51
|
Mayado A, Torres E, Gutierrez-Lopez MD, Colado MI, O'Shea E. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA. J Neuroinflammation 2011; 8:165. [PMID: 22114930 PMCID: PMC3283542 DOI: 10.1186/1742-2094-8-165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. METHODS Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p.) 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.). IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. RESULTS Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v.) prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical) given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. CONCLUSIONS These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA.
Collapse
Affiliation(s)
- Andrea Mayado
- Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
52
|
Fulceri F, Ferrucci M, Lenzi P, Soldani P, Bartalucci A, Paparelli A, Gesi M. MDMA (ecstasy) enhances loud noise-induced morphofunctional alterations in heart and adrenal gland. Microsc Res Tech 2011; 74:874-87. [PMID: 23939676 DOI: 10.1002/jemt.20971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/26/2010] [Indexed: 11/09/2022]
Abstract
Noise is an environmental stressor increasingly more present in modern life and, in particular, in a variety of recreational contexts. The aim of this work is to show the effects of noise on the myocardium and adrenal gland, through a careful review of the literature dealing with the peripheral effects of noise exposure in experimental and clinical studies. Noise induces adverse effects in human health, principally involving the cardiovascular and autonomic nervous systems, and the endocrine apparatus. Several factors in recreational environments potentially worsen the effects induced by loud noise. Among these, the intake of 3,4-methylenedioxymethamphetamine (MDMA) is frequently associated with noise exposure in recreational situations, because of its high compliance within social and relaxation settings. For this reason, MDMA is defined as a club drug--as its intake by young people often occurs in association with other factors, such as aggregation, high temperatures, and noise. It is known that self-administration of MDMA by humans causes severe toxicity. In particular, the myocardium is affected early after MDMA intake--resulting in tachycardia, hypertension, and arrhythmia. Furthermore, MDMA alters the activity of the adrenal glands by elevating catecholamines and corticosterone levels. This review shows that combining MDMA and loud noise exposure potentiates the effects that are produced by each single stimulant alone as seen in experimental animal models. The convergence of the effects of prolonged loud noise exposure and the consumption of MDMA on the same system might explain the sudden fatal events that happen in recreational situations.
Collapse
Affiliation(s)
- Federica Fulceri
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
53
|
Low ambient temperature reveals distinct mechanisms for MDMA-induced serotonergic toxicity and astroglial Hsp27 heat shock response in rat brain. Neurochem Int 2011; 59:695-705. [PMID: 21756954 DOI: 10.1016/j.neuint.2011.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/21/2011] [Indexed: 11/23/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is a widely used recreational drug known to cause selective long-term serotonergic damage. In our recent paper we described region-specific, dose-dependent increase in the protein expression of astroglial Hsp27 and neuronal Hsp72 molecular chaperones after MDMA administration of rats. Here, we examined the possible interaction of elevated Hsp27 protein level to hyperthermic responses after MDMA administration and its separation from drug-induced serotonergic neurotoxicity. For this, 7-8 week old male Dark Agouti rats were treated with 15 mg/kg i.p. MDMA. Treatment at an ambient temperature of 22 ± 1°C caused a significant elevation of the rectal temperature, an increase of Hsp27 immunoreactive protoplasmic astrocytes in the hippocampus, the parietal and cingulate cortices, and a significant decrease in the density of tryptophan hydroxylase immunoreactive fibers in the same brain regions, 8h as well as 24h after drug administrations. In addition, serotonergic axons exhibited numerous swollen varicosities and fragmented morphology. MDMA treatment at low ambient temperature (10 ± 2°C) almost completely abolished the elevation of body temperature and the increased astroglial Hsp27 expression but failed to alter - or just slightly attenuated - the depletion in the density of tryptophan hydroxylase immunoreactive fibers. These results suggest that the increased astroglial Hsp27 protein expression is rather related to the hyperthermic response after the drug administration and it could be separated from the serotonergic neurotoxicity caused by MDMA. In addition, the induction of Hsp27 per se is uneffective to protect serotonergic fibers after MDMA administration. Our results also suggest that Tph immunohistochemistry is an early and sensitive method to demonstrate MDMA-caused vulnerability.
Collapse
|
54
|
Behavioral, hyperthermic and pharmacokinetic profile of para-methoxymethamphetamine (PMMA) in rats. Pharmacol Biochem Behav 2011; 98:130-9. [DOI: 10.1016/j.pbb.2010.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/14/2010] [Accepted: 12/08/2010] [Indexed: 11/21/2022]
|
55
|
Jaehne EJ, Majumder I, Salem A, Irvine RJ. Increased effects of 3,4-methylenedioxymethamphetamine (ecstasy) in a rat model of depression. Addict Biol 2011; 16:7-19. [PMID: 20192951 DOI: 10.1111/j.1369-1600.2009.00196.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is associated with increases in core body temperature (T(C)) and depressive mood states in users. Flinders Sensitive Line (FSL) rats represent a rat model of depression originally bred from Sprague-Dawley (SD) rats. They are more sensitive to both muscarinic and serotonergic agonists and have altered thermoregulatory responses to various drugs. To examine the link between MDMA and depression, eight FSL and eight SD rats were administered saline and 5 and 7.5 mg/kg MDMA. Immediately following administration, rats were confined to an area with an ambient temperature (T(A)) of 30 ± 1°C for 30 minutes before being allowed access to a thermal gradient for four hours. The brains were removed one week after final dose of MDMA and concentrations of serotonin and dopamine were measured. Treatment with MDMA at both doses led to a higher T(C) in the FSL rats than the SD rats at high T(A) (P < 0.01). Fatalities due to hyperthermia occurred in the FSL rats after both doses, whereas all but one of the SD rats recovered well. Heart rate was also much higher after MDMA in the FSL rats throughout the experiments. The FSL rats showed significant decreases in all transmitters measured (P < 0.05). These differences between strains were not accounted for by altered blood or brain concentrations of MDMA. The results indicate that the FSL rats may be more susceptible to developing MDMA-induced hyperthermia and possible damage to the brain. These findings may be of importance to human users of MDMA who also have depression.
Collapse
|
56
|
Song BJ, Moon KH, Upreti VV, Eddington ND, Lee IJ. Mechanisms of MDMA (ecstasy)-induced oxidative stress, mitochondrial dysfunction, and organ damage. Curr Pharm Biotechnol 2010; 11:434-43. [PMID: 20420575 DOI: 10.2174/138920110791591436] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/21/2010] [Indexed: 12/21/2022]
Abstract
Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
57
|
Abstract
Heatstroke is the most severe form of heat-related disorders that include mild heat intolerance, heat exhaustion and heat stress. The incidence of heat-related disorders is increasing due to several factors that include climate change, co-morbidities and drug usage. Patients with heatstroke present with a core body temperature above 40°C, multiorgan dysfunction and central nervous system disorder. The pathogenesis of heatstroke is not fully understood; however, heat-shock proteins, inflammatory cytokines and their modulators have been implicated. The clinical biochemistry laboratory plays an important role in the management of patients with heatstroke. Biochemical findings in patients with heatstroke include elevated urea, creatinine, cardiac and skeletal muscle enzymes, myoglobin and troponin. There is also biochemical evidence of metabolic acidosis, respiratory alkalosis, hepatic injury with elevated enzyme levels as well as abnormal hematological and coagulation indices. This review article aims at increasing awareness of the biochemical changes seen in patients with heatstroke and their possible role in prognosis and in elucidating the pathogenesis of heatstroke.
Collapse
Affiliation(s)
- Ibrahim A Hashim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9073, USA
| |
Collapse
|
58
|
Thomas DM, Angoa Pérez M, Francescutti-Verbeem DM, Shah MM, Kuhn DM. The role of endogenous serotonin in methamphetamine-induced neurotoxicity to dopamine nerve endings of the striatum. J Neurochem 2010; 115:595-605. [PMID: 20722968 DOI: 10.1111/j.1471-4159.2010.06950.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum.
Collapse
Affiliation(s)
- David M Thomas
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA.
| | | | | | | | | |
Collapse
|
59
|
Piper BJ, Ali SF, Daniels LG, Meyer JS. Repeated intermittent methylenedioxymethamphetamine exposure protects against the behavioral and neurotoxic, but not hyperthermic, effects of an MDMA binge in adult rats. Synapse 2010; 64:421-31. [PMID: 20169574 DOI: 10.1002/syn.20744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have recently shown that chronic intermittent exposure of adolescent rats to 3,4-methylenedioxymethamphetamine (MDMA or Ecstasy) completely blocks the reduction in serotonin transporter (SERT) binding and the hypoactivity seen following a subsequent MDMA binge treatment. The present study determined whether a similar neuroprotective effect also occurs in rats given the same intermittent MDMA exposure in adulthood. Adult male Sprague-Dawley rats were given either MDMA (10 mg/kg x 2) or saline, every fifth day, from postnatal day (PD) 60 to PD 85. The MDMA-induced latency until seminal plug production was reduced over the course of intermittent treatments. After a 1-week wash-out period, animals received either a low- or high-dose MDMA binge (2.5 or 5.0 mg/kg x 4). Core body temperature was measured during and after the binge to determine the effects of MDMA pretreatment on MDMA-induced hyperthermia. Spontaneous motor activity was determined the next day, and cortical and hippocampal samples were collected at 1 week postbinge to measure serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) concentrations as well as [3H]citalopram binding to SERT. Hyperthermia occurred more rapidly and seminal discharge was more common in the MDMA-pretreated group compared to the MDMA-naïve group in animals given the low-dose binge. MDMA preexposure protected animals from the reductions in cortical 5-HT levels and SERT binding produced by the high-dose binge and blocked the postbinge hypoactivity. These findings indicate that chronic, intermittent MDMA exposure in adulthood induces neuroprotective effects similar to those seen with adolescent treatment. However, there was also evidence for drug-induced sensitization in adults that was not observed in adolescents. Thus, altered drug sensitivity in chronic Ecstasy users may depend not only on the frequency and pattern of use but also on the age of the user.
Collapse
Affiliation(s)
- Brian J Piper
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
60
|
Kivell B, Day D, Bosch P, Schenk S, Miller J. MDMA causes a redistribution of serotonin transporter from the cell surface to the intracellular compartment by a mechanism independent of phospho-p38-mitogen activated protein kinase activation. Neuroscience 2010; 168:82-95. [PMID: 20298763 DOI: 10.1016/j.neuroscience.2010.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 11/16/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) causes long-term serotonin depletion and reduced serotonin transporter (SERT) function in humans and in animal models. Using quantitative Western blotting and real-time PCR, we have shown that total SERT protein in the striatum and nucleus accumbens and mRNA levels in the dorsal raphe nucleus were not significantly changed following MDMA exposure in rats (4 x 2 h i.p. injections, 10 mg/kg each). In mouse neuroblastoma (N(2)A) cells transiently expressing green fluorescent protein-tagged human SERT (GFP-hSERT), we have shown redistribution of SERT from the cell surface to intracellular vesicles on exposure to MDMA using cell surface biotinylation, total internal reflection fluorescence microscopy (TIRFM) and live-cell confocal microscopy. To investigate the mechanism responsible for SERT redistribution, we used specific antibodies to phospho-p38-mitogen activated protein kinase (p38 MAPK), a known signalling pathway involved in SERT membrane expression. We found that p38 MAPK activation was not involved in the MDMA-induced redistribution of SERT from the cell-surface to the cell interior. A loss of SERT from the cell surface on acute exposure to MDMA may contribute to the decreased SERT function seen in rats exposed to MDMA.
Collapse
Affiliation(s)
- B Kivell
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
61
|
Riezzo I, Cerretani D, Fiore C, Bello S, Centini F, D'Errico S, Fiaschi AI, Giorgi G, Neri M, Pomara C, Turillazzi E, Fineschi V. Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity. J Neurosci Res 2010; 88:905-916. [PMID: 19798748 DOI: 10.1002/jnr.22245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA)-induced neurotoxicity leads to the formation of quinone metabolities and hydroxyl radicals and then to the production of reactive oxygen species (ROS). We evaluated the effect of a single dose of MDMA (20 mg/kg, i.p.) on the enzymatic and nonenzymatic cellular antioxidant defense system in different areas of rat brain in the early hours (<6 hr) of the administration itself, and we identified the morphological expressions of neurotoxicity induced by MDMA on the vulnerable brain areas in the first 24 hr. The acute administration of MDMA produces a decrease of reduced and oxidized glutathione ratio, and antioxidant enzyme activities were significantly reduced after 3 hr and after 6 hr in frontal cortex. Ascorbic acid levels strongly increased in striatum, hippocampus, and frontal cortex after 3 and 6 hr. High levels of malonaldehyde with respect to control were measured in striatum after 3 and 6 hr and in hippocampus and frontal cortex after 6 hr. An immunohistochemical investigation on the frontal, thalamic, hypothalamic, and striatal areas was performed. A strong positive reaction to the antivesicular monoamine transporter 2 was observed in the frontal section, in the basal ganglia and thalamus. Cortical positivity, located in the most superficial layer was revealed only for heat shock protein 70 after 24 hr.
Collapse
Affiliation(s)
- Irene Riezzo
- Department of Forensic Pathology, Faculty of Medicine, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Touriño C, Zimmer A, Valverde O. THC Prevents MDMA Neurotoxicity in Mice. PLoS One 2010; 5:e9143. [PMID: 20174577 PMCID: PMC2824821 DOI: 10.1371/journal.pone.0009143] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 01/19/2010] [Indexed: 11/19/2022] Open
Abstract
The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4) were pretreated with THC (3 mg/kg x 4) at room (21 degrees C) and at warm (26 degrees C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1) receptor antagonist AM251 and the CB(2) receptor antagonist AM630, as well as in CB(1), CB(2) and CB(1)/CB(2) deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1) receptor antagonist AM251, neither in CB(1) and CB(1)/CB(2) knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2) cannabinoid antagonist and in CB(2) knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1) receptor, although CB(2) receptors may also contribute to attenuate neuroinflammation in this process.
Collapse
MESH Headings
- Animals
- Astrocytes/drug effects
- Astrocytes/metabolism
- Body Temperature/drug effects
- Dronabinol/pharmacology
- Fever/chemically induced
- Fever/prevention & control
- Hallucinogens/toxicity
- Indoles/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/drug effects
- Microglia/metabolism
- N-Methyl-3,4-methylenedioxyamphetamine/toxicity
- Neurotoxicity Syndromes/etiology
- Neurotoxicity Syndromes/prevention & control
- Piperidines/pharmacology
- Psychotropic Drugs/pharmacology
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Temperature
Collapse
Affiliation(s)
- Clara Touriño
- Departament de Ciències Experimentals i de la Salut, Grup de Recerca en Neurobiologia del Comportament (GRNC), Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (OV); (CT)
| | - Andreas Zimmer
- Department of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Olga Valverde
- Departament de Ciències Experimentals i de la Salut, Grup de Recerca en Neurobiologia del Comportament (GRNC), Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (OV); (CT)
| |
Collapse
|
63
|
Jones BC, Ben-Hamida S, de Vasconcelos AP, Kelche C, Lazarus C, Jackisch R, Cassel JC. Effects of ethanol and ecstasy on conditioned place preference in the rat. J Psychopharmacol 2010; 24:275-9. [PMID: 19282425 DOI: 10.1177/0269881109102775] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The club drug ecstasy (3,4-methylenedioxymethylamphetamine or MDMA) is often taken recreationally with ethanol (EtOH). We have shown previously that EtOH potentiates the psychomotor effects of MDMA in rats. More recently, we demonstrated in striatal slices that MDMA produced preferential release of serotonin, but when combined with EtOH, the preferential release shifted to dopamine, raising the possibility that administration of EtOH may increase the reward effect of MDMA. To address this possibility, adult male Long-Evans rats were tested for conditioned place preference following treatment with saline, EtOH (0.75 g/kg), MDMA (6.6 mg/kg) or the combination. The only condition that produced a preference for the compartment associated with the drug was that of the drug combination. The current data are in line with anecdotal reports and one study in humans, indicating that EtOH alters the pharmacological effects of MDMA including self reports of enhanced or prolonged euphoria. Thus, administration of EtOH might increase the risk for compulsive use of MDMA, an issue that warrants further study.
Collapse
Affiliation(s)
- B C Jones
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Dumont GJH, Kramers C, Sweep FCGJ, Willemsen JJ, Touw DJ, Schoemaker RC, van Gerven JMA, Buitelaar JK, Verkes RJ. Ethanol co-administration moderates 3,4-methylenedioxymethamphetamine effects on human physiology. J Psychopharmacol 2010; 24:165-74. [PMID: 19074534 DOI: 10.1177/0269881108100020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alcohol is frequently used in combination with 3,4-methylenedioxymethamphetamine (MDMA). Both drugs affect cardiovascular function, hydration and temperature regulation, but may have partly opposing effects. The present study aims to assess the acute physiologic effects of (co-) administration of MDMA and ethanol over time. A four-way, double blind, randomized, crossover, placebo-controlled study in 16 healthy volunteers (9 male and 7 female) between the ages of 18 and 29. MDMA (100 mg) was given orally and blood ethanol concentration was maintained at pseudo-steady state levels of 0.6 per thousand by a three-hour 10% intravenous ethanol clamp. Cardiovascular function, temperature and hydration measures were recorded throughout the study days. Ethanol did not significantly affect physiologic function, with the exception of a short lasting increase in heart rate. MDMA potently increased heart rate and blood pressure and induced fluid retention as well as an increase in temperature. Co-administration of ethanol with MDMA did not affect cardiovascular function compared to the MDMA alone condition, but attenuated the effects of MDMA on fluid retention and showed a trend for attenuation of MDMA-induced temperature increase. In conclusion, co-administration of ethanol and MDMA did not exacerbate physiologic effects compared to all other drug conditions, and moderated some effects of MDMA alone.
Collapse
Affiliation(s)
- G J H Dumont
- Department of Psychiatry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Torres E, Gutierrez-Lopez MD, Borcel E, Peraile I, Mayado A, O'Shea E, Colado MI. Evidence that MDMA ('ecstasy') increases cannabinoid CB2 receptor expression in microglial cells: role in the neuroinflammatory response in rat brain. J Neurochem 2010; 113:67-78. [PMID: 20067581 DOI: 10.1111/j.1471-4159.2010.06578.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') produces selective long-lasting serotonergic neurotoxicity in rats. The drug also produces acute hyperthermia which modulates the severity of the neurotoxic response. In addition, MDMA produces signs of neuroinflammation reflected as microglial activation and an increase in the release of interleukin-1beta, the latter of which appears to be a consequence of the hyperthermic response and to be implicated in the neurotoxicity induced by the drug. Over-expression of the cannabinoid CB2 receptor in microglia during non-immune and immune pathological conditions is thought to be aimed at controlling the production of neurotoxic factors such as proinflammatory cytokines. Our objective was to study the pattern of CB2 receptor expression following MDMA and to examine the effect of JWH-015 (a CB2 agonist) on the MDMA-induced neuroinflammatory response as well as 5-hydroxytryptamine (5-HT) neurotoxicity. Adult Dark Agouti rats were given MDMA (12.5 mg/kg, i.p.) and killed 3 h or 24 h later for the determination of CB2 receptor expression. JWH-015 was given 48 h, 24 h and 0.5 h before MDMA and 1 h and/or 6 h later and animals were killed for the determination of microglial activation (3 h and 24 h) and 5-HT neurotoxicity (7 days). MDMA increased CB2 receptor expression shortly after administration and these receptors were found in microglia. JWH-015 decreased MDMA-induced microglial activation and interleukin-1beta release and slightly decreased MDMA-induced 5-HT neurotoxicity. In conclusion, CB2 receptor activation reduces the neuroinflammatory response following MDMA and provides partial neuroprotection against the drug.
Collapse
Affiliation(s)
- Elisa Torres
- Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
66
|
Reveron ME, Maier EY, Duvauchelle CL. Behavioral, thermal and neurochemical effects of acute and chronic 3,4-methylenedioxymethamphetamine ("Ecstasy") self-administration. Behav Brain Res 2009; 207:500-7. [PMID: 19891989 DOI: 10.1016/j.bbr.2009.10.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 10/23/2009] [Accepted: 10/30/2009] [Indexed: 11/29/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is a popular methamphetamine derivative associated with young adults and all-night dance parties. However, the enduring effects of MDMA at voluntary intake levels have not been extensively investigated. In this study, MDMA-influenced behaviors and core temperatures were assessed over the course of 20 daily MDMA self-administration sessions in rats. In vivo microdialysis techniques were used in a subsequent MDMA challenge test session to determine extracellular nucleus accumbens dopamine (NAcc DA) and serotonin (5-HT) levels in MDMA-experienced and naïve animals before and after a self-administered MDMA injection (3.0mg/kg, i.v.). During self-administration sessions, gradual and significant increases in MDMA intake and MDMA-stimulated locomotor activity were observed across sessions. Core temperature significantly decreased during initial MDMA sessions, but was unaltered by the last 10 sessions. In the MDMA challenge test, MDMA-naïve rats showed significantly higher NAcc 5-HT responses compared to MDMA-experienced rats, though MDMA experience did not affect the magnitude of NAcc DA response. The overall findings suggest that changes in MDMA-induced responses over the course of increasing levels of drug exposure may reflect the development of tolerance to a number of MDMA effects.
Collapse
Affiliation(s)
- Maria Elena Reveron
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas, Austin, TX 78712-0125, USA
| | | | | |
Collapse
|
67
|
Graham DL, Herring NR, Schaefer TL, Vorhees CV, Williams MT. Glucose and corticosterone changes in developing and adult rats following exposure to (+/-)-3,4-methylendioxymethamphetamine or 5-methoxydiisopropyltryptamine. Neurotoxicol Teratol 2009; 32:152-7. [PMID: 19737610 DOI: 10.1016/j.ntt.2009.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 08/21/2009] [Accepted: 08/29/2009] [Indexed: 11/26/2022]
Abstract
The use of the club drugs 3,4-methylenedioxymethamphetamine (MDMA) and 5-methoxy-n,n-diisopropyltryptamine (Foxy) is of growing concern, especially as many of the effects, particularly during development, are unknown. The effects of these drugs upon homeostasis may be important since both are known to stimulate the hypothalamic-pituitary-adrenal axis. The purpose of this experiment was to examine alterations in rats in corticosterone and glucose following an acute exposure to these drugs at different stages of development: preweaning, juvenile, and adulthood. Both MDMA and Foxy increased corticosterone levels significantly at all ages examined, while glucose was elevated at all stages except at the juvenile time point (postnatal day 28). For both measures, there were no differences between the sexes with either drug. The data indicate that an acute exposure to these drugs alters CORT and glucose levels, raising the possibility that these changes may have effects on behavioral and cognitive function, as we and others have previously demonstrated.
Collapse
Affiliation(s)
- Devon L Graham
- Division of Neurology, Cincinnati Children's Research Foundation, & Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | | | |
Collapse
|
68
|
van Nieuwenhuijzen PS, McGregor IS. Sedative and hypothermic effects of gamma-hydroxybutyrate (GHB) in rats alone and in combination with other drugs: assessment using biotelemetry. Drug Alcohol Depend 2009; 103:137-47. [PMID: 19446408 DOI: 10.1016/j.drugalcdep.2009.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/22/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
Abstract
The recreational drug gamma-hydroxybutyrate (GHB) has euphoric effects and can induce sedation and body temperature changes. GHB is frequently combined with other recreational drugs although these interactions are not well characterised. The present study used biotelemetry to provide a fine-grained analysis of the effects of GHB on body temperature and locomotor activity in freely moving rats, and investigated interactions between GHB and 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine (METH) and various antagonist drugs. GHB (1000mg/kg) caused profound sedation for more than 2h and a complex triphasic effect on body temperature: an initial hypothermia (5-40min), followed by hyperthermia (40-140min), followed again by hypothermia (140-360min). A lower GHB dose (500mg/kg) also caused sedation but only a hypothermic effect that lasted up to 6h. The dopamine D(1) receptor antagonist SCH 23390 (1mg/kg), the opioid antagonist naltrexone (1mg/kg), the benzodiazepine antagonist flumazenil (10mg/kg), and the 5-HT(2A/2C) receptor antagonist ritanserin (1mg/kg) did not prevent the overall sedative or body temperature effects of GHB (1000mg/kg). However the GABA(B) antagonist SCH 50911 (50mg/kg) prevented the hyperthermia induced by GHB (1000mg/kg). Repeated daily administration of GHB (1000mg/kg) produced tolerance to the sedative and hyperthermic effects of the drug and cross-tolerance to the sedative effects of the GABA(B) receptor agonist baclofen (10mg/kg). A high ambient temperature of 28 degrees C prevented the hypothermia obtained with GHB (500mg/kg) at 20 degrees C, while GHB (500mg/kg) reduced the hyperthermia and hyperactivity produced by co-administered doses of MDMA (5mg/kg) or METH (1mg/kg) at 28 degrees C. These results further confirm a role for GABA(B) receptors in the hypothermic and sedative effects of GHB and show an interaction between GHB and MDMA, and GHB and METH, that may be relevant to the experience of recreational users who mix these drugs.
Collapse
|
69
|
Cannabis coadministration potentiates the effects of "ecstasy" on heart rate and temperature in humans. Clin Pharmacol Ther 2009; 86:160-6. [PMID: 19440186 DOI: 10.1038/clpt.2009.62] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study assessed the acute physiologic effects over time of (co)administration of Delta9-tetrahydrocannabinol (Delta9-THC) (the main psychoactive compound of cannabis) and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") in 16 healthy volunteers. Pharmacokinetics and cardiovascular, temperature, and catecholamine responses were assessed over time. Both single-drug conditions robustly increased heart rate, and coadministration showed additive effects. MDMA increased epinephrine and norepinephrine concentrations, whereas THC did not affect the catecholamine response. Coadministration of MDMA and THC attenuated the increase of norepinephrine concentrations relative to administration of MDMA alone. These results show that THC mediates heart rate increase independent of sympathetic (catecholaminergic) activity, probably through direct cannabinoid receptor type 1 (CB(1)) agonism in cardiac tissue. Furthermore, THC coadministration did not prevent MDMA-induced temperature increase, but it delayed the onset and prolonged the duration of temperature elevation. These effects may be of particular relevance for the cardiovascular safety of ecstasy users who participate in energetic dancing in nightclubs with high ambient temperature.
Collapse
|
70
|
Baumann MH, Rothman RB. Neural and cardiac toxicities associated with 3,4-methylenedioxymethamphetamine (MDMA). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:257-96. [PMID: 19897081 DOI: 10.1016/s0074-7742(09)88010-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
(+/-)-3,4-Methylenedioxymethamphetamine (MDMA) is a commonly abused illicit drug which affects multiple organ systems. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been viewed as neurotoxicity. Recent data implicate MDMA in the development of valvular heart disease (VHD). The present paper reviews several issues related to MDMA-associated neural and cardiac toxicities. The hypothesis of MDMA neurotoxicity in rats is evaluated in terms of the effects of MDMA on monoamine neurons, the use of scaling methods to extrapolate MDMA doses across species, and functional consequences of MDMA exposure. A potential treatment regimen (l-5-hydroxytryptophan plus carbidopa) for MDMA-associated neural deficits is discussed. The pathogenesis of MDMA-associated VHD is reviewed with specific reference to the role of valvular 5-HT(2B) receptors. We conclude that pharmacological effects of MDMA occur at the same doses in rats and humans. High doses of MDMA that produce 5-HT depletions in rats are associated with tolerance and impaired 5-HT release. Doses of MDMA that fail to deplete 5-HT in rats can cause persistent behavioral dysfunction, suggesting even moderate doses may pose risks. Finally, the MDMA metabolite, 3,4-methylenedioxyamphetamine (MDA), is a potent 5-HT(2B) agonist which could contribute to the increased risk of VHD observed in heavy MDMA users.
Collapse
Affiliation(s)
- Michael H Baumann
- Clinical Psychopharmacology Section, Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, Maryland 21224, USA
| | | |
Collapse
|
71
|
Sharma HS, Ali SF. Acute administration of 3,4-methylenedioxymethamphetamine induces profound hyperthermia, blood-brain barrier disruption, brain edema formation, and cell injury. Ann N Y Acad Sci 2008; 1139:242-58. [PMID: 18991870 DOI: 10.1196/annals.1432.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The psychostimulant 3,4-,ethylenedioxymethamphetamine (MDMA, "ecstasy") is known to induce hyperthermia and alterations in neurochemical metabolism in the CNS. However, the detailed cellular or molecular mechanisms behind MDMA-induced neurotoxicity are still not well known. Since MDMA induces profound hyperthermia that could lead to intense cellular stress and cause disruption of the blood-brain barrier (BBB), this investigation examined the effects of acute MDMA on BBB dysfunction, brain edema, and cell injury in rats and mice. When MDMA (40 mg/kg, i.p.) was administered to rats or mice, these animals exhibited profound behavioral disturbances (hyperactivity and hyperlocomotion) and hyperthermia (>40 to 41 degrees C) at 4 h. At this time, the leakage of Evans blue dye was evident, particularly in the cerebellum, hippocampus, cortex, thalamus, and hypothalamus. This effect was most pronounced in mice compared to rats. Marked increase in brain water along with Na(+), K(+), and Cl(-) content was also seen in the aforementioned brain regions. Presence of distorted neuronal and glial cells in brain regions associated with leakage of Evans blue is quite common in MDMA-treated animals. Increased albumin immunoreactivity, indicating breakdown of the BBB, and upregulation of glial fibrillary acidic protein (GFAP), suggesting activation of astrocytes, were seen in most brain regions showing edematous changes. Upregulation of heat-shock protein (HSP72) immunoreactivity in the nuclei and cell cytoplasm of the neurons located in the edematous brain regions are quite common. Taken together, these observations are the first to show that MDMA has the capacity to disrupt BBB permeability to proteins and to induce the formation of edema, probably by inducing hyperthermia and cellular stress, as evident with HSP overexpression leading to cell injury.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Neurochemistry, Division of Neurotoxicology, National Center of Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA.
| | | |
Collapse
|
72
|
Moon KH, Upreti VV, Yu LR, Lee IJ, Ye X, Eddington ND, Veenstra TD, Song BJ. Mechanism of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)-mediated mitochondrial dysfunction in rat liver. Proteomics 2008; 8:3906-18. [PMID: 18780394 DOI: 10.1002/pmic.200800215] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite numerous reports citing the acute hepatotoxicity caused by 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy), the underlying mechanism of organ damage is poorly understood. We hypothesized that key mitochondrial proteins are oxidatively modified and inactivated in MDMA-exposed tissues. The aim of this study was to identify and investigate the mechanism of inactivation of oxidatively modified mitochondrial proteins, prior to the extensive mitochondrial dysfunction and liver damage following MDMA exposure. MDMA-treated rats showed abnormal liver histology with significant elevation in plasma transaminases, nitric oxide synthase, and the level of hydrogen peroxide. Oxidatively modified mitochondrial proteins in control and MDMA-exposed rats were labeled with biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins, purified with streptavidin-agarose, and resolved using 2-DE. Comparative 2-DE analysis of biotin-NM-labeled proteins revealed markedly increased levels of oxidatively modified proteins following MDMA exposure. Mass spectrometric analysis identified oxidatively modified mitochondrial proteins involved in energy supply, fat metabolism, antioxidant defense, and chaperone activities. Among these, the activities of mitochondrial aldehyde dehydrogenase, 3-ketoacyl-CoA thiolases, and ATP synthase were significantly inhibited following MDMA exposure. Our data show for the first time that MDMA causes the oxidative inactivation of key mitochondrial enzymes which most likely contributes to mitochondrial dysfunction and subsequent liver damage in MDMA-exposed animals.
Collapse
Affiliation(s)
- Kwan-Hoon Moon
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
The effect of long-term repeated exposure to 3,4-methylenedioxymethamphetamine on cardiovascular and thermoregulatory changes. Psychopharmacology (Berl) 2008; 201:161-70. [PMID: 18679656 DOI: 10.1007/s00213-008-1258-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") disrupts thermoregulation in rats and can lead to life-threatening hyperthermia in humans. MDMA administration can also lead to long-term neurotoxicity in animals and possibly humans. OBJECTIVES The purpose of the current study was to extend previous results on the acute effects of MDMA on behavioral thermoregulation to a repeated dosing regime, simulating regular weekend use of ecstasy, on measures of thermoregulation and heart rate (HR). MATERIALS AND METHODS Sprague-Dawley rats with telemetry implants were administered 40 micromol/kg MDMA on three consecutive days each week for 1 or 6 weeks before being confined to an elevated ambient temperature (TA) (HOT; 30+/-1 degrees C) or an area at room temperature (ROOM; 21.5+/-1.5 degrees C) for 30 min. After the final drug administration, rats were placed in a thermal gradient for 4 h to allow behavioral thermoregulation. RESULTS HOT rats showed higher core temperature (TC), HR, and locomotor activity than ROOM rats during confinement to a set TA (P<0.001). HR responses to MDMA over 6 weeks at both TAs progressively decreased with repeated dosing (P<0.05). TC was significantly higher in both 6-week groups compared to the 1-week groups (P<0.05) at the end of time in the gradient. Cortical concentrations of dihydroxyphenylacetic acid (DOPAC; P<0.05) and 5-hydroxyindole acetic acid (5-HIAA; P<0.001) decreased significantly irrespective of TA, while concentrations of dopamine and 5-HT did not change. CONCLUSION Long-term treatment with MDMA resulted in apparent tolerance to the effects of the drug on HR, dysregulation of TC in thermal gradient, and depletion of cortical DOPAC and 5-HIAA.
Collapse
|
74
|
Pontes H, Sousa C, Silva R, Fernandes E, Carmo H, Remião F, Carvalho F, Bastos ML. Synergistic toxicity of ethanol and MDMA towards primary cultured rat hepatocytes. Toxicology 2008; 254:42-50. [PMID: 18848861 DOI: 10.1016/j.tox.2008.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 01/19/2023]
Abstract
Ethanol is frequently consumed along with 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Since both compounds are hepatotoxic and are metabolized in the liver, an increased deleterious interaction resulting from the concomitant use of these two drugs seems plausible. Another important feature of MDMA-induced toxicity is hyperthermia, an effect known to be potentiated after continuous exposure to ethanol. Considering the potential deleterious interaction, the aim of the present study was to evaluate the hepatotoxic effects of ethanol and MDMA mixtures to primary cultured rat hepatocytes and to elucidate the mechanism(s) underlying this interaction. For this purpose, the toxicity induced by MDMA to primary cultured rat hepatocytes in absence or in presence of ethanol was evaluated, under normothermic (36.5 degrees C) and hyperthermic (40.5 degrees C) conditions. While MDMA and ethanol, by themselves, had discrete effects on the analysed parameters, which were slightly aggravated under hyperthermia, the simultaneous incubation of MDMA and ethanol for 24h, resulted in high cell death ratios accompanied by a significant disturbance of cellular redox status and decreased energy levels. Evaluation of apoptotic/necrotic features provided clear evidences that the cell death occurs preferentially through a necrotic pathway. All the evaluated parameters were dramatically aggravated when cells were incubated under hyperthermia. In conclusion, co-exposure of hepatocytes to ethanol and MDMA definitely results in a synergism of the hepatotoxic effects, through a disruption of the cellular redox status and enhanced cell death by a necrotic pathway in a temperature-dependent extent.
Collapse
Affiliation(s)
- Helena Pontes
- REQUIMTE, Toxicology Department, Faculty of Pharmacy, University of Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Rusyniak DE, Zaretskaia MV, Zaretsky DV, DiMicco JA. Microinjection of muscimol into the dorsomedial hypothalamus suppresses MDMA-evoked sympathetic and behavioral responses. Brain Res 2008; 1226:116-23. [PMID: 18586013 PMCID: PMC2600867 DOI: 10.1016/j.brainres.2008.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
When given systemically to rats and humans, the drug of abuse 3,4 methylenedioxymethamphetamine (ecstasy, MDMA) elicits hyperthermia, hyperactivity, tachycardia, and hypertension. Chemically stimulating the dorsomedial hypothalamus (DMH), a brain region known to be involved in thermoregulation and in stress responses, causes similar effects. We therefore tested the hypothesis that neuronal activity in the DMH plays a role in MDMA-evoked sympathetic and behavioral responses by microinjecting artificial CSF or muscimol, a neuronal inhibitor, into the DMH prior to intravenous infusion of saline or MDMA in conscious rats. Core temperature, heart rate, mean arterial pressure and locomotor activity were recorded by telemetry every minute for 120 min. In rats previously microinjected with CSF, MDMA elicited significant increases from baseline in core temperature (+1.3+/-0.3 degrees C), locomotion (+50+/-6 counts/min), heart rate (+142+/-16 beats/min), and mean arterial pressure (+26+/-3 mmHg). Microinjecting muscimol into the DMH prior to MDMA prevented increases in core temperature and locomotion and attenuated increases in heart rate and mean arterial pressure. These results indicate that neuronal activity in the DMH is necessary for the sympathetic and behavioral responses evoked by MDMA.
Collapse
Affiliation(s)
- Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-2859, USA.
| | | | | | | |
Collapse
|
76
|
Goni-Allo B, O Mathúna B, Segura M, Puerta E, Lasheras B, de la Torre R, Aguirre N. The relationship between core body temperature and 3,4-methylenedioxymethamphetamine metabolism in rats: implications for neurotoxicity. Psychopharmacology (Berl) 2008; 197:263-78. [PMID: 18074122 DOI: 10.1007/s00213-007-1027-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 11/20/2007] [Indexed: 11/28/2022]
Abstract
RATIONALE A close relationship appears to exist between 3,4-methylenedioxymethamphetamine (MDMA)-induced changes in core body temperature and long-term serotonin (5-HT) loss. OBJECTIVE We investigated whether changes in core body temperature affect MDMA metabolism. MATERIALS AND METHODS Male Wistar rats were treated with MDMA at ambient temperatures of 15, 21.5, or 30 degrees C to prevent or exacerbate MDMA-induced hyperthermia. Plasma concentrations of MDMA and its main metabolites were determined for 6 h. Seven days later, animals were killed and brain indole content was measured. RESULTS The administration of MDMA at 15 degrees C blocked the hyperthermic response and long-term 5-HT depletion found in rats treated at 21.5 degrees C. At 15 degrees C, plasma concentrations of MDMA were significantly increased, whereas those of three of its main metabolites were reduced when compared to rats treated at 21.5 degrees C. By contrast, hyperthermia and indole deficits were exacerbated in rats treated at 30 degrees C. Noteworthy, plasma concentrations of MDMA metabolites were greatly enhanced in these animals. Instrastriatal perfusion of MDMA (100 microM for 5 h at 21 degrees C) did not potentiate the long-term depletion of 5-HT after systemic MDMA. Furthermore, interfering in MDMA metabolism using the catechol-O-methyltransferase inhibitor entacapone potentiated the neurotoxicity of MDMA, indicating that metabolites that are substrates for this enzyme may contribute to neurotoxicity. CONCLUSIONS This is the first report showing a direct relationship between core body temperature and MDMA metabolism. This finding has implications on both the temperature dependence of the mechanism of MDMA neurotoxicity and human use, as hyperthermia is often associated with MDMA use in humans.
Collapse
Affiliation(s)
- Beatriz Goni-Allo
- Department of Pharmacology, School of Medicine, University of Navarra, c/ Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
77
|
Piper BJ, Fraiman JB, Owens CB, Ali SF, Meyer JS. Dissociation of the neurochemical and behavioral toxicology of MDMA ('Ecstasy') by citalopram. Neuropsychopharmacology 2008; 33:1192-205. [PMID: 17609680 DOI: 10.1038/sj.npp.1301491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High or repeated doses of the recreational drug 3,4-methylenedioxymethamphetamine (MDMA, or 'Ecstasy') produce long-lasting deficits in several markers of serotonin (5-HT) system integrity and also alter behavioral function. However, it is not yet clear whether MDMA-induced serotonergic neurotoxicity is responsible for these behavioral changes or whether other mechanisms are involved. The present experiment tested the hypothesis that blocking serotonergic neurotoxicity by pretreatment with the selective 5-HT reuptake inhibitor citalopram will also prevent the behavioral and physiological consequences of an MDMA binge administration. Male, Sprague-Dawley rats (N=67) received MDMA (4 x 10 mg/kg) with or without citalopram (10 mg/kg) pretreatment. Core temperature, ejaculatory response, and body weight were monitored during and immediately following drug treatments. A battery of tests assessing motor, cognitive, exploratory, anxiety, and social behaviors was completed during a 10-week period following MDMA administration. Brain tissue was collected at 1 and 10 weeks after drug treatments for measurement of regional 5-HT transporter binding and (for the 1-week samples) 5-HT and 5-HIAA concentrations. Citalopram pretreatment blocked MDMA-related reductions in aggressive and exploratory behavior measured in the social interaction and hole-board tests respectively. Such pretreatment also had the expected protective effect against MDMA-induced 5-HT neurotoxicity at 1 week following the binge. In contrast, citalopram did not prevent most of the acute effects of MDMA (eg hyperthermia and weight loss), nor did it block the decreased motor activity seen in the binge-treated animals 1 day after dosing. These results suggest that some of the behavioral and physiological consequences of a high-dose MDMA regimen in rats are mediated by mechanisms other than the drug's effects on the serotonergic system. Elucidation of these mechanisms requires further study of the influence of MDMA on other neurotransmitter systems.
Collapse
Affiliation(s)
- Brian J Piper
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA
| | | | | | | | | |
Collapse
|
78
|
Interactions between ethanol and cocaine, amphetamine, or MDMA in the rat: thermoregulatory and locomotor effects. Psychopharmacology (Berl) 2008; 197:67-82. [PMID: 18040665 DOI: 10.1007/s00213-007-1007-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 10/29/2007] [Indexed: 01/23/2023]
Abstract
RATIONALE (+/-)-3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is often taken recreationally with ethanol (EtOH). In rats, EtOH may potentiate MDMA-induced hyperactivity, but attenuate hyperthermia. OBJECTIVE Experiment 1 compared the interactions between EtOH (1.5 g/kg) and MDMA (6.6 mg/kg) with EtOH + cocaine (COCA; 10 mg/kg) and EtOH + amphetamine (AMPH; 1 mg/kg) on locomotor activity and thermoregulation. Experiment 2 used a weaker dose of MDMA (3.3 mg/kg) and larger doses of COCA (20 mg/kg) and AMPH (2 mg/kg). MATERIALS AND METHODS Drug treatments were administered on four occasions (2, 5, and 2 days apart, respectively; experiment 1) or two (2 days apart; experiment 2). RESULTS All psychostimulants increased activity, and EtOH markedly increased the effect of MDMA. AMPH alone-related hyperactivity showed modest sensitization across treatment days, while MDMA + EtOH activity showed marked sensitization. AMPH, COCA, and MDMA induced hyperthermia of comparable amplitude (+1 to +1.5 degrees C). Co-treatment with EtOH and AMPH (1 mg/kg) or COCA (10 mg/kg) produced hypothermia greater than that produced by EtOH alone. Conversely, EtOH attenuated MDMA-related hyperthermia, an effect increasing across treatment days. These results demonstrate that the interaction between MDMA and EtOH may be different from the interaction between EtOH and AMPH or COCA. CONCLUSION Because of potential health-related consequences of such polydrug misuse, it is worth identifying the mechanisms underlying these interactions, especially between EtOH and MDMA. Given the different affinity profiles of the three drugs for serotonin, dopamine, and norepinephrine transporters, our results appear compatible with the possibility of an important role of serotonin in at least the EtOH-induced potentiation of MDMA-induced hyperlocomotion.
Collapse
|
79
|
Goñi-Allo B, Puerta E, Mathúna BO, Hervias I, Lasheras B, de la Torre R, Aguirre N. On the role of tyrosine and peripheral metabolism in 3,4-methylenedioxymethamphetamine-induced serotonin neurotoxicity in rats. Neuropharmacology 2008; 54:885-900. [PMID: 18329670 DOI: 10.1016/j.neuropharm.2008.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 01/11/2008] [Accepted: 01/24/2008] [Indexed: 11/25/2022]
Abstract
The mechanisms underlying 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonergic (5-HT) toxicity remain unclear. It has been suggested that MDMA depletes 5-HT by increasing brain tyrosine levels, which via non-enzymatic hydroxylation leads to DA-derived free radical formation. Because this hypothesis assumes the pre-existence of hydroxyl radicals, we hypothesized that MDMA metabolism into pro-oxidant compounds is the limiting step in this process. Acute hyperthermia, plasma tyrosine levels and concentrations of MDMA and its main metabolites were higher after a toxic (15 mg/kg i.p.) vs. a non-toxic dose of MDMA (7.5mg/kg i.p.). The administration of a non-toxic dose of MDMA in combination with l-tyrosine (0.2 mmol/kg i.p.) produced a similar increase in serum tyrosine levels to those found after a toxic dose of MDMA; however, brain 5-HT content remained unchanged. The non-toxic dose of MDMA combined with a high dose of tyrosine (0.5 mmol/kg i.p.), caused long-term 5-HT depletions in rats treated at 21.5 degrees C but not in those treated at 15 degrees C, conditions known to decrease MDMA metabolism. Furthermore, striatal perfusion of MDMA (100 microM for 5h) combined with tyrosine (0.5 mmol/kg i.p.) in hyperthermic rats did not cause 5-HT depletions. By contrast, rats treated with the non-toxic dose of MDMA under heating conditions or combined with entacapone or acivicin, which interfere with MDMA metabolism or increase brain MDMA metabolite availability respectively, showed significant reductions of brain 5-HT content. Altogether, these data indicate that although tyrosine may contribute to MDMA-induced toxicity, MDMA metabolism appears to be the limiting step.
Collapse
Affiliation(s)
- Beatriz Goñi-Allo
- Department of Pharmacology, School of Medicine, University of Navarra, c/ Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
80
|
Effect of chronic ethanol exposure on the hepatotoxicity of ecstasy in mice: an ex vivo study. Toxicol In Vitro 2008; 22:910-20. [PMID: 18325728 DOI: 10.1016/j.tiv.2008.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/17/2007] [Accepted: 01/14/2008] [Indexed: 11/30/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is frequently consumed at "rave" parties by polydrug users that usually take this drug in association with ethanol. In addition, many young people are repeatedly exposed to ethanol, which likely leads to tolerance phenomena. Both compounds are metabolized in the liver, with formation of hepatotoxic metabolites, which gives high relevance to the evaluation of their putative toxicological interaction. Therefore, the aim of this study was to evaluate the toxicity induced by 0.8 and 1.6 mM MDMA to freshly isolated hepatocytes obtained from ethanol-treated mice whose tap drinking water was replaced by a 5% ethanol solution for 1 week and, afterwards, by a 12% ethanol solution for 8 weeks (ethanol group) comparatively to non-treated animals (non-ethanol group). The hepatocytes were incubated under normothermic and hyperthermic conditions in order to simulate in vitro the hyperthermic response induced in vivo by MDMA, a condition that has been recognized as a life-threatening effect associated with MDMA exposure and implicated in its hepatotoxicity. Six mice treated under the same protocol as the ethanol group were used for histological analysis, and compared to non-ethanol-treated animals. The pre-treatment of mice with ethanol caused a significant decrease in the hepatocytes yield in the isolation procedure comparatively to the non-ethanol group, which can be explained by an increase in collagen deposition along the hepatic parenchyma as observed in the histological analysis. The initial cell viability of hepatocytes suspensions was similar between ethanol and non-ethanol groups. However, the ethanol group showed a higher GSH oxidation rate, which was enhanced under hyperthermia. Additionally, a concentration-dependent MDMA-induced loss of cell viability and ATP depletion was observed for both groups, at 41 degrees C. In conclusion, the repeated treatment with ethanol seems to increase the vulnerability of freshly isolated mice hepatocytes towards pro-oxidant conditions, as ascertained by the increase in collagen deposition, lower hepatocyte yield and decreased glutathione levels. However, MDMA toxicity to the isolated hepatocytes was independent of ethanol pre-treatment, while significantly dependent on incubation temperature.
Collapse
|
81
|
Parrott A, Lock J, Conner A, Kissling C, Thome J. Dance clubbing on MDMA and during abstinence from Ecstasy/MDMA: prospective neuroendocrine and psychobiological changes. Neuropsychobiology 2008; 57:165-80. [PMID: 18654086 PMCID: PMC3575116 DOI: 10.1159/000147470] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 04/09/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The present study is the first to prospectively compare a group of recreational Ecstasy users when dance clubbing on 3,4-methylenedioxymethamphetamine (MDMA) and when clubbing during abstinence from Ecstasy/MDMA. METHODS Twelve normal healthy volunteers (mean age = 23.2 years) were assessed at a Saturday night dance club under self-administered MDMA. On the other weekend they went to the same dance club without taking MDMA (order counterbalanced). Both conditions involved 5 test sessions conducted at similar times: pre-drug baseline, 1 h post-drug clubbing, 2.5 h post-drug clubbing, and 2 and 4 days later. The assessments included body and ambient temperature, physical activity (pedometer), as well as self-ratings for mood state, physical activity, thermal comfort and thirst. Saliva samples were analyzed for MDMA, cortisol and testosterone. RESULTS The cortisol levels increased significantly by 800% when dance clubbing on MDMA, while testosterone increased significantly by 75%; neither neuroendocrine measure was altered during abstinence. Saliva analyses confirmed the presence of MDMA when dancing on Ecstasy and its absence when dancing off Ecstasy. The pedometer values and self-rated levels of dancing were similar at both weekends. Hot and cold flushes and feeling hot increased significantly under MDMA. The mean body temperature did not change significantly, although there was a borderline trend for increased values after MDMA. Feelings of happiness and excitement increased under MDMA, although they were not significantly greater than when clubbing during abstinence. CONCLUSIONS Neurohormonal release may be an important part of the acute MDMA experience. The large cortisol increase provides further data on the bioenergetic stress model of recreational Ecstasy/MDMA.
Collapse
Affiliation(s)
- A.C. Parrott
- Department of Psychology, Swansea University, Swansea
| | - J. Lock
- Department of Psychology, Swansea University, Swansea
| | - A.C. Conner
- Warwick Medical School, University of Warwick, Warwick, UK
| | - C. Kissling
- School of Medicine, Swansea University, Swansea
| | - J. Thome
- School of Medicine, Swansea University, Swansea
| |
Collapse
|
82
|
Jaehne EJ, Salem A, Irvine RJ. Pharmacological and behavioral determinants of cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, and para-methoxyamphetamine-induced hyperthermia. Psychopharmacology (Berl) 2007; 194:41-52. [PMID: 17530474 DOI: 10.1007/s00213-007-0825-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/06/2007] [Indexed: 11/25/2022]
Abstract
RATIONALE Cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), and para-methoxyamphetamine (PMA) disrupt normal thermoregulation in humans, with PMA being associated with more severe cases of hyperthermia. Harm minimization advice on how to prevent overheating depends on appropriate thermoregulatory behavior by drug users. OBJECTIVES The purpose of the current study was to establish dose-response relationships for the effects of a number of commonly used illicit stimulants and investigate the behavioral response to increased core temperature. MATERIALS AND METHODS Sprague-Dawley rats with telemetry implants were administered either saline or 4, 12, 26, 40 or 80 micromol/kg of cocaine, methamphetamine, MDMA, or PMA and confined to an ambient temperature of 30 degrees C for 30 min, before being able to choose their preferred temperature on a thermally graded runway (11-41 degrees C). RESULTS The increased core temperature caused by administration of cocaine, methamphetamine, and MDMA treatment led to the animals seeking the cool end of the runway to correct their core temperature, although this did not occur in PMA-treated rats. The order of potency for increasing core temperature was methamphetamine >PMA = MDMA>cocaine. This differed to the slopes of the dose-response curves where MDMA and PMA showed the steepest slope for the doses used followed by methamphetamine then cocaine. CONCLUSIONS These results suggest that behavioral aspects of thermoregulation are important in assessing the potential of individual drugs to cause harmful increases in core temperature.
Collapse
Affiliation(s)
- Emily Joy Jaehne
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Level 5 Medical School North, Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|
83
|
Ben Hamida S, Plute E, Bach S, Lazarus C, Tracqui A, Kelche C, de Vasconcelos AP, Jones BC, Cassel JC. Ethanol-MDMA interactions in rats: the importance of interval between repeated treatments in biobehavioral tolerance and sensitization to the combination. Psychopharmacology (Berl) 2007; 192:555-69. [PMID: 17345065 DOI: 10.1007/s00213-007-0752-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE In our previous work, we showed that ethanol (EtOH) potentiates 3,4-methylenedioxymethamphetamine (MDMA)-induced hyperlocomotion while protecting against its hyperthermic effects. Whereas the effect on activity were found on all days (although declining over the three first days), the protection against hyperthermia completely disappeared on the second day. The latter effect was previously thought to reflect tolerance to ethanol or the combination, per se. OBJECTIVE In the present study, we changed the treatment regimen to irregular and longer intervals between treatments (48, 120, and again 48 h) to check if tolerance was still observed. RESULTS We found progressive sensitization of locomotor activity to EtOH (1.5 g/kg, i.p.)+MDMA (6.6 mg/kg, i.p.), and a partial EtOH protection against MDMA-induced hyperthermia that persisted after the first drug challenge day. When the monoamine neurotransmitters, dopamine, and serotonin were assessed 2 weeks after treatment, we found no consistent effect on the concentration of any of these neurotransmitters, whatever the treatment. Similarly, we found that regional brain concentrations of MDMA were not significantly affected by EtOH at a 45-min post-treatment delay; however, the overall ratio of the metabolite 3,4-methylenedioxyamphetamine (MDA) to MDMA was lower (overall, -16%) in animals treated with the combination compared to MDMA alone, indicating possible contribution of pharmacokinetic factors. This difference was especially marked in the striatum (-25%). CONCLUSIONS These findings shed new light on the consequences of EtOH-MDMA, taken together at a nearly normal ambient temperature, both in terms of motivation and potential risks for recreational drug users.
Collapse
Affiliation(s)
- Sami Ben Hamida
- LINC-UMR 7191, Université Louis Pasteur-CNRS, Institut Fédérératif de Recherche 37, GDR CNRS 2905, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Escobedo I, Peraile I, Orio L, Colado MI, O'Shea E. Evidence for a role of Hsp70 in the neuroprotection induced by heat shock pre-treatment against 3,4-methylenedioxymethamphetamine toxicity in rat brain. J Neurochem 2007; 101:1272-83. [PMID: 17328712 DOI: 10.1111/j.1471-4159.2007.04459.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') produces acute hyperthermia which increases the severity of the selective serotoninergic neurotoxicity produced by the drug in rats. Heat shock protein 70 (Hsp70) is a major inducible cellular protein expressed in stress conditions and which is thought to exert protective functions. MDMA (12.5 mg/kg, i.p.), given to rats housed at 22 degrees C, produced an immediate hyperthermia and increased Hsp70 in frontal cortex between 3 h and 7 days after administration. MDMA, given to rats housed at low ambient temperature (4 degrees C) produced transient hypothermia followed by mild hyperthermia but no increase in Hsp70 expression, while rats treated at elevated room temperature (30 degrees C) showed enhanced hyperthermia and similar expression of Hsp70 to that seen in rats housed at 22 degrees C. Fluoxetine-induced inhibition of 5-HT release and hydroxyl radical formation did not modify MDMA-induced Hsp70 expression 3 h later. Four- or 8-day heat shock (elevation of basal rectal temperature by 1.5 degrees C for 1 h) or geldanamycin pre-treatment induced Hsp70 expression and protected against MDMA-induced serotoninergic neurotoxicity without affecting drug-induced hyperthermia. Thus, MDMA-induced Hsp70 expression depends on the drug-induced hyperthermic response and not on 5-HT release or hydroxyl radical formation and pre-induction of Hsp70 protects against the long-term serotoninergic damage produced by MDMA.
Collapse
Affiliation(s)
- Isabel Escobedo
- Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
85
|
Crean RD, Davis SA, Taffe MA. Oral administration of (+/-)3,4-methylenedioxymethamphetamine and (+)methamphetamine alters temperature and activity in rhesus macaques. Pharmacol Biochem Behav 2007; 87:11-9. [PMID: 17475314 PMCID: PMC1975960 DOI: 10.1016/j.pbb.2007.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/16/2007] [Accepted: 03/23/2007] [Indexed: 11/30/2022]
Abstract
RATIONALE Emergency Department visits and fatalities in which (+/-)3,4-methylenedioxymethamphetamine (MDMA) or (+)methamphetamine (METH) are involved frequently feature unregulated hyperthermia. MDMA and METH significantly elevate body temperature in multiple laboratory species and, most importantly, can also produce unregulated and threatening hyperthermia in nonhuman primates. A majority of prior animal studies have administered drugs by injection whereas human consumption of "Ecstasy" is typically oral, an important difference in route of administration which may complicate the translation of animal data to the human condition. OBJECTIVE To determine if MDMA and METH produce hyperthermia in monkeys following oral administration as they do when administered intramuscularly. METHODS Adult male rhesus monkeys were challenged intramuscularly (i.m.) and per os (p.o.) with 1.78 or 5 mg/kg (+/-)MDMA and with 0.1 or 0.32 mg/kg (+)METH. Temperature and activity were monitored with a radiotelemetry system. RESULTS Oral administration of either MDMA or METH produced significant increases in body temperature. Locomotor activity was suppressed by MDMA and increased by METH following either route of administration. CONCLUSIONS The data show that the oral route of administration is not likely to qualitatively reduce the temperature increase associated with MDMA or METH although oral administration did slow the rate of temperature increase. It is further established that MDMA reduces activity in monkeys even after relatively high doses and oral administration.
Collapse
Affiliation(s)
- Rebecca D. Crean
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla, CA, USA
| | - Sophia A. Davis
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla, CA, USA
| | - Michael A. Taffe
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla, CA, USA
| |
Collapse
|
86
|
Goñi-Allo B, Puerta E, Hervias I, Di Palma R, Ramos M, Lasheras B, Aguirre N. Studies on the mechanisms underlying amiloride enhancement of 3,4-methylenedioxymethamphetamine-induced serotonin depletion in rats. Eur J Pharmacol 2007; 562:198-207. [PMID: 17320075 DOI: 10.1016/j.ejphar.2007.01.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/13/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
Amiloride and several of its congeners known to block the Na(+)/Ca(2+) and/or Na(+)/H(+) antiporters potentiate methamphetamine-induced neurotoxicity without altering methamphetamine-induced hyperthermia. We now examine whether amiloride also exacerbates 3,4-methylenedioxymethamphetamine (MDMA)-induced long-term serotonin (5-HT) loss in rats. Amiloride (2.5 mg/kg, every 2 h x 3, i.p.) given at ambient temperature 30 min before MDMA (5 mg/kg, every 2 h x 3, i.p.), markedly exacerbated long-term 5-HT loss. However, in contrast to methamphetamine, amiloride also potentiated MDMA-induced hyperthermia. Fluoxetine (10 mg/kg i.p.) completely protected against 5-HT depletion caused by the MDMA/amiloride combination without significantly altering the hyperthermic response. By contrast, the calcium channel antagonists flunarizine or diltiazem did not afford any protection. Findings with MDMA and amiloride were extended to the highly selective Na(+)/H(+) exchange inhibitor dimethylamiloride, suggesting that the potentiating effects of amiloride are probably mediated by the blockade of Na(+)/H(+) exchange. When the MDMA/amiloride combination was administered at 15 degrees C hyperthermia did not develop and brain 5-HT concentrations remained unchanged 7 days later. Intrastriatal perfusion of MDMA (100 microM for 8 h) in combination with systemic amiloride caused a small depletion of striatal 5-HT content in animals made hyperthermic but not in the striatum of normothermic rats. These data suggest that enhancement of MDMA-induced 5-HT loss caused by amiloride or dimethylamiloride depends on their ability to enhance MDMA-induced hyperthermia. We hypothesise that blockade of Na(+)/H(+) exchange could synergize with hyperthermia to render 5-HT terminals more vulnerable to the toxic effects of MDMA.
Collapse
Affiliation(s)
- Beatriz Goñi-Allo
- Department of Pharmacology, School of Medicine, University of Navarra, C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
87
|
Hargreaves GA, Hunt GE, Cornish JL, McGregor IS. High ambient temperature increases 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”)-induced Fos expression in a region-specific manner. Neuroscience 2007; 145:764-74. [PMID: 17289273 DOI: 10.1016/j.neuroscience.2006.12.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/22/2006] [Accepted: 12/12/2006] [Indexed: 11/29/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a popular drug that is often taken under hot conditions at dance clubs. High ambient temperature increases MDMA-induced hyperthermia and recent studies suggest that high temperatures may also enhance the rewarding and prosocial effects of MDMA in rats. The present study investigated whether ambient temperature influences MDMA-induced expression of Fos, a marker of neural activation. Male Wistar rats received either MDMA (10 mg/kg i.p.) or saline, and were placed in test chambers for 2 h at either 19 or 30 degrees C. MDMA caused significant hyperthermia at 30 degrees C and a modest hypothermia at 19 degrees C. The 30 degrees C ambient temperature had little effect on Fos expression in vehicle-treated rats. However MDMA-induced Fos expression was augmented in 15 of 30 brain regions at the high temperature. These regions included (1) sites associated with thermoregulation such as the median preoptic nucleus, dorsomedial hypothalamus and raphe pallidus, (2) the supraoptic nucleus, a region important for osmoregulation and a key mediator of oxytocin and vasopressin release, (3) the medial and central nuclei of the amygdala, important in the regulation of social and emotional behaviors, and (4) the shell of the nucleus accumbens and (anterior) ventral tegmental area, regions associated with the reinforcing effects of MDMA. MDMA-induced Fos expression was unaffected by ambient temperature at many other sites, and was diminished at high temperature at one site (the islands of Calleja), suggesting that the effect of temperature on MDMA-induced Fos expression was not a general pharmacokinetic effect. Overall, these results indicate that high temperatures accentuate key neural effects of MDMA and this may help explain the widespread use of the drug under hot conditions at dance parties as well as the more hazardous nature of MDMA taken under such conditions.
Collapse
Affiliation(s)
- G A Hargreaves
- School of Psychology, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
88
|
de Win MML, Reneman L, Jager G, Vlieger EJP, Olabarriaga SD, Lavini C, Bisschops I, Majoie CBLM, Booij J, den Heeten GJ, van den Brink W. A prospective cohort study on sustained effects of low-dose ecstasy use on the brain in new ecstasy users. Neuropsychopharmacology 2007; 32:458-70. [PMID: 17077812 DOI: 10.1038/sj.npp.1301225] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is debated whether ecstasy use has neurotoxic effects on the human brain and what the effects are of a low dose of ecstasy use. We prospectively studied sustained effects (>2 weeks abstinence) of a low dose of ecstasy on the brain in ecstasy-naive volunteers using a combination of advanced MR techniques and self-report questionnaires on psychopathology as part of the NeXT (Netherlands XTC Toxicity) study. Outcomes of proton magnetic resonance spectroscopy (1H-MRS), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), and questionnaires on depression, impulsivity, and sensation seeking were compared in 30 subjects (12M, 21.8+/-3.1 years) in two sessions before and after first ecstasy use (1.8+/-1.3 tablets). Interval between baseline and follow-up was on average 8.1+/-6.5 months and time between last ecstasy use and follow-up was 7.7+/-4.4 weeks. Using 1H-MRS, no significant changes were observed in metabolite concentrations of N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), and creatine (Cr), nor in ratios of NAA, Cho, and mI relative to Cr. However, ecstasy use was followed by a sustained 0.9% increase in fractional anisotropy (FA) in frontoparietal white matter, a 3.4% decrease in apparent diffusion (ADC) in the thalamus and a sustained decrease in relative regional cerebral blood volume (rrCBV) in the thalamus (-6.2%), dorsolateral frontal cortex (-4.0%), and superior parietal cortex (-3.0%) (all significant at p<0.05, paired t-tests). After correction for multiple comparisons, only the rrCBV decrease in the dorsolateral frontal cortex remained significant. We also observed increased impulsivity (+3.7% on the Barratt Impulsiveness Scale) and decreased depression (-28.0% on the Beck Depression Inventory) in novel ecstasy users, although effect sizes were limited and clinical relevance questionable. As no indications were found for structural neuronal damage with the currently used techniques, our data do not support the concern that incidental ecstasy use leads to extensive axonal damage. However, sustained decreases in rrCBV and ADC values may indicate that even low ecstasy doses can induce prolonged vasoconstriction in some brain areas, although it is not known whether this effect is permanent. Additional studies are needed to replicate these findings.
Collapse
Affiliation(s)
- Maartje M L de Win
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Baumann MH, Wang X, Rothman RB. 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology (Berl) 2007; 189:407-24. [PMID: 16541247 PMCID: PMC1705495 DOI: 10.1007/s00213-006-0322-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 01/07/2006] [Indexed: 12/30/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of "interspecies scaling" to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1-2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10-20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks.
Collapse
Affiliation(s)
- Michael H Baumann
- Clinical Psychopharmacology Section, Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
90
|
Ramaekers JG, Kuypers KPC, Samyn N. Stimulant effects of 3,4-methylenedioxymethamphetamine (MDMA) 75 mg and methylphenidate 20 mg on actual driving during intoxication and withdrawal. Addiction 2006; 101:1614-21. [PMID: 17034441 DOI: 10.1111/j.1360-0443.2006.01566.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND 3,4-methylenedioxymethamphetamine (MDMA) is currently one of the most popular drugs of abuse in Europe. Its increasing use over the last decade has led to concern regarding possible adverse effects on driving. The aims of the present study were to investigate the acute effects of MDMA on actual driving performance during the intoxication and withdrawal phase. METHODS Eighteen recreational MDMA-users (nine males, nine females) aged 21-39 years participated in a double-blind, placebo-controlled, three-way cross-over study. MDMA 75 mg, methylphenidate 20 mg and placebo were administered on day 1 of treatment (intoxication phase). Driving tests were conducted between 3 and 5 hours post-drug. Subjects returned the following day for a repetition of the driving tests between 27 and 29 hours post-drug (withdrawal phase). On-the-road driving tests consisted of a road-tracking test and a car-following test. Its main parameters were standard deviation of lateral position (SDLP), time to speed adaptation (TSA), brake reaction time (BRT) and gain. FINDINGS MDMA and methylphenidate significantly decreased SDLP in the road-tracking tests by about 2 cm relative to placebo on day 1 (intoxication phase). In addition, MDMA intoxication decreased performance in the car-following test as indicated by a significant rise in the 'overshoot' of the subjects' response to speed decelerations of the leading vehicle. Driving performance was not affected by treatments during withdrawal on day 2. CONCLUSION Collectively, these data indicate that MDMA is a stimulant drug that may improve certain aspects of the driving task, such as road-tracking performance, but may reduce performance in other aspects of the driving task, such as accuracy of speed adaptation during car-following performance.
Collapse
Affiliation(s)
- J G Ramaekers
- Experimental Psychopharmacology Unit, Department of Neurocognition, Faculty of Psychology, Maastricht University, the Netherlands.
| | | | | |
Collapse
|
91
|
Faria R, Magalhães A, Monteiro PRR, Gomes-Da-Silva J, Amélia Tavares M, Summavielle T. MDMA in Adolescent Male Rats: Decreased Serotonin in the Amygdala and Behavioral Effects in the Elevated Plus-Maze Test. Ann N Y Acad Sci 2006; 1074:643-9. [PMID: 17105959 DOI: 10.1196/annals.1369.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Long-term behavioral consequences of the neurotoxicity produced by 3,4-methylenedioxymethamphetamine (MDMA) in the adolescent rat are still mostly unknown. Here, adolescent male rats (postnatal day 45 PND [45]) were exposed to 10 mg/kg of MDMA, intraperitoneally, every 2 h for 6 h. Controls were given 0.9% saline in the same protocol. Ten days after exposure, the behavioral effects of MDMA were assessed in the elevated plus-maze (n = 6 per group). After behavioral testing, animals were sacrificed and the amygdalae were dissected and processed for HPLC determination of dopamine (DA), serotonin (5-HT), and metabolites. Results showed a significant decrease in the 5-HT content (P < 0.05), but no significant alterations in DA or its metabolites. Behavioral observation in the elevated plus-maze showed a decreased number of entries in the unprotected arms (P < 0.05), which were correlated to the number of entries and time spent in the central platform. Rearing was also decreased (P < 0.05). No differences were observed in head dips, grooming, or number of entries in the protected arms of the apparatus. Therefore, we conclude that, as in the adult rat, exposure to MDMA in the adolescent rat is associated to long-term depletion of the 5-HT content and increased anxiety-like behavior.
Collapse
Affiliation(s)
- Raquel Faria
- IBMC - Neurobehavior Unit, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
92
|
Hall AP, Henry JA. Acute toxic effects of ‘Ecstasy’ (MDMA) and related compounds: overview of pathophysiology and clinical management. Br J Anaesth 2006; 96:678-85. [PMID: 16595612 DOI: 10.1093/bja/ael078] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the late 1980s 'Ecstasy' (3,4-methylenedioxymethamphetamine, MDMA) has become established as a popular recreational drug in western Europe. The UK National Criminal Intelligence Service estimates that 0.5-2 million tablets are consumed weekly in Britain. It has been reported that 4.5% of young adults (15-34 yr) in the UK have used MDMA in the previous 12 months. Clinically important toxic effects have been reported, including fatalities. While the phenomenon of hyperpyrexia and multi-organ failure is now relatively well known, other serious effects have become apparent more recently. Patients with acute MDMA toxicity may present to doctors working in Anaesthesia, Intensive Care and Emergency Medicine. A broad knowledge of these pathologies and their treatment is necessary for anyone working in an acute medical speciality. An overview of MDMA pharmacology and acute toxicity will be given followed by a plan for clinical management.
Collapse
Affiliation(s)
- A P Hall
- Department of Anaesthesia and Intensive Care Medicine, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester LE1 5WW, UK.
| | | |
Collapse
|
93
|
Brevard ME, Meyer JS, Harder JA, Ferris CF. Imaging brain activity in conscious monkeys following oral MDMA ("ecstasy"). Magn Reson Imaging 2006; 24:707-14. [PMID: 16824965 DOI: 10.1016/j.mri.2006.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 03/12/2006] [Indexed: 11/27/2022]
Abstract
Recreational use of 3,4-methylenedioxymethamphetamine (MDMA;"ecstasy") poses worldwide potential health problems. Clinical studies show that repeated exposure to low oral doses of MDMA has toxic effects on the brain, altering cognitive and psychosocial behavior. Functional magnetic resonance imaging in conscious marmoset monkeys was used to evaluate the sensitivity of the brain to an oral dose of MDMA (1 mg/kg). Following MDMA administration, the midbrain raphe nuclei and substantia nigra, major sources of serotonin and dopamine, were activated as were the hippocampus, hypothalamus and amygdala. The corticostriatal circuit of dorsal thalamus, sensorimotor cortex and basal ganglia showed a robust, coherent activation pattern. Two key reward areas, the nucleus accumbens and prefrontal cortex, and most other cortical regions showed little activation. The visual cortex, however, showed intense activation without applied visual stimuli. These data identify brain areas and functional circuits sensitive to a recreational dose of MDMA, some of which may be vulnerable to long-term intermittent exposure to this drug.
Collapse
Affiliation(s)
- Mathew E Brevard
- Center for Comparative Neuroimaging, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
94
|
Hamida SB, Bach S, Plute E, Jones BC, Kelche C, Cassel JC. Ethanol–ecstasy (MDMA) interactions in rats: Preserved attenuation of hyperthermia and potentiation of hyperactivity by ethanol despite prior ethanol treatment. Pharmacol Biochem Behav 2006; 84:162-8. [PMID: 16750260 DOI: 10.1016/j.pbb.2006.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/21/2006] [Accepted: 04/26/2006] [Indexed: 11/27/2022]
Abstract
Recreational use of ecstasy, or (+/-)-3,4-methylenedioxymethamphetamine (MDMA), is often associated with other drugs, among which ethanol is one of the most common. Little is known, however, about the interaction between these two drugs. Using a daily ethanol and/or MDMA administration regimen, we recently showed that ethanol potentiated the hyperactivity (in the home cage), but attenuated the hyperthermia induced by MDMA. The prevention of hyperthermia occurred only on the first of four daily ethanol-MDMA treatments, indicating possible tolerance to ethanol. In order to test the tolerance hypothesis, we treated Long-Evans adult male rats with ethanol on 4 consecutive days prior to their first treatment with MDMA-ethanol. Our results first confirmed that ethanol (1.5 g/kg, i.p.) potentiates the psychomotor effects of MDMA (10 mg/kg, i.p.), while attenuating its pyretic effects (6.6 mg/kg, i.p.). The results also showed that both the potentiation of locomotor activity and the attenuation of hyperthermia by ethanol are not at all altered by prior ethanol treatment. This indicates that tolerance to ethanol per se does not account for what appears to be tolerance to the ethanol-MDMA combination, thus indicating that ethanol-MDMA combination likely has unique pharmacological effects.
Collapse
Affiliation(s)
- Sami Ben Hamida
- LN2C FRE 2855 Université Louis Pasteur - CNRS, Institut Fédérératif de Recherche 37 - GDR CNRS 2905, 12 rue Goethe, F-67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
95
|
Ramaekers JG, Kuypers KPC. Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on behavioral measures of impulsivity: alone and in combination with alcohol. Neuropsychopharmacology 2006; 31:1048-55. [PMID: 16160704 DOI: 10.1038/sj.npp.1300894] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of 3,4-methylenedioxymethamphetamine (MDMA) has frequently been associated with increased levels of impulsivity during abstinence. The effects of MDMA on measures of impulsivity, however, have not yet been studied during intoxication. The present study was designed to assess the acute effects of MDMA and alcohol, alone and in combination, on behavioral measures of impulsivity and risk-taking behavior. A total of 18 recreational users of MDMA entered a double-blind placebo-controlled six-way crossover study. The treatments consisted of MDMA 0, 75, and 100 mg with and without alcohol. Alcohol dosing was designed to achieve a peak blood alcohol concentration (BAC) of about 0.06 g/dl during laboratory testing. Laboratory tests of impulsivity were conducted between 1.5 and 2 h post-MDMA and included a stop-signal task, a go/no-go task, and the Iowa gambling task. MDMA decreased stop reaction time in the stop-signal task indicating increased impulse control. Alcohol increased the proportion of commission errors in the stop-signal task and the go/no-go task. Signal detection analyses of alcohol-induced commission errors indicated that this effect may reflect impairment of perceptual or attentive processing rather than an increase of motor impulsivity per se. Performance in the Iowa gambling task was not affected by MDMA and alcohol, but there was a nonsignificant tendency towards improvement following alcohol intake. None of the behavioral measures of impulsivity showed a MDMA x alcohol interaction effect. The lack of interaction indicated that the CNS stimulant effects of MDMA were never sufficient to overcome alcohol-induced impairment of impulse control or risk-taking behavior.
Collapse
Affiliation(s)
- Johannes G Ramaekers
- Experimental Psychopharmacology Unit, Department of Neurocognition, Faculty of Psychology, Maastricht University, Maastricht, The Netherlands.
| | | |
Collapse
|
96
|
Piper BJ, Vu HL, Safain MG, Oliver AJ, Meyer JS. Repeated adolescent 3,4-methylenedioxymethamphetamine (MDMA) exposure in rats attenuates the effects of a subsequent challenge with MDMA or a 5-hydroxytryptamine(1A) receptor agonist. J Pharmacol Exp Ther 2006; 317:838-49. [PMID: 16434566 DOI: 10.1124/jpet.105.095760] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adolescent users of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) may escalate their dose because of the development of tolerance. We examined the influence of intermittent adolescent MDMA exposure on the behavioral, physiological, and neurochemical responses to a subsequent MDMA "binge" or to a 5-hydroxytryptamine(1A) (5-HT(1A)) receptor challenge. Male Sprague-Dawley rats were given MDMA (10 mg/kg b.i.d.) or saline every 5th day on postnatal days (PDs) 35 to 60. One week later on PD 67, animals were challenged with either multiple doses of MDMA (four 5 or 10 mg/kg doses) or a single dose of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (0.1 or 0.5 mg/kg). Adolescent MDMA exposure partially attenuated the hyperthermic effects of the PD 67 MDMA challenge, completely blocked the locomotor hypoactivity otherwise observed on the day after the challenge, and also prevented MDMA-induced serotonin neurotoxicity assessed on PD 74 by measuring regional [(3)H]citalopram binding to the serotonin transporter (SERT). Adolescent MDMA-treated animals also showed a partial attenuation of the serotonin syndrome but not the hypothermic response to the high dose of 8-OH-DPAT. However, there was no effect of MDMA administration on regional [(3)H]N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY-100635) binding to 5-HT(1A) receptors in the brain or spinal cord. These results suggest that chronic, intermittent MDMA exposure during adolescence induces neuroadaptive changes that can protect against the adverse consequences of a subsequent dose escalation. On the other hand, the same exposure pattern appears to produce a partial 5-HT(1A) receptor desensitization, which may negatively influence the therapeutic responses of chronic MDMA users treated with serotonergic agents for various affective or anxiety disorders.
Collapse
Affiliation(s)
- Brian J Piper
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003-7710, USA
| | | | | | | | | |
Collapse
|
97
|
Easton N, Marsden CA. Ecstasy: are animal data consistent between species and can they translate to humans? J Psychopharmacol 2006; 20:194-210. [PMID: 16510478 DOI: 10.1177/0269881106061153] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The number of 3,4-methylenedioxymethamphetamine (ecstasy or MDMA) animal research articles is rapidly increasing and yet studies which place emphasis on the clinical significance are limited due to a lack of reliable human data. MDMA produces an acute, rapid release of brain serotonin and dopamine in experimental animals and in the rat this is associated with increased locomotor activity and the serotonin behavioural syndrome in rats. MDMA causes dose-dependent hyperthermia, which is potentially fatal, in humans, primates and rodents. Subsequent serotonergic neurotoxicity has been demonstrated by biochemical and histological studies and is reported to last for months in rats and years in non-human primates. Relating human data to findings in animals is complicated by reports that MDMA exposure in mice produces selective long-term dopaminergic impairment with no effect on serotonin. This review compares data obtained from animal and human studies and examines the acute physiological, behavioural and biochemical effects of MDMA as well as the long-term behavioural effects together with serotonergic and dopaminergic impairments. Consideration is also given to the role of neurotoxic metabolites and the influence of age, sex and user groups on the long-term actions of MDMA.
Collapse
Affiliation(s)
- Neil Easton
- School of Biomedical Science, University of Nottingham, Queen's Medical Centre, UK.
| | | |
Collapse
|
98
|
Abstract
This review of the literature aims to identify the acute effects of MDMA (ecstasy) in healthy volunteers. The wide range of relevant but methodologically diverse tests was .rst grouped into clusters to allow an evaluation of tests that would otherwise have been excluded due to their low frequency of utilization. The following three types of tests were evaluated: (1) functional tests quantifying executive, attention, visual, motor, visuomotor and auditory functions, (2) phenomenological tests assessing personal, subjective experiences, and (3) physiological measures reflecting neurophysiological, endocrine and physiological parameters. MDMA showed robust effects on most of the phenomenological and physiological tests. Functional tests were scarce, preventing any meaningful conclusions to be drawn from their evaluation other than that these tests should be incorporated into future acute-effect studies. A striking doseñresponse relationship appeared for cardiovascular effects. At doses below 1.0 mg/kg MDMA no change was observed relative to placebo while above this dose all studies reported significant increases. Furthermore, pupil size, plasma cortisol and plasma prolactin levels proved responsive to MDMA administration. The reported subjective effects of MDMA matched the entactogenic profile. Although interest in the action of MDMA is considerable, the existing knowledge about the cognitive effects of MDMA in humans is still rather limited and further research into the drug's effects is recommended, also in view of potential therapeutic uses of the drug.
Collapse
Affiliation(s)
- G J H Dumont
- Unit for Clinical Psychopharmacology and Neuropsychiatry, Department of Psychiatry, Radboud University Medical Centre Nijmegen, The Netherlands.
| | | |
Collapse
|
99
|
Bull EJ, Porkess V, Rigby M, Hutson PH, Fone KCF. Pre-treatment with 3,4-methylenedioxymethamphetamine (MDMA) causes long-lasting changes in 5-HT2A receptor-mediated glucose utilization in the rat brain. J Psychopharmacol 2006; 20:272-80. [PMID: 16510485 DOI: 10.1177/0269881106059583] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The current study examined the long-term effect of brief exposure to 3,4-methylenedioxymethamphetamine (MDMA) on local cerebral glucose utilization (LCGU) in specific brain regions immediately following administration of the 5-HT2A/2C receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Wistar rats (post-natal day (PND) 28, n = 24) were administered MDMA (5 mg/kg, i.p.) or saline (1 ml/kg, i.p.) four times daily for 2 consecutive days and core body temperature was recorded. Fifty-five days later and 10 min following injection of DOI (1 mg/kg, i.p.) or saline, LCGU was measured using the [14C]2-deoxyglucose (2-DG) technique. In the 4 hours following the initial injection (PND 28), MDMA-treated rats exhibited significant hyperthermia compared with saline-treated controls (p < 0.05-0.01). Eight weeks later, immediately following DOI challenge, LCGU was significantly elevated (an increase of 47%, p < 0.05) in the nucleus accumbens of MDMA/DOI pretreated rats, compared with that in MDMA/saline pre-treated controls. A similar trend was observed in other areas such as the lateral habenula, somatosensory cortex and hippocampal regions (percentage changes of 27-41%), but these did not reach significance. Blood glucose levels were significantly elevated in both groups of DOI-treated rats (p < 0.05-0.01). Thus, brief exposure of young rats to an MDMA regimen previously shown to cause anxiety-like behaviour and modest serotonergic neurotoxicity (Bull et al., 2004) increased DOI-induced energy metabolism in the nucleus accumbens and tended to increase metabolism in other brain regions, including the hippocampus, consistent with the induction of long-term brain region specific changes in synaptic plasticity.
Collapse
Affiliation(s)
- Eleanor J Bull
- Institute of Neuroscience, Queen's Medical Centre, University of Nottingham, UK
| | | | | | | | | |
Collapse
|
100
|
Nair SG, Gudelsky GA. Effect of a serotonin depleting regimen of 3,4-methylenedioxymethamphetamine (MDMA) on the subsequent stimulation of acetylcholine release in the rat prefrontal cortex. Brain Res Bull 2006; 69:382-7. [PMID: 16624669 DOI: 10.1016/j.brainresbull.2006.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 12/19/2005] [Accepted: 01/23/2006] [Indexed: 01/12/2023]
Abstract
The amphetamine analog 3,4-methylenedioxymethamphetamine (MDMA) is considered to be selectively neurotoxic to serotonergic nerve terminals. Although the long term effects of MDMA on serotonin (5-HT) terminals have been well studied, other potential neurochemical consequences associated with MDMA-induced 5-HT depletion have been less well investigated. In view of the cognitive impairments in human MDMA abusers and the role of acetylcholine (ACh) in learning and memory, it was of interest to determine the influence of a 5-HT depleting regimen of MDMA on subsequent stimulation of ACh release in the prefrontal cortex (PFC). Male rats received vehicle or MDMA (10 mg/kg, i.p. every 2 h for four injections) and underwent in vivo microdialysis 7 days later to assess the subsequent drug- (e.g., MDMA, 5-HT1A agonist) or stress- (e.g., tail pinch, presence of an intruder rat) induced stimulation of ACh release. The increase in the extracellular concentration of ACh in the PFC produced by MDMA (10 mg/kg, i.p.) was significantly less in rats previously exposed to the neurotoxic regimen of MDMA than that in control animals. In contrast, there was no difference in the magnitude of the stimulation of cortical ACh release elicited by the 5-HT1A agonist, 8-hydroxy-2-(di-n-propyl-amino)tetralin (8-OH-DPAT, 0.3mg/kg, s.c.), tail pinch (30 min) or the presence of an intruder rat (40 min) between control animals and animals previously exposed to a neurotoxic regimen of MDMA. These results suggest that although MDMA-induced 5-HT depletion diminishes subsequent MDMA-induced ACh release, there is little impact on cortical ACh release elicited by the stress of pain or the novelty of an environmental intruder.
Collapse
Affiliation(s)
- S G Nair
- College of Pharmacy, University of Cincinnati, 3223 Eden Av., Cincinnati, OH 45267, USA
| | | |
Collapse
|