51
|
Cunningham B, Harper B, Brander S, Harper S. Toxicity of micro and nano tire particles and leachate for model freshwater organisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128319. [PMID: 35236035 DOI: 10.1016/j.jhazmat.2022.128319] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental sampling has documented a diversity of microplastics, including high levels of black rubber- generally identified as tire debris. Though organisms have been shown to ingest tire particles (TPs), past research focused on toxicity of leachate alone, overlooking potential effects of particles. To address these gaps, we assessed the toxicity of micro (1-20 µm) and nano (<1 µm) TPs for two model organisms, embryonic Zebrafish Danio rerio and the crustacean Daphnia magna. To assess effects on development, Zebrafish embryos were exposed to concentrations of TPs or leachate ranging from 0 to 3.0 × 109 particles/ml and 0-100% respectively (n = 4). Greater mortality and sublethal malformations were observed following nano TP and leachate exposures as compared to micro TPs. Unique abnormalities between the exposures indicates that there is both chemical and particle-specific toxicity. We also observed D. magna mortality following a 48 h exposure of neonate to TPs or leachate, ranging from 0 to 3.3 × 109 particles/ml and 0-100% respectively (n = 3). Though, particle-enhancement of toxicity was observed for both Zebrafish and D. magna, overall sensitivity to TPs differed. It is important to identify differential toxicities across species to achieve an understanding of the environmental impacts of TPs and the chemicals they leach.
Collapse
Affiliation(s)
- Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Bryan Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Susanne Brander
- Coastal Oregon Marine Experiment Station, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, United States
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
52
|
Huang T, Jiang H, Zhao Y, He J, Cheng H, Martyniuk CJ. A comprehensive review of 1,2,4-triazole fungicide toxicity in zebrafish (Danio rerio): A mitochondrial and metabolic perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151177. [PMID: 34699814 DOI: 10.1016/j.scitotenv.2021.151177] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this critical review, we synthesize data from peer-reviewed literature reporting on triazole fungicide exposures in the zebrafish model. Based on their mode of action in plants (potent inhibitors of ergosterol synthesis), we focused attention on mechanisms related to cellular, lipid, and steroid metabolism. Evidence from several studies reveals that zebrafish exposed to triazoles present with impaired mitochondrial oxidative phosphorylation and oxidative stress, as well as dysregulation of lipid metabolism. Such metabolic disruptions are expected to underscore developmental delays, deformity, and aberrant locomotor activity and behaviors often observed following exposure. We begin by summarizing physiological and behavioral effects observed with triazole fungicide exposure in zebrafish. We then discuss mechanisms that may underlie adverse apical effects, focusing on mitochondrial bioenergetics and metabolism. Using computational approaches, we also identify novel biomarkers of triazole fungicide exposure. Extracting and analyzing data contained in the Comparative Toxicogenomics Database (CTD) revealed that transcriptional signatures responsive to different triazoles are related to metabolism of lipids and lipoproteins, biological oxidations, and fatty acid, triacylglycerol, and ketone body metabolism among other processes. Pathway and sub-network analysis identified several transcripts that are responsive in organisms exposed to triazole fungicides, several of which include lipid-related genes. Knowledge gaps and recommendations for future investigations include; (1) targeted metabolomics for metabolites in glycolysis, Krebs cycle, and the electron transport chain; (2) additional studies conducted at environmentally relevant concentrations to characterize the potential for endocrine disruption, given that studies point to altered cholesterol (precursor for steroid hormones), as well as altered estrogen receptor alpha and thyroid hormone expression; (3) studies into the potential role for lipid peroxidation and oxidation of lipid biomolecules as a mechanism of triazole-induced toxicity, given the strong evidence for oxidative damage in zebrafish following exposure to triazole fungicides.
Collapse
Affiliation(s)
- Tao Huang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Haibo Jiang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Hongguang Cheng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
53
|
Qin Y, Wang X, Yan X, Zhu D, Wang J, Chen S, Wang S, Wen Y, Martyniuk CJ, Zhao Y. Developmental toxicity of fenbuconazole in zebrafish: effects on mitochondrial respiration and locomotor behavior. Toxicology 2022; 470:153137. [PMID: 35218879 DOI: 10.1016/j.tox.2022.153137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023]
Abstract
Triazole fungicides are used to control the disease of cereal crops but may also cause adverse effects on non-target organisms. There is a lack of toxicity data for some triazoles such as fenbuconazole in aquatic organisms. This research was conducted to evaluate the toxicity of fenbuconazole at environmentally relevant concentrations with attention on the mitochondria, antioxidant system, and locomotor activity in zebrafish. Zebrafish were exposed to one concentration of 5, 50, 200 or 500ng/L fenbuconazole for 96h. There was no effect on survival nor percentage of fish hatched, but exposure to 200 and 500ng/L fenbuconazole resulted in malformation and hypoactivity in zebrafish. Oxygen consumption rates (OCR) of embryos were measured to determine if the fungicide impaired mitochondrial respiration. Exposure to 500ng/L fenbuconazole reduced basal OCR and oligomycin-induced ATP linked respiration in exposed fish. Fenbuconazole reduced mitochondrial membrane potential and reduced the activities of mitochondrial Complex II and III. Transcript levels of both sdhc and cyc1, each related to Complex II and III, were also altered in expression by fenbuconazole exposure, consistent with mitochondrial dysfunction in embryos. Fenbuconazole activated the antioxidant system, based upon both transcriptional and enzymatic data in zebrafish. Consistent with mitochondrial impairment, molecular docking confirmed a strong binding capacity of the fungicide at the Qi site of Complex III, revealing this complex is susceptible to fenbuconazole. This study reveals potential toxicity pathways related to fenbuconazole exposure in aquatic organisms; such data can improve risk assessments for triazole fungicides.
Collapse
Affiliation(s)
- Yingju Qin
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Di Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China
| | - Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China
| | - Siying Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shuo Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China
| | - Yang Wen
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, School of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin 136000, PR China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, Florida, 32611, USA
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China.
| |
Collapse
|
54
|
Anti-Tumor Active Isopropylated Fused Azaisocytosine-Containing Congeners Are Safe for Developing Danio rerio as Well as Red Blood Cells and Activate Apoptotic Caspases in Human Breast Carcinoma Cells. Molecules 2022; 27:molecules27041211. [PMID: 35209001 PMCID: PMC8876100 DOI: 10.3390/molecules27041211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
New isopropylated fused azaisocytosine-containing congeners (I-VI) have previously been reported as promising anticancer drug candidates, so further research on these molecules in the preclinical development phase is fully justified and necessary. For this reason, in the present paper, we assess the toxicity/safety profiles of all the compounds using Danio rerio and red blood cell models, and examine the effect of the most selective congeners on the activation of apoptotic caspases in cancer and normal cells. In order to evaluate the effect of each molecule on the development of zebrafish embryos/larvae and to select the safest compounds for further study, various phenotypic parameters (i.e., mortality, hatchability, heart rate, heart oedema, yolk sac utilization, swim bladder development and body shape) were observed, and the half maximal lethal concentration, the maximal non-lethal concentration and no observed adverse effect concentration for each compound were established. The effect of all the isopropylated molecules was compared to that of an anticancer agent pemetrexed. The lipophilicity-dependent structure-toxicity correlations were also determined. To establish the possible interaction of the compounds with red blood cells, an ex vivo hemolysis test was performed. It was shown that almost all of the investigated isopropylated congeners have no adverse phenotypic effect on zebrafish development during five-day exposure at concentrations up to 50 μM (I-III) or up to 20 μM (IV-V), and that they are less toxic for embryos/larvae than pemetrexed, demonstrating their safety. At the same time, all the molecules did not adversely affect the red blood cells, which confirms their very good hemocompatibility. Moreover, they proved to be activators of apoptotic caspases, as they increased caspase-3, -7 and -9 levels in human breast carcinoma cells. The conducted research allows us to select-from among the anticancer active drug candidates-compounds that are safe for developing zebrafish and red blood cells, suitable for further in vivo pharmacological tests.
Collapse
|
55
|
Jiang J, Wang L, Zhang C, Zhao X. Health risks of sulfentrazone exposure during zebrafish embryo-larvae development at environmental concentration. CHEMOSPHERE 2022; 288:132632. [PMID: 34687687 DOI: 10.1016/j.chemosphere.2021.132632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Knowledge about the negative effects and mechanism of sulfentrazone (SUL) on aquatic early life stages is still limited. Here we investigated the lethal and sub-lethal effects of SUL during zebrafish embryo-larvae development. Results demonstrated that the 96 h and 120 h-LC50 of SUL to embryonic zebrafish was 2.02 mg/L, and the 30 d-LC50 was 0.899 mg/L after embryos exposed to SUL for 30 d. High concentrations of SUL delayed yolk sac absorption, disordered the hatching and heart rate during zebrafish embryonic stage, while 0.0100-0.100 mg/L SUL had no phenotypic changes on embryonic development, but decreased the body weight of larvae after 30 d exposure. RNA-seq identified 321, 394 and 727 differentially expressed genes in larvae after embryos exposed to 0.0100 mg/L, 0.0400 mg/L and 0.400 mg/L SUL for 30 d, found that the transcriptional profiles involved in heart development and endocrine disruption were simultaneously influenced by different concentrations of SUL, such as adrenergic signaling in cardiomyocytes, cardiac muscle contraction, cell adhesion molecules and steroid biosynthesis. Biochemical analysis showed that SUL increased the levels of E2, T3 and TSH, induced the activities of mitochondrial complex IV, cytochrome c oxidase, Ca2+-ATPase, total Na+K+-ATPase and Ca2+Mg2+-ATPase, and decreased ATP formation after embryos exposed to SUL for 5 d and 30 d. Further comprehensive analysis demonstrated that SUL caused more significantly alteration on the transcript, level or activity of the key elements involved in heart development and endocrine disruption after 30 d exposure, indicated long-term SUL exposure might cause more negative effects on zebrafish at doses below the presumed no-observed-adverse-effect level during early life development. The results inferred the environmental concentration of SUL might cause potential cardiac and endocrine health risk in zebrafish later life stages, also facilitated a better understanding of the sub-lethal effects and molecular mechanism of SUL on aquatic organism.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Luyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
56
|
Li C, Yuan S, Zhou Y, Li X, Duan L, Huang L, Zhou X, Ma Y, Pang S. Microplastics reduce the bioaccumulation and oxidative stress damage of triazole fungicides in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151475. [PMID: 34742804 DOI: 10.1016/j.scitotenv.2021.151475] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and pesticides are typical representatives of harmful chemicals in polluted waters. It is understood that the combined toxicity may differ from that of a single toxic substance. Although their combined toxicities on aquatic organisms have practical significance and research value, they have received little attention due to their complicated interaction, and the mechanism has rarely been reported. In this paper, we designed a study to investigate the single and combined effects of polystyrene microplastics (PS-MPs) and the triazole fungicide difenoconazole on zebrafish, and to explore the mechanism of this effect. The results showed that PS-MPs could reduce the bioaccumulation of difenoconazole in zebrafish to a certain extent and alleviate the oxidative stress damage of difenoconazole in the zebrafish liver. The transcriptome and qRT-PCR data revealed the association of multiple pathways in the difenoconazole response, while the presence of PS-MPs ameliorated this effect in gene expression changes. Due to the properties of PS-MPs and the interaction between them, the toxic effect of difenoconazole when combined with PS-MPs is more prominent. These results provide a novel aspect to understand the environmental behavior of MPs and to evaluate the combined effect of MPs and pesticides on aquatic food.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China; Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shankui Yuan
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100125, China
| | - Yanming Zhou
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100125, China
| | - Xuefeng Li
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Liusheng Duan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lan Huang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100125, China
| | - Xiaojin Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Sen Pang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
57
|
Shen C, Pan X, Wu X, Xu J, Dong F, Zheng Y. Ecological risk assessment for difenoconazole in aquatic ecosystems using a web-based interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) model. CHEMOSPHERE 2022; 289:133236. [PMID: 34896421 DOI: 10.1016/j.chemosphere.2021.133236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Difenoconazole is a typical triazole fungicide that can inhibit demethylation during ergosterol synthesis. Due to its wide use, difenoconazole is frequently detected in surface water, paddy water, agricultural water, and other aquatic environments. Presently, an assessment of the ecological risk posed by difenoconazole in aquatic ecosystems is lacking. Here, a web-based interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) model was first applied to assess the ecological risk of difenoconazole in aquatic environments. Meanwhile, maximum acceptable concentration (MAC), maximum risk-free concentration (MRFC), and risk quotient (RQ) values were used to evaluate the potential risk of difenoconazole to aquatic organisms. Our results showed that an aquatic MAC value of 0.31 μg/L was acceptable for difenoconazole in aquatic environments. Further, the detected concentration of difenoconazole was lower than the MRFC value of 0.09 μg/L indicating no risk to aquatic organisms. Assessment data suggested that difenoconazole exhibited potential risks to eight studied aquatic ecosystems (including surface water, paddy water, and agricultural water) in different countries (RQ > 1), indicating that difenoconazole overuse could cause adverse effects to aquatic organisms in these aquatic ecosystems. Thus, restricted use and rational use of difenoconazole are recommended.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| |
Collapse
|
58
|
Zhang H, Yang G, Bao Z, Jin Y, Wang J, Chen J, Qian M. Stereoselective effects of fungicide difenoconazole and its four stereoisomers on gut barrier, microbiota, and glucolipid metabolism in male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150454. [PMID: 34818760 DOI: 10.1016/j.scitotenv.2021.150454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole is a commonly used triazole fungicide that consists of four stereoisomers [(2S,4S)-, (2S,4R)-, (2R,4R)-, and (2R,4S)-isomers] with different bioactivity. For example, the toxicity of the (2R,4S)-isomer to fish is approximately seven times higher than that of the (2S,4S)-isomer. However, the stereoselective toxic effects of difenoconazole stereoisomers on mammals have received little attention. In the present study, adult male mice were orally treated with a mixture of the four stereoisomers or each stereoisomer individually (0, 30, or 100 mg/kg/d) by gavage for 28 days. Pathological staining of the liver sections showed that the (2R,4R)-isomer caused lipid droplet accumulation. The mixture or each individual stereoisomers decreased the levels of amino acids and acyl-carnitine in serum. Moreover, the (2S,4R)-, (2R,4R)-, and (2R,4S)-isomers affected intestinal permeability, causing decreases in mucus secretion and tight junction protein expression in colon. Analysis of the gut microbiota composition showed that the stereoisomers caused decreases of OTU numbers and observed species at different levels. Interestingly, difenoconazole and its four stereoisomers reduced the relative abundance of Bacteroidetes at the phylum level and some short-chain fatty acid (SCFA)-producing bacteria. Taking the findings together, 2R-difenoconazole with strong bioactivity against pathogenic fungi also had significant effects in mammals, disrupting hepatic lipid metabolism, intestinal permeability, and gut microbiota. It is concluded that the health risks of the four difenoconazole stereoisomers to mammals should not be overlooked.
Collapse
Affiliation(s)
- Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianmei Wang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Chen
- Zhejiang Medicine Co., Ltd., Shaoxing 312366, China
| | - Mingrong Qian
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
59
|
Wang Y, Chen C, Yang G, Wang X, Wang Q, Weng H, Zhang Z, Qian Y. Combined lethal toxicity, biochemical responses, and gene expression variations induced by tebuconazole, bifenthrin and their mixture in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113116. [PMID: 34979316 DOI: 10.1016/j.ecoenv.2021.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Pesticides commonly occur as mixtures in an aqueous environment, causing deleterious effects on human health and the environment. However, the mechanism underlying the combined effects on aqueous organisms remains largely unknown, especially at low concentrations. In the current study, we inspected the interactive toxicity of tebuconazole (TEB), a triazole fungicide, and bifenthrin (BIF), a pyrethroid insecticide, to zebrafish (Danio rerio) using various toxicological assays. Our data revealed that the 96 h-LC50 (lethal concentration 50) values of BIF to fish at different life periods (embryonic, larval, juvenile, and adult periods) ranged from 0.013 (0.011-0.016) to 0.41 (0.35-0.48) mg a.i. L-1, which were lower than that of TEB ranging from 1.1 (0.88-1.3) to 4.8 (4.1-5.7) mg a.i. L-1. Combination of TEB and BIF induced synergetic acute toxicity to embryonic fish. Activities of T-SOD, POD, and GST were distinctly altered in most individual and joint administrations. Expressions of 16 genes associated with oxidative stress, cellular apoptosis, immune system, and endocrine system at the mRNA level were evaluated, and the information revealed that embryonic zebrafish were impacted by both individual compounds and their combinations. Six genes (cas9, P53, gr, TRα, IL-8, and cxcl-clc) exhibited greater changes when exposed to pesticide mixtures. Therefore, the joint effects induced by the pesticides at low concentrations should be considered in the risk assessment of mixtures and regulated as priorities for mixture risk management in the aqueous ecosystem. More research is needed to identify the threshold concentrations of the realistic pesticide mixtures above which synergistic interactions occur.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chen Chen
- School of Public Health, Shandong University, Jinan 250012, Shandong, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Zhiheng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
60
|
Zhang H, Qian M, Wang J, Yang G, Weng Y, Jin C, Li Y, Jin Y. Insights into the effects of difenoconazole on the livers in male mice at the biochemical and transcriptomic levels. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126933. [PMID: 34425431 DOI: 10.1016/j.jhazmat.2021.126933] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole (DFZ) is a broad-spectrum triazole fungicide, that is extensively used in agriculture. Studies have shown that residues of DFZ and other fungicides have toxic effects on nontarget organisms. However, its hepatoxicity in mammals remains unclear. Here, we characterized the toxic hepatic effects in male C57BL/6 mice exposed to 30 and 100 mg/kg bw DFZ for 14 and 56 days, respectively. The results revealed that DFZ could increase the relative liver weights, however, the relative fat and spleen weights decreased. More importantly, DFZ exposure changed the hepatic morphology and induced hepatic oxidative stress. Gene expression analysis suggested that DFZ could induce a glycolipid metabolism disorder. Moreover, hepatic transcriptomic analysis revealed the effects of DFZ exposure on the transcriptional levels of various genes, and enrichment analysis of differentially expressed genes (DEGs) showed that energy metabolism and immune-associated pathways were mainly affected. We validated the results from transcriptomic analysis and found that some key genes related to energy metabolism were affected. In addition, flow cytometry showed that the CD3+/CD4+ and CD3+ /CD8+ levels declined in the spleen of mice. Taken together, these findings combined with transcriptome analysis highlighted that DFZ caused different endpoints in the liver, which could provide more evidence for investigating the toxic effects of DFZ in mammals.
Collapse
Affiliation(s)
- Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingrong Qian
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianmei Wang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinghong Li
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
61
|
Li Y, Liang H, Ren B, Zhao T, Chen H, Zhao Y, Liang H. Enantioselective toxic effects of mefentrifluconazole in the liver of adult zebrafish (Danio rerio) based on transcription level and metabolomic profile. Toxicology 2022; 467:153095. [PMID: 34999168 DOI: 10.1016/j.tox.2022.153095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
Abstract
Mefentrifluconazole, a new type of chiral triazole fungicide, is widely applied to control a variety of fungal diseases in crops. However, the toxicological effects of mefentrifluconazole on aquatic organisms are unknown, especially at the enantiomer level. In the present study, zebrafish were selected as a typical model for mefentrifluconazole enantiomer exposure. Metabolomic and transcription analyses were performed with 0.01 and 0.10 mg/L mefentrifluconazole and its enantiomers (i.e., rac-mfz/(-)-mfz/(+)-mfz) at 28 days. The 1H nuclear magnetic resonance (NMR)-based metabolomics analysis showed that 9, 10 and 4 metabolites were changed significantly in the rac-mfz, (+)-mfz and (-)-mfz treatment groups compared with the control group, respectively. The differential metabolites were related to energy metabolism, lipid metabolism and amino acid metabolism. The qRT-PCR analysis revealed that the expression of lipid metabolism-, apoptosis- and CYP-related genes in the livers of female zebrafish in rac-mfz and (+)-mfz was 1.61-108.92 times and 2.37-551.34 times higher than that in (-)-mfz, respectively. The results above indicate that exposure to mefentrifluconazole induced enantioselective liver toxicity in zebrafish. Our study underlined the importance of distinguishing different enantiomers, which will contribute to environmental protection.
Collapse
Affiliation(s)
- Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
62
|
Chen X, Zheng J, Teng M, Zhang J, Qian L, Duan M, Cheng Y, Zhao W, Wang Z, Wang C. Tralopyril affects locomotor activity of zebrafish (Danio rerio) by impairing tail muscle tissue, the nervous system, and energy metabolism. CHEMOSPHERE 2022; 286:131866. [PMID: 34391112 DOI: 10.1016/j.chemosphere.2021.131866] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Tralopyril (TP), an antifouling biocide, is widely used to prevent heavy biofouling, and can have potential risks to aquatic organisms. In this study, the effect of TP on locomotor activity and related mechanisms were evaluated in zebrafish (Danio rerio) larvae. TP significantly reduced locomotor activity after 168 -h exposure. Adverse modifications in tail muscle tissue, the nervous system, and energy metabolism were also observed in larvae. TP caused thinning of the muscle bundle in the tail of larvae. In conjunction with the metabolomics results, changes in dopamine (DA) and acetylcholine (ACh), acetylcholinesterase (AChE) activity, and the expression of genes involved in neurodevelopment, indicate that TP may disrupt the nervous system in zebrafish larvae. The change in metabolites (e.g., glucose 6-phosphate, cis-Aconitic acid, acetoacetyl-CoA, coenzyme-A and 3-Oxohexanoyl-CoA) involved in carbohydrate and lipid metabolism indicates that TP may disrupt energy metabolism. TP exposure may inhibit the locomotor activity of zebrafish larvae by impairing tail muscle tissue, the nervous system, and energy metabolism.
Collapse
Affiliation(s)
- Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhao Wang
- The Institute of Plant Production, Jilin Academy of Agriculture Science, Changchun, 130033, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
63
|
Wang B, Chen T, Wang A, Fang J, Wang J, Yao W, Wu Y. Anisodamine affects the pigmentation, mineral density, craniofacial area, and eye development in zebrafish embryos. J Appl Toxicol 2021; 42:1067-1077. [PMID: 34967033 DOI: 10.1002/jat.4278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022]
Abstract
Anisodamine is one of the major components of the tropine alkaloid family and is widely used in the treatment of pain, motion sickness, pupil dilatation, and detoxification of organophosphorus poisoning. As a muscarinic receptor antagonist, the low toxicity and moderate drug effect of anisodamine often result in high doses for clinical use, making it important to fully investigate its toxicity. In this study, zebrafish embryos were exposed to 1.3-, 2.6-, and 5.2-mM anisodamine for 7 days to study the toxic effects of drug exposure on pigmentation, mineral density, craniofacial area, and eye development. The results showed that exposure to anisodamine at 1.3 mM resulted in cranial malformations and abnormal pigmentation in zebrafish embryos; 2.6- and 5.2-mM anisodamine resulted in significant eye development defects and reduced bone density in zebrafish embryos. The associated toxicities were correlated with functional development of neural crest cells through gene expression (col1a2, ddb1, dicer1, mab21l1, mab21l2, sox10, tyrp1b, and mitfa) in the dose of 5.2-mM exposed group. In conclusion, this study provides new evidence of the developmental toxicity of high doses of anisodamine in aqueous solutions to organisms and provides a warning for the safe use of this drug.
Collapse
Affiliation(s)
- Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiakai Fang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China.,Thermo Fisher Scientific China Co Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
64
|
Sandoval-Gío JJ, Noreña-Barroso E, Escalante-Herrera K, Rodríguez-Fuentes G. Effect of Benzophenone-3 to Acetylcholinesterase and Antioxidant System in Zebrafish (Danio rerio) Embryos. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:814-819. [PMID: 34129062 DOI: 10.1007/s00128-021-03277-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Benzophenone-3 (BP-3) is one of the most used UV filters. The present study aimed to evaluate the toxic effects of BP-3 during embryo stages of zebrafish four hours post-fertilization (4hpf). Embryos were exposed to 0, 1, and 10 µg L-1 of BP-3 for 72 h. We investigated biochemical and molecular biomarkers of neurotoxicity (AChE) and the antioxidant system (gene expression of catalase, CAT, superoxide dismutase, SOD, glutathione peroxidase, GPX, the concentration of total glutathione, GSH, and lipid hydroperoxides, LPO). Results indicated that the acute exposure to BP-3 in zebrafish embryos did not show significant differences in survival, hatching rate, or antioxidant system biomarkers. In contrast, there were significant differences associated with AChE gene expression and activity.
Collapse
Affiliation(s)
- Juan José Sandoval-Gío
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Sisal, Sisal, YUC, Mexico
- Tecnológico Nacional de México/Instituto Tecnológico de Tizimín, Tizimín, YUC, Mexico
| | - Elsa Noreña-Barroso
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Sisal, Sisal, YUC, Mexico
| | - Karla Escalante-Herrera
- Unidad Multidisciplinaria de Docencia e Investigación Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México. Sisal, Sisal, YUC, Mexico
| | - Gabriela Rodríguez-Fuentes
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Sisal, Sisal, YUC, Mexico.
| |
Collapse
|
65
|
Wang X, Ni H, Xu W, Wu B, Xie T, Zhang C, Cheng J, Li Z, Tao L, Zhang Y. Difenoconazole induces oxidative DNA damage and mitochondria mediated apoptosis in SH-SY5Y cells. CHEMOSPHERE 2021; 283:131160. [PMID: 34139443 DOI: 10.1016/j.chemosphere.2021.131160] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Difenoconazole is one of the most typical triazole fungicides. Difenoconazole is widely used in the field of agricultural production, and its health and safety problems need to be further studied. The main purpose of this paper is to verify the neurotoxicity of Difenoconazole at the cellular level. In this study, SH-SY5Y cell line of human neuroblastoma was used to evaluate its potentially toxic effects and molecular mechanism in vitro. The research indicated that Difenoconazole could reduce cell viability and inhibit cell proliferation, induce DNA damage and accelerate programmed cell death. Further studies showed that Difenoconazole induced DNA double-strand breaks, intracellular generation of ROS, cleaved PARP, mitochondrial membrane potential collapse, induced Cyt c release, and Bax/Bcl-2 ratio increase in SH-SY5Y cells. In conclusion, the cytotoxicity of Difenoconazole revealed its toxic effect on SH-SY5Y cells, and the IC50 value was 55.41 μM after 24 h exposure. Meanwhile, the genetic toxicity of Difenoconazole has revealed that it can induce DNA damage and apoptosis of SH-SY5Y cells. Through this study, the toxic effects of Difenoconazole on SH-SY5Y cells are further understood, which provides a more scientific basis for its safe use and risk control.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongfei Ni
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bing Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Te Xie
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
66
|
Chen X, Zheng J, Teng M, Zhang J, Qian L, Duan M, Wang Z, Wang C. Environmentally relevant concentrations of tralopyril affect carbohydrate metabolism and lipid metabolism of zebrafish (Danio rerio) by disrupting mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112615. [PMID: 34385064 DOI: 10.1016/j.ecoenv.2021.112615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Tralopyril (TP), an antifouling biocide, is widely used to prevent heavy biofouling, and can have potential risks to aquatic organisms. However, there is little information available on the toxicity of tralopyril to aquatic organisms. In this study, the effect of TP on carbohydrate and lipid metabolism, and related mechanisms were evaluated in zebrafish (Danio rerio) larvae. Adverse modifications in carbohydrate metabolism were observed in larvae: hexokinase (HK) activity, succinate dehydrogenase (SDH) activity, and adenosine triphosphate (ATP) content were significantly decreased; and transcript expression of genes (GK, HK1, and PCK1) was also significantly changed. Changes of TG content, FAS activity and transcript expression of genes (ACO, ehhadh, and fas) indicate that TP disrupt lipid metabolism in zebrafish larvae. The change in expression of genes (ndufs4, Sdhα, and uqcrc2) involved in the mitochondrial respiratory complexes, and genes (polg1 and tk2) involved in the mitochondrial DNA replication and transcription indicates that these adverse effects on carbohydrate and lipid metabolism are caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Wang
- The Institute of Plant Production, Jilin Academy of Agriculture Science, Changchun 130033, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
67
|
Yang Y, Chang J, Wang D, Ma H, Li Y, Zheng Y. Thifluzamide exposure induced neuro-endocrine disrupting effects in zebrafish (Danio rerio). Arch Toxicol 2021; 95:3777-3786. [PMID: 34635929 DOI: 10.1007/s00204-021-03158-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Thifluzamide is widely used fungicide and frequently detected in aquatic system. In this study, the toxicity of fungicide thifluzamide to non-targeted aquatic organisms was investigated for neuroendocrine disruption potentials. Here, zebrafish embryos were exposed to a series of concentrations of thifluzamide for 6 days. The results showed that both the development of embryos/larvae and the behavior of hatched larvae were significantly affected by thifluzamide. Importantly, the decreased activity of acetylcholinesterase (AchE) and the increased contents of neurotransmitters such as serotonin (5-HT) and norepinephrine (NE), along with transcriptional changes of nervous system related genes were observed following 4 days exposure to thifluzamide. Besides, the decreased contents of triiodothyronine (T3) and thyroxine (T4) in whole body, as well as significant expression alteration in hypothalamic-pituitary-thyroid (HPT) axis associated genes were discovered in zebrafish embryos after 4 days of exposure to thifluzamide. Our results clearly demonstrated that zebrafish embryos exposed to thifluzamide could disrupt neuroendocrine, compromise behavior and induce developmental abnormality, suggesting impact of this fungicide on developmental programming in zebrafish.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jinhe Chang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Donghui Wang
- The State Key Laboratory of Protein and Plant Gene Research, National Teaching Center for Experimental Biology, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hao Ma
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
68
|
Liu S, Lai H, Wang Q, Martínez R, Zhang M, Liu Y, Huang J, Deng M, Tu W. Immunotoxicity of F53B, an alternative to PFOS, on zebrafish (Danio rerio) at different early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148165. [PMID: 34380241 DOI: 10.1016/j.scitotenv.2021.148165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
As an alternative to perfluorooctane sulfonate (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (F53B) has emerged in the Chinese market in recent years and has been frequently detected in the aquatic environment, but its ecological risk assessment is limited. In this study, zebrafish embryos and larvae were separately exposed to F53B, and their 96-h LC50 values were estimated to be 15.1 mg/L and 2.4 mg/L, respectively, suggesting that embryos were more resistant to F53B than larvae. The bioconcentration factor in larvae was basically higher than that of embryos, and the body growth of larvae was significantly affected by F53B rather than embryos, indicating that F53B may cause more severe toxicity to larvae. In addition to the excessive production of ROS and NO, the expression of many immune-related genes was increased in both embryos and larvae, but the number of dysregulated genes in larvae was more than that in embryos. Finally, the results of Point of Departure (PoD) indicated that the immunotoxicity of F53B was more sensitive to larvae than embryos at the molecular level. Our findings revealed the ecological risk of F53B by exploring the adverse effects of immunoregulation at different early life stages of zebrafish and indicated that the zebrafish larvae were more sensitive than embryos.
Collapse
Affiliation(s)
- Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Hong Lai
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Rubén Martínez
- Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Miao Zhang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jing Huang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mi Deng
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
69
|
Duan M, Zhang J, Liu J, Qian L, Chen X, Zhao F, Zhao W, Zhong Z, Yang Y, Wang C. Toxic effects of broflanilide exposure on development of zebrafish (Danio rerio) embryos and its potential cardiotoxicity mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117481. [PMID: 34126520 DOI: 10.1016/j.envpol.2021.117481] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Diamide insecticides are a threat to aquatic organisms but the toxicity of broflanilide remains largely undefined. In this study, to clarify the risk of broflanilide to aquatic organisms and explore its possible mechanism, lethal and sub-lethal exposure of zebrafish embryos were performed. The acute toxicity LC50 (50% lethal concentration) (96 h) of broflanilide to zebrafish embryos and larvae were 3.72 mg/L and 1.28 mg/L, respectively. It also caused toxic symptoms including reduced heart rate, pericardial edema, yolk sac edema and shortened larval body length at ≥ 0.2 mg/L. Understanding the cellular and molecular changes underlying developmental toxicity in early stages of zebrafish may be very important to further improvement of this study. Here, we found cell apoptosis in embryonic heart, significant up-regulation in expression of genes associated with apoptosis and increased activity of caspase-9. In particular, we detected the levels of genes and TBX5 (T-box protein 5) related to cardiac development, which were significantly increased in this study and may be contribution to the cardiotoxicity of embryos. In general, our results identified the aquatic toxicity of broflanilide to the early stage of zebrafish and provide insights into the underlying mechanism in developmental toxicity especially cardiotoxicity of embryos.
Collapse
Affiliation(s)
- Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Jia Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
70
|
Man Y, Stenrød M, Wu C, Almvik M, Holten R, Clarke JL, Yuan S, Wu X, Xu J, Dong F, Zheng Y, Liu X. Degradation of difenoconazole in water and soil: Kinetics, degradation pathways, transformation products identification and ecotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126303. [PMID: 34329017 DOI: 10.1016/j.jhazmat.2021.126303] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole is a widely used triazole fungicide that has been frequently detected in the environment, but comprehensive study about its environmental fate and toxicity of potential transformation products (TPs) is still lacking. Here, laboratory experiments were conducted to investigate the degradation kinetics, pathways, and toxicity of transformation products of difenoconazole. 12, 4 and 4 TPs generated by photolysis, hydrolysis and soil degradation were identified via UHPLC-QTOF/MS and the UNIFI software. Four intermediates TP295, TP295A, TP354A and TP387A reported for the first time were confirmed by purchase or synthesis of their standards, and they were further quantified using UHPLC-MS/MS in all tested samples. The main transformation reactions observed for difenoconazole were oxidation, dechlorination and hydroxylation in the environment. ECOSAR prediction and laboratory tests showed that the acute toxicities of four novel TPs on Brachydanio rerio, Daphnia magna and Selenastrum capricornutum are substantially lower than that of difenoconazole, while all the TPs except for TP277C were predicted chronically very toxic to fish, which may pose a potential threat to aquatic ecosystems. The results are important for elucidating the environmental fate of difenoconazole and assessing the environmental risks, and further provide guidance for scientific and reasonable use.
Collapse
Affiliation(s)
- Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marianne Stenrød
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marit Almvik
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Roger Holten
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Jihong Liu Clarke
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Shankui Yuan
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
71
|
Chen X, Zheng J, Teng M, Zhang J, Qian L, Duan M, Zhao F, Zhao W, Wang Z, Wang C. Bioaccumulation, Metabolism and the Toxic Effects of Chlorfenapyr in Zebrafish ( Danio rerio). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8110-8119. [PMID: 34270249 DOI: 10.1021/acs.jafc.1c02301] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chlorfenapyr is widely used as an insecticide/miticide. Tralopyril, the active metabolite of chlorfenapyr, is used as an antifouling biocide in antifouling systems, and negatively affects aquatic environments. However, it is unclear whether tralopyril is a metabolite of chlorfenapyr in aquatic vertebrates, and there is little data on the bioaccumulation and toxicity of chlorfenapyr to aquatic vertebrates. In this study, the bioaccumulation and elimination of chlorfenapyr in zebrafish were assessed, and tralopyril, the active metabolite of chlorfenapyr, was determined. The effects of chronic exposure to chlorfenapyr on zebrafish liver and brain oxidative damage, apoptosis, immune response, and metabolome were investigated. These results showed that chlorfenapyr has a high bioaccumulation in zebrafish, with bioaccumulation factors of 864.6 and 1321.9 after exposure to 1.0 and 10 μg/L chlorfenapyr for 21 days, respectively. Chlorfenapyr at these concentrations also rapidly accumulated in zebrafish, reaching 615.5 and 10336 μg/kg on the second and third days of exposure, respectively. Chlorfenapyr was degraded to tralopyril in zebrafish; therefore, both chlorfenapyr and tralopyril should be considered when evaluating the risk of chlorfenapyr to aquatic organisms. In addition, chronic exposure caused oxidative damage, apoptosis, and immune disorders in zebrafish liver. Chronic exposure also altered the levels of endogenous metabolites in liver and brain. After 9 days of depuration, some indicators of oxidative damage, apoptosis, and immunity returned to normal levels, but the concentration of endogenous metabolites in zebrafish liver was still altered. Overall, these results provide useful information for evaluating the toxicity and environmental fate of chlorfenapyr in aquatic vertebrates.
Collapse
Affiliation(s)
- Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Wang
- The Institute of Plant Production, Jilin Academy of Agriculture Science, Changchun 130033, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
72
|
Weng Y, Huang Z, Wu A, Yu Q, Lu H, Lou Z, Lu L, Bao Z, Jin Y. Embryonic toxicity of epoxiconazole exposure to the early life stage of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146407. [PMID: 34030390 DOI: 10.1016/j.scitotenv.2021.146407] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Epoxiconazole (EPX), as a broad-spectrum triazole fungicide, is widely used in agriculture to resist pests and diseases, while it may have potential toxicity to non-target organisms. In the present study, early developmental stage zebrafish were used as the subject organisms to assess the toxicity of EPX, and the possible mechanism of toxicity was also discussed by biochemical and transcriptomic analysis. Through embryo toxicity test, we had made it clear that the 96 h LC50 of embryo was 7.204 mg/L, and acute exposure to EPX effected hatching rate, heartbeats, body length and even morphological defects. Then, by being exposed to EPX for 7 days at concentrations of 175 (1/40 LC50), 350 (1/20 LC50) and 700 (1/10 LC50), biochemical parameters were affected, mainly manifested as increase of the triglyceride (TG) level and decrease of glucose content. Correspondingly, the transcription of genes related of glucose metabolism, lipid metabolism and cholesterol metabolism were also affected significantly in larval zebrafish. Moreover, some pathways, including lipid metabolism, glucose metabolism and amino acid metabolism were affected through transcriptome sequencing analysis in the larval zebrafish. Further data analysis based on the sequencing, EPX exposure also affected the expression of genes related to cell apoptosis. We further conformed that the bright fluorescence on the liver and bright spots near the liver by acridine orange staining. In addition, the mRNA levels of apoptosis related genes were also significantly affected in the EPX exposed larval zebrafish. Taken together, the work could provide an insight into toxic effects of EPX on the zebrafish larvae at embryo toxicity and transcriptional levels, providing some evidences for the toxic effects of triazole fungicides on non-target organisms.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuizui Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Anyi Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qianxuan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huahui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ze Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Longxi Lu
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang 310051, China.
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
73
|
Jiménez K, Solano K, Scholz C, Redondo-López S, Mena F. Early Toxic Effects in a Central American Native Fish (Parachromis dovii) Exposed to Chlorpyrifos and Difenoconazole. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1940-1949. [PMID: 33749893 DOI: 10.1002/etc.5048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
In Costa Rica, agriculture is one of the most important economic activities. Chlorpyrifos and difenoconazole have been identified as agrochemicals widely used in banana and pineapple crops in the Caribbean area of the country and are constantly recorded in aquatic ecosystems. The toxicity of these pesticides in Parachromis dovii was studied. Median lethal concentrations (LC50s) for each substance were obtained from 96-h acute tests. Then, fish were exposed to sublethal concentrations of both substances (10% of LC50), individually and in mixture, to evaluate biomarker responses. Ethoxyresorufin-O-deethylase (EROD), catalase, and glutathione S-transferase activities as well as lipid peroxidation were measured in liver and gill tissues as markers of biotransformation and oxidative stress processes. Cholinesterase activity in brain and muscle tissue was also quantified as a biomarker of toxicity. The LC50s were 55.34 μg/L (95% confidence interval [CI] 51.06-59.98) for chlorpyrifos and 3250 μg/L (95% CI 2770-3810) for difenoconazole. Regarding the biomarkers, a significant inhibition of brain and muscle cholinesterase activity was recorded in fish exposed to 5.50 μg/L of chlorpyrifos. This activity was not affected when fish were exposed to the mixture of chlorpyrifos with difenoconazole. Significant changes in lactate dehydrogenase activity were observed in fish exposed to 325 μg/L of difenoconazole, whereas fish exposed to the mixture showed a significant increase in EROD activity in the liver. These results suggest harmful effects of chlorpyrifos insecticide at environmentally relevant concentrations. There is also evidence for an interaction of the 2 substances that affects the biotransformation metabolism at sublethal levels of exposure. Environ Toxicol Chem 2021;40:1940-1949. © 2021 SETAC.
Collapse
Affiliation(s)
- Katherine Jiménez
- Master's Program in Tropical Ecotoxicology, Central American Institute for Studies on Toxic Substances/Instituto Regional de Estudios en Sustancias Tóxicas, Universidad Nacional, Heredia, Costa Rica
| | - Karla Solano
- Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| | - Carola Scholz
- School of Biological Sciences, Universidad Nacional, Heredia, Costa Rica
| | | | - Freylan Mena
- Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
74
|
Zhang Y, Shah P, Wu F, Liu P, You J, Goss G. Potentiation of lethal and sub-lethal effects of benzophenone and oxybenzone by UV light in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105835. [PMID: 33887502 DOI: 10.1016/j.aquatox.2021.105835] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/14/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Benzophenones are widely used as organic UV filters in many personal care products, especially sunscreen, to protect humans from UV radiation. The increasing use of benzophenone class UV filters has raised concerns about the potential effects on the aquatic environment. These organic UV filters are designed to absorb UV light. However, to date, studies have not considered the potential of UV light to potentiate the toxicity of benzophenones in aquatic organisms. In this study using zebrafish embryos, we assessed the median lethal concentration (LC50) and sub-lethal effects of benzophenone and oxybenzone either under natural levels of UV light or under laboratory light conditions. The LC50 value in zebrafish embryos under both light conditions of oxybenzone was lower when compared to benzophenone. Interestingly, UV light significantly decreased the LC50 values (increased toxicity) of both benzophenone and oxybenzone. The presence of UV light induced a significant increase in hydroxyl radical formation and this was reflected in both increased SOD activity and lipid peroxidation in oxybenzone treated groups. Exposure to either benzophenone or oxybenzone also delayed hatching between 60 and 96 hpf when comparing to the control group while UV exposure further delayed hatching only in oxybenzone-exposed embryos. The results demonstrate the importance of involving UV light in toxicity testing for UV filters and provide much-need information on the UV-induced toxicity of benzophenone and oxybenzone under ecologically realistic conditions.
Collapse
Affiliation(s)
- Yueyang Zhang
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Prachi Shah
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Fan Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Peipei Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Greg Goss
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada; National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada; Director of Office of Environmental Nanosafety, University of Alberta, Canada.
| |
Collapse
|
75
|
Lin H, Lin F, Yuan J, Cui F, Chen J. Toxic effects and potential mechanisms of Fluxapyroxad to zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144519. [PMID: 33482547 DOI: 10.1016/j.scitotenv.2020.144519] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Fluxapyroxad is a broad-spectrum and high-efficiency succinate dehydrogenase inhibitor fungicide that can control plant fungal pathogens on many crops. However, fluxapyroxad can enter the aquatic environment when applied in the field, which has an impact on the aquatic environment. The potential threat and toxicological mechanisms of fluxapyroxad in aquatic organisms remain poorly understood. In this study, zebrafish embryos were exposed to fluxapyroxad to investigate the toxic effects and potential mechanisms of fluxapyroxad. In the acute toxicity test, the lethal sensitivity rank of the zebrafish during the three stages was larvae (0.699 mg/L) > adult fish (0.913 mg/L) > embryo (1.388 mg/L). Fluxapyroxad induced abnormal spontaneous movement, malformations and decreased heartbeat, hatching percentage, and body length of the embryos. In the sublethal toxicity test, succinate dehydrogenase activity was significantly increased in all treatment groups, while the activities of the electron transport chain complex II and ATPase were markedly inhibited in 0.347 and 0.694 mg/L fluxapyroxad groups compared to that of the control group. Exposure to fluxapyroxad resulted in significant increases in MDA production, and GPx activity was significantly reduced at 0.694 mg/L. Moreover, caspase-3 activity was significantly increased in the 0.694 mg/L group, and the expression of the genes related to growth (bmp4 and lox) was inhibited after fluxapyroxad exposure. These results indicated that oxidative stress, cell apoptosis and mitochondrial damage might be the potential mechanism underlying the toxic effects of fluxapyroxad on zebrafish embryos.
Collapse
Affiliation(s)
- Hai Lin
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Fangrui Lin
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Jing Yuan
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Feng Cui
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China.
| | - Jie Chen
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
76
|
Zhu J, Liu C, Wang J, Liang Y, Gong X, You L, Ji C, Wang SL, Wang C, Chi X. Difenoconazole induces cardiovascular toxicity through oxidative stress-mediated apoptosis in early life stages of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112227. [PMID: 33848738 DOI: 10.1016/j.ecoenv.2021.112227] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Difenoconazole (DIF), a common broad-spectrum triazole fungicide, is associated with an increased risk of cardiovascular diseases. Unfortunately, little attention has been paid to the mechanisms underlying this association. In this study, zebrafish embryos were exposed to DIF (0, 0.3, 0.6 and 1.2 mg/L) from 4 to 96 h post fertilization (hpf) and cardiovascular toxicity was evaluated. Our results showed that DIF decreased hatching rate, survival rate and heart rate, with increased malformation rate. Cardiovascular deformities are the most prominent, including pericardial edema, abnormal cardiac structure and disrupted vascular pattern in two transgenic zebrafish models (myl7:egfp and fli1:egfp). DIF exacerbated oxidative stress by via accumulation of reactive oxygen species (ROS) and inhibition of antioxidant enzyme. Cardiovascular apoptosis was triggered through increased expression of p53, bcl-2, bax and caspase 9, while DIF suppressed the transcription of key genes involved in calcium signaling and cardiac muscle contraction. These adverse outcomes were restored by the antioxidant N-acetyl-L-cysteine (NAC), indicating that oxidative stress played a crucial role in DIF-induced cardiovascular toxicity caused by apoptosis and inhibition of cardiac muscle contraction. Taken together, this study revealed the key role of oxidative stress in DIF-induced cardiovascular toxicity and provided novel insights into strategies to mitigate its toxicity.
Collapse
Affiliation(s)
- Jiansheng Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, PR China
| | - Yinyin Liang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Xing Gong
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Lianghui You
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, PR China
| | - Chenbo Ji
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, PR China
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
77
|
Wang T, Ma M, Chen C, Yang X, Qian Y. Three widely used pesticides and their mixtures induced cytotoxicity and apoptosis through the ROS-related caspase pathway in HepG2 cells. Food Chem Toxicol 2021; 152:112162. [PMID: 33813062 DOI: 10.1016/j.fct.2021.112162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/01/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Difenoconazole, cypermethrin and triazophos are widely used pesticides in agricultural production and frequently detected in foods. The aim of this study was to determine the effect of these pesticides and their mixtures on cell viability, reactive oxygen species (ROS), lactate dehydrogenase (LDH) content, apoptosis rate and DNA fragmentation and synthesis in human hepatocellular carcinoma cells (HepG2). The order of inhibitory effects for the individual pesticides was ranked as difenoconazole > cypermethrin > triazophos. The enhanced expression of caspase-3, caspase-7 and PARP activity was observed in HepG2 cells, which was 1.7, 1.3 and 1.6-fold higher than the control, respectively, along with significant protein cleavage; and induced apoptosis in a concentration-dependent manner. Further, the pesticide mixtures significantly increased ROS level (up to 1.3-fold), induced DNA fragmentation (up to 1.8-fold), inhibited DNA synthesis (up to 53%), and damaged the cells by destroying the cell membrane and producing a large amount of LDH at concentration range of 10-30 μM. Specifically, mixtures containing difenoconazole showed stronger toxicities than individual pesticides, implying higher health risks associated with mixtures. Our results show that three widely used pesticides exhibited cytotoxicity and apoptosis through the ROS-related caspase pathway, providing a basis for evaluation of health risks from pesticide mixtures via food consumption.
Collapse
Affiliation(s)
- Tiancai Wang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Mengmeng Ma
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Chen Chen
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xi Yang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Yongzhong Qian
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, People's Republic of China
| |
Collapse
|
78
|
Wang Y, Lv L, Xu C, Wang D, Yang G, Wang X, Weng H, Wang Q. Mixture toxicity of thiophanate-methyl and fenvalerate to embryonic zebrafish (Danio rerio) and its underlying mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143754. [PMID: 33302067 DOI: 10.1016/j.scitotenv.2020.143754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/08/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Though pesticide mixtures can reflect the real-life situation in the water ecosystem, the quantification of their toxicity is still not fully understood. Combined effects of thiophanate-methyl (THM) and fenvalerate (FEN) on embryonic zebrafish (Danio rerio) and underlying mechanism were conducted in this study. Results showed that the 96-h LC50 values of THM to D. rerio at different growth periods ranged from 12.1 to 26.1 mg L-1, which were lower in comparison with those of FVR ranging from 0.025 to 2.8 mg L-1. Mixture of THM and FVR exhibited a synergetic response to zebrafish embryos. Activities of Cu/Zn-SOD, POD, caspase 3 and caspase 9 were significantly different in most of single and mixture administrations compared with the control group. In addition, five genes (P53, Cu/Zn-sod, crh, ERα and IL-8) associated with oxidative stress, cellular apoptosis, immune system and endocrine system showed greater variations of expressions when administrated to pesticide mixtures compared with single chemicals. Our experimental results exhibited that mixtures of thiophanate-methyl and fenvalerate produced higher toxicity towards aqueous vertebrates than when determined singly. Collectively, upcoming environmental risk assessments established according to single administrations might not be enough to protect the water ecosystem.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
79
|
Yao X, Qiao Z, Zhang F, Liu X, Du Q, Zhang J, Li X, Jiang X. Effects of a novel fungicide benzovindiflupyr in Eisenia fetida: Evaluation through different levels of biological organization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116336. [PMID: 33370611 DOI: 10.1016/j.envpol.2020.116336] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Although benzovindiflupyr (BZF), which is a novel succinate dehydrogenase inhibitor fungicide, has considerable application potential worldwide, its extensive use is toxic to non-targeted soil organisms. Therefore, this study aimed to evaluate the acute and subchronic toxicity of BZF to earthworms (Eisenia fetida). The acute toxicity of BZF to adult and larval earthworms was measured, as indicated by the following LC50 values obtained after 14 days of exposure: 416 mg/kg for adult earthworms and 341 mg/kg for juveniles. Subchronic toxicity tests were conducted using only adult earthworms. The earthworms' weight gain was slower on days 14 and 28 after commencing the BZF T100 treatment (50 mg/kg of soil). Following 14 days of BZF exposure, enzymes and gene expressions associated with the mitochondrial respiratory chain and energy metabolism were activated to some extent, and the reactive oxygen species level and malondialdehyde content also increased. Antioxidant and detoxifying enzymes and metallothionein gene, Heat shock protein 70 gene associated with resistance to oxidative damage were also activated to varying degrees. Increased BZF concentrations corresponded to increased genotoxicity. Integrated biological response (IBR) values were calculated at the biochemical and molecular levels to show increased toxicity with increased BZF concentration. Although a series of biomarkers changes occurred after initiating BZF treatment, these changes were all likely to have been resisted by the earthworms' own antioxidant defense system and only showed phenotypic (weight-related) changes with treatments of 50 mg/kg. In conclusion, reasonable levels of BZF application may have little impact on earthworms. Our findings provide insights on the toxic effects of BZF on earthworms and may prove useful for risk assessments relating to BZF's impacts on soil ecosystems.
Collapse
Affiliation(s)
- Xiangfeng Yao
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Zhihua Qiao
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Fengwen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Xiang Liu
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Qingzhi Du
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Jianye Zhang
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Xiangdong Li
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
80
|
Qian L, Qi S, Wang Z, Magnuson JT, Volz DC, Schlenk D, Jiang J, Wang C. Environmentally relevant concentrations of boscalid exposure affects the neurobehavioral response of zebrafish by disrupting visual and nervous systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124083. [PMID: 33011634 DOI: 10.1016/j.jhazmat.2020.124083] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Boscalid is a persistent fungicide that is frequently detected in surface waters and may be neurotoxic to aquatic organisms. Herein, we evaluated the effects of environmentally relevant boscalid concentrations to zebrafish to explore its potentially neurotoxic mechanisms of effect. Behavioral responses (swimming, phototaxis, and predation), histopathology, transcriptomics, biochemical parameter analysis and gene expression of larval and adult zebrafish following boscalid treatment were assessed. We found that boscalid significantly inhibited the locomotor ability and phototactic response of larvae after an 8-d exposure, and altered the locomotor activity, predation trajectories and ability in adults after a 21-d exposure. It was noted that predation rates of zebrafish were significantly decreased by 30% and 100% after exposure to 0.1 and 1.0 mg/L boscalid, respectively. Adverse alterations in the cell differentiation of eyes and brain injury were also observed in both larvae and adults following boscalid exposure. The expression of genes related to neurodevelopment, neurotransmission, eye development, and visual function, in conjunction with RNA-Seq results, indicated that boscalid may impair visual phototransduction and nervous system processes in larval zebrafish. Conclusively, boscalid exposure may affect the neurobehavioral response of zebrafish by impairing proper visual and nervous system function.
Collapse
Affiliation(s)
- Le Qian
- College of Sciences, China Agricultural University, Beijing, China
| | - Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhao Wang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, China
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jiazhen Jiang
- College of Sciences, China Agricultural University, Beijing, China.
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
81
|
Chai T, Cui F, Di S, Wu S, Zhang Y, Wang X. New insights into cardiotoxicity induced by chiral fluoxetine at environmental-level: Enantioselective arrhythmia in developmental zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116182. [PMID: 33352483 DOI: 10.1016/j.envpol.2020.116182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Fluoxetine is frequently detected in aquatic environment, and chronic FLX exposure exhibits adverse effects on aquatic communities. Its chirality makes the adverse effects more complicated. This study aimed at the enantioselective cardiotoxicity in developmental zebrafish induced by racemic (rac-)/S-/R-fluoxetine. The accumulation profiles demonstrated that biotransformation of fluoxetine to norfluoxetine occurred during rac-fluoxetine exposure, with a higher enrichment of S-norfluoxetine than R-norfluoxetine. Heart malformations including pericardial edema, circulation abnormalities, and thrombosis were observed, and enantioselective changes also occurred. According to H&E staining and Masson's trichrome staining, the loose severity of cardiac structure and cardiac fibrosis in rac-norfluoxetine treated group was worse than that in fluoxetine treated groups. Results of toxicity-associated parameters in our homochiral enantiomers' exposure also indicated that the toxicity induced by S-fluoxetine was more severe than R-fluoxetine. Enantioselective arrhythmia in developmental zebrafish after chiral fluoxetine exposure could be caused by myocardial fibrosis, abnormal developmental processes, and the biotransformation of fluoxetine to norfluoxetine could make that worse. Our findings can be used to assess the environmental risk of the two enantiomers of fluoxetine that induce cardiotoxicity in aquatic organisms.
Collapse
Affiliation(s)
- Tingting Chai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Zhejiang, 311300, PR China
| | - Feng Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Collaborative Innovation Center of Green Pesticide, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yiming Zhang
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Zhejiang, 311300, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
82
|
Yang G, Lv L, Di S, Li X, Weng H, Wang X, Wang Y. Combined toxic impacts of thiamethoxam and four pesticides on the rare minnow (Gobiocypris rarus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5407-5416. [PMID: 32965645 DOI: 10.1007/s11356-020-10883-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
To examine pesticide mixture toxicity to aqueous organisms, we assessed the single and combined toxicities of thiamethoxam and other four pesticides (chlorpyrifos, beta-cypermethrin, tetraconazole, and azoxystrobin) to the rare minnow (Gobiocypris rarus). Data from 96-h semi-static toxicity assays of various developmental phases (embryonic, larval, juvenile, and adult phases) showed that beta-cypermethrin, chlorpyrifos, and azoxystrobin had the highest toxicities to G. rarus, and their LC50 values ranged from 0.0031 to 0.86 mg a.i. L-1, from 0.016 to 6.38 mg a.i. L-1, and from 0.39 to 1.08 mg a.i. L-1, respectively. Tetraconazole displayed a comparatively high toxicity, and its LC50 values ranged from 3.48 to 16.73 mg a.i. L-1. By contrast, thiamethoxam exhibited the lowest toxic effect with LC50 values ranging from 37.85 to 351.9 mg a.i. L-1. Rare minnow larvae were more sensitive than embryos to all the pesticides tested. Our data showed that a pesticide mixture of thiamethoxam-tetraconazole elicited synergetic toxicity to G. rarus. Moreover, pesticide mixtures containing beta-cypermethrin in combination with chlorpyrifos or tetraconazole also had synergetic toxicities to fish. The majority of pesticides are presumed to have additive toxicity, while our data emphasized that the concurrent existence of some chemicals in the aqueous circumstance could cause synergetic toxic effect, leading to severe loss to the aqueous environments in comparison with their single toxicities. Thence, the synergetic impacts of chemical mixtures should be considered when assessing the ecological risk of chemicals.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Xinfang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.
| |
Collapse
|
83
|
Lee JY, Park H, Lim W, Song G. Benfuresate induces developmental toxicity in zebrafish larvae by generating apoptosis and pathological modifications. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104751. [PMID: 33518044 DOI: 10.1016/j.pestbp.2020.104751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 05/21/2023]
Abstract
Benfuresate (2,3-dihydro-3,3-dimethylbenzofuran-5-yl ethanesulphonate) is a widely used pre-emergence herbicide of the benzofurane group, which works through the inhibition of lipid synthesis. During embryonic development of zebrafish, benfuresate retards growth while causing internal changes in the body, including alteration of the expression of cell cycle regulators, induction of apoptosis, and suppression of the circulatory system. Acute toxicity towards benfuresate is seen across the range of 5-15 μM in a dose-dependent manner and contributes to pathological conditions and subsequent morphological changes. For embryos 120 h post fertilization (hpf), benfuresate exposure results in an array of malformations involving eye or otolith development, pericardial edema, yolk sac edema, and abnormal curvature of the spine. Mechanistically, benfuresate exposure altered the transcription levels of the proliferative pathway genes ccnd1, ccne1, cdk2, and cdk6, all of which sensitize cells to apoptosis. Benfuresate exposure also affected vascular formation, including the formation of various vessels (DA, SIVs, CA, CV) whose functions in lymphatic-blood circulation were disrupted following decreased vegfaa, vegfc, flt1, flt4, and kdrl expression. These findings provide evidence of embryo-larval toxicity due to benfuresate and highlight the perils of herbicide exposure for non-target organisms far removed from application sites, especially in aquatic environments.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
84
|
Erhunmwunse NO, Tongo I, Ezemonye LI. Acute effects of acetaminophen on the developmental, swimming performance and cardiovascular activities of the African catfish embryos/larvae (Clarias gariepinus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111482. [PMID: 33120276 DOI: 10.1016/j.ecoenv.2020.111482] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Acetaminophen is a widely used analgesic that has been detected in many water bodies with few reports concerning its potential toxicity to fish. This study sought to assess the developmental, swimming performance and cardiovascular activities of embryo/larvae catfish (Clarias gariepinus) exposed to acetaminophen. The Organization for Economic Development (OECD) Fish Embryo Acute Toxicity Test (OECD 236) was employed. Fertilized embryo were exposed to different concentrations of acetaminophen (0, 0.5, 1, 10 µg/L) for 96 h. Hatching rates of the embryo were observed to decrease with increasing concentrations of acetaminophen. Fish embryo exposed to acetaminophen displayed varying levels of teratogenic effects at different levels of development in a dose-dependent manner. The results also showed a significant (p < 0.05) dose-dependent increase in swimming speed and movement patterns in fish larvae exposed to acetaminophen, with distance travelled in larvae exposed to the highest concentration of acetaminophen (10 µg/L) about eight (8) times the distance travelled by the control larvae, indicating that acetaminophen-induced erratic swimming behaviour in the catfish species. Cardiotoxicity was evident, with a significant reduction in heartbeat rate with increasing concentrations of acetaminophen. The results showed that exposure to acetaminophen resulted in teratogenic, neurotoxic and cardiotoxic effects in embryo/larvae of Clarias gariepinus. The findings suggest that acetaminophen which has recently been detected in many water bodies could potentially impact on survival of aquatic life, especially catfish.
Collapse
Affiliation(s)
| | - Isioma Tongo
- Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, PMB 1154, Benin City, Nigeria; Igbinedion University Okada, Benin City, Edo State, Nigeria
| | - Lawrence Ikechukwu Ezemonye
- Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, PMB 1154, Benin City, Nigeria; Igbinedion University Okada, Benin City, Edo State, Nigeria
| |
Collapse
|
85
|
Bhagat J, Singh N, Nishimura N, Shimada Y. A comprehensive review on environmental toxicity of azole compounds to fish. CHEMOSPHERE 2021; 262:128335. [PMID: 33182121 DOI: 10.1016/j.chemosphere.2020.128335] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Azoles are considered as one of the most efficient fungicides for the treatment of humans, animals, and plant fungal pathogens. They are of significant clinical importance as antifungal drugs and are widely used in personal care products, ultraviolet stabilizers, and in aircraft for its anti-corrosive properties. The prevalence of azole compounds in the natural environment and its accumulation in fish raises questions about its impact on aquatic organisms. OBJECTIVES The objective of this paper is to review the scientific studies on the effects of azole compounds in fish and to discuss future opportunities for the risk evaluation. METHODS A systematic literature search was conducted on Web of Science, PubMed, and ScienceDirect to locate peer-reviewed scientific articles on occurrence, environmental fate, and toxicological impact of azole fungicides on fish. RESULTS Studies included in this review provide ample evidence that azole compounds are not only commonly detected in the natural environment but also cause several detrimental effects on fish. Future studies with environmentally relevant concentrations of azole alone or in combination with other commonly occurring contaminants in a multigenerational study could provide a better understanding. CONCLUSION Based on current knowledge and studies reporting adverse biological effects of azole on fish, considerable attention is required for better management and effective ecological risk assessment of these emerging contaminants.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan.
| | - Nisha Singh
- Environment Nanoscience Laboratory, Department of Earth Science, Indian Institute of Science Education and Research, Kolkata, 741246, India.
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan.
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan; Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
86
|
Paganotto Leandro L, Siqueira de Mello R, da Costa-Silva DG, Medina Nunes ME, Rubin Lopes A, Kemmerich Martins I, Posser T, Franco JL. Behavioral changes occur earlier than redox alterations in developing zebrafish exposed to Mancozeb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115783. [PMID: 33065480 DOI: 10.1016/j.envpol.2020.115783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
As agriculture expands to provide food and wellbeing to the world's growing population, there is a simultaneous increasing concern about the use of agrochemicals, which can harm non-target organisms, mainly in the aquatic environment. The fungicide Mancozeb (MZ) has been used on a large-scale and is a potent inducer of oxidative stress. Therefore, there is an urgent need for the development of more sensitive biomarkers designed to earlier biomonitoring of this compound. Here we tested the hypothesis that behavioral changes induced by sublethal MZ concentrations would occur first as compared to biochemical oxidative stress markers. Embryos at 4 h post-fertilization (hpf) were exposed to Mancozeb at 5, 10 and 20 μg/L. Controls were kept in embryo water only. Behavioral and biochemical parameters were evaluated at 24, 28, 72, and 168 hpf after MZ exposure. The results showed that MZ significantly altered spontaneous movement, escape responses, swimming capacity, and exploratory behavior at all exposure times. However, changes in ROS steady-stead levels and the activity of antioxidant enzymes were observable only at 72 and 168 hpf. In conclusion, behavioral changes occurred earlier than biochemical alterations in zebrafish embryos exposed to MZ, highlighting the potential of behavioral biomarkers as sensitive tools for biomonitoring programs.
Collapse
Affiliation(s)
- Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Renata Siqueira de Mello
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Dennis Guilherme da Costa-Silva
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Mauro Eugênio Medina Nunes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Andressa Rubin Lopes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Illana Kemmerich Martins
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil.
| |
Collapse
|
87
|
Yuan J, Zheng Y, Gu Z. Effects of cypermethrin on the hepatic transcriptome and proteome of the red claw crayfish Cherax quadricarinatus. CHEMOSPHERE 2021; 263:128060. [PMID: 33297066 DOI: 10.1016/j.chemosphere.2020.128060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 06/12/2023]
Abstract
Cypermethrin (CYP) is a synthetic pyrethroid broadly used for pest control, however, it is extremely toxic to aquatic organisms. To assess the toxicity of CYP in red claw crayfish Cherax quadricarinatus, transcriptional and proteomic approaches combining two-dimensional polyacrylamide gel electrophoresis and tandem mass spectrometry were used to compare the hepatic expression profiles. A total of 41,349 unigenes and 8839 differentially expressed genes (DEGs) were obtained, which were enriched in the process. The category of 779 (0.625 ng L-1 CYP vs Con), 1963 (1.25 vs Con), and 2066 (1.25 vs 0.625) DEGs were screened. All findings suggested that CYP can induce antioxidant and biotransformation modulation variations in C. quadricarinatus to resist immunotoxicity and oxidative damages. The category of 196 (0.625 ng L-1 CYP vs Con) specific proteins were differentially expressed: 24 proteins were upregulated, and 20 proteins were downregulated relative to CYP. Protein identification indicated the KEGG pathways of the human immunodeficiency virus 1 infection, insulin signaling pathway, and influenza A enriched. From the differential expression of the selected nine proteins, the increased Loc113824800, Rps19, Atp2, Rps10, Hsp40, Brafldraft_124327, and the decreased Loc117331934, Loc113213835, and Loc106806551 revealed. While for the verification of the eight genes in transcriptome and the above nine genes in proteomic, specifically, gpx5, ggt, loc106458463, chelonianin decreased in the 0.625 ng L-1 CYP group. The transcripts of loc113816050, akr1d1 and gst, chelonianin and loc108675455 decreased and increased in the 1.25 ng L-1 CYP group, respectively. The present study reflects the overall change in cellular structure and metabolism related to the resistance of pyrethroid insecticides.
Collapse
Affiliation(s)
- Julin Yuan
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture/Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Zhimin Gu
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China.
| |
Collapse
|
88
|
Cheng CC, Lai YC, Shieh YT, Chang YH, Lee AW, Chen JK, Lee DJ, Lai JY. CO 2-Responsive Water-Soluble Conjugated Polymers for In Vitro and In Vivo Biological Imaging. Biomacromolecules 2020; 21:5282-5291. [PMID: 33155800 DOI: 10.1021/acs.biomac.0c01336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Water-soluble conjugated polymers (WCPs) composed of a hydrophobic polythiophene main chain with hydrophilic tertiary amine side-chains can directly self-assemble into sphere-like nano-objects in an aqueous solution due to phase separation between the hydrophilic and hydrophobic segments of the polymeric structure. Due to the presence of gas-responsive tertiary amine moieties in the spherical structure, the resulting polymers rapidly and reversibly tune their structural features, surface charge, and fluorescence performance in response to alternating carbon dioxide (CO2) and nitrogen (N2) bubbling, which leads to significantly enhanced fluorescence and surface charge switching properties and a stable cycle of on and off switching response. In vitro studies confirmed that the CO2-treated polymers exhibited extremely low cytotoxicity and enhanced cellular uptake ability in normal and tumor cells, and thus possess significantly improved fluorescence stability, distribution, and endocytic uptake efficiency within cellular organisms compared to the pristine polymer. More importantly, in vivo assays demonstrated that the CO2-treated polymers displayed excellent biocompatibility and high fluorescence enhancement in living zebrafish, whereas the fluorescence intensity and stability of zebrafish incubated with the pristine polymer decreased linearly over time. Thus, these CO2 and N2-responsive WCPs could potentially be applied as multifunctional fluorescent probes for in vivo biological imaging.
Collapse
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - You-Cheng Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yeong-Tarng Shieh
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Yi-Hsuan Chang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan
| |
Collapse
|
89
|
Chen X, Teng M, Zhang J, Qian L, Duan M, Cheng Y, Zhao F, Zheng J, Wang C. Tralopyril induces developmental toxicity in zebrafish embryo (Danio rerio) by disrupting the thyroid system and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141860. [PMID: 33027873 DOI: 10.1016/j.scitotenv.2020.141860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Tralopyril, an antifouling biocide, widely used in antifouling systems to prevent underwater equipment from biological contamination, which can pose a potential risk to aquatic organisms and human health. However, there is little information available on the toxicity of tralopyril to aquatic organisms. Herein, zebrafish (Danio rerio) were used to investigate the toxicity mechanisms of tralopyril and a series of developmental indicators, thyroid hormones, gene expression and metabolomics were measured. Results showed that tralopyril significantly decreased the heart-beat and body length of zebrafish embryos-larvae exposed to 4.20 μg/L or higher concentrations of tralopyril and also induced developmental defects including pericardial hemorrhage, spine deformation, pericardial edema, tail malformation and uninflated gas bladder. Tralopyril decreased the thyroid hormone concentrations in embryos and changed the transcriptions of the related genes (TRHR, TSHβ, TSHR, Nkx2.1, Dio1, TRα, TRβ, TTR and UGT1ab). Additionally, metabolomics analysis showed that tralopyril affected the metabolism of amino acids, energy and lipids, which was associated with regulation of thyroid system. Furthermore, this study demonstrated that alterations of endogenous metabolites induced the thyroid endocrine disruption in zebrafish following the tralopyril treatment. Therefore, the results showed that tralopyril can induce adverse developmental effects on zebrafish embryos by disrupting the thyroid system and metabolism.
Collapse
Affiliation(s)
- Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
90
|
Shen C, Zuo Z. Zebrafish (Danio rerio) as an excellent vertebrate model for the development, reproductive, cardiovascular, and neural and ocular development toxicity study of hazardous chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43599-43614. [PMID: 32970263 DOI: 10.1007/s11356-020-10800-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
In the past decades, the type of chemicals has gradually increased all over the world, and many of these chemicals may have a potentially toxic effect on human health. The zebrafish, as an excellent vertebrate model, is increasingly used for assessing chemical toxicity and safety. This review summarizes the efficacy of zebrafish as a model for the study of developmental toxicity, reproductive toxicity, cardiovascular toxicity, neurodevelopmental toxicity, and ocular developmental toxicity of hazardous chemicals, and the transgenic zebrafish as biosensors are used to detect the environmental pollutants.
Collapse
Affiliation(s)
- Chao Shen
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China
| | - Zhenghong Zuo
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, Fujian, China.
| |
Collapse
|
91
|
Zhang J, Qian L, Wang C, Teng M, Duan M, Chen X, Li X, Wang C. UPLC-TOF-MS/MS metabolomics analysis of zebrafish metabolism by spirotetramat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115310. [PMID: 32798906 DOI: 10.1016/j.envpol.2020.115310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Spirotetramat, a member of tetronic and tetramic acid derivatives, is a unique insecticide and acaricide. Although the effect on zebrafish embryos lipid biosynthesis of spirotetramat has been characterized, the energy metabolism and toxic effect mechanism warrant further investigation. To investigate the toxic mechanism of spirotetramat on energy metabolism, zebrafish embryos were exposed to 100, 500 and 1000 µg/L of spirotetramat for 4 days. Untargeted metabolomics showed the synthesis and degradation of ketone pathway metabolites (R)-3-Hydroxybutyric acid and Acetoacetate significantly decreased, as well as increasing the abundance of Anti-Acetyl Coenzyme A Carboxylase protein (ACC1). Down-regulation of the genes related to ß-oxidation and the tricarboxylic acid cycle in the embryos show decreased energy metabolism. Carnitine palmitoyltransferase 1 (CPT- I) significantly decreased while citrate synthase (CS) significantly increased. Additionally, mitochondrial lesions in embryos were found using electron microscopy. Our study provides novel and robust perspectives, which show that spirotetramat treatment in embryos leads to metabolic disturbances that adversely affect cellular energy homeostasis.
Collapse
Affiliation(s)
- Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xuefeng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
92
|
Mu X, Liu J, Yuan L, Huang Y, Qian L, Wang C. The pigmentation interference of bisphenol F and bisphenol A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115139. [PMID: 32663677 DOI: 10.1016/j.envpol.2020.115139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) and bisphenol F (BPF) are widely distributed in the environment and daily consumptions, leading to exposure toward human and environmental animals. The potential risk of bisphenol analogs on pigment and skin health is not well documented. In this study, we found that 0.05 mg/L BPF (tolerated daily intake (TDI) value of BPA) affected the particle size and color density of zebrafish melanin. While BPA caused less depigmentation effect toward zebrafish with effective concentration of 5.0 mg/L. The downregulation of melanin synthases induced by BPF is associated with the reduction in melanin. Molecular dynamics indicated that both BPF and BPA could act as ligands of zebrafish and human Tyr family proteins; however, these compounds have completely different energetics and spatial steric effects, potentially explaining their varying depigmentation effects. Additionally, an in vitro assay using A375 melanoma cells demonstrated that the inhibitory effect of BPF on human melanin production was primarily attributed to Tyr inhibition. These findings provide an important basis for understanding the molecular mechanisms of BPF and BPA in melanin inhibition, and the results reflect the skin pigmentation interference risk of these compounds, which are ubiquitous in everyday personal products.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China; College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Le Qian
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
93
|
Wang Y, Li X, Xu C, Yang G, Wang D, Wang X, Wang Q. Toxicological interactions of cadmium and four pesticides on early life stage of rare minnow (Gobiocypris rarus). ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1453-1461. [PMID: 32880082 DOI: 10.1007/s10646-020-02269-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Although chemicals have been traditionally regulated on an individual basis in aquatic ecosystems, they often co-exist as different types of complex mixtures. Laboratory assays were conducted for assessing the responses of rare minnow (Gobiocypris rarus) to individual and mixture chemicals [trace element cadmium (Cd), thiamethoxam, deltamethrin, malathion and prochloraz]. Data obtained from 96 h semi-static toxicity assays implied that deltamethrin elicited the highest toxic effect on the various developmental phases (larval, juvenile and adult phases) of G. rarus with LC50 values ranging from 0.00061 to 0.25 mg a.i. L-1, followed by prochloraz, malathion and Cd with 96-h LC50 values ranging from 0.49 to 1.1, from 7.1 to 26, and from 7.6 to 15 mg a.i. L-1, respectively. Thiamethoxam elicited the lowest toxic effect on the organisms with 96-h LC50 values ranging from 38 to 202 mg a.i. L-1. Larval phase was not always the most sensitive period in the three detected phases to most of chemicals. Chemical combinations containing deltamethrin and malathion displayed synergetic responses to the larvae of G. rarus. Besides, the binary mixtures of Cd-deltamethrin and Cd-prochloraz also exhibited synergetic response to rare minnows. Our results indicate that extra information is necessary to develop practical criteria for selecting chemical combinations that require legislative attention according to their likelihood to exert synergetic responses. Thence, more investigations on mixture toxicities of various chemicals should be taken as a priority for producing synergetic interaction to improve the environmental risk assessment of chemicals.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinfang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
94
|
Yang Y, Dong F, Liu X, Xu J, Wu X, Zheng Y. Thifluzamide induces the toxic effects on zebrafish (Danio rerio) via inhibition of succinate dehydrogenase (SDH). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115031. [PMID: 32806454 DOI: 10.1016/j.envpol.2020.115031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/16/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Thifluzamide is widely used in treatment of rice diseases and has potential toxicity on aquatic organism. Although previous studies have focused on the toxic effect of thifluzamide in zebrafish, no consistent conclusions have been reached. To help to elucidate the toxic mechanism, qualities of liver and mitochondria were evaluated. The global changes in the transcriptome of zebrafish after exposure to thifluzamide were measured. Based on this, the expression and activities of chitinase and succinate dehydrogenase (SDH) were further assayed. And the targeted site of thifluzamide in zebrafish was confirmed by dock study and co-exposure study. Here we report that developmental inhibition was observed along with presence of liver and mitochondrial damage. The expression of SDHa-d and genes related to mitochondrial DNA (mtDNA) replicate and mitochondrial complexes were significantly altered. And, as the top differentially expressed genes, the expression of chia.1-6 did show apparent changes, but differences of chitinase activity between exposure groups and the controls did not reach significance. In line with that, dock study showed that the binding potentials of thifluzamide toward zebrafish chitinase and SDH exhibited in the following order: SDH> chitinase. And sdhb-sdhc-sdhd (Qp site) showed the highest binding activity toward thifluzamide. The joint exposure (thifluzamide + Q10) significantly improved the survival of zebrafish compared with single thifluzamide exposure. These results indicate that SDH, especially Qp-site, may be the target of thifluzamide in zebrafish and inhibition of SDH activity may be at least in partial responsible for the toxicity of thifluzamide in zebrafish. In addition, the antagonistic effect of Q10 on thifluzamide toxicity in zebrafish suggests that Q10 may be a useful adjunct to detoxification.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
95
|
Qiao K, Fu W, Jiang Y, Chen L, Li S, Ye Q, Gui W. QSAR models for the acute toxicity of 1,2,4-triazole fungicides to zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114837. [PMID: 32460121 DOI: 10.1016/j.envpol.2020.114837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
In recent decades, the 1,2,4-triazole fungicides are widely used for crop diseases control, and their toxicity to wild lives and pollution to ecosystem have attracted more and more attention. However, how to quickly and efficiently evaluate the toxicity of these compounds to environmental organisms is still a challenge. In silico method, such like Quantitative Structure-Activity Relationship (QSAR), provides a good alternative to evaluate the environmental toxicity of a large number of chemicals. At the present study, the acute toxicity of 23 1,2,4-triazole fungicides to zebrafish (Danio rerio) embryos was firstly tested, and the LC50 (median lethal concentration) values were used as the bio-activity endpoint to conduct QSAR modelling for these triazoles. After the comparative study of several QSAR models, the 2D-QSAR model was finally constructed using the stepwise multiple linear regression algorithm combining with two physicochemical parameters (logD and μ), an electronic parameter (QN1) and a topological parameter (XvPC4). The optimal model could be mathematically described as following: pLC50 = -7.24-0.30XvPC4 + 0.76logD - 26.15QN1 - 0.08μ. The internal validation by leave-one-out (LOO) cross-validation showed that the R2adj (adjusted noncross-validation squared correlation coefficient), Q2 (cross-validation correlation coefficient) and RMSD (root-mean-square error) was 0.88, 0.84 and 0.17, respectively. The external validation indicated the model had a robust predictability with the q2 (predictive squared correlation coefficient) of 0.90 when eliminated tricyclazole. The present study provided a potential tool for predicting the acute toxicity of new 1,2,4-triazole fungicides which contained an independent triazole ring group in their molecules to zebrafish embryos, and also provided a reference for the development of more environmentally-friendly 1,2,4-triazole pesticides in the future.
Collapse
Affiliation(s)
- Kun Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjie Fu
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Jiang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Lili Chen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuying Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
96
|
Jiang J, Chen L, Wu S, Lv L, Liu X, Wang Q, Zhao X. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114844. [PMID: 32480235 DOI: 10.1016/j.envpol.2020.114844] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
In current study, larvae and adult zebrafish were exposed to difenoconazole to assess its effect on hepatotoxicity, lipid metabolism and gut microbiota. Results demonstrated that difenoconazole could induce hepatotoxicity in zebrafish larvae and adult, 0.400, 1.00, 2.00 mg/L difenoconazole caused yolk retention, yolk sac edema or liver degeneration after embryos exposure for 120 h, hepatocyte vacuolization and neoplasm necrosis were observed in adult liver after 0.400 mg/L difenoconazole exposure for 21 d. RNA sequencing showed that the 41 and 567 differentially expressed genes in zebrafish larvae and liver induced by 0.400 mg/L difenoconazole, were concentrated in pathways related to protein digestion and absorption, pancreatic secretion, steroid biosynthesis, and different metabolic pathways including galactose or sugar metabolism. Difenoconazole exposure caused lipid accumulation in larval yolk sac, and the elevated triglyceride (TG), malondialdehyde (MDA) and reactive oxygen species (ROS) levels in larvae and liver, which further confirmed the lipid metabolism disorders induced by difenoconazole. The results further showed that difenoconazole increased the abundance of gut microbiota such as Firmicutes, Aeromonas, Enterobacteriaceae and Bacteroides, further suggested that gut microbiota might participate in lipid metabolism and hepatotoxicity during zebrafish development. These findings advanced the field of the difenoconazole-induced developmental toxicity in larvae and adult zebrafish, and the imbalance of gut microbiota provided the plausible mode of action for the liver damage and disordered lipid metabolism in zebrafish.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
97
|
Qian L, Liu J, Lin Z, Chen X, Yuan L, Shen G, Yang W, Wang D, Huang Y, Pang S, Mu X, Wang C, Li Y. Evaluation of the spinal effects of phthalates in a zebrafish embryo assay. CHEMOSPHERE 2020; 249:126144. [PMID: 32086060 DOI: 10.1016/j.chemosphere.2020.126144] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Phthalates (phthalate esters, PAEs) are commonly used as plasticizers and are emerging concerns worldwide for their potential influence on the environment and general public health. Thus, identification of the negative effects and involved mechanisms of PAEs is necessary. Herein, we found that embryonic exposure of zebrafish to di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) significantly induced spinal defects, such as inhibited spontaneous movement at 24 h post-fertilization (hpf), spine curvature and body length decrease at 96 hpf. The transcriptional level of the genes that are related to the development of the notochord (col8a1a and ngs), muscle (stac3, klhl41a and smyd2b) and skeleton (bmp2, spp1) were significantly altered by DEHP and DBP at 50 and 250 μg/L, which might be associated with the observed morphological changes. Notably, DBP and DEHP altered the locomotor activity of zebrafish larvae at 144 hpf, which might be due to the abnormal development of the spine and skeletal system. In conclusion, phthalates caused spinal birth defects in zebrafish embryos, induced transcriptional alterations of the spinal developmental genes, and led to abnormal behavior.
Collapse
Affiliation(s)
- Le Qian
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China; College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China; College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Zhipeng Lin
- College of Resources and Environmental Sciences, Nanjing Agricultural University, People's Republic of China
| | - Xiaofeng Chen
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Donghui Wang
- College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| |
Collapse
|
98
|
Zhang C, Zhang J, Zhu L, Du Z, Wang J, Wang J, Li B, Yang Y. Fluoxastrobin-induced effects on acute toxicity, development toxicity, oxidative stress, and DNA damage in Danio rerio embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:137069. [PMID: 32041080 DOI: 10.1016/j.scitotenv.2020.137069] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Strobilurin fungicides (SFs), the most commonly used fungicides, pose threats for controlling fungal diseases. The fungicides were monitored in aquatic ecosystems and may have negative effects on nontarget organisms. This project was undertaken to monitor the toxic effects of fluoxastrobin (FLUO) on Danio rerio embryos and to evaluate the SF risks in aquatic ecosystems. The 96-hour median lethal concentration (96 h LC50), hatching rates, and morphological abnormalities were used to analyze acute toxicity and teratogenicity of FLUO to Danio rerio embryos at an FLUO dose of 0.549 mg/L (95% confidence limits: 0.423 to 0.698 mg/L); the results showed that FLUO has high toxicity in embryos that is analogous to the toxicity observed in adult Danio rerio. Fluoxastrobin may lead embryos to delayed hatching at concentrations >0.6 mg/L, and it may lead to teratogenicity (i.e., pericardial edema and spinal curvature). Based on the 96 h LC50 results, the following parameters were evaluated in Danio rerio: development-related indicators (body length and heart rates), reactive oxygen species (ROS) levels, lipid peroxidation (LPO) levels, the levels of three antioxidants, 8-hydroxy-2-deoxyguanosine (8-OHdG), and apoptosis. The results elucidated that FLUO inhibition of spinal and heart development may be induced by oxidative stress. In addition, FLUO induced a notable climb in ROS content, LPO, the activated activity of superoxide dismutase (SOD) and catalase (CAT), and it inhibited glutathione peroxidase (GSH-PX) activity. Fluoxastrobin led to DNA damage (i.e., a notable climb of 8-OHdG contents and apoptotic cells). Collectively, FLUO posed threats to Danio rerio embryos at multiple levels, and this investigation could be a reminder for people to be more judicious in SF-use to avoid or relieve SF toxicity to nontarget organisms.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jingwen Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
99
|
Horie Y, Yonekura K, Suzuki A, Takahashi C. Zinc chloride influences embryonic development, growth, and Gh/Igf-1 gene expression during the early life stage in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108684. [PMID: 31874288 DOI: 10.1016/j.cbpc.2019.108684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Although zinc is an essential element for organisms, excess zinc exposure is harmful. We assessed the possible negative influence of zinc (Zn) on the freshwater fish Danio rerio during its early life stage by using Organization for Economic Cooperation and Development test guideline no. 210. Lethality of Zn after hatching occurred in a concentration dependent manner. The LC50 and lowest observed effect concentration of mortality values in the present toxicity assay were 2.31 mg/L (95% confidence limit: 1.81-3.05) and 1.5 mg/L, respectively. These values were close to the reported concentration recorded in aquatic environments. Growth inhibition was observed at 15 and 30 days post-hatching with Zn exposure of 1.5 mg/L. In general, the growth hormone (Gh)/insulin-like growth factor-I (Igf-1) axis is important for growth in fishes, and Zn exposure induced a significant reduction of igf-1 expression at the concentration that caused growth inhibition. These findings suggest that the observed growth inhibition was induced by the suppression of igf-1 expression. In addition, these results suggest that by examining gene expression on the Gh/Igf-1 axis, it may be possible to predict growth suppression by chemical exposure.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita 010-0195, Japan.
| | - Kei Yonekura
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita 010-0195, Japan
| | - Ayaka Suzuki
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita 010-0195, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita 010-0195, Japan
| |
Collapse
|
100
|
Gonçalves ÍFS, Souza TM, Vieira LR, Marchi FC, Nascimento AP, Farias DF. Toxicity testing of pesticides in zebrafish-a systematic review on chemicals and associated toxicological endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10185-10204. [PMID: 32062774 DOI: 10.1007/s11356-020-07902-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The use of zebrafish (Danio rerio) has arisen as a promising biological platform for toxicity testing of pesticides such as herbicides, insecticides, and fungicides. Therefore, it is relevant to assess the use of zebrafish in models of exposure to investigate the diversity of pesticide-associated toxicity endpoints which have been reported. Thus, this review aimed to assess the recent literature on the use of zebrafish in pesticide toxicity studies to capture data on the types of pesticide used, classes of pesticides, and zebrafish life stages associated with toxicity endpoints and phenotypic observations. A total of 352 articles published between September 2012 and May 2019 were curated. The results show an increased trend in the use of zebrafish for testing the toxicity of pesticides, with a great diversity of pesticides (203) and chemical classes (58) with different applications (41) being used. Furthermore, experimental outcomes could be clustered in 13 toxicity endpoints, mainly developmental toxicity, oxidative stress, and neurotoxicity. Organophosphorus, pyrethroid, azole, and triazine were the most studied classes of pesticides and associated with various toxicity endpoints. Studies frequently opted for early life stages (embryos and larvae). Although there is an evident lack of standardization of nomenclatures and phenotypic alterations, the information gathered here highlights associations between (classes of) pesticides and endpoints, which can be used to relate mechanisms of action specific to certain classes of chemicals.
Collapse
Affiliation(s)
- Íris Flávia Sousa Gonçalves
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Leonardo Rogério Vieira
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Filipi Calbaizer Marchi
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Adailton Pascoal Nascimento
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil.
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil.
| |
Collapse
|