate dehydrogenase (GDH) 1 is one of key enzymes in glutamine metabolism to catalyze the reversible conversion of glutamate to α-ketoglutarate and ammonia. However, its function in renal fibrosis has not yet been proven. In this study, GDH1 expression was significantly downregulated in kidney tissues of both children with kidney disease and animal models of CKD. In vivo, the use of R162 (a GDH1 inhibitor) significantly improved renal fibrosis, as indicated by Sirius red and Masson trichrome staining. These findings are consistent with the impaired expression of fibrosis indicators in kidneys from both the unilateral ureteral obstruction (UUO) and 5/6 nephrectomy (5/6 Nx) models. In vitro, silencing GDH1 or pretreatment with R162 inhibited the induction of fibrosis indicators in tissue kidney proximal tubular cells (TKPTS) treated with Transforming growth factor Beta 1 (TGF-β1), whereas activating GDH1 worsened TGF-β1's induction impact. Using RNA-sequence, luciferase reporter assays and Biacore analysis, we demonstrated that GDH1 interacts with Peroxisome proliferator-activated receptor gamma (PPARγ) and blocks its transcriptional activity, independent of the protein's expression. Additionally, R162 treatment boosted PPARγ transcriptional activity, and blocking of this signaling pathway reversed R162's protective effect. Finally, we discovered that R162 treatment or silencing GDH1 greatly lowered reactive oxygen species (ROS) and lipid accumulation. These findings concluded that suppressing GDH1 or R162 treatment could prevent renal fibrosis by augmenting PPARγ transcriptional activity to control lipid accumulation and redox balance.
Collapse
Affiliation(s)
- Jun Qin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, China
- Department of Pediatrics, Yancheng City No.1 People's Hospital, China
| | - Yingying Zhao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, China
| | - Shumin Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, China
| | - Qianqi Liu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, China
| | - Xiaowen Yu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, China
| |
Collapse
|
55
|
Ma X, Bai C, Gao X, Duan X, Gu X, Li Y, Huang C, Yang J, Hu K. Identifying ligands directly interacting with target protein in medicinal herbs by metabolomic analysis of T2-filtered HSQC spectra. J Pharm Biomed Anal 2024; 248:116329. [PMID: 38959759 DOI: 10.1016/j.jpba.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
A protocol for efficiently identifying ligands directly interacting with a target protein in complex extracts of medicinal herbs was proposed by combining an adapted 2D perfect-echo Carr-Purcell-Meiboom-Gill heteronuclear single quantum correlation (PE-CPMG HSQC) spectrum with metabolomic analysis. PE-CPMG HSQC can suppress the signal interference from the target protein, allowing more accurate peak quantification than conventional HSQC. Inspired from untargeted metabolomics, regions of interest (ROIs) are constructed and quantified for the mixture or complex extract samples with and without a target protein, and then a binding index (BI) of each ROI is determined. ROIs or corresponding peaks significantly perturbed by the presence of the target protein (BI ≥1.5) are detected as differential features, and potential binding ligands identified from the differential features can be equated with bioactive markers associated with the 'treatment' of the target protein. Quantifying ROI can inclusively report the ligand bindings to a target protein in fast, intermediate and slow exchange regimes on nuclear magnetic resonance (NMR) time scale. The approach was successfully implemented and identified Angoroside C, Cinnamic acid and Harpagoside from the extract of Scrophularia ningpoensis Hemsl. as ligands binding to peroxisome proliferator-activated receptor γ. The proposed 2D NMR-based approach saves excess steps for sample processing and has a higher chance of detecting the weaker ligands in the complex extracts of medicinal herbs. We expect that this approach can be applied as an alternative to mining the potential ligands binding to a variety of target proteins from traditional Chinese medicines and herbal extracts.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Caihong Bai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiaoyan Gao
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiaohui Duan
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiu Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Cheng Huang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
56
|
Wu M, Wu S, Guo R. Upregulation of ZMAT3 is Associated with the Poor Prognosis of Breast Cancer. Int J Gen Med 2024; 17:4003-4014. [PMID: 39286533 PMCID: PMC11404498 DOI: 10.2147/ijgm.s470303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
Background Breast cancer is the leading cause of cancer-related deaths among women worldwide. Identifying robust biomarkers for predicting outcomes is essential for improving patient care and reducing fatalities. ZMAT3, a zinc finger protein with potential carcinogenic properties, has been associated with various cancers. However, its role in breast cancer prognosis remains unclear. Methods We investigated the expression level of ZMAT3 in breast cancer tissues and its association with clinical outcomes through bioinformatics analysis and experimental validation. We examined the correlation between ZMAT3 expression and immune characteristics. ZMAT3 mRNA expression data from The Cancer Genome Atlas (TCGA) were analysed in relation to overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI) in patients with breast cancer. Immunohistochemistry (IHC) was performed on breast cancer tissues to assess ZMAT3 protein levels, with findings validated using qPCR and cell experiments. Results ZMAT3 mRNA levels were significantly upregulated in breast cancer samples compared to normal tissues. High ZMAT3 expression was significantly correlated with the poor OS, DSS and PFI. A significant positive correlation was observed between high ZMAT3 mRNA levels and the abundance of tumour-infiltrating lymphocytes (TILs), especially CD8+T cells and regulatory T cells (Tregs). Multivariate Cox regression analysis identified ZMAT3 as an independent prognostic factor for breast cancer. IHC staining confirmed increased ZMAT3 protein expression in breast cancer tissues, which was further validated by qPCR and cell function tests. Conclusion Our findings suggest that ZMAT3 is a prognostic biomarker linked to immune invasion in breast cancer. Elevated ZMAT3 expression correlates with adverse clinical outcomes, indicating its potential role in disease progression.
Collapse
Affiliation(s)
- Meng Wu
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Shuang Wu
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Rui Guo
- Department of Critical Care Medicine, the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
57
|
Wang X, Li Y, Hou X, Li J, Ma X. Lipid metabolism reprogramming in endometrial cancer: biological functions and therapeutic implications. Cell Commun Signal 2024; 22:436. [PMID: 39256811 PMCID: PMC11385155 DOI: 10.1186/s12964-024-01792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Endometrial cancer is one of the major gynecological cancers, with increasing incidence and mortality in the past decades. Emerging preclinical and clinical data have indicated its close association with obesity and dyslipidemia. Metabolism reprogramming has been considered as the hallmark of cancer, to satisfy the extensive need of nutrients and energy for survival and growth. Particularly, lipid metabolism reprogramming has aroused the researchers' interest in the field of cancer, including tumorigenesis, invasiveness, metastasis, therapeutic resistance and immunity modulation, etc. But the roles of lipid metabolism reprogramming in endometrial cancer have not been fully understood. This review has summarized how lipid metabolism reprogramming induces oncogenesis and progression of endometrial cancer, including the biological functions of aberrant lipid metabolism pathway and altered transcription regulation of lipid metabolism pathway. Besides, we proposed novel therapeutic strategies of targeting lipid metabolism pathway and concentrated on its potential of sensitizing immunotherapy and hormonal therapy, to further optimize the existing treatment modalities of patients with advanced/metastatic endometrial cancer. Moreover, we expect that targeting lipid metabolism plus hormone therapy may block the endometrial malignant transformation and enrich the preventative approaches of endometrial cancer. CONCLUSION Lipid metabolism reprogramming plays an important role in tumor initiation and cancer progression of endometrial cancer. Targeting the core enzymes and transcriptional factors of lipid metabolism pathway alone or in combination with immunotherapy/hormone treatment is expected to decrease the tumor burden and provide promising treatment opportunity for patients with advanced/metastatic endometrial cancer.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Xin Hou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Jingfang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China.
| |
Collapse
|
58
|
Rubio-Ruíz ME, Plata-Corona JC, Soria-Castro E, Díaz-Juárez JA, Sánchez-Aguilar M. Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence-A Narrative Review. Cells 2024; 13:1488. [PMID: 39273057 PMCID: PMC11394383 DOI: 10.3390/cells13171488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of death in the world, and that is why finding an effective and multi-functional treatment alternative to combat these diseases has become more important. Fibrates and thiazolidinediones, peroxisome proliferator-activated receptors alpha and gamma are the pharmacological therapies used to treat dyslipidemia and type 2 diabetes, respectively. New mechanisms of action of these drugs have been found, demonstrating their pleiotropic effects, which contribute to preserving the heart by reducing or even preventing myocardial damage. Here, we review the mechanisms underlying the cardioprotective effects of PPAR agonists and regulating morphological and physiological heart alterations (metabolic flexibility, mitochondrial damage, apoptosis, structural remodeling, and inflammation). Moreover, clinical evidence regarding the cardioprotective effect of PPAR agonists is also addressed.
Collapse
Affiliation(s)
- María Esther Rubio-Ruíz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Juan Carlos Plata-Corona
- Department of Interventional Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Julieta Anabell Díaz-Juárez
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - María Sánchez-Aguilar
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| |
Collapse
|
59
|
Moreno-Rodríguez N, Laghezza A, Cerchia C, Sokolova DV, Spirina TS, De Filippis B, Romanelli V, Recio R, Fernández I, Loiodice F, Pokrovsky VS, Ammazzalorso A, Lavecchia A. Synthesis and in vitro cytotoxicity of benzoxazole-based PPARα/γ antagonists in colorectal cancer cell lines. Arch Pharm (Weinheim) 2024; 357:e2400086. [PMID: 38807029 DOI: 10.1002/ardp.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
A series of benzoxazole-based amides and sulfonamides were synthesized and evaluated for their human peroxisome proliferator-activated receptor (PPAR)α and PPARγ activity. All tested compounds showed a dual antagonist profile on both PPAR subtypes; based on transactivation results, seven compounds were selected to test their in vitro antiproliferative activity in a panel of eight cancer cell lines with different expression rates of PPARα and PPARγ. 3f was identified as the most cytotoxic compound, with higher potency in the colorectal cancer cell lines HT-29 and HCT116. Compound 3f induced a concentration-dependent activation of caspases and cell-cycle arrest in both colorectal cancer models. Docking experiments were also performed to shed light on the putative binding mode of this novel class of dual PPARα/γ antagonists.
Collapse
Affiliation(s)
- Nazaret Moreno-Rodríguez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Antonio Laghezza
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Bari, Italy
| | - Carmen Cerchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - Darina V Sokolova
- Research, Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, Moscow, Russia
- Department of Biochemistry, Patrice Lumumba Peoples' Friendship University, Moscow, Russia
| | - Tatiana S Spirina
- Research, Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, Moscow, Russia
- Department of Biochemistry, Patrice Lumumba Peoples' Friendship University, Moscow, Russia
| | - Barbara De Filippis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Virgilio Romanelli
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - Rocío Recio
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Bari, Italy
| | - Vadim S Pokrovsky
- Research, Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, Moscow, Russia
- Department of Biochemistry, Patrice Lumumba Peoples' Friendship University, Moscow, Russia
| | | | - Antonio Lavecchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| |
Collapse
|
60
|
Gomes AFT, de Medeiros WF, Medeiros I, Piuvezam G, da Silva-Maia JK, Bezerra IWL, Morais AHDA. In Silico Screening of Therapeutic Targets as a Tool to Optimize the Development of Drugs and Nutraceuticals in the Treatment of Diabetes mellitus: A Systematic Review. Int J Mol Sci 2024; 25:9213. [PMID: 39273161 PMCID: PMC11394750 DOI: 10.3390/ijms25179213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The Target-Based Virtual Screening approach is widely employed in drug development, with docking or molecular dynamics techniques commonly utilized for this purpose. This systematic review (SR) aimed to identify in silico therapeutic targets for treating Diabetes mellitus (DM) and answer the question: What therapeutic targets have been used in in silico analyses for the treatment of DM? The SR was developed following the guidelines of the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis, in accordance with the protocol registered in PROSPERO (CRD42022353808). Studies that met the PECo strategy (Problem, Exposure, Context) were included using the following databases: Medline (PubMed), Web of Science, Scopus, Embase, ScienceDirect, and Virtual Health Library. A total of 20 articles were included, which not only identified therapeutic targets in silico but also conducted in vivo analyses to validate the obtained results. The therapeutic targets most frequently indicated in in silico studies were GLUT4, DPP-IV, and PPARγ. In conclusion, a diversity of targets for the treatment of DM was verified through both in silico and in vivo reassessment. This contributes to the discovery of potential new allies for the treatment of DM.
Collapse
Affiliation(s)
- Ana Francisca T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
| | - Wendjilla F. de Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ingrid Wilza L. Bezerra
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ana Heloneida de A. Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| |
Collapse
|
61
|
Shiota M, Ushijima M, Tsukahara S, Nagakawa S, Okada T, Tanegashima T, Kobayashi S, Matsumoto T, Eto M. Oxidative stress in peroxisomes induced by androgen receptor inhibition through peroxisome proliferator-activated receptor promotes enzalutamide resistance in prostate cancer. Free Radic Biol Med 2024; 221:81-88. [PMID: 38762061 DOI: 10.1016/j.freeradbiomed.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Androgen receptor (AR)-targeting therapy induces oxidative stress in prostate cancer. However, the mechanism of oxidative stress induction by AR-targeting therapy remains unclear. This study investigated the mechanism of oxidative stress induction by AR-targeting therapy, with the aim to develop novel therapeutics targeting oxidative stress induced by AR-targeting therapy. Intracellular reactive oxygen species (ROS) was examined by fluorescence microscopy and flow cytometry analysis. The effects of silencing gene expression and small molecule inhibitors on gene expression and cytotoxic effects were examined by quantitative real-time PCR and cell proliferation assay. ROS induced by androgen depletion co-localized with peroxisomes in prostate cancer cells. Among peroxisome-related genes, PPARA was commonly induced by AR inhibition and involved in ROS production via PKC signaling. Inhibition of PPARα by specific siRNA and a small molecule inhibitor suppressed cell proliferation and increased cellular sensitivity to the antiandrogen enzalutamide in prostate cancer cells. This study revealed a novel pathway by which AR inhibition induced intracellular ROS mainly in peroxisomes through PPARα activation in prostate cancer. This pathway is a promising target for the development of novel therapeutics for prostate cancer in combination with AR-targeting therapy such as antiandrogen enzalutamide.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Miho Ushijima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shohei Nagakawa
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tatsunori Okada
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satoshi Kobayashi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
62
|
Yu J, Du Y, Liu C, Xie Y, Yuan M, Shan M, Li N, Liu C, Wang Y, Qin J. Low GPR81 in ER + breast cancer cells drives tamoxifen resistance through inducing PPARα-mediated fatty acid oxidation. Life Sci 2024; 350:122763. [PMID: 38823505 DOI: 10.1016/j.lfs.2024.122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
AIMS The intricate molecular mechanisms underlying estrogen receptor-positive (ER+) breast carcinogenesis and resistance to endocrine therapy remain elusive. In this study, we elucidate the pivotal role of GPR81, a G protein-coupled receptor, in ER+ breast cancer (BC) by demonstrating low expression of GPR81 in tamoxifen (TAM)-resistant ER+ BC cell lines and tumor samples, along with the underlying molecular mechanisms. MAIN METHODS Fatty acid oxidation (FAO) levels and lipid accumulation were explored using MDA and FAβO assay, BODIPY 493/503 staining, and Lipid TOX staining. Autophagy levels were assayed using CYTO-ID detection and Western blotting. The impact of GPR81 on TAM resistance in BC was investigated through CCK8 assay, colony formation assay and a xenograft mice model. RESULTS Aberrantly low GPR81 expression in TAM-resistant BC cells disrupts the Rap1 pathway, leading to the upregulation of PPARα and CPT1. This elevation in PPARα/CPT1 enhances FAO, impedes lipid accumulation and lipid droplet (LD) formation, and subsequently inhibits cell autophagy, ultimately promoting TAM-resistant BC cell growth. Moreover, targeting GPR81 and FAO emerges as a promising therapeutic strategy, as the GPR81 agonist and the CPT1 inhibitor etomoxir effectively inhibit ER+ BC cell and tumor growth in vivo, re-sensitizing TAM-resistant ER+ cells to TAM treatment. CONCLUSION Our data highlight the critical and functionally significant role of GPR81 in promoting ER+ breast tumorigenesis and resistance to endocrine therapy. GPR81 and FAO levels show potential as diagnostic biomarkers and therapeutic targets in clinical settings for TAM-resistant ER+ BC.
Collapse
Affiliation(s)
- Jing Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yongjun Du
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yu Xie
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Mengci Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yue Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin 300041, China.
| | - Junfang Qin
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
63
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
64
|
Feng Y, Luo S, Fang C, Ma S, Fan D, Chen Y, Chen Z, Zheng X, Tang Y, Duan X, Liu X, Ruan X, Guo X. ANGPTL8 deficiency attenuates lipopolysaccharide-induced liver injury by improving lipid metabolic dysregulation. J Lipid Res 2024; 65:100595. [PMID: 39019343 PMCID: PMC11364043 DOI: 10.1016/j.jlr.2024.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Liver injury is closely related to poor outcomes in sepsis patients. Current studies indicate that sepsis is accompanied by metabolic disorders, especially those related to lipid metabolism. It is highly important to explore the mechanism of abnormal liver lipid metabolism during sepsis. As a key regulator of glucose and lipid metabolism, angiopoietin-like 8 (ANGPTL8) is involved in the regulation of multiple chronic metabolic diseases. In the present study, severe liver lipid deposition and lipid peroxidation were observed in the early stages of lipopolysaccharide (LPS) induced liver injury. LPS promotes the expression of ANGPTL8 both in vivo and in vitro. Knockout of Angptl8 reduced hepatic lipid accumulation and lipid peroxidation, improved fatty acid oxidation and liver function, and increased the survival rate of septic mice by activating the PGC1α/PPARα pathway. We also found that the expression of ANGPTL8 induced by LPS depends on TNF-α, and that inhibiting the TNF-α pathway reduces LPS-induced hepatic lipid deposition and lipid peroxidation. However, knocking out Angptl8 improved the survival rate of septic mice better than inhibiting the TNF-α pathway. Taken together, the results of our study suggest that ANGPTL8 functions as a novel cytokine in LPS-induced liver injury by suppressing the PGC1α/PPARα signaling pathway. Therefore, targeting ANGPTL8 to improve liver lipid metabolism represents an attractive strategy for the management of sepsis patients.
Collapse
Affiliation(s)
- Ying Feng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Luo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Endocrine rheumatology, Taihe Hospital, Shiyan, Hubei, China
| | - Chen Fang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shinan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Dandan Fan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yanghui Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhuo Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Neurology, Wuhan NO.1 Hospital, Wuhan, China
| | - Xiang Zheng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Critical Care Medicine, Taihe Hospital, Shiyan, Hubei, China
| | - Yijun Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaobei Duan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xingling Liu
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Xuzhi Ruan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
65
|
Khan A, Fatima F. Agro-Nanotechnology: A Way Towards Sustainable Agriculture. RECENT ADVANCEMENTS IN MULTIDIMENSIONAL APPLICATIONS OF NANOTECHNOLOGY: VOLUME 1 2024:104-123. [DOI: 10.2174/9789815238846124010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Addressing the global population's dietary needs is crucial amid crop
damage issues like insect infestations and adverse weather affecting one-third of
conventionally farmed crops. Nanotechnology, recognized for its efficacy and
environmental benefits, has gained attention in the past decade. While it has
transformed medicine, its applications in agriculture are underexplored. Current
research investigates the use of nanomaterials in agriculture for targeted delivery of
genes, insecticides, fertilizers, and growth regulators. Nanotechnology shows promise
in mitigating abiotic stress in plants by mimicking antioxidative enzymes. This chapter
assesses nanoparticles' roles in plant research, highlighting their effectiveness as
growth regulators, nanopesticides, nanofertilizers, antimicrobial agents, and targeted
transporters. Understanding plant-nanomaterial interactions opens new avenues for
enhancing agricultural practices, improving disease resistance, and crop productivity,
and optimizing fertilizer use.
Collapse
Affiliation(s)
- Aquib Khan
- Department of Polytechnic, Integral University, Kursi road Lucknow, Uttar Pradesh, India
| | - Faria Fatima
- Department of Agriculture, IIAST, Integral University, Kursi road Lucknow, Uttar Pradesh,
India
| |
Collapse
|
66
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
67
|
Villarroel-Vicente C, García A, Zibar K, Schiel MA, Ferri J, Hennuyer N, Enriz RD, Staels B, Cortes D, Cabedo N. Synthesis of a new 2-prenylated quinoline as potential drug for metabolic syndrome with pan-PPAR activity and anti-inflammatory effects. Bioorg Med Chem Lett 2024; 106:129770. [PMID: 38677560 DOI: 10.1016/j.bmcl.2024.129770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARβ/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARβ/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.
Collapse
Affiliation(s)
- Carlos Villarroel-Vicente
- Department of Pharmacology, University of Valencia, 46100 Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Ainhoa García
- Department of Pharmacology, University of Valencia, 46100 Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Khamis Zibar
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - María Ayelén Schiel
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL-CONICET, Chacabuco 915, San Luis, Argentina
| | - Jordi Ferri
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Nathalie Hennuyer
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL-CONICET, Chacabuco 915, San Luis, Argentina
| | - Bart Staels
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Diego Cortes
- Department of Pharmacology, University of Valencia, 46100 Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain.
| | - Nuria Cabedo
- Department of Pharmacology, University of Valencia, 46100 Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
68
|
Liang M, Lyu ZS, Zhang YY, Tang SQ, Xing T, Chen YH, Wang Y, Jiang Q, Xu LP, Zhang XH, Huang XJ, Kong Y. Activation of PPARδ in bone marrow endothelial progenitor cells improves their hematopoiesis-supporting ability after myelosuppressive injury. Cancer Lett 2024; 592:216937. [PMID: 38704134 DOI: 10.1016/j.canlet.2024.216937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.
Collapse
Affiliation(s)
- Mi Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| | - Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, China.
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
69
|
Żulińska S, Strosznajder AK, Strosznajder JB. Current View on PPAR-α and Its Relation to Neurosteroids in Alzheimer's Disease and Other Neuropsychiatric Disorders: Promising Targets in a Therapeutic Strategy. Int J Mol Sci 2024; 25:7106. [PMID: 39000217 PMCID: PMC11241121 DOI: 10.3390/ijms25137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sylwia Żulińska
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| | - Anna K. Strosznajder
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska St. 27, 00-665 Warsaw, Poland;
| | - Joanna B. Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
70
|
Yin X, Yan Y, Li J, Cao Z, Shen S, Chang Q, Zhao Y, Wang X, Wang P. Nuclear receptors for epidermal lipid barrier: Advances in mechanisms and applications. Exp Dermatol 2024; 33:e15107. [PMID: 38840418 DOI: 10.1111/exd.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
The skin plays an essential role in preventing the entry of external environmental threats and the loss of internal substances, depending on the epidermal permeability barrier. Nuclear receptors (NRs), present in various tissues and organs including full-thickness skin, have been demonstrated to exert significant effects on the epidermal lipid barrier. Formation of the lipid lamellar membrane and the normal proliferation and differentiation of keratinocytes (KCs) are crucial for the development of the epidermal permeability barrier and is regulated by specific NRs such as PPAR, LXR, VDR, RAR/RXR, AHR, PXR and FXR. These receptors play a key role in regulating KC differentiation and the entire process of epidermal lipid synthesis, processing and secretion. Lipids derived from sebaceous glands are influenced by NRs as well and participate in regulation of the epidermal lipid barrier. Furthermore, intricate interplay exists between these receptors. Disturbance of barrier function leads to a range of diseases, including psoriasis, atopic dermatitis and acne. Targeting these NRs with agonists or antagonists modulate pathways involved in lipid synthesis and cell differentiation, suggesting potential therapeutic approaches for dermatosis associated with barrier damage. This review focuses on the regulatory role of NRs in the maintenance and processing of the epidermal lipid barrier through their effects on skin lipid synthesis and KC differentiation, providing novel insights for drug targets to facilitate precision medicine strategies.
Collapse
Affiliation(s)
- Xidie Yin
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiandan Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiting Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
71
|
Mondal S, Sheinin M, Rangasamy SB, Pahan K. Amelioration of experimental autoimmune encephalomyelitis by gemfibrozil in mice via PPARβ/δ: implications for multiple sclerosis. Front Cell Neurosci 2024; 18:1375531. [PMID: 38835441 PMCID: PMC11148333 DOI: 10.3389/fncel.2024.1375531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
It is important to describe effective and non-toxic therapies for multiple sclerosis (MS), an autoimmune demyelinating disease. Experimental autoimmune encephalomyelitis (EAE) is an immune-mediated inflammatory disease that serves as a model for MS. Earlier we and others have shown that, gemfibrozil, a lipid-lowering drug, exhibits therapeutic efficacy in EAE. However, the underlying mechanism was poorly understood. Although gemfibrozil is a known ligand of peroxisome proliferator-activated receptor α (PPARα), here, we established that oral administration of gemfibrozil preserved the integrity of blood-brain barrier (BBB) and blood-spinal cord barrier (BSB), decreased the infiltration of mononuclear cells into the CNS and inhibited the disease process of EAE in both wild type and PPARα-/- mice. On the other hand, oral gemfibrozil was found ineffective in maintaining the integrity of BBB/BSB, suppressing inflammatory infiltration and reducing the disease process of EAE in mice lacking PPARβ (formerly PPARδ), indicating an important role of PPARβ/δ, but not PPARα, in gemfibrozil-mediated preservation of BBB/BSB and protection of EAE. Regulatory T cells (Tregs) play a critical role in the disease process of EAE/MS and we also demonstrated that oral gemfibrozil protected Tregs in WT and PPARα-/- EAE mice, but not PPARβ-/- EAE mice. Taken together, our findings suggest that gemfibrozil, a known ligand of PPARα, preserves the integrity of BBB/BSB, enriches Tregs, and inhibits the disease process of EAE via PPARβ, but not PPARα.
Collapse
Affiliation(s)
- Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Suresh B Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
72
|
Wu J, Zhang Y, Tang H, Ye BC. MicroRNA-144-3p Inhibits Host Lipid Catabolism and Autophagy by Targeting PPARα and ABCA1 During Mycobacterium Tuberculosis Infection. ACS Infect Dis 2024; 10:1654-1663. [PMID: 38578697 DOI: 10.1021/acsinfecdis.3c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
MicroRNA-mediated metabolic reprogramming recently has been identified as an important strategy for Mycobacterium tuberculosis (Mtb) to evade host immune responses. However, it is unknown what role microRNA-144-3p (miR-144-3p) plays in cellular metabolism during Mtb infection. Here, we report the meaning of miR-144-3p-mediated lipid accumulation for Mtb-macrophage interplay. Mtb infection was shown to upregulate the expression of miR-144-3p in macrophages. By targeting peroxisome proliferator-activated receptor α (PPARα) and ATP-binding cassette transporter A1 (ABCA1), miR-144-3p overexpression promoted lipid accumulation and bacterial survival in Mtb-infected macrophages, while miR-144-3p inhibition had the opposite effect. Furthermore, reprogramming of host lipid metabolism by miR-144-3p suppressed autophagy in response to Mtb infection. Our findings uncover that miR-144-3p regulates host metabolism and immune responses to Mtb by targeting PPARα and ABCA1, suggesting a potential host-directed tuberculosis therapy by targeting the interface of miRNA and lipid metabolism.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yong Zhang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
73
|
Mathew Thomas V, Chigarira B, Gebrael G, Sayegh N, Tripathi N, Nussenzveig R, Jo Y, Dal E, Galarza Fortuna G, Li H, Sahu KK, Srivastava A, Maughan BL, Agarwal N, Swami U. Differential Tumor Gene Expression Profiling of Patients With Prostate Adenocarcinoma on the Basis of BMI. JCO Precis Oncol 2024; 8:e2300574. [PMID: 38781543 DOI: 10.1200/po.23.00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE An increased BMI is linked to increased prostate adenocarcinoma incidence and mortality. Baseline tumor gene expression profiling (GEP) can provide a comprehensive picture of the biological processes related to treatment response and disease progression. We interrogate and validate the underlying differences in tumor GEP on the basis of BMI in patients with prostate adenocarcinoma. METHODS The inclusion criteria consisted of histologically confirmed prostate adenocarcinoma and the availability of RNA sequencing data obtained from treatment-naïve primary prostate tissue. RNA sequencing was performed by a Clinical Laboratory Improvement Amendments-certified laboratory (Tempus or Caris Life Sciences). The Tempus cohort was used for interrogation and the Caris cohort for validation. Patients were stratified on the basis of BMI at the time of prostate cancer diagnosis: BMI-high (BMIH; BMI ≥30) and BMI-low (BMIL; BMI <30). Differential gene expression analysis between the two cohorts was conducted using the DEseq2 pipeline. The resulting GEPs were further analyzed using Gene Set Enrichment software to identify pathways that exhibited enrichment in each cohort. RESULTS Overall, 102 patients were eligible, with 60 patients in the Tempus cohort (BMIL = 38, BMIH = 22) and 42 patients in the Caris cohort (BMIL = 24, BMIH = 18). Tumor tissues obtained from patients in the BMIL group exhibited higher expression of genes associated with inflammation pathways. BMIH displayed increased expression of genes involved in pathways such as heme metabolism and androgen response. CONCLUSION Our study shows the upregulation of distinct genomic pathways in BMIL compared with BMIH patients with prostate cancer. These hypothesis-generating data could explain different survival outcomes in both groups and guide personalized therapy for men with prostate cancer.
Collapse
Affiliation(s)
- Vinay Mathew Thomas
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Beverly Chigarira
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Georges Gebrael
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Nicolas Sayegh
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nishita Tripathi
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Roberto Nussenzveig
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Yeonjung Jo
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Emre Dal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Gliceida Galarza Fortuna
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Haoran Li
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, Westwood, KS
| | - Kamal Kant Sahu
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Ayana Srivastava
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Benjamin L Maughan
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Umang Swami
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
74
|
Ross RB, Gadwa J, Yu J, Darragh LB, Knitz MW, Nguyen D, Olimpo NA, Abdelazeem KN, Nguyen A, Corbo S, Van Court B, Beynor J, Neupert B, Saviola AJ, D'Alessandro A, Karam SD. PPARα Agonism Enhances Immune Response to Radiotherapy While Dietary Oleic Acid Results in Counteraction. Clin Cancer Res 2024; 30:1916-1933. [PMID: 38363297 PMCID: PMC11061609 DOI: 10.1158/1078-0432.ccr-23-3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Head and neck cancer (HNC) improvements are stagnant, even with advances in immunotherapy. Our previous clinical trial data show that altered fatty acid (FA) metabolism correlates with outcome. We hypothesized that pharmacologic and dietary modulation of FA catabolism will affect therapeutic efficacy. EXPERIMENTAL DESIGN We performed in vivo and in vitro experiments using PPARα agonism with fenofibrate (FF) or high oleic acid diets (OAD) with radiotherapy, generating metabolomic, proteomic, stable isotope tracing, extracellular flux analysis, and flow-cytometric data to investigate these alterations. RESULTS FF improved antitumor efficacy of high dose per fraction radiotherapy in HNC murine models, whereas the OAD reversed this effect. FF-treated mice on the control diet had evidence of increased FA catabolism. Stable isotope tracing showed less glycolytic utilization by ex vivo CD8+ T cells. Improved efficacy correlated with intratumoral alterations in eicosanoid metabolism and downregulated mTOR and CD36. CONCLUSIONS Metabolic intervention with increased FA catabolism improves the efficacy of HNC therapy and enhances antitumoral immune response.
Collapse
Affiliation(s)
- Richard Blake Ross
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Justin Yu
- Department of Otolaryngology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Laurel B. Darragh
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Michael W. Knitz
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Nicholas A. Olimpo
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Khalid N.M. Abdelazeem
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Jessica Beynor
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
- Department of Immunology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| |
Collapse
|
75
|
Zhang YA, Li FW, Dong YX, Xie WJ, Wang HB. PPAR-γ regulates the polarization of M2 macrophages to improve the microenvironment for autologous fat grafting. FASEB J 2024; 38:e23613. [PMID: 38661048 DOI: 10.1096/fj.202400126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ya-An Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Fang-Wei Li
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yun-Xian Dong
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wen-Jie Xie
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hai-Bin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
76
|
Wang Y, Chen G, Xu M, Cui Y, He W, Zeng H, Zeng T, Cheng R, Li X. Caspase-1 Deficiency Modulates Adipogenesis through Atg7-Mediated Autophagy: An Inflammatory-Independent Mechanism. Biomolecules 2024; 14:501. [PMID: 38672517 PMCID: PMC11048440 DOI: 10.3390/biom14040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity stands as a significant risk factor for type 2 diabetes, hyperlipidemia, and cardiovascular diseases, intertwining increased inflammation and decreased adipogenesis with metabolic disorders. Studies have highlighted the correlation between Caspase-1 and inflammation in obesity, elucidating its essential role in the biological functions of adipose tissue. However, the impact of Caspase-1 on adipogenesis and the underlying mechanisms remain largely elusive. In our study, we observed a positive correlation between Caspase-1 expression and obesity and its association with adipogenesis. In vivo experiments revealed that, under normal diet conditions, Caspase-1 deficiency improved glucose homeostasis, stimulated subcutaneous adipose tissue expansion, and enhanced adipogenesis. Furthermore, our findings indicate that Caspase-1 deficiency promotes the expression of autophagy-related proteins and inhibits autophagy with 3-MA or CQ blocked Caspase-1 deficiency-induced adipogenesis in vitro. Notably, Caspase-1 deficiency promotes adipogenesis via Atg7-mediated autophagy activation. In addition, Caspase-1 deficiency resisted against high-fat diet-induced obesity and glucose intolerance. Our study proposes the downregulation of Caspase-1 as a promising strategy for mitigating obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Cheng
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
77
|
Zhou M, Cao Y, Xie S, Xiang Y, Li M, Yang H, Dong Z. Gypenoside XLIX alleviates acute liver injury: Emphasis on NF-κB/PPAR-α/NLRP3 pathways. Int Immunopharmacol 2024; 131:111872. [PMID: 38503011 DOI: 10.1016/j.intimp.2024.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Liver is one of the vital organs in the human body and liver injury will have a very serious impact on human damage. Gypenoside XLIX is a PPAR-α activator that inhibits the activation of the NF-κB signaling pathway. The components of XLIX have pharmacological effects such as cardiovascular protection, antihypoxia, anti-tumor and anti-aging. In this study, we used cecum ligation and puncture (CLP) was used to induce in vivo mice hepatic injury, and lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells, evaluated whether Gypenoside XLIX could have a palliative effect on sepsis-induced acute liver injury via NF-κB/PPAR-α/NLRP3. In order to gain insight into these mechanisms, six groups were created in vivo: the Contol group, the Sham group, the CLP group, the CLP + XLIX group (40 mg/kg) and the Sham + XLIX (40 mg/kg) group, and the CLP + DEX (2 mg/kg) group. Three groups were created in vitro: Control, LPS, LPS + XLIX (40 μM). The analytical methods used included H&E staining, qPCR, reactive oxygen species (ROS), oil red O staining, and Western Blot. The results showed that XLIX attenuated hepatic inflammatory injury in mice with toxic liver disease through inhibition of the TLR4-mediated NF-κB pathway, attenuated lipid accumulation through activation of PPAR-α, and attenuated hepatic pyroptosis by inhibiting NLRP3 production. Regarding the imbalance between oxidative and antioxidant defenses due to septic liver injury, XLIX reduced liver oxidative stress-related biomarkers (ALT, AST), reduced ROS accumulation, decreased the amount of malondialdehyde (MDA) produced by lipid peroxidation, and increased the levels of antioxidant enzymes such as glutathione (GSH) and catalase (CAT). Our results demonstrate that XLIX can indeed attenuate septic liver injury. This is extremely important for future studies on XLIX and sepsis, and provides a potential pathway for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Cao
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shaocheng Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengxin Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
78
|
Zhang Y, Zhang XY, Shi SR, Ma CN, Lin YP, Song WG, Guo SD. Natural products in atherosclerosis therapy by targeting PPARs: a review focusing on lipid metabolism and inflammation. Front Cardiovasc Med 2024; 11:1372055. [PMID: 38699583 PMCID: PMC11064802 DOI: 10.3389/fcvm.2024.1372055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Inflammation and dyslipidemia are critical inducing factors of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and control the expression of multiple genes that are involved in lipid metabolism and inflammatory responses. However, synthesized PPAR agonists exhibit contrary therapeutic effects and various side effects in atherosclerosis therapy. Natural products are structural diversity and have a good safety. Recent studies find that natural herbs and compounds exhibit attractive therapeutic effects on atherosclerosis by alleviating hyperlipidemia and inflammation through modulation of PPARs. Importantly, the preparation of natural products generally causes significantly lower environmental pollution compared to that of synthesized chemical compounds. Therefore, it is interesting to discover novel PPAR modulator and develop alternative strategies for atherosclerosis therapy based on natural herbs and compounds. This article reviews recent findings, mainly from the year of 2020 to present, about the roles of natural herbs and compounds in regulation of PPARs and their therapeutic effects on atherosclerosis. This article provides alternative strategies and theoretical basis for atherosclerosis therapy using natural herbs and compounds by targeting PPARs, and offers valuable information for researchers that are interested in developing novel PPAR modulators.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang, China
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Yun-Peng Lin
- Department of General Surgery, Qixia Traditional Chinese Medicine Hospital in Shandong Province, Yantai, China
| | - Wen-Gang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| |
Collapse
|
79
|
Xu Y, Wang M, Luo Y, Liu H, Ling H, He Y, Lu Y. PPARα is one of the key targets for dendrobine to improve hepatic steatosis in NAFLD. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117684. [PMID: 38171466 DOI: 10.1016/j.jep.2023.117684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium nobile Lindl. (DNL) is a traditional Chinese ethnobotanical herb. Dendrobine (DNE) has been designated as a quality indicator for DNL in the Chinese Pharmacopoeia. DNE exhibits various pharmacological activities, including the reduction of blood lipids, regulation of blood sugar levels, as well as anti-inflammatory and antioxidant properties. AIM OF THE STUDY The objective of this study is to explore the impact of DNE on lipid degeneration in nonalcoholic fatty liver disease (NAFLD) liver cells and elucidate its specific mechanism. The findings aim to offer theoretical support for the development of drugs related to DNL. MATERIALS AND METHODS We utilized male C57BL/6J mice, aged 6 weeks old, to establish a NAFLD model. This model allowed us to assess the impact of DNE on liver pathology and lipid levels in NAFLD mice. We investigated the mechanism of DNE's regulation of lipid metabolism through RNA-seq analysis. Furthermore, a NAFLD model was established using HepG2 cells to further evaluate the impact of DNE on the pathological changes of NAFLD liver cells. The potential mechanism of DNE's improvement was rapidly elucidated using HT-qPCR technology. These results were subsequently validated using mouse liver samples. Following the in vitro activation or inhibition of PPARα function, we observed changes in DNE's ability to ameliorate pathological changes in NAFLD hepatocytes. This mechanism was further verified through RT-qPCR and Western blot analysis. RESULTS DNE demonstrated a capacity to enhance serum TC, TG, and liver TG levels in mice, concurrently mitigating liver lipid degeneration. RNA-seq analysis unveiled that DNE primarily modulates the expression of genes related to metabolic pathways in mouse liver. Utilizing HT-qPCR technology, it was observed that DNE markedly regulates the expression of genes associated with the PPAR signaling pathway in liver cells. Consistency was observed in the in vivo data, where DNE significantly up-regulated the expression of PPARα mRNA and its protein level in mouse liver. Additionally, the expression of fatty acid metabolism-related genes (ACOX1, CPT2, HMGCS2, LPL), regulated by PPARα, was significantly elevated following DNE treatment. In vitro experiments further demonstrated that DNE notably ameliorated lipid deposition, peroxidation, and inflammation levels in NAFLD hepatocytes, particularly when administered in conjunction with fenofibrate. Notably, the PPARα inhibitor GW6471 attenuated these effects of DNE. CONCLUSIONS In summary, DNE exerts its influence on the expression of genes associated with downstream fat metabolism by regulating PPARα. This regulatory mechanism enhances liver lipid metabolism, mitigates lipid degeneration in hepatocytes, and ultimately ameliorates the pathological changes in NAFLD hepatocytes.
Collapse
Affiliation(s)
- Yanzhe Xu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China; Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China
| | - Miao Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Yi Luo
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China; Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China
| | - Hao Liu
- The Second Affiliated Hospital of Zunyi Medical University, Intersection of Xinlong Avenue and Xinpu Avenue, Honghuagang District, Zunyi, 563009, China
| | - Hua Ling
- School of Pharmacy, Georgia Campus-Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwanee, GA, 30024, USA
| | - Yuqi He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China; Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China.
| | - Yanliu Lu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China; Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China.
| |
Collapse
|
80
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
81
|
Camoglio C, Balla J, Fadda P, Dedoni S. Oleoylethanolamide and Palmitoylethanolamide Enhance IFNβ-Induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells. Molecules 2024; 29:1592. [PMID: 38611871 PMCID: PMC11013881 DOI: 10.3390/molecules29071592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNβ. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNβ leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNβ signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNβ-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.
Collapse
Affiliation(s)
- Chiara Camoglio
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09142 Cagliari, Italy (P.F.)
| | - Jihane Balla
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09142 Cagliari, Italy (P.F.)
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09142 Cagliari, Italy (P.F.)
- Neuroscience Institute, National Research Council of Italy (CNR), 09142 Cagliari, Italy
| | - Simona Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09142 Cagliari, Italy (P.F.)
| |
Collapse
|
82
|
Zhao H, Chen X, Sun Y, Shen P, Lin H, Sun F, Zhan S. Associations Between Thiazolidinediones Use and Incidence of Rheumatoid Arthritis: A Retrospective Population-Based Cohort Study. Arthritis Care Res (Hoboken) 2024; 76:486-496. [PMID: 38108108 DOI: 10.1002/acr.25277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE Preclinical studies suggest that thiazolidinediones (TZDs) may have a protective effect on rheumatoid arthritis (RA), but evidence from population-based studies is scarce. This study aimed to assess the association between use of TZDs and incidence of RA in a retrospective cohort of patients with type 2 diabetes mellitus (T2DM). METHODS A retrospective cohort of patients with T2DM who were new users of TZDs or alpha glucosidase inhibitors (AGIs) was assembled. We applied the inverse probability of treatment weighted Cox model to estimate the hazard ratio (HR) of RA incidence associated with the use of TZDs compared with AGIs. RESULTS The final analysis included 56,796 new users of AGIs and 14,892 new users of TZDs. The incidence of RA was 187.4 and 135.2 per 100,000 person-years in AGI users and TZD users, respectively. Compared with use of AGIs, TZD use was associated with a reduction in RA incidence, with an HR of 0.72 (95% confidence interval [95% CI] 0.59-0.89). HRs for cumulative use of TZDs for 0.51 to 4.0 years and more than 4 years with incidence of RA were 0.55 (95% CI 0.35-0.88) and 0.74 (95% CI 0.57-0.98), respectively. Various subgroup analyses and sensitivity analyses were consistent with the primary analysis. CONCLUSION Use of TZDs is associated with a decreased risk of incident RA in patients with T2DM.
Collapse
Affiliation(s)
| | - Xiaowei Chen
- Peking University, Beijing, China, and Tianjin Medical University, Tianjin, China
| | - Yexiang Sun
- Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Peng Shen
- Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Hongbo Lin
- Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Feng Sun
- Peking University, Beijing, China
| | - Siyan Zhan
- Peking University and Peking University Third Hospital, Beijing, China
| |
Collapse
|
83
|
Ke Q, Xiao Y, Liu D, Shi C, Shen R, Qin S, Jiang L, Yang J, Zhou Y. PPARα/δ dual agonist H11 alleviates diabetic kidney injury by improving the metabolic disorders of tubular epithelial cells. Biochem Pharmacol 2024; 222:116076. [PMID: 38387308 DOI: 10.1016/j.bcp.2024.116076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Diabetic kidney disease (DKD) is responsible for nearly half of all end-stage kidney disease and kidney failure is a major driver of mortality among patients with diabetes. To date, few safe and effective drugs are available to reverse the decline of kidney function. Kidney tubules producing energy by fatty acid metabolism are pivotal in development and deterioration of DKD. Peroxisome proliferator-activated receptors (PPARs), comprising PPARα, PPARδ and PPARγ play a senior role in the pathogenesis of DKD for their functions in glycemic control and lipid metabolism; whereas systemic activation of PPARγ causes serious side-effects in clinical settings. Compound H11 was a potent PPARα and PPARδ (PPARα/δ) dual agonist with potent and well-balanced PPARα/δ agonistic activity and a high selectivity over PPARγ. In this study, the potential therapeutic effects of compound H11 were determined in a db/db mouse model of diabetes. Expressions of PPARα and PPARδ in nuclei of tubules were markedly reduced in diabetes. Transcriptional changes of tubular cells showed that H11 was an effective PPARα/δ dual agonist taking effects both in vivo and in vitro. Systemic administration of H11 showed glucose tolerance and lipid metabolic benefits in db/db mice. Moreover, H11 treatment exerted protective effects on diabetic kidney injury. In addition to fatty acid metabolism, H11 also regulated diabetes-induced metabolic alternations of branch chain amino acid degradation and glycolysis. The present study demonstrated a crucial role of H11 in regulation of energy homeostasis and metabolism in glucose-treated tubular cells. Overall, compound H11 holds therapeutic promise for DKD.
Collapse
Affiliation(s)
- Qingqing Ke
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Yu Xiao
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Dandan Liu
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Caifeng Shi
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Rui Shen
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Songyan Qin
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| |
Collapse
|
84
|
Sun G, Li X, Liu P, Wang Y, Yang C, Zhang S, Wang L, Wang X. PPARδ agonist protects against osteoarthritis by activating AKT/mTOR signaling pathway-mediated autophagy. Front Pharmacol 2024; 15:1336282. [PMID: 38576477 PMCID: PMC10991777 DOI: 10.3389/fphar.2024.1336282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease, and PPARs are involved in its pathogenesis; however, the specific mechanisms by which changes in PPARδ impact the OA pathogenesis yet to be discovered. The purpose of this study was to ascertain how PPARδ affects the onset and development of OA. In vitro, we found that PPARδ activation ameliorated apoptosis and extracellular matrix (ECM) degradation in OA chondrocytes stimulated by IL-1β. In addition, PPARδ activation may modulate AKT/mTOR signaling to partially regulate chondrocyte autophagy and apoptosis. In vivo, injection of PPARδ agonist into the articular cavity improved ECM degradation, apoptosis and autophagy in rats OA models generated by destabilization medial meniscus (DMM), eventually delayed degeneration of articular cartilage. Thus, targeting PPARδ for OA treatment may be a possibility.
Collapse
Affiliation(s)
- Guantong Sun
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Li
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wang
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Yang
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Zhang
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqing Wang
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
85
|
Wang H, Tian Q, Zhang R, Du Q, Hu J, Gao T, Gao S, Fan K, Cheng X, Yan S, Zheng G, Dong H. Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway. Lipids Health Dis 2024; 23:76. [PMID: 38468335 PMCID: PMC10926578 DOI: 10.1186/s12944-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/18/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.
Collapse
Affiliation(s)
- Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qinqin Tian
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiujing Du
- Jiangyin People's Hospital, Wuxi, Jiangsu, China
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tingting Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siqi Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keyi Fan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xing Cheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sheng Yan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoping Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
86
|
Khoo A, Boyer M, Jafri Z, Makeham T, Pham T, Khachigian LM, Floros P, Dowling E, Fedder K, Shonka D, Garneau J, O'Meara CH. Human Papilloma Virus Positive Oropharyngeal Squamous Cell Carcinoma and the Immune System: Pathogenesis, Immunotherapy and Future Perspectives. Int J Mol Sci 2024; 25:2798. [PMID: 38474047 DOI: 10.3390/ijms25052798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC), a subset of head and neck squamous cell carcinoma (HNSCC), involves the palatine tonsils, soft palate, base of tongue, and uvula, with the ability to spread to adjacent subsites. Personalized treatment strategies for Human Papillomavirus-associated squamous cell carcinoma of the oropharynx (HPV+OPSCC) are yet to be established. In this article, we summarise our current understanding of the pathogenesis of HPV+OPSCC, the intrinsic role of the immune system, current ICI clinical trials, and the potential role of small molecule immunotherapy in HPV+OPSCC.
Collapse
Affiliation(s)
- A Khoo
- Department of Otolaryngology, Head & Neck Surgery, Canberra Health Services, Canberra, ACT 2601, Australia
| | - M Boyer
- Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Z Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - T Makeham
- Department of Otolaryngology, Head & Neck Surgery, Canberra Health Services, Canberra, ACT 2601, Australia
- ANU School of Medicine & Psychology, Australian National University, Canberra, ACT 0200, Australia
| | - T Pham
- Department of Otolaryngology, Head & Neck Surgery, Canberra Health Services, Canberra, ACT 2601, Australia
- ANU School of Medicine & Psychology, Australian National University, Canberra, ACT 0200, Australia
| | - L M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - P Floros
- St Vincent's Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
| | - E Dowling
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - K Fedder
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - D Shonka
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - J Garneau
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - C H O'Meara
- Department of Otolaryngology, Head & Neck Surgery, Canberra Health Services, Canberra, ACT 2601, Australia
- ANU School of Medicine & Psychology, Australian National University, Canberra, ACT 0200, Australia
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
87
|
Wu CL, Ni ZF, Kuang XY, Li MF, Zong MH, Fan XD, Lou WY. Novel Multitarget ACE Inhibitory Peptides from Bovine Colostrum Immunoglobulin G: Cellular Transport, Efficacy in Regulating Endothelial Dysfunction, and Network Pharmacology Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4155-4169. [PMID: 38366990 DOI: 10.1021/acs.jafc.3c08795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 μM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.
Collapse
Affiliation(s)
- Chu-Li Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Zi-Fu Ni
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Xiao-Yan Kuang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Meng-Fan Li
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Xiao-Dan Fan
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| |
Collapse
|
88
|
Xie SY, Liu SQ, Zhang T, Shi WK, Xing Y, Fang WX, Zhang M, Chen MY, Xu SC, Fan MQ, Li LL, Zhang H, Zhao N, Zeng ZX, Chen S, Zeng XF, Deng W, Tang QZ. USP28 Serves as a Key Suppressor of Mitochondrial Morphofunctional Defects and Cardiac Dysfunction in the Diabetic Heart. Circulation 2024; 149:684-706. [PMID: 37994595 DOI: 10.1161/circulationaha.123.065603] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Shi-Qiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Wen-Ke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Wen-Xi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Meng-Ya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Si-Chi Xu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China (S.-c.X.)
| | - Meng-Qi Fan
- College of Life Sciences, Wuhan University, P.R. China (M.-q.F.)
| | - Lan-Lan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Zhao-Xiang Zeng
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiaotong University, P.R. China (Z.-x.Z)
- Department of Cardiac Surgery, Changhai Hospital, Navy Medical University, Shanghai, P.R. China (Z.-x.Z)
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, P.R. China (S.C., X.-f.Z.)
| | - Xiao-Feng Zeng
- Cardiovascular Research Institute of Wuhan University, P.R. China (S.C., X.-f.Z.)
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| |
Collapse
|
89
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
90
|
Nessim Kostandy E, Suh JH, Tian X, Okeugo B, Rubin E, Shirai S, Luo M, Taylor CM, Kim KH, Rhoads JM, Liu Y. Probiotic Limosilactobacillus reuteri DSM 17938 Changes Foxp3 Deficiency-Induced Dyslipidemia and Chronic Hepatitis in Mice. Nutrients 2024; 16:511. [PMID: 38398835 PMCID: PMC10892585 DOI: 10.3390/nu16040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The probiotic Limosilactobacillus reuteri DSM 17938 produces anti-inflammatory effects in scurfy (SF) mice, a model characterized by immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (called IPEX syndrome in humans), caused by regulatory T cell (Treg) deficiency and is due to a Foxp3 gene mutation. Considering the pivotal role of lipids in autoimmune inflammatory processes, we investigated alterations in the relative abundance of lipid profiles in SF mice (± treatment with DSM 17938) compared to normal WT mice. We also examined the correlation between plasma lipids and gut microbiota and circulating inflammatory markers. We noted a significant upregulation of plasma lipids associated with autoimmune disease in SF mice, many of which were downregulated by DSM 17938. The upregulated lipids in SF mice demonstrated a significant correlation with gut bacteria known to be implicated in the pathogenesis of various autoimmune diseases. Chronic hepatitis in SF livers responded to DSM 17938 treatment with a reduction in hepatic inflammation. Altered gene expression associated with lipid metabolism and the positive correlation between lipids and inflammatory cytokines together suggest that autoimmunity leads to dyslipidemia with impaired fatty acid oxidation in SF mice. Probiotics are presumed to contribute to the reduction of lipids by reducing inflammatory pathways.
Collapse
Affiliation(s)
- Erini Nessim Kostandy
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.N.K.); (B.O.)
| | - Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.H.S.); (K.H.K.)
| | - Xiangjun Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Center, Houston, TX 77030, USA;
| | - Beanna Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.N.K.); (B.O.)
| | - Erin Rubin
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.R.); (S.S.)
| | - Sara Shirai
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.R.); (S.S.)
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.L.)
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.L.)
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.H.S.); (K.H.K.)
| | - J. Marc Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.N.K.); (B.O.)
| | - Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.N.K.); (B.O.)
| |
Collapse
|
91
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
92
|
Zou Y, Zhan T, Liu J, Tan J, Liu W, Huang S, Cai Y, Huang M, Huang X, Tian X. CXCL6 promotes the progression of NAFLD through regulation of PPARα. Cytokine 2024; 174:156459. [PMID: 38056250 DOI: 10.1016/j.cyto.2023.156459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
An increasing number of studies have shown that Nonalcoholic fatty liver disease (NAFLD) is strongly associated with obesity, insulin resistance, dyslipidemia, hypertension and metabolic syndrome, but its specific pathogenesis remains unclear. By analyzing GEO database, we found CXCL6 was upregulated in liver tissues of patients with NAFLD. We also confirmed with qPCR that CXCL6 is highly expressed in serum of patients with NAFLD. To identify the underlying impact of CXCL6 on NAFLD, we established animal and cell models of NAFLD. Similarly, we confirmed by qPCR and Western blot that CXCL6 was upregulated in the NAFLD model in vitro and vivo. After transfecting NAFLD cells with siRNA targeting CXCL6 (si-CXCL6), a series of functional experiments were carried out, and these data indicated that the inhibition of CXCL6 reduced intracellular lipid deposition, decreased AST, ALT and TG level, facilitate cell proliferation and suppress their apoptosis. Furthermore, western blot and qPCR analyses displayed that the suppression of CXCL6 could raise the PPARα expression, but PPAR α inhibitor, GW6471 could partially counteract this effect. What's more, Oil Red O staining, biochemical analyzer and TG detection kit revealed that GW6471 could reverse the inhibitory effect of si-CXCL6 on NAFLD. In summary, we provide convincing evidence that CXCL6 is markedly elevated in NAFLD, and the CXCL6/PPARα regulatory network mediates disease progression of NAFLD.
Collapse
Affiliation(s)
- Yanli Zou
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Ting Zhan
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Jiaxi Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Jie Tan
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Weijie Liu
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Shasha Huang
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Yisan Cai
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Ming Huang
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Xiaodong Huang
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430060, China.
| | - Xia Tian
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China.
| |
Collapse
|
93
|
Safdar M, Hassan F, Khan MS, Khan AH, Junejo Y, Ozaslan M, Arain MA, Behan AA. In silico analysis of polyphenols modulate bovine PPARγ to increase milk fat synthesis in dairy cattle via the MAPK signaling pathways. J Anim Sci 2024; 102:skae248. [PMID: 39210246 PMCID: PMC11551727 DOI: 10.1093/jas/skae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigates the potential phytochemicals that modulate bovine peroxisome proliferator-activated receptor gamma (PPARγ) and the mitogen-activated protein kinase (MAPK) pathways to enhance milk fat production in dairy animals. Bovine PPARγ, a key member of the nuclear hormone receptor superfamily, plays a vital role in regulating metabolic, cellular differentiation, apoptosis, and anti-inflammatory responses in livestock, while the MAPK pathway is contributory in cellular processes that impact milk fat synthesis. This approach involved an all-inclusive molecular docking analysis of 10,000 polyphenols to identify potential PPARγ ligands. From this extensive screening, top 10 compounds were selected that exhibited the highest binding affinities to bovine PPARγ. Particularly, curcumin sulfate, isoflavone, and quercetin emerged as the most promising candidates. These compounds demonstrated superior docking scores (-9.28 kcal/mol, -9.27 kcal/mol, and -7.31 kcal/mol, respectively) and lower RMSD values compared to the synthetic bovine PPARγ agonist, 2,4-thiazolidinedione (-4.12 kcal/mol), indicating a strong potential for modulating the receptor. Molecular dynamics simulations (MDS) further affirmed the stability of these polyphenols-bovine PPARγ complexes, suggesting their effective and sustained interactions. These polyphenols, known as fatty acid synthase inhibitors, are suggested to influence lipid metabolism pathways crucial to milk fat production, possibly through the downregulation of the MAPK pathway. The screened compounds showed favorable pharmacokinetic profiles, including nontoxicity, carcinogenicity, and high gastrointestinal absorption, positioning them as viable candidates for enhancing dairy cattle health and milk production. These findings may open new possibilities for the use of phytochemicals as feed additives in dairy animals, suggesting a novel approach to improve milk fat synthesis through the dual modulation of bovine PPARγ and MAPK pathways.
Collapse
Affiliation(s)
- Muhammad Safdar
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Faizul Hassan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Sajjad Khan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Aneeb Hassan Khan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Yasmeen Junejo
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Mehmet Ozaslan
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, Gaziantep, Turkey
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Atique Ahmed Behan
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
94
|
Lu C, Wang X, Ma J, Wang M, Liu W, Wang G, Ding Y, Lin Z, Li Y. Chemical substances and their activities in sea cucumber Apostichopus japonicus: A review. Arch Pharm (Weinheim) 2024; 357:e2300427. [PMID: 37853667 DOI: 10.1002/ardp.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Apostichopus japonicus, also known as Stichopus japonicus, with medicinal and food homologous figures, is a globally recognized precious ingredient with extremely high nutritional value. There is no relevant review available through literature search, so this article selects the research articles through the keywords "sea cucumber" and "Apostichopus japonicus (Stichopus japonicus)" in six professional databases, such as Wiley, PubMed, ScienceDirect, ACS, Springer, and Web of Science, from 2000 to the present, summarizing the extraction, isolation, and purification methods for the four major categories (polysaccharides, proteins and peptides, saponins, and other components) of the A. japonicus chemical substances and 10 effective biological activities of A. japonicus. Included are anticoagulation, anticancer/antitumor activities, hematopoiesis, regulation of gut microbiota, and immune regulatory activities that correspond to traditional efficacy. Literature support is provided for the development of medicines and functional foods and related aspects that play a leading role in future directions.
Collapse
Affiliation(s)
- Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengtong Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
95
|
Li Z, Zheng D, Zhang T, Ruan S, Li N, Yu Y, Peng Y, Wang D. The roles of nuclear receptors in cholesterol metabolism and reverse cholesterol transport in nonalcoholic fatty liver disease. Hepatol Commun 2024; 8:e0343. [PMID: 38099854 PMCID: PMC10727660 DOI: 10.1097/hc9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.
Collapse
|
96
|
Gupta O, Chawla G, Pradhan T. 1,3,4-Oxadiazole Scaffold in Antidiabetic Drug Discovery: An Overview. Mini Rev Med Chem 2024; 24:1800-1821. [PMID: 38644715 DOI: 10.2174/0113895575298181240410041029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. With the increasing number of cases of diabetes and drug-resistant diabetes, there is an urgent need to develop new potent molecules capable of combating this cruel disease. Medicinal chemistry concerns the discovery, development, identification, and interpretation of the mode of action of biologically active compounds at the molecular level. Oxadiazole-based derivatives have come up as a potential option for antidiabetic drug research. Oxadiazole is a five-membered heterocyclic organic compound containing two nitrogen atoms and one oxygen atom in its ring. Oxadiazole hybrids have shown the ability to improve glucose tolerance, enhance insulin sensitivity, and reduce fasting blood glucose levels. The mechanisms underlying the antidiabetic effects of oxadiazole involve the modulation of molecular targets such as peroxisome proliferator-activated receptor gamma (PPARγ), α-glucosidase, α-amylase and GSK-3β which regulate glucose metabolism and insulin secretion. The present review article describes the chemical structure and properties of oxadiazoles and highlights the antidiabetic activity through action on different targets. The SAR for the oxadiazole hybrids has been discussed in this article, which will pave the way for the design and development of new 1,3,4-oxadiazole derivatives as promising antidiabetic agents in the future. We expect that this article will provide comprehensive knowledge and current innovation on oxadiazole derivatives with antidiabetic potential and will fulfil the needs of the scientific community in designing and developing efficacious antidiabetic agents.
Collapse
Affiliation(s)
- Ojasvi Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Gita Chawla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
97
|
Yu B, Wang D, Zhou J, Huang R, Cai T, Hu Y, Zhou Y, Ma J. Diabetes Pharmacotherapy and its effects on the Skeletal Muscle Energy Metabolism. Mini Rev Med Chem 2024; 24:1470-1480. [PMID: 38549524 DOI: 10.2174/0113895575299439240216081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 08/07/2024]
Abstract
The disorders of skeletal muscle metabolism in patients with Type 2 diabetes mellitus (T2DM), such as mitochondrial defection and glucose transporters (GLUTs) translocation dysfunctions, are not uncommon. Therefore, when anti-diabetic drugs were used in various chronic diseases associated with hyperglycemia, the impact on skeletal muscle should not be ignored. However, current studies mainly focus on muscle mass rather than metabolism or functions. Anti-diabetic drugs might have a harmful or beneficial impact on skeletal muscle. In this review, we summarize the upto- date studies on the effects of anti-diabetic drugs and some natural compounds on skeletal muscle metabolism, focusing primarily on emerging data from pre-clinical to clinical studies. Given the extensive use of anti-diabetic drugs and the common sarcopenia, a better understanding of energy metabolism in skeletal muscle deserves attention in future studies.
Collapse
Affiliation(s)
- Baowen Yu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dong Wang
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junming Zhou
- Department of Cadre Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Huang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tingting Cai
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yonghui Hu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
98
|
Jeon KB, Park HM, Kim S, Kim NY, Lee TE, Oh DK, Yoon DY. Phorbal-12-mysristate-13-acetate-induced inflammation is restored by protectin DX through PPARγ in human promonocytic U937 cells. Life Sci 2024; 336:122288. [PMID: 38007146 DOI: 10.1016/j.lfs.2023.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
AIMS Protectin DX (PDX), a specialized pro-resolving mediator, is an important pharmaceutical compound with potential antioxidant and inflammation-resolving effects. However, the fundamental mechanism by which PDX's ameliorate chronic inflammatory diseases has not yet been elucidated. This study aims to evaluate the anti-inflammatory properties and PPARγ-mediated mechanisms of PDX in phorbal-12-mysristate-13-acetate (PMA)-stimulated human promonocytic U937 cells. MAIN METHODS We confirmed the effects of PDX on expressions of pro-inflammatory cytokines, mediators, and CD14 using conventional PCR, RT-qPCR, ELISA, and flow cytometry. Using western blotting, immunofluorescence, and reactive oxygen species (ROS) determination, we observed that PDX regulated PMA-induced signaling cascades. Molecular docking analysis and a cellular thermal shift assay were conducted to verify the interaction between PDX and the proliferator-activated receptor-γ (PPARγ) ligand binding domain. Western blotting was then employed to explore the alterations in PPARγ expression levels and validate PDX as a PPARγ full agonist. KEY FINDINGS PDX attenuated protein and mRNA expression levels of interleukin-6, tumor necrosis factor-α, and cyclooxygenase-2 in PMA-treated U937 cells. PDX acts as a PPARγ agonist, exerting a modulating effect on the ROS/JNK/c-Fos signaling pathways. Furthermore, PDX reduced human monocyte differentiation antigen CD14 expression levels. SIGNIFICANCE PPARγ exhibits pro-resolving effects to regulate the excessive inflammation. These results suggest that PDX demonstrates the resolution of inflammation, indicating the potential for therapeutic targeting of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seonhwa Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
99
|
De Filippis B, Granese A, Ammazzalorso A. Peroxisome Proliferator-Activated Receptor agonists and antagonists: an updated patent review (2020-2023). Expert Opin Ther Pat 2024; 34:83-98. [PMID: 38501260 DOI: 10.1080/13543776.2024.2332661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION The search for novel compounds targeting Peroxisome Proliferator-Activated Receptors (PPARs) is currently ongoing, starting from the previous successfully identification of selective, dual or pan agonists. In last years, researchers' efforts are mainly paid to the discovery of PPARγ and δ modulators, both agonists and antagonists, selective or with a dual-multitarget profile. Some of these compounds are currently under clinical trials for the treatment of primary biliary cirrhosis, nonalcoholic fatty liver disease, hepatic, and renal diseases. AREAS COVERED A critical analysis of patents deposited in the range 2020-2023 was carried out. The novel compounds discovered were classified as selective PPAR modulators, dual and multitarget PPAR agonists. The use of PPAR ligands in combination with other drugs was also discussed, together with novel therapeutic indications proposed for them. EXPERT OPINION From the analysis of the patent literature, the current emerging landscape sees the necessity to obtain PPAR multitarget compounds, with a balanced potency on three subtypes and the ability to modulate different targets. This multitarget action holds great promise as a novel approach to complex disorders, as metabolic, inflammatory diseases, and cancer. The utility of PPAR ligands in the immunotherapy field also opens an innovative scenario, that could deserve further applications.
Collapse
Affiliation(s)
| | - Arianna Granese
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | | |
Collapse
|
100
|
Sheremeta CL, Yarlagadda S, Smythe ML, Noakes PG. Prostaglandins in the Inflamed Central Nervous System: Potential Therapeutic Targets. Curr Drug Targets 2024; 25:885-908. [PMID: 39177131 PMCID: PMC11774313 DOI: 10.2174/0113894501323980240815113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid via multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.
Collapse
Affiliation(s)
- Chynna-Loren Sheremeta
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sai Yarlagadda
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark L. Smythe
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter G. Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|