51
|
Kamada H, Hata Y, Sugiura K, Sawada T, Serizawa T. Interfacial jamming of surface-alkylated synthetic nanocelluloses for structuring liquids. Carbohydr Polym 2024; 331:121896. [PMID: 38388029 DOI: 10.1016/j.carbpol.2024.121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Nanocelluloses derived from natural cellulose sources are promising sustainable nanomaterials. Previous studies have reported that nanocelluloses are strongly adsorbed onto liquid-liquid interfaces with the concurrent use of ligands and allow for the structuring of liquids, that is, the kinetic trapping of nonequilibrium shapes of liquids. However, the structuring of liquids using nanocelluloses alone has yet to be demonstrated, despite its great potential in the development of sustainable liquid-based materials that are biocompatible and environmentally friendly. Herein, we demonstrated the structuring of liquids using rectangular sheet-shaped synthetic nanocelluloses with surface alkyl groups. Synthetic nanocelluloses with ethyl, butyl, and hexyl groups on their surfaces were readily prepared following our previous reports via the self-assembly of enzymatically synthesized cello-oligosaccharides having the corresponding alkyl groups. Among the alkylated synthetic nanocelluloses, the hexylated nanocellulose was adsorbed and jammed at water-n-undecane interfaces to form interfacial assemblies, which acted substantially as an integrated film for structuring liquids. These phenomena were attributed to the unique structural characteristics of the surface-hexylated synthetic nanocelluloses; their sheet shape offered a large area for adsorption onto interfaces, and their controlled surface hydrophilicity/hydrophobicity enhanced the affinity for both liquid phases. Our findings promote the development of all-liquid devices using nanocelluloses.
Collapse
Affiliation(s)
- Hirotaka Kamada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kai Sugiura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
52
|
Khorsandi D, Jenson S, Zarepour A, Khosravi A, Rabiee N, Iravani S, Zarrabi A. Catalytic and biomedical applications of nanocelluloses: A review of recent developments. Int J Biol Macromol 2024; 268:131829. [PMID: 38677670 DOI: 10.1016/j.ijbiomac.2024.131829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Nanocelluloses exhibit immense potential in catalytic and biomedical applications. Their unique properties, biocompatibility, and versatility make them valuable in various industries, contributing to advancements in environmental sustainability, catalysis, energy conversion, drug delivery, tissue engineering, biosensing/imaging, and wound healing/dressings. Nanocellulose-based catalysts can efficiently remove pollutants from contaminated environments, contributing to sustainable and cleaner ecosystems. These materials can also be utilized as drug carriers, enabling targeted and controlled drug release. Their high surface area allows for efficient loading of therapeutic agents, while their biodegradability ensures safer and gradual release within the body. These targeted drug delivery systems enhance the efficacy of treatments and minimizes side effects. Moreover, nanocelluloses can serve as scaffolds in tissue engineering due to their structural integrity and biocompatibility. They provide a three-dimensional framework for cell growth and tissue regeneration, promoting the development of functional and biologically relevant tissues. Nanocellulose-based dressings have shown great promise in wound healing and dressings. Their ability to absorb exudates, maintain a moist environment, and promote cell proliferation and migration accelerates the wound healing process. Herein, the recent advancements pertaining to the catalytic and biomedical applications of nanocelluloses and their composites are deliberated, focusing on important challenges, advantages, limitations, and future prospects.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Serena Jenson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
53
|
Pei W, Yu Y, Wang P, Zheng L, Lan K, Jin Y, Yong Q, Huang C. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the bibliometric analysis: A review. Int J Biol Macromol 2024; 267:131505. [PMID: 38631574 DOI: 10.1016/j.ijbiomac.2024.131505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature. The results reveal a steady growth in publications focusing on the application of BC-LB in orthopedics, with China and the United States leading in research output. The "International Journal of Biological Macromolecules" was identified as the most cited journal for BC-LB research in orthopedics. The research hotspots encompassed bone tissue engineering, cartilage tissue engineering, and drug delivery systems, indicating the fundamental research and potential development in these areas. This study also highlights the challenges associated with the clinical application of BC-LB in orthopedics and provides valuable insights for future advancements in the field.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, PR China
| | - Kai Lan
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Yongcan Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
54
|
Garg A, Alfatease A, Hani U, Haider N, Akbar MJ, Talath S, Angolkar M, Paramshetti S, Osmani RAM, Gundawar R. Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review. Int J Biol Macromol 2024; 268:131605. [PMID: 38641284 DOI: 10.1016/j.ijbiomac.2024.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
In the ever-evolving landscape of tissue engineering, medicated biotextiles have emerged as a game-changer. These remarkable textiles have garnered significant attention for their ability to craft tissue scaffolds that closely mimic the properties of natural tissues. This comprehensive review delves into the realm of medicated protein and polysaccharide-based biotextiles, exploring a diverse array of fabric materials. We unravel the intricate web of fabrication methods, ranging from weft/warp knitting to plain/stain weaving and braiding, each lending its unique touch to the world of biotextiles creation. Fibre production techniques, such as melt spinning, wet/gel spinning, and multicomponent spinning, are demystified to shed light on the magic behind these ground-breaking textiles. The biotextiles thus crafted exhibit exceptional physical and chemical properties that hold immense promise in the field of tissue engineering (TE). Our review underscores the myriad applications of drug-eluting protein and polysaccharide-based textiles, including TE, tissue repair, regeneration, and wound healing. Additionally, we delve into commercially available products that harness the potential of medicated biotextiles, paving the way for a brighter future in healthcare and regenerative medicine. Step into the world of innovation with medicated biotextiles-where science meets the art of healing.
Collapse
Affiliation(s)
- Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Adel Alfatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad J Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
55
|
Mishra S. New Excipient For Oral Drug Delivery: CNC Derived From Sugarcane Bagasse-Derived Microcrystalline Cellulose. ACS OMEGA 2024; 9:19353-19362. [PMID: 38708209 PMCID: PMC11064190 DOI: 10.1021/acsomega.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Nanocrystalline cellulose (CNC) has emerged as a subject of researcher's interest because of its diverse attributes encompassing biocompatibility, sustainability, a high aspect ratio, and an abundance of -OH groups suitable for modifications. Sugarcane bagasse microcrystalline cellulose (SCBMCC) was used as the raw material for the preparation of CNC due to its pure cellulose content, which is mildly compromised by the pectin, hemicellulose, lignin, and other lignocellulosic components. In the present work, CNC was extracted from SCBMCC and used as a disintegrant. The classic hydrolysis technique was used for the preparation of CNC. Hydrolytic conditions were optimized using the response surface methodology (RSM). The optimized batch of CNC was characterized using techniques such as field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Notably, CNC prepared under a hydrolysis time of 90 min exhibited the highest crystallinity of 69.9%. The average particle size and zeta potential were found to be 145 nm and -34.4 mV, respectively. Thermal analysis suggested that an intermediate hydrolysis time resulted in CNC with enhanced thermal stability, showcasing its potential for pharmaceutical applications. Diclofenac potassium was used as the model drug to evaluate the disintegrant properties of CNC as an excipient. Tablets were prepared using the direct compression method. SCBMCC and CNC were used as disintegrants and were compared with the commercial product. The disintegration times (DTs) attained for the tablets prepared using CNC and SCBMCC are 219 and 339.83 s, respectively. The dissolution study of CNC showed a dissolution efficacy (DE%) of 66 and a mean dissolution time (MDT) of 12. The research findings showed that tablets prepared using CNC as disintegrants exhibited the fastest disintegration compared to other formulations.
Collapse
Affiliation(s)
- Shweta Mishra
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai 400056, India
| |
Collapse
|
56
|
Sreedharan M, Vijayamma R, Liyaskina E, Revin VV, Ullah MW, Shi Z, Yang G, Grohens Y, Kalarikkal N, Ali Khan K, Thomas S. Nanocellulose-Based Hybrid Scaffolds for Skin and Bone Tissue Engineering: A 10-Year Overview. Biomacromolecules 2024; 25:2136-2155. [PMID: 38448083 DOI: 10.1021/acs.biomac.3c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.
Collapse
Affiliation(s)
- Mridula Sreedharan
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Raji Vijayamma
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Elena Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yves Grohens
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56321 Lorient, France
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
57
|
Li Y, Jiao H, Zhang H, Wang X, Fu Y, Wang Q, Liu H, Yong YC, Guo J, Liu J. Biosafety consideration of nanocellulose in biomedical applications: A review. Int J Biol Macromol 2024; 265:130900. [PMID: 38499126 DOI: 10.1016/j.ijbiomac.2024.130900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Nanocellulose-based biomaterials have gained significant attention in various fields, especially in medical and pharmaceutical areas, due to their unique properties, including non-toxicity, high specific surface area, biodegradability, biocompatibility, and abundant feasible and sophisticated strategies for functional modification. The biosafety of nanocellulose itself is a prerequisite to ensure the safe and effective application of biomaterials as they interact with living cells, tissues, and organs at the nanoscale. Potential residual endogenous impurities and exogenous contaminants could lead to the failure of the intended functionalities or even serious health complications if they are not adequately removed and assessed before use. This review summarizes the sources of impurities in nanocellulose that may pose potential hazards to their biosafety, including endogenous impurities that co-exist in the cellulosic raw materials themselves and exogenous contaminants caused by external exposure. Strategies to reduce or completely remove these impurities are outlined and classified as chemical, physical, biological, and combined methods. Additionally, key points that require careful consideration in the interpretation of the biosafety evaluation outcomes were discussed to ensure the safety and effectiveness of the nanocellulose-based biomaterials in medical applications.
Collapse
Affiliation(s)
- Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
58
|
Tang L, Hu M, Bai S, Wang B, Fan B, Zhang L, Wang F. Extraction of insoluble soybean fiber by alternating ultrasonic/alkali and its improved superior physicochemical and functional properties. Int J Biol Macromol 2024; 263:130505. [PMID: 38423430 DOI: 10.1016/j.ijbiomac.2024.130505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Okara, as a by-product of soybean processing, is rich in insoluble dietary fiber (IDF), which is a carbohydrate polymer with various insoluble polysaccharides. Nowadays, the extraction of IDF with excellent functional properties has become a research hotspot. In this work, we further proposed an alternating alkali/ultrasound method for the efficient extraction of IDF. The sequential treatments of alkali (A-ISF), alkali-ultrasonic (AU-ISF), ultrasonic-alkali (UA-ISF), ultrasonic-alkali-ultrasonic (UAU-ISF) and alkali-ultrasonic-alkali (AUA-ISF) were applied to extract insoluble soybean fiber (ISF). FTIR and XRD results proved the typical structure of ISFs, and TGA results demonstrated the improved thermal stability of UAU-ISF and AUA-ISF. Chemical composition measurement showed that UAU-ISF and AUA-ISF exhibited higher cellulose content (>83 %). SEM results revealed that ultrasonic treatment led to a decomposition of okara matrix and significant porous structure in ISFs with an amplified collapse effect, resulting in an increase of the pore size of ISFs, and strengthening the properties of UAU-ISF and AUA-ISF in higher water (>15 g/g)/oil (>12 g/g) holding capacities, cholesterol binding capacity (>36 mg/g), and cation exchange capacity (>0.3 mmol/g), thus providing new insights for the preparation of ISF with high functional properties that are beneficial for human intestinal health.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiru Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
59
|
Kim H, Dutta SD, Randhawa A, Patil TV, Ganguly K, Acharya R, Lee J, Park H, Lim KT. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. Int J Biol Macromol 2024; 264:130732. [PMID: 38479658 DOI: 10.1016/j.ijbiomac.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Nanocellulose-based tissue adhesives show promise for achieving rapid hemostasis and effective wound healing. Conventional methods, such as sutures and staples, have limitations, prompting the exploration of bioadhesives for direct wound adhesion and minimal tissue damage. Nanocellulose, a hydrolysis product of cellulose, exhibits superior biocompatibility and multifunctional properties, gaining interest as a base material for bioadhesive development. This study explores the potential of nanocellulose-based adhesives for hemostasis and wound healing using 3D printing techniques. Nanocellulose enables the creation of biodegradable adhesives with minimal adverse effects and opens avenues for advanced wound healing and complex tissue regeneration, such as skin, blood vessels, lungs, cartilage, and muscle. This study reviews recent trends in various nanocellulose-based 3D printed hydrogel patches for tissue engineering applications. The review also introduces various types of nanocellulose and their synthesis, surface modification, and bioadhesive fabrication techniques via 3D printing for smart wound healing.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
60
|
Turner SM, Kukk K, Sidor IF, Mason MD, Bouchard DA. Biocompatibility of intraperitoneally implanted TEMPO-oxidized cellulose nanofiber hydrogels for antigen delivery in Atlantic salmon (Salmo salar L.) vaccines. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109464. [PMID: 38412902 DOI: 10.1016/j.fsi.2024.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Disease outbreaks are a major impediment to aquaculture production, and vaccines are integral for disease management. Vaccines can be expensive, vary in effectiveness, and come with adjuvant-induced adverse effects, causing fish welfare issues and negative economic impacts. Three-dimensional biopolymer hydrogels are an appealing new technology for vaccine delivery in aquaculture, with the potential for controlled release of multiple immunomodulators and antigens simultaneously, action as local depots, and tunable surface properties. This research examined the intraperitoneal implantation of a cross-linked TEMPO cellulose nanofiber (TOCNF) hydrogel formulated with a Vibrio anguillarum bacterin in Atlantic salmon with macroscopic and microscopic monitoring to 600-degree days post-implantation. Results demonstrated a modified passive integrated transponder tagging (PITT) device allowed for implantation of the hydrogel. However, the Atlantic salmon implanted with TOCNF hydrogels exhibited a significant foreign body response (FBR) compared to sham-injected negative controls. The FBR was characterized by gross and microscopic external and visceral proliferative lesions, granulomas, adhesions, and fibrosis surrounding the hydrogel using Speilberg scoring of the peritoneum and histopathology of the body wall and coelom. Acutely, gross monitoring displayed rapid coagulation of blood in response to the implantation wound with development of fibrinous adhesions surrounding the hydrogel by 72 h post-implantation consistent with early stage FBR. While these results were undesirable for aquaculture vaccines, this work informs on the innate immune response to an implanted biopolymer hydrogel in Atlantic salmon and directs future research using cellulose nanomaterial formulations in Atlantic salmon for a new generation of aquaculture vaccine technology.
Collapse
Affiliation(s)
- Sarah M Turner
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA; Cooperative Extension, University of Maine, Orono, ME, 04469, USA.
| | - Kora Kukk
- Department of Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Inga F Sidor
- New Hampshire Veterinary Diagnostic Laboratory, University of New Hampshire, Durham, NH, 03824, USA
| | - Michael D Mason
- Department of Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Deborah A Bouchard
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA; Cooperative Extension, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
61
|
Zhang R, Zheng R, Zheng Z, Chen Q, Jiang N, Tang P, Wang H, Bin Y. Bacterial cellulose/multi-walled carbon nanotube composite films for moist-electric energy harvesting. Int J Biol Macromol 2024; 263:130022. [PMID: 38331064 DOI: 10.1016/j.ijbiomac.2024.130022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Generation of renewable and clean electricity energy from ubiquitous moisture for the power supply of portable electronic devices has become one of the most promising energy collection methods. However, the modest electrical output and transient power supply characteristics of existing moist-electric generator (MEG) severely limit its commercial application, leading to an urgent demand of developing a MEG with high electrical output and continuous power generation capacity. In this work, it is demonstrated that a flexible bacterial cellulose (BC)/Multi-walled carbon nanotube (MWCNT) double-layer (BM-dl) film prepared by vacuum filtration can maintain the moisture concentration difference in the film MEG. Unlike previous studies on cellulose based MEG, BM-dl film has a heterogeneous structure, resulting in a maximum output power density of 0.163 μW/cm2, an extreme voltage of 0.84 V, and current of 2.21 μA at RH = 90 %. BM-dl MEG can generate a voltage of 0.55 V continuously for 45 h in a natural environment (RH = 63-77 %, T = 26-27 °C), which is in a leading level among existing reported cellulose-based MEGs. In summary, this study provides new ideas for innovative design of MEG, which is highly competitive in terms of energy supply for the Internet of Things and wearable devices.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ruitong Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhiyi Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qingyi Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Nan Jiang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ping Tang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hai Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Yuezhen Bin
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
62
|
Sonyeam J, Chaipanya R, Suksomboon S, Khan MJ, Amatariyakul K, Wibowo A, Posoknistakul P, Charnnok B, Liu CG, Laosiripojana N, Sakdaronnarong C. Process design for acidic and alcohol based deep eutectic solvent pretreatment and high pressure homogenization of palm bunches for nanocellulose production. Sci Rep 2024; 14:7550. [PMID: 38555319 PMCID: PMC10981746 DOI: 10.1038/s41598-024-57631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
This research aimed to study on nanocellulose production from palm bunch using process design and cost analysis. Choline chloride based deep eutectic solvent pretreatment was selected for high-purity cellulose separation at mild condition, followed by nano-fibrillation using mechanical treatment. Three types of choline chloride-based deep eutectic solvents employing different hydrogen-bond donors (HBDs) namely lactic acid, 1,3-butanediol and oxalic acid were studied. The optimal cellulose extraction condition was choline chloride/lactic acid (ChLa80C) pretreatment of palm empty bunch at 80 °C followed by bleaching yielding 94.96%w/w cellulose content in product. Size reduction using ultrasonication and high-pressure homogenization produced nanocellulose at 67.12%w/w based on cellulose in raw material. Different morphologies of nanocellulose were tunable in the forms of nanocrystals, nano-rods and nanofibers by using dissimilar deep eutectic solvents. This work offered a sustainable and environmentally friendly process as well as provided analysis of DES pretreatment and overview operating cost for nanocellulose production. Application of nanocellulose for the fabrication of highly functional and biodegradable material for nanomedicine, electronic, optical, and micromechanical devices is achievable in the near future.
Collapse
Affiliation(s)
- Janejira Sonyeam
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Ratanaporn Chaipanya
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Sudarat Suksomboon
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Krongkarn Amatariyakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Boonya Charnnok
- Department of Specialized Engineering, Energy Technology Program, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla, 90110, Thailand
| | - Chen Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok, 10140, Thailand
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
63
|
Rezazadeh N, Alizadeh E, Soltani S, Davaran S, Esfandiari N. Synthesis and characterization of a magnetic bacterial cellulose-chitosan nanocomposite and evaluation of its applicability for osteogenesis. BIOIMPACTS : BI 2024; 14:30159. [PMID: 39493895 PMCID: PMC11530965 DOI: 10.34172/bi.2024.30159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 11/05/2024]
Abstract
Introduction Natural biopolymers are used for various purposes in healthcare, such as tissue engineering, drug delivery, and wound healing. Bacterial cellulose and chitosan were preferred in this study due to their non-cytotoxic, biodegradable, biocompatible, and non-inflammatory properties. The study reports the development of a magnetic bacterial cellulose-chitosan (BC-CS-Fe3O4) nanocomposite that can be used as a biocompatible scaffold for tissue engineering. Iron oxide nanoparticles were included in the composite to provide superparamagnetic properties that are useful in a variety of applications, including osteogenic differentiation, magnetic imaging, drug delivery, and thermal induction for cancer treatment. Methods The magnetic nanocomposite was prepared by immersing Fe3O4 in a mixture of bacterial cellulose-chitosan scaffold and then freeze-drying it. The resulting nanocomposite was characterized using FE-SEM and FTIR techniques. The swelling ratio and mechanical strength of the scaffolds were evaluated experimentally. The biodegradability of the scaffolds was assessed using PBS for 8 weeks at 37°C. The cytotoxicity and osteogenic differentiation of the nanocomposite were studied using human adipose-derived mesenchymal stem cells (ADSCs) and alizarin red staining. One-way ANOVA with Tukey's multiple comparisons test was used for statistical analysis. Results The FTIR spectra demonstrated the formation of bonds between functional groups of nanoparticles. FE-SEM images showed the integrity of the fibrillar network. The magnetic nanocomposite has the highest swelling ratio (2445% ± 23.34) and tensile strength (5.08 MPa). After 8 weeks, the biodegradation ratios of BC, BC-CS, and BC-CS-Fe3O4 scaffolds were 0.75% ± 0.35, 2.5% ± 0.1, and 9.5% ± 0.7, respectively. Magnetic nanocomposites have low toxicity (P < 0.0001) and higher osteogenic potential compared to other scaffolds. Conclusion Based on its high tensile strength, low water absorption, suitable degradability, low cytotoxicity, and high ability to induce an increase in calcium deposits by stem cells, the magnetic BC-CS-Fe3O4 nanocomposite scaffold can be a suitable candidate as a biomaterial for osteogenic differentiation.
Collapse
Affiliation(s)
- Nahid Rezazadeh
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
64
|
Plianwong S, Sirirak T. Cellulose nanocrystals from marine algae Cladophora glomerata by using microwave-assisted extraction. Int J Biol Macromol 2024; 260:129422. [PMID: 38219928 DOI: 10.1016/j.ijbiomac.2024.129422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Algae of the order Cladophorales are the source of a unique nanocellulose with high crystallinity and a large aspect ratio, enabling broad surface modification. Cellulose nanocrystals (CNCs) are obtained via acid hydrolysis of nanocellulose, which is highly crystalline. However, the production of CNCs from Cladophorales algae is limited and still uses a conventional heating method. Thus, this study aimed to develop a microwave-assisted extraction (MAE) method for fast and efficient extraction of CNCs from Cladophora glomerata algae. Additionally, we replaced the use of hypochlorite with H2O2, which is more environmentally friendly, and compared the CNCs obtained from the conventional methods with our new method. The functional structure of CNCs was confirmed by Fourier-transform infrared spectroscopy. Single-step H2O2 bleaching with MAE yielded the smallest-sized CNCs. Our developed method resulted in the production of CNCs with a high crystallinity index, high thermal stability, and high purity of native cellulose. Additionally, none of the CNCs were toxic to primary normal human dermal fibroblasts. The properties of the isolated CNCs may make them useful materials in pharmaceutical and cosmetic formulations.
Collapse
Affiliation(s)
- Samarwadee Plianwong
- Faculty of Pharmaceutical Sciences, Burapha University, Thailand; Pharmaceutical Innovations of Natural Products Unit (PhInNat), Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Thanchanok Sirirak
- Faculty of Pharmaceutical Sciences, Burapha University, Thailand; The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Products for Drug Discovery, Burapha University, 169 Long Had Bangsaen Road, Chonburi 20131, Thailand.
| |
Collapse
|
65
|
Hossen MT, Kundu CK, Pranto BMRR, Rahi MS, Chanda R, Mollick S, Siddique AB, Begum HA. Synthesis, characterization, and cytotoxicity studies of nanocellulose extracted from okra ( Abelmoschus Esculentus) fiber. Heliyon 2024; 10:e25270. [PMID: 38333876 PMCID: PMC10850511 DOI: 10.1016/j.heliyon.2024.e25270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Nanocellulose, especially originating from a natural source, has already shown immense potential to be considered in various fields, namely packaging, papermaking, composites, biomedical engineering, flame retardant, and thermal insulating materials, etc. due to its environmental friendliness and novel functionalities. Thus, a thorough characterization of nanocellulose is a hot research topic of research communities in a view to judge its suitability to be used in a specific area. In this work, a kind of green and environment-friendly nanocellulose was successfully prepared from okra fiber through a series of multi-step chemical treatments, specifically, scouring, alkali treatment, sodium chlorite bleaching, and sulfuric acid hydrolysis. Several characterization techniques were adopted to understand the morphology, structure, thermal behavior, crystallinity, and toxicological effects of prepared nanocellulose. Obtained data revealed the formation of rod-shaped nanocellulose and compared to raw okra fiber, their size distributions were significantly smaller. X-ray diffraction (XRD) patterns displayed that compared to the crystalline region, the amorphous region in raw fiber is notably larger, and in obtained nanocellulose, the crystallinity index increased significantly. Moreover, variations in the Fourier transform infrared spectroscopy (FTIR) peaks depicted the successful removal of amorphous regions, namely, lignin and hemicelluloses from the surface of fiber. Thermostability of synthesized nanocellulose was confirmed by both Differential Scanning Calorimetry (DSC) analysis, and thermogravimetric analysis (TGA). Cytotoxicity assessment showed that the okra fiber-derived nanocellulose exhibited lower to moderate cellular toxicity in a dose-dependent manner where the LD50 value was 60.60 μg/ml.
Collapse
Affiliation(s)
- Md. Tanvir Hossen
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Chanchal Kumar Kundu
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - BM Riaz Rahman Pranto
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md. Sifat Rahi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rajesh Chanda
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Swaraz Mollick
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abu Bakr Siddique
- Department of Textile Engineering, BGMEA University of Fashion & Technology, Dhaka, 1230, Bangladesh
| | - Hosne Ara Begum
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| |
Collapse
|
66
|
Channab BE, El Idrissi A, Essamlali Y, Zahouily M. Nanocellulose: Structure, modification, biodegradation and applications in agriculture as slow/controlled release fertilizer, superabsorbent, and crop protection: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119928. [PMID: 38219662 DOI: 10.1016/j.jenvman.2023.119928] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
This review investigates the potential of nanocellulose in agriculture, encompassing its structure, synthesis, modification, and applications. Our investigation of the characteristics of nanocellulose includes a comprehensive classification of its structure. Various mechanical, chemical and enzymatic synthesis techniques are evaluated, each offering distinct possibilities. The central role of surface functionalization is thoroughly examined. In particular, we are evaluating the conventional production of nanocellulose, thus contributing to the novelty. This review is a pioneering effort to comprehensively explore the use of nanocellulose in slow and controlled release fertilizers, revolutionizing nutrient management and improving crop productivity with reduced environmental impact. Additionally, our work uniquely integrates diverse applications of nanocellulose in agriculture, ranging from slow-release fertilizers, superabsorbent cellulose hydrogels for drought stress mitigation, and long-lasting crop protection via nanocellulose-based seed coatings. The study ends by identifying challenges and unexplored opportunities in the use of nanocellulose in agriculture. This review makes an innovative contribution by being the first comprehensive study to examine the multiple applications of nanocellulose in agriculture, including slow-release and controlled-release fertilizers.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco
| | - Younes Essamlali
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
67
|
Sknepnek A, Filipović S, Pavlović VB, Mirković N, Miletić D, Gržetić J, Mirković M. Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO 2 Polymer-Ceramic Composite Material. Polymers (Basel) 2024; 16:470. [PMID: 38399848 PMCID: PMC10892185 DOI: 10.3390/polym16040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Bacterial cellulose (BC) is a highly pure polysaccharide biopolymer that can be produced by various bacterial genera. Even though BC lacks functional properties, its porosity, three-dimensional network, and high specific surface area make it a suitable carrier for functional composite materials. In the present study, BC-producing bacteria were isolated from kombucha beverage and identified using a molecular method. Two sets of the BC hydrogels were produced in static conditions after four and seven days. Afterwards, two different synthesis pathways were applied for BC functionalization. The first method implied the incorporation of previously synthesized HAp/TiO2 nanocomposite using an immersion technique, while the second method included the functionalization of BC during the synthesis of HAp/TiO2 nanocomposite in the reaction mixture. The primary goal was to find the best method to obtain the functionalized material. Physicochemical and microstructural properties were analyzed by SEM, EDS, FTIR, and XRD methods. Further properties were examined by tensile test and thermogravimetric analysis, and antimicrobial activity was assessed by a total plate count assay. The results showed that HAp/TiO2 was successfully incorporated into the produced BC hydrogels using both methods. The applied methods of incorporation influenced the differences in morphology, phase distribution, mechanical and thermal properties, and antimicrobial activity against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Proteus mirabilis (ATCC 12453), and Candida albicans (ATCC 10231). Composite material can be recommended for further development and application in environments that are suitable for diseases spreading.
Collapse
Affiliation(s)
- Aleksandra Sknepnek
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.B.P.); (N.M.); (D.M.)
| | - Suzana Filipović
- Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | - Vladimir B. Pavlović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.B.P.); (N.M.); (D.M.)
| | - Nemanja Mirković
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.B.P.); (N.M.); (D.M.)
| | - Dunja Miletić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.B.P.); (N.M.); (D.M.)
| | - Jelena Gržetić
- Department for Materials and Protection, Military Technical Institute, Ratka Resanovića 1, 11030 Belgrade, Serbia;
| | - Miljana Mirković
- Department of Materials, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12—14, 11351 Belgrade, Serbia;
| |
Collapse
|
68
|
Khosravi F, Mohammadi S, Kosari-Nasab M, Asgharian P. The impact of microcrystalline and nanocrystalline cellulose on the antioxidant phenolic compounds level of the cultured Artemisia absinthium. Sci Rep 2024; 14:2692. [PMID: 38302508 PMCID: PMC10834404 DOI: 10.1038/s41598-023-50772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/25/2023] [Indexed: 02/03/2024] Open
Abstract
Artemisia absinthium has long been used traditionally as an anti-microbial and antioxidant agent. Various biologically active secondary metabolites, including phenolic compounds such as gallic acid and p-coumaric acid, have been reported from the species. In addition, growing the plants under in vitro conditions enriched with elicitors is a cost-effective approach to enhance secondary metabolite production. This paper examined microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) effects on morphological characteristics, phenolic compounds, antioxidant activity, and volatile oil content of A. absinthium. The treated shoots with various concentrations of MCC and NCC were subjected to spectrophotometric, GC-MS, and LC-MS analysis. FESEM-EDX, TEM, XRD, and DLS methods were applied to characterize MCC and NCC properties. Morphological findings revealed that the stem length, dry, and fresh weights were improved significantly (P ≤ 0.05) under several MCC and NCC concentrations. Some treatments enhanced gallic and p-coumaric acid levels in the plant. Although 1.5 g/L of MCC treatment showed the highest antioxidant activity, all NCC treatments reduced the antioxidant effect. The findings suggest that both MCC and NCC, at optimized concentrations, could be exploited as elicitors to improve the secondary metabolite production and morphological properties.
Collapse
Affiliation(s)
- Faezeh Khosravi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Mohammadi
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Kosari-Nasab
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
69
|
Garcia KR, Beck RCR, Brandalise RN, dos Santos V, Koester LS. Nanocellulose, the Green Biopolymer Trending in Pharmaceuticals: A Patent Review. Pharmaceutics 2024; 16:145. [PMID: 38276515 PMCID: PMC10819157 DOI: 10.3390/pharmaceutics16010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The use of nanocellulose in pharmaceutics is a trend that has emerged in recent years. Its inherently good mechanical properties, compared to different materials, such as its high tensile strength, high elastic modulus and high porosity, as well as its renewability and biodegradability are driving nanocellulose's industrial use and innovations. In this sense, this study aims to conduct a search of patents from 2011 to 2023, involving applications of nanocellulose in pharmaceuticals. A patent search was carried out, employing three different patent databases: Patentscope from World Intellectual Property Organization (WIPO); Espacenet; and LENS.ORG. Patents were separated into two main groups, (i) nanocellulose (NC) comprising all its variations and (ii) bacterial nanocellulose (BNC), and classified into five major areas, according to their application. A total of 215 documents was retrieved, of which 179 were referred to the NC group and 36 to the BNC group. The NC group depicted 49.7%, 15.6%, 16.2%, 8.9% and 9.5% of patents as belonging to design and manufacturing, cell culture systems, drug delivery, wound healing and tissue engineering clusters, respectively. The BNC group classified 44.5% of patents as design and manufacturing and 30.6% as drug delivery, as well as 5.6% and 19.4% of patents as wound healing and tissue engineering, respectively. In conclusion, this work compiled and classified patents addressing exclusively the use of nanocellulose in pharmaceuticals, providing information on its current status and trending advancements, considering environmental responsibility and sustainability in materials and products development for a greener upcoming future.
Collapse
Affiliation(s)
- Keth Ribeiro Garcia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil; (K.R.G.); (R.C.R.B.)
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil; (K.R.G.); (R.C.R.B.)
| | - Rosmary Nichele Brandalise
- Programa de Pós-Graduação em Engenharia de Processos e Tecnologias, Universidade de Caxias do Sul (UCS), Caxias do Sul 95070-560, Brazil; (R.N.B.); (V.d.S.)
| | - Venina dos Santos
- Programa de Pós-Graduação em Engenharia de Processos e Tecnologias, Universidade de Caxias do Sul (UCS), Caxias do Sul 95070-560, Brazil; (R.N.B.); (V.d.S.)
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil; (K.R.G.); (R.C.R.B.)
| |
Collapse
|
70
|
Kim M, Doh H. Upcycling Food By-products: Characteristics and Applications of Nanocellulose. Chem Asian J 2024:e202301068. [PMID: 38246883 DOI: 10.1002/asia.202301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Rising global food prices and the increasing prevalence of food insecurity highlight the imprudence of food waste and the inefficiencies of the current food system. Upcycling food by-products holds significant potential for mitigating food loss and waste within the food supply chain. Food by-products can be utilized to extract nanocellulose, a material that has obtained substantial attention recently due to its renewability, biocompatibility, bioavailability, and a multitude of remarkable properties. Cellulose nanomaterials have been the subject of extensive research and have shown promise across a wide array of applications, including the food industry. Notably, nanocellulose possesses unique attributes such as a surface area, aspect ratio, rheological behavior, water absorption capabilities, crystallinity, surface modification, as well as low possibilities of cytotoxicity and genotoxicity. These qualities make nanocellulose suitable for diverse applications spanning the realms of food production, biomedicine, packaging, and beyond. This review aims to provide an overview of the outcomes and potential applications of cellulose nanomaterials derived from food by-products. Nanocellulose can be produced through both top-down and bottom-up approaches, yielding various types of nanocellulose. Each of these variants possesses distinctive characteristics that have the potential to significantly enhance multiple sectors within the commercial market.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
- Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea, 03710
| | - Hansol Doh
- Department of Food Science and Biotechnology, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
- Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea, 03710
| |
Collapse
|
71
|
Guivier M, Chevigny C, Domenek S, Casalinho J, Perré P, Almeida G. Water vapor transport properties of bio-based multilayer materials determined by original and complementary methods. Sci Rep 2024; 14:50. [PMID: 38168534 PMCID: PMC10761724 DOI: 10.1038/s41598-023-50298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
To enhance PLA gas barrier properties, multilayer designs with highly polar barrier layers, such as nanocelluloses, have shown promising results. However, the properties of these polar layers change with humidity. As a result, we investigated water transport phenomena in PLA films coated with nanometric layers of chitosan and nanocelluloses, utilizing a combination of techniques including dynamic vapor sorption (DVS) and long-term water vapor adsorption-diffusion experiments (back-face measurements) to understand the influence of each layer on the behavior of multilayer films. Surprisingly, nanometric coatings impacted PLA water vapor transport. Chitosan/nanocelluloses layers, representing less than 1 wt.% of the multilayer film, increased the water vapor uptake of the film by 14.6%. The nanometric chitosan coating appeared to have localized effects on PLA structure. Moreover, nanocelluloses coatings displayed varying impacts on sample properties depending on their interactions (hydrogen, ionic bonds) with chitosan. The negatively charged CNF TEMPO coating formed a dense network that demonstrated higher resistance to water sorption and diffusion compared to CNF and CNC coatings. This work also highlights the limitations of conventional water vapor permeability measurements, especially when dealing with materials containing ultrathin nanocelluloses layers. It shows the necessity of considering the synergistic effects between layers to accurately evaluate the transport properties.
Collapse
Affiliation(s)
- Manon Guivier
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Chloé Chevigny
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Sandra Domenek
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Joel Casalinho
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Patrick Perré
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
- CentraleSupélec, LGPM, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
| | - Giana Almeida
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France.
| |
Collapse
|
72
|
Cañas-Gutiérrez A, Gómez Hoyos C, Velásquez-Cock J, Gañán P, Triana O, Cogollo-Flórez J, Romero-Sáez M, Correa-Hincapié N, Zuluaga R. Health and toxicological effects of nanocellulose when used as a food ingredient: A review. Carbohydr Polym 2024; 323:121382. [PMID: 37940279 DOI: 10.1016/j.carbpol.2023.121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 11/10/2023]
Abstract
The use of nanocellulose (NC) has increased significantly in the food industry, as subtypes such as cellulose nanofibrils (CNF) or bacterial cellulose (BC) have been demonstrated to be a source of insoluble fiber with important benefits for human health. Despite these advantages, and due to its nanoscale size, NC must be assessed from a safety perspective that considers its exposure, fate, and biological effects in order to help more accurately estimate its potential hazards. The exposure routes of humans to NC include (i) ingestion during consumption of foods that contain cellulose as a food ingredient or (ii) contact of food with cellulose-containing materials, such as its packaging. That is why it is important to understand the potentially toxic effects that nanomaterials can have on human health, understanding that the different types of NC behave differently in terms of their ingestion, absorption, distribution, metabolism, and excretion. By analysing both in vitro and in vivo studies, the purpose of this paper is to present the most recent findings on the different types of NC and their safety when used in food. In addition, it provides an overview of relevant studies into NC and its health benefits when used as a food additive.
Collapse
Affiliation(s)
- A Cañas-Gutiérrez
- Departamento de Calidad y Producción, Instituto Tecnológico Metropolitano, Calle 73 No. 76ª - 354, Medellín, Colombia; Facultad de Ingeniería Textil, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia.
| | - C Gómez Hoyos
- Facultad de Ingeniería Textil, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia
| | - J Velásquez-Cock
- Facultad de Ingeniería Textil, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia
| | - P Gañán
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia
| | - O Triana
- Facultad de Biología, Universidad de Antioquia, Calle 67 No. 53-108, Medellín, Colombia
| | - J Cogollo-Flórez
- Departamento de Calidad y Producción, Instituto Tecnológico Metropolitano, Calle 73 No. 76ª - 354, Medellín, Colombia
| | - M Romero-Sáez
- Departamento de Calidad y Producción, Instituto Tecnológico Metropolitano, Calle 73 No. 76ª - 354, Medellín, Colombia; Grupo Química Básica, Aplicada y Ambiente - Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Calle 73 No. 76ª - 354, Medellín, Colombia
| | - N Correa-Hincapié
- Departamento de Calidad y Producción, Instituto Tecnológico Metropolitano, Calle 73 No. 76ª - 354, Medellín, Colombia
| | - R Zuluaga
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia
| |
Collapse
|
73
|
Goswami R, Singh S, Narasimhappa P, Ramamurthy PC, Mishra A, Mishra PK, Joshi HC, Pant G, Singh J, Kumar G, Khan NA, Yousefi M. Nanocellulose: A comprehensive review investigating its potential as an innovative material for water remediation. Int J Biol Macromol 2024; 254:127465. [PMID: 37866583 DOI: 10.1016/j.ijbiomac.2023.127465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Rapid growth in industrialization sectors, the wastewater treatment plants become exhausted and potentially not able to give desirable discharge standards. Many industries discharge the untreated effluent into the water bodies which affects the aquatic diversity and human health. The effective disposal of industrial effluents thus has been an imperative requirement. For decades nanocellulose based materials gained immense attraction towards application in wastewater remediation and emerged out as a new biobased nanomaterial. It is light weighted, cost effective, mechanically strong and easily available. Large surface area, versatile surface functionality, biodegradability, high aspect ratio etc., make them suitable candidate in this field. Majorly cellulose based nanomaterials are used in the form of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), or bacterial nanocellulose (BNC). This review specifically describes about a variety of extraction methods to produced nanocellulose and also discusses the modification of nanocellulose by adding functionalities in its surface chemistry. We majorly focus on the utilization of nanocellulose based materials in water remediation for the removal of different contaminants such as dyes, heavy metals, oil, microbial colony etc. This review mainly emphasizes in ray of hope towards nanocellulose materials to achieve more advancement in the water remediation fields.
Collapse
Affiliation(s)
- Rekha Goswami
- Department of Environmental Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru 560012, India
| | - Pavithra Narasimhappa
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru 560012, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru 560012, India
| | - Abhilasha Mishra
- Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Pawan Kumar Mishra
- Department of Computer Science and Engineering, Graphic Era (deemed to be) University, Dehradun, Uttarakhand, India
| | - Harish Chandra Joshi
- Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Gaurav Pant
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248007, India.
| | - Joginder Singh
- Department of Botany, Nagaland University, HQRS: Lumami, 798 627, Zunheboto, Nagaland, India
| | - Gaurav Kumar
- Department of Microbiology, Lovely professional University, Phagwara, Punjab 144411, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
74
|
Korábková E, Kašpárková V, Vašíček O, Víchová Z, Káčerová S, Valášková K, Urbánková L, Vícha J, Münster L, Skopalová K, Humpolíček P. Pickering emulsions as an effective route for the preparation of bioactive composites: A study of nanocellulose/polyaniline particles with immunomodulatory effect. Carbohydr Polym 2024; 323:121429. [PMID: 37940298 DOI: 10.1016/j.carbpol.2023.121429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Several studies have reported on application of cellulose particles for stabilizing Pickering emulsions (PE). Here we employ an original approach that involves using these particles as a part of advanced composite colloids made of conducting polymer polyaniline (PANI) and cellulose nanocrystals (CNC) or nanofibrils (CNF). PANI/cellulose particles were prepared using oxidative polymerization of aniline in situ in the presence of CNC or CNF. The type and amount of celluloses (CNC vs CNF) and concentration of precursors (aniline monomer and oxidant) used in the reaction determined properties of the colloidal particles, such as size, morphology and content of PANI. The particles demonstrated intriguing biological characteristics, including no cytotoxicity, antibacterial activity against Staphylococcus aureus and Escherichia coli, antioxidant activity and related immunomodulatory activity. For the first time, such composites were used to successfully stabilize oil-in-water PE with undecane or capric/caprylic triglyceride oils. The properties of the emulsions were determined by the PANI/cellulose particles and oil used. The key finding of the study is the demonstrated ability of PANI/cellulose particles to stabilize PE, as well as the excellent antioxidant activity and ROS scavenging action originating from PANI presence, indicating potential of such systems for use in biomedicine, particularly for wound healing.
Collapse
Affiliation(s)
- Eva Korábková
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Věra Kašpárková
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Zdenka Víchová
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Simona Káčerová
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Kristýna Valášková
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Lucie Urbánková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Jan Vícha
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Lukáš Münster
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Kateřina Skopalová
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic.
| |
Collapse
|
75
|
Arman S, Hadavi M, Rezvani-Noghani A, Bakhtparvar A, Fotouhi M, Farhang A, Mokaberi P, Taheri R, Chamani J. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo-transferrin adsorption and digestion behaviours. LUMINESCENCE 2024; 39:e4634. [PMID: 38286605 DOI: 10.1002/bio.4634] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/28/2023] [Accepted: 11/04/2023] [Indexed: 01/31/2024]
Abstract
In this study, cellulose nanocrystals (CNCs) were synthesized from celery stalks to be used as the platform for quercetin delivery. Additionally, CNCs and CNCs-quercetin were characterized using the results of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential, while their interactions with human holo-transferrin (HTF) were also investigated. We examined their interaction under physiological conditions through the exertion of fluorescence, resonance light scattering, synchronized fluorescence spectroscopy, circular dichroism, three-dimensional fluorescence spectroscopy, and fluorescence resonance energy transfer techniques. The data from SEM and TEM exhibited the spherical shape of CNCs and CNCs-quercetin and also, a decrease was detected in the size of quercetin-loaded CNCs from 676 to 473 nm that indicated the intensified water solubility of quercetin. The success of cellulose acid hydrolysis was confirmed based on the XRD results. Apparently, the crystalline index of CNCs-quercetin was reduced by the interaction of CNCs with quercetin, which also resulted in the appearance of functional groups, as shown by FTIR. The interaction of CNCs-quercetin with HTF was also demonstrated by the induced quenching in the intensity of HTF fluorescence emission and Stern-Volmer data represent the occurrence of static quenching. Overall, the effectiveness of CNCs as quercetin vehicles suggests its potential suitability for dietary supplements and pharmaceutical products.
Collapse
Affiliation(s)
- Samaneh Arman
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marzieh Hadavi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Anashid Bakhtparvar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Melika Fotouhi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Farhang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Parisa Mokaberi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Taheri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
76
|
Cherian RM, Varghese RT, Antony T, Malhotra A, Kargarzadeh H, Chauhan SR, Chauhan A, Chirayil CJ, Thomas S. Non-cytotoxic, highly functionalized cellulose nanocrystals with high crystallinity and thermal stability derived from a novel agromass of Elettaria cardamomum, using a soft and benign mild oxalic acid hydrolysis. Int J Biol Macromol 2023; 253:126571. [PMID: 37648134 DOI: 10.1016/j.ijbiomac.2023.126571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Non-cytotoxic, highly crystalline, and functionalized, thermally stable cellulose nanocrystals are extracted from the stems of Elettaria cardamom, a novel underutilised agromass, by employing a neat green, mild oxalic acid hydrolysis. The protocol involves a chemo-mechanical strategy of coupling hydrolysis with steam explosion and homogenization. The obtained CNC showed a crystallinity index of 81.51 %, an aspect ratio of 17.80 ± 1.03 and a high degradation temperature of about 339.07 °C. The extraction procedure imparted a high negative surface functionalization with a zeta potential value of -34.244 ± 0.496 mV and a polydispersity of 16.5 %. The CNC had no antibacterial activity, according to non-cytotoxic experiments conducted on four bacterial strains. This supports the notion of "One Health" in the context of AMR by demonstrating the safety of antibiotic resistance due to consistent exposure upon environmental disposal. The as-extracted nanocellulose crystals can be a potential candidate for commercial application in wide and diversified disciplines like food packaging, anti-infective surfaces for medical devices, biosensors, bioelectronics etc.
Collapse
Affiliation(s)
- Reeba Mary Cherian
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Rini Thresia Varghese
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Tijo Antony
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemistry, Pavanatma College, Murickassery, Idukki, Kerala 685604, India
| | - Akshit Malhotra
- Department of Microbiology, University of Delhi- South campus, Delhi 110021, India
| | - Hanieh Kargarzadeh
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Suchitra Rajput Chauhan
- Centre for Advanced Materials and Devices (CAMD), School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurgaon, Haryana 122413, India
| | - Ashwini Chauhan
- Department of Microbiology, University of Delhi- South campus, Delhi 110021, India
| | | | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box. 17011, Doornfontein, 2028 Johannesburg, South Africa.
| |
Collapse
|
77
|
Mahur BK, Ahuja A, Singh S, Maji PK, Rastogi VK. Different nanocellulose morphologies (cellulose nanofibers, nanocrystals and nanospheres) extracted from Sunn hemp (Crotalaria Juncea). Int J Biol Macromol 2023; 253:126657. [PMID: 37660858 DOI: 10.1016/j.ijbiomac.2023.126657] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Nanocellulose of different morphologies was extracted from Sunn Hemp (Crotalaria Juncea) using acid hydrolysis. The work focused on two objectives: first, to valorize the Sunn Hemp fibers for nanocellulose (NC) production, and second, to study the effects of acid concentration on different morphologies of NC and their properties. The study extracted nanocellulose at five different concentrations of H2SO4: 16 %, 32 %, 48 %, 64 %, and 72 %. Obtained nanocellulose was characterized by Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and Thermogravimetric Analysis (TGA). AFM and FE-SEM confirmed the production of three different morphologies of nanocellulose. The NC-32 had a web-like structure typically observed for cellulose nanofibrils (CNF), whereas NC-48 and NC-64 were observed as cellulose nanocrystals (CNC) with rod-like and needle-like shapes, respectively, and NC-72 displayed spherical particles termed cellulose nanospheres (CNS). The total crystallinity index of NC was calculated using FTIR, and a similar trend of crystallinity was also observed from XRD analysis. NC-32 was obtained with the highest yield of 94.83 %, followed by 91.40 % and 81.70 % for NC-48 and NC-64, respectively, whereas NC-72 yielded the lowest yield of 12.03 %. NC-72 had the highest thermal stability among other NC morphologies.
Collapse
Affiliation(s)
- Bhupender Kumar Mahur
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Arihant Ahuja
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shiva Singh
- Department of Polymer Science & Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, 247001, UP, India
| | - Pradip K Maji
- Department of Polymer Science & Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, 247001, UP, India
| | - Vibhore Kumar Rastogi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
78
|
Yang H, Zheng H, Duan Y, Xu T, Xie H, Du H, Si C. Nanocellulose-graphene composites: Preparation and applications in flexible electronics. Int J Biol Macromol 2023; 253:126903. [PMID: 37714239 DOI: 10.1016/j.ijbiomac.2023.126903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In recent years, the pursuit of high-performance nano-flexible electronic composites has led researchers to focus on nanocellulose-graphene composites. Nanocellulose has garnered widespread interest due to its exceptional properties and unique structure, such as renewability, biodegradability, and biocompatibility. However, nanocellulose materials are deficient in electrical conductivity, which limits their applications in flexible electronics. On the other hand, graphene boasts remarkable properties, including a high specific surface area, robust mechanical strength, and high electrical conductivity, making it a promising carbon-based nanomaterial. Consequently, research efforts have intensified in exploring the preparation of graphene-nanocellulose flexible electronic composites. Although there have been studies on the application of nanocellulose and graphene, there is still a lack of comprehensive information on the application of nanocellulose/graphene in flexible electronic composites. This review examines the recent developments in nanocellulose/graphene flexible electronic composites and their applications. In this review, the preparation of nanocellulose/graphene flexible electronic composites from three aspects: composite films, aerogels, and hydrogels are first introduced. Next, the recent applications of nanocellulose/graphene flexible electronic composites were summarized including sensors, supercapacitors, and electromagnetic shielding. Finally, the challenges and future directions in this emerging field was discussed.
Collapse
Affiliation(s)
- Hongbin Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongjun Zheng
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Yaxin Duan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hongxiang Xie
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
79
|
Larrañaga A, Bello-Álvarez C, Lizundia E. Cytotoxicity and Inflammatory Effects of Chitin Nanofibrils Isolated from Fungi. Biomacromolecules 2023; 24:5737-5748. [PMID: 37988418 PMCID: PMC10716858 DOI: 10.1021/acs.biomac.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Fungal nanochitin can assist the transition from the linear fossil-based economy to a circular biobased economy given its environmental benefits over conventional crustacean-nanochitin. Its real-world implementation requires carefully assessing its toxicity so that unwanted human health and environmental issues are avoided. Accordingly, the cytotoxicity and inflammatory effects of chitin nanofibrils (ChNFs) from white mushroom is assessed. ChNFs are few nanometers in diameter, with a 75.8% N-acetylation degree, a crystallinity of 59.1%, and present a 44:56 chitin/glucan weight ratio. Studies are conducted for aqueous colloidal ChNF dispersions (0-5 mg·mL-1) and free-standing films having physically entangled ChNFs. Aqueous dispersions of chitin nanocrystals (ChNCs) isolated via hydrochloric acid hydrolysis of α-chitin powder are also evaluated for comparison. Cytotoxicity studies conducted in human fibroblasts (MRC-5 cells) and murine brain microglia (BV-2 cells) reveal a comparatively safer behavior over related biobased nanomaterials. However, a strong inflammatory response was observed when BV-2 cells were cultured in the presence of colloidal ChNFs. These novel cytotoxicity and inflammatory studies shed light on the potential of fungal ChNFs for biomedical applications.
Collapse
Affiliation(s)
- Aitor Larrañaga
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao. University of the
Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain
| | - Carlos Bello-Álvarez
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao. University of the
Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain
| | - Erlantz Lizundia
- Life
Cycle Thinking Group, Department of Graphic Design and Engineering
Projects. University of the Basque Country
(UPV/EHU), Plaza Ingeniero
Torres Quevedo 1, 48013 Bilbao, Biscay, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano, Pl. 3 Parque
Científico UPV/EHU Barrio Sarriena, 48940 Leioa, Biscay, Spain
| |
Collapse
|
80
|
Nocca G, Arcovito A, Elkasabgy NA, Basha M, Giacon N, Mazzinelli E, Abdel-Maksoud MS, Kamel R. Cellulosic Textiles-An Appealing Trend for Different Pharmaceutical Applications. Pharmaceutics 2023; 15:2738. [PMID: 38140079 PMCID: PMC10747844 DOI: 10.3390/pharmaceutics15122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cellulose, the most abundant biopolymer in nature, is derived from various sources. The production of pharmaceutical textiles based on cellulose represents a growing sector. In medicated textiles, textile and pharmaceutical sciences are integrated to develop new healthcare approaches aiming to improve patient compliance. Through the possibility of cellulose functionalization, pharmaceutical textiles can broaden the applications of cellulose in the biomedical field. This narrative review aims to illustrate both the methods of extraction and preparation of cellulose fibers, with a particular focus on nanocellulose, and diverse pharmaceutical applications like tissue restoration and antimicrobial, antiviral, and wound healing applications. Additionally, the merging between fabricated cellulosic textiles with drugs, metal nanoparticles, and plant-derived and synthetic materials are also illustrated. Moreover, new emerging technologies and the use of smart medicated textiles (3D and 4D cellulosic textiles) are not far from those within the review scope. In each section, the review outlines some of the limitations in the use of cellulose textiles, indicating scientific research that provides significant contributions to overcome them. This review also points out the faced challenges and possible solutions in a trial to present an overview on all issues related to the use of cellulose for the production of pharmaceutical textiles.
Collapse
Affiliation(s)
- Giuseppina Nocca
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mona Basha
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt (R.K.)
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
| | - Elena Mazzinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
| | | | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt (R.K.)
| |
Collapse
|
81
|
Jovic TH, Nicholson T, Arora H, Nelson K, Doak SH, Whitaker IS. A comparative analysis of pulp-derived nanocelluloses for 3D bioprinting facial cartilages. Carbohydr Polym 2023; 321:121261. [PMID: 37739492 DOI: 10.1016/j.carbpol.2023.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 09/24/2023]
Abstract
Nanocelluloses have attracted significant interest in the field of bioprinting, with previous research outlining the value of nanocellulose fibrils and bacterial nanocelluloses for 3D bioprinting tissues such as cartilage. We have recently characterised three distinct structural formulations of pulp-derived nanocelluloses: fibrillar (NFC), crystalline (NCC) and blend (NCB), exhibiting variation in pore geometry and mechanical properties. In light of the characterisation of these three distinct entities, this study investigated whether these structural differences translated to differences in printability, chondrogenicity or biocompatibility for 3D bioprinting anatomical structures with human nasoseptal chondrocytes. Composite nanocellulose-alginate bioinks (75:25 v/v) of NFC, NCC and NCB were produced and tested for print resolution and fidelity. NFC offered superior print resolution whereas NCB demonstrated the best post-printing shape fidelity. Biologically, chondrogenicity was assessed using real time quantitative PCR, dimethylmethylene blue assays and histology. All biomaterials showed an increase in chondrogenic gene expression and extracellular matrix production over 21 days, but this was superior in the NCC bioink. Biocompatibility assessments revealed an increase in cell number and metabolism over 21 days in the NCC and NCB formulations. Nanocellulose augments printability and chondrogenicity of bioinks, of which the NCC and NCB formulations offer the best biological promise for bioprinting cartilage.
Collapse
Affiliation(s)
- Thomas H Jovic
- Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences 1, Swansea University, SA2 8PP, UK; Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, UK.
| | | | | | | | | | - Iain S Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences 1, Swansea University, SA2 8PP, UK; Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, UK
| |
Collapse
|
82
|
Malekpour K, Hazrati A, Khosrojerdi A, Roshangar L, Ahmadi M. An overview to nanocellulose clinical application: Biocompatibility and opportunities in disease treatment. Regen Ther 2023; 24:630-641. [PMID: 38034858 PMCID: PMC10682839 DOI: 10.1016/j.reth.2023.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Recently, the demand for organ transplantation has promptly increased due to the enhanced incidence of body organ failure, the increasing efficiency of transplantation, and the improvement in post-transplant outcomes. However, due to a lack of suitable organs for transplantation to fulfill current demand, significant organ shortage problems have emerged. Developing efficient technologies in combination with tissue engineering (TE) has opened new ways of producing engineered tissue substitutes. The use of natural nanoparticles (NPs) such as nanocellulose (NC) and nano-lignin should be used as suitable candidates in TE due to their desirable properties. Many studies have used these components to form scaffolds and three-dimensional (3D) cultures of cells derived from different tissues for tissue repair. Interestingly, these natural NPs can afford scaffolds a degree of control over their characteristics, such as modifying their mechanical strength and distributing bioactive compounds in a controlled manner. These bionanomaterials are produced from various sources and are highly compatible with human-derived cells as they are derived from natural components. In this review, we discuss some new studies in this field. This review summarizes the scaffolds based on NC, counting nanocrystalline cellulose and nanofibrillated cellulose. Also, the efficient approaches that can extract cellulose with high purity and increased safety are discussed. We concentrate on the most recent research on the use of NC-based scaffolds for the restoration, enhancement, or replacement of injured organs and tissues, such as cartilage, skin, arteries, brain, and bone. Finally, we suggest the experiments and promises of NC-based TE scaffolds.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
83
|
Oprică GM, Panaitescu DM, Lixandru BE, Uşurelu CD, Gabor AR, Nicolae CA, Fierascu RC, Frone AN. Plant-Derived Nanocellulose with Antibacterial Activity for Wound Healing Dressing. Pharmaceutics 2023; 15:2672. [PMID: 38140013 PMCID: PMC10747278 DOI: 10.3390/pharmaceutics15122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
The medical sector is one of the biggest consumers of single-use materials, and while the insurance of sterile media is non-negotiable, the environmental aspect is a chronic problem. Nanocellulose (NC) is one of the safest and most promising materials that can be used in medical applications due to its valuable properties like biocompatibility and biodegradability, along with its good mechanical properties and high water uptake capacity. However, NC has no bactericidal activity, which is a critical need for the effective prevention of infections in chronic diabetic wound dressing applications. Therefore, in this work, a natural product, propolis extract (PE), was used as an antibacterial agent, in different amounts, together with NC to obtain sponge-like structures (NC/PE). The scanning electron microscope (SEM) images showed well-impregnated cellulose fibers and a more compact structure with the addition of PE. According to the thermogravimetric analysis (TGA), the samples containing PE underwent thermal degradation before the unmodified NC due to the presence of volatile compounds in the extract. However, the peak degradation temperature in the first derivative thermogravimetric curves was higher for all the sponges containing PE when compared to the unmodified NC. The antibacterial efficacy of the samples was tested against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, as well as on two clinically resistant isolates. The samples completely inhibited the development of Staphylococcus aureus, and Pseudomonas aeruginosa was partially inhibited, while Escherichia coli was resistant to the PE action. Considering the physical and biological properties along with the environmental and economic benefits, the development of an NC/PE wound dressing seems promising.
Collapse
Affiliation(s)
- Gabriela Mădălina Oprică
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (G.M.O.); (C.D.U.); (A.R.G.); (C.-A.N.); (R.C.F.); (A.N.F.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. PolizuStreet, 011061 Bucharest, Romania
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (G.M.O.); (C.D.U.); (A.R.G.); (C.-A.N.); (R.C.F.); (A.N.F.)
| | - Brînduşa Elena Lixandru
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania;
| | - Catalina Diana Uşurelu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (G.M.O.); (C.D.U.); (A.R.G.); (C.-A.N.); (R.C.F.); (A.N.F.)
- Department of Bioresources and Polymer Science, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. PolizuStreet, 011061 Bucharest, Romania
| | - Augusta Raluca Gabor
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (G.M.O.); (C.D.U.); (A.R.G.); (C.-A.N.); (R.C.F.); (A.N.F.)
| | - Cristian-Andi Nicolae
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (G.M.O.); (C.D.U.); (A.R.G.); (C.-A.N.); (R.C.F.); (A.N.F.)
| | - Radu Claudiu Fierascu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (G.M.O.); (C.D.U.); (A.R.G.); (C.-A.N.); (R.C.F.); (A.N.F.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. PolizuStreet, 011061 Bucharest, Romania
| | - Adriana Nicoleta Frone
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (G.M.O.); (C.D.U.); (A.R.G.); (C.-A.N.); (R.C.F.); (A.N.F.)
| |
Collapse
|
84
|
Dong N, Qin Z, Li W, Xiang N, Luo X, Ji H, Wang Z, Xie X. Temperature-Sensitive Aerogel Using Bagasse Carboxylated Cellulose Nanocrystals/N-Isopropyl Acrylamide for Controlled Release of Pesticides. Polymers (Basel) 2023; 15:4451. [PMID: 38006175 PMCID: PMC10674357 DOI: 10.3390/polym15224451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Temperature-sensitive carboxylated cellulose nanocrystals/N-isopropyl acrylamide aerogels (CCNC-NIPAMs) were developed as novel pesticide-controlled release formulas. Ammonium persulfate (APS) one-step oxidation was used to prepare bagasse-based CCNCs, and then the monomer N-isopropyl acrylamide (NIPAM) was successfully introduced and constructed into the temperature-sensitive CCNC-NIPAMs through polymerization. The results of the zeta potential measurement and Fourier infrared transform spectrum (FTIR) show that the average particle size of the CCNCs was 120.9 nm, the average surface potential of the CCNCs was -34.8 mV, and the crystallinity was 62.8%. The primary hydroxyl group on the surface of the CCNCs was replaced by the carboxyl group during oxidation. The morphology and structure of CCNC-NIPAMs were characterized via electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), compression performance, porosity analysis, and thermogravimetric (TG) analysis. The results demonstrate that CCNC-NIPAM has a high porosity and low density, as well as good thermal stability, which is conducive to loading and releasing pesticides. In the swelling, drug loading, and controlled release process, the CCNC-NIPAM exhibited significant temperature sensitivity. Under the same NIPAM reaction amount, the equilibrium swelling rate of the CCNC-NIPAM first increased and then decreased with increasing temperature, and the cumulative drug release ratio of the CCNC-NIPAM at 39 °C was significantly higher than that at 25 °C. The loading efficiency of the CCNC-NIPAM on the model drug thiamethoxam (TXM) was up to 23 wt%, and the first-order model and Korsmyer-Peppas model could be well-fitted in the drug release curves. The study provides a new method for the effective utilization of biomass and pesticides.
Collapse
Affiliation(s)
- Ni Dong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; (N.D.); (Z.Q.); (W.L.); (N.X.); (X.L.); (H.J.)
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; (N.D.); (Z.Q.); (W.L.); (N.X.); (X.L.); (H.J.)
| | - Wang Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; (N.D.); (Z.Q.); (W.L.); (N.X.); (X.L.); (H.J.)
| | - Nian Xiang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; (N.D.); (Z.Q.); (W.L.); (N.X.); (X.L.); (H.J.)
| | - Xuan Luo
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; (N.D.); (Z.Q.); (W.L.); (N.X.); (X.L.); (H.J.)
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; (N.D.); (Z.Q.); (W.L.); (N.X.); (X.L.); (H.J.)
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiwei Wang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China;
| | - Xinling Xie
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; (N.D.); (Z.Q.); (W.L.); (N.X.); (X.L.); (H.J.)
| |
Collapse
|
85
|
Zhang FW, Trackey PD, Verma V, Mandes GT, Calabro RL, Presot AW, Tsay CK, Lawton TJ, Zammit AS, Tang EM, Nguyen AQ, Munz KV, Nagelli EA, Bartolucci SF, Maurer JA, Burpo FJ. Cellulose Nanofiber-Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes. Gels 2023; 9:893. [PMID: 37998983 PMCID: PMC10671317 DOI: 10.3390/gels9110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Tunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present a materials approach to address this need. To demonstrate a solution-based synthesis method to develop cobalt and cobalt oxide aerogels for high surface area multifunctional energy storage electrodes, carboxymethyl cellulose nanofibers (CNF) and alginate biopolymers were mixed to form hydrogels to serve as biotemplates for cobalt nanoparticle formation via the chemical reduction of cobalt salt solutions. The CNF-alginate mixture forms a physically entangled, interpenetrating hydrogel, combining the properties of both biopolymers for monolith shape and pore size control and abundant carboxyl groups that bind metal ions to facilitate biotemplating. The CNF-alginate hydrogels were equilibrated in CaCl2 and CoCl2 salt solutions for hydrogel ionic crosslinking and the prepositioning of transition metal ions, respectively. The salt equilibrated hydrogels were chemically reduced with NaBH4, rinsed, solvent exchanged in ethanol, and supercritically dried with CO2 to form aerogels with a specific surface area of 228 m2/g. The resulting aerogels were pyrolyzed in N2 gas and thermally annealed in air to form Co and Co3O4 porous composite electrodes, respectively. The multifunctional composite aerogel's mechanical, magnetic, and electrochemical functionality was characterized. The coercivity and specific magnetic saturation of the pyrolyzed aerogels were 312 Oe and 114 emu/gCo, respectively. The elastic moduli of the supercritically dried, pyrolyzed, and thermally oxidized aerogels were 0.58, 1.1, and 14.3 MPa, respectively. The electrochemical testing of the pyrolyzed and thermally oxidized aerogels in 1 M KOH resulted in specific capacitances of 650 F/g and 349 F/g, respectively. The rapidly synthesized, low-cost, hydrogel-based synthesis for tunable transition metal multifunctional composite aerogels is envisioned for a wide range of porous metal electrodes to address energy storage, catalysis, and sensing applications.
Collapse
Affiliation(s)
- Felita W. Zhang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Paul D. Trackey
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Vani Verma
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Galen T. Mandes
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Rosemary L. Calabro
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - Anthony W. Presot
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Claire K. Tsay
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Timothy J. Lawton
- U.S. Army Combat Capabilities Development Command-Soldier Center, Natick, MA 01760, USA;
| | - Alexa S. Zammit
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Edward M. Tang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Andrew Q. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Kennedy V. Munz
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Enoch A. Nagelli
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- Photonics Research Center, United States Military Academy, West Point, NY 10996, USA
| | - Stephen F. Bartolucci
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - Joshua A. Maurer
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - F. John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- Photonics Research Center, United States Military Academy, West Point, NY 10996, USA
| |
Collapse
|
86
|
Mirzaee N, Nikzad M, Battisti R, Araghi A. Isolation of cellulose nanofibers from rapeseed straw via chlorine-free purification method and its application as reinforcing agent in carboxymethyl cellulose-based films. Int J Biol Macromol 2023; 251:126405. [PMID: 37597636 DOI: 10.1016/j.ijbiomac.2023.126405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
In this study, cellulose nanofibers (CNFs) were successfully isolated from rapeseed straw (RS) whose valorization has been rarely investigated to date. A combined bleaching method without chlorine was applied for the purification of cellulose fibers, previously unexplored for RS. Chemical composition analysis and Fourier-transform infrared spectroscopy (FTIR) indicated that the purification method eliminated hemicellulose and reduced lignin content from 24.4 % to 1.8 %. The isolation of CNFs was performed using sulfuric acid hydrolysis under different acid concentrations (55 and 60 % v/v) and hydrolysis times (15, 30, and 45 min). The isolated CNFs were characterized by FTIR, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The formation of CNFs was confirmed by a significant increase in crystallinity index from 46.45 % of RS to >79.41 % of CNFs, depending on acid concentration and isolation duration. Carboxymethyl cellulose (CMC) films with different contents of CNFs were prepared by casting method. The mechanical properties and cytotoxicity of the prepared films were investigated. The CNFs obtained from RS via a chlorine-free purification method showed promising results for their usage as reinforcement in CMC matrix and film fabrication for various applications such as transdermal medicine and food packaging.
Collapse
Affiliation(s)
- Narges Mirzaee
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Maryam Nikzad
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Rodrigo Battisti
- Federal Institute of Education, Science and Technology of Santa Catarina, Criciúma Campus, 88813-600, Brazil
| | - Atefeh Araghi
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
87
|
Rashid AB, Hoque ME, Kabir N, Rifat FF, Ishrak H, Alqahtani A, Chowdhury MEH. Synthesis, Properties, Applications, and Future Prospective of Cellulose Nanocrystals. Polymers (Basel) 2023; 15:4070. [PMID: 37896314 PMCID: PMC10609962 DOI: 10.3390/polym15204070] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The exploration of nanocellulose has been aided by rapid nanotechnology and material science breakthroughs, resulting in their emergence as desired biomaterials. Nanocellulose has been thoroughly studied in various disciplines, including renewable energy, electronics, environment, food production, biomedicine, healthcare, and so on. Cellulose nanocrystal (CNC) is a part of the organic crystallization of macromolecular compounds found in bacteria's capsular polysaccharides and plant fibers. Owing to numerous reactive chemical groups on its surface, physical adsorption, surface grating, and chemical vapor deposition can all be used to increase its performance, which is the key reason for its wide range of applications. Cellulose nanocrystals (CNCs) have much potential as suitable matrices and advanced materials, and they have been utilized so far, both in terms of modifying and inventing uses for them. This work reviews CNC's synthesis, properties and various industrial applications. This review has also discussed the widespread applications of CNC as sensor, acoustic insulator, and fire retardant material.
Collapse
Affiliation(s)
- Adib Bin Rashid
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Nahiyan Kabir
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Fahim Ferdin Rifat
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Hasin Ishrak
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Abdulrahman Alqahtani
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia
| | | |
Collapse
|
88
|
Las-Casas B, Dias IKR, Yupanqui-Mendoza SL, Pereira B, Costa GR, Rojas OJ, Arantes V. The emergence of hybrid cellulose nanomaterials as promising biomaterials. Int J Biol Macromol 2023; 250:126007. [PMID: 37524277 DOI: 10.1016/j.ijbiomac.2023.126007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Cellulose nanomaterials (CNs) are promising green materials due to their unique properties as well as their environmental benefits. Among these materials, cellulose nanofibrils (CNFs) and nanocrystals (CNCs) are the most extensively researched types of CNs. While they share some fundamental properties like low density, biodegradability, biocompatibility, and low toxicity, they also possess unique differentiating characteristics such as morphology, rheology, aspect ratio, crystallinity, mechanical and optical properties. Therefore, numerous comparative studies have been conducted, and recently, various studies have reported the synergetic advantages resulting from combining CNF and CNC. In this review, we initiate by addressing the terminology used to describe combinations of these and other types of CNs, proposing "hybrid cellulose nanomaterials" (HCNs) as the standardized classifictation for these materials. Subsequently, we briefly cover aspects of properties-driven applications and the performance of CNs, from both an individual and comparative perspective. Next, we comprehensively examine the potential of HCN-based materials, highlighting their performance for various applications. In conclusion, HCNs have demonstraded remarkable success in diverse areas, such as food packaging, electronic devices, 3D printing, biomedical and other fields, resulting in materials with superior performance when compared to neat CNF or CNC. Therefore, HCNs exhibit great potential for the development of environmentally friendly materials with enhanced properties.
Collapse
Affiliation(s)
- Bruno Las-Casas
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Isabella K R Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Bárbara Pereira
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Guilherme R Costa
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil.
| |
Collapse
|
89
|
Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Current advances of nanocellulose application in biomedical field. Carbohydr Res 2023; 532:108899. [PMID: 37478689 DOI: 10.1016/j.carres.2023.108899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
Collapse
Affiliation(s)
- M Y Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Y L Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - M Y Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - C Y Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - W F Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
90
|
Wang H, Yin R, Chen X, Wu T, Bu Y, Yan H, Lin Q. Construction and Evaluation of Alginate Dialdehyde Grafted RGD Derivatives/Polyvinyl Alcohol/Cellulose Nanocrystals IPN Composite Hydrogels. Molecules 2023; 28:6692. [PMID: 37764467 PMCID: PMC10534451 DOI: 10.3390/molecules28186692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
To enhance the mechanical strength and cell adhesion of alginate hydrogel, making it satisfy the requirements of an ideal tissue engineering scaffold, the grafting of Arg-Gly-Asp (RGD) polypeptide sequence onto the alginate molecular chain was conducted by oxidation of sodium periodate and subsequent reduction amination of 2-methylpyridine borane complex (2-PBC) to synthesize alginate dialdehyde grafted RGD derivatives (ADA-RGD) with good cellular affinity. The interpenetrating network (IPN) composite hydrogels of alginate/polyvinyl alcohol/cellulose nanocrystals (ALG/PVA/CNCs) were fabricated through a physical mixture of ion cross-linking of sodium alginate (SA) with hydroxyapatite/D-glucono-δ-lactone (HAP/GDL), and physical cross-linking of polyvinyl alcohol (PVA) by a freezing/thawing method, using cellulose nanocrystals (CNCs) as the reinforcement agent. The effects of the addition of CNCs and different contents of PVA on the morphology, thermal stability, mechanical properties, swelling, biodegradability, and cell compatibility of the IPN composite hydrogels were investigated, and the effect of RGD grafting on the biological properties of the IPN composite hydrogels was also studied. The resultant IPN ALG/PVA/CNCs composite hydrogels exhibited good pore structure and regular 3D morphology, whose pore size and porosity could be regulated by adjusting PVA content and the addition of CNCs. By increasing the PVA content, the number of physical cross-linking points in PVA increased, resulting in greater stress support for the IPN composite hydrogels of ALG/PVA/CNCs and consequently improving their mechanical characteristics. The creation of the IPN ALG/PVA/CNCs composite hydrogels' physical cross-linking network through intramolecular or intermolecular hydrogen bonding led to improved thermal resistance and reduced swelling and biodegradation rate. Conversely, the ADA-RGD/PVA/CNCs IPN composite hydrogels exhibited a quicker degradation rate, attributed to the elimination of ADA-RGD by alkali. The results of the in vitro cytocompatibility showed that ALG/0.5PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels showed better proliferative activity in comparison with other composite hydrogels, while ALG/PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels displayed obvious proliferation effects, indicating that PVA, CNCs, and ADA-RGD with good biocompatibility were conducive to cell proliferation and differentiation for the IPN composite hydrogels.
Collapse
Affiliation(s)
- Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ruhong Yin
- Hainan Hongta Cigarette Co., Ltd., Haikou 571100, China;
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ting Wu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanan Bu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
91
|
Roberts EL, Abdollahi S, Oustadi F, Stephens ED, Badv M. Bacterial-Nanocellulose-Based Biointerfaces and Biomimetic Constructs for Blood-Contacting Medical Applications. ACS MATERIALS AU 2023; 3:418-441. [PMID: 38089096 PMCID: PMC10510515 DOI: 10.1021/acsmaterialsau.3c00021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 10/12/2024]
Abstract
Understanding the interaction between biomaterials and blood is critical in the design of novel biomaterials for use in biomedical applications. Depending on the application, biomaterials can be designed to promote hemostasis, slow or stop bleeding in an internal or external wound, or prevent thrombosis for use in permanent or temporary medical implants. Bacterial nanocellulose (BNC) is a natural, biocompatible biopolymer that has recently gained interest for its potential use in blood-contacting biomedical applications (e.g., artificial vascular grafts), due to its high porosity, shapeability, and tissue-like properties. To promote hemostasis, BNC has been modified through oxidation or functionalization with various peptides, proteins, polysaccharides, and minerals that interact with the coagulation cascade. For use as an artificial vascular graft or to promote vascularization, BNC has been extensively researched, with studies investigating different modification techniques to enhance endothelialization such as functionalizing with adhesion peptides or extracellular matrix (ECM) proteins as well as tuning the structural properties of BNC such as surface roughness, pore size, and fiber size. While BNC inherently exhibits comparable mechanical characteristics to endogenous blood vessels, these mechanical properties can be enhanced through chemical functionalization or through altering the fabrication method. In this review, we provide a comprehensive overview of the various modification techniques that have been implemented to enhance the suitability of BNC for blood-contacting biomedical applications and different testing techniques that can be applied to evaluate their performance. Initially, we focused on the modification techniques that have been applied to BNC for hemostatic applications. Subsequently, we outline the different methods used for the production of BNC-based artificial vascular grafts and to generate vasculature in tissue engineered constructs. This sequential organization enables a clear and concise discussion of the various modifications of BNC for different blood-contacting biomedical applications and highlights the diverse and versatile nature of BNC as a natural biomaterial.
Collapse
Affiliation(s)
- Erin L. Roberts
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Sorosh Abdollahi
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Fereshteh Oustadi
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Emma D. Stephens
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Maryam Badv
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
- Libin
Cardiovascular Institute, University of
Calgary, 3330 Hospital
Drive NW, Calgary, Alberta, Canada, T2N 4N1
| |
Collapse
|
92
|
Chibac-Scutaru AL, Coseri S. Advances in the use of cellulose-based proton exchange membranes in fuel cell technology: A review. Int J Biol Macromol 2023; 247:125810. [PMID: 37453630 DOI: 10.1016/j.ijbiomac.2023.125810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Fuel cells are electrochemical, ecologically friendly appliances that transform chemical energy into electricity in a clean, simple, and effective manner. With the advancement of technology in the field of computer science, electronic downsizing, and the ongoing need for mobility, the demand for portable energy sources such as fuel cells has considerably increased. The proton exchange membrane, which is designed to be a good conductor for protons while isolating electrons to move from the anode to the cathode, imprinting them an external circuit, and thus creating electricity, is at the heart of such an energy source. Perfluorosulfonic acid-based (NAFION) membranes, first introduced over 50 years ago, are still the state of the art in the field of fuel cell proton exchange membranes today. However, because of the numerous drawbacks connected with the usage of NAFION membranes, the scientific community has shifted its focus to producing new generation membranes based on natural materials, such as cellulose. Therefore, we believe that a review of the most recent studies on the use of cellulose as a material for proton exchange membranes in fuel cells may be very much appreciated by the scientific community.
Collapse
Affiliation(s)
- Andreea Laura Chibac-Scutaru
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487, Iasi, Romania.
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
93
|
O-chongpian P, Chaiwarit T, Jantanasakulwong K, Rachtanapun P, Worajittiphon P, Kantrong N, Jantrawut P. Surface-Modified Carboxylated Cellulose Nanofiber Hydrogels for Prolonged Release of Polyhexamethylene Biguanide Hydrochloride (PHMB) for Antimicrobial Applications. Polymers (Basel) 2023; 15:3572. [PMID: 37688198 PMCID: PMC10490332 DOI: 10.3390/polym15173572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The surface modification of cellulose nanofibers (CNFs) using a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/sodium bromide (NaBr)/sodium hypochlorite (NaClO) system was successful in improving their hydrophilicity. Following that, we fabricated hydrogels containing carboxylated cellulose nanofibers (c-CNFs) and loaded them with polyhexamethylene biguanide (PHMB) using a physical crosslinking method, aiming for efficient antimicrobial uses. The morphological and physicochemical properties of all hydrogel formulations were characterized, and the results revealed that the 7% c-CNFs-2 h loaded with PHMB formulation exhibited desirable characteristics such as regular shape, high porosity, good mechanical properties, suitable gel content, and a good maximum swelling degree. The successful integration of PHMB into the c-CNF matrix was confirmed by FTIR analysis. Furthermore, the 7% c-CNFs-2 h loaded with the PHMB formulation demonstrated PHMB contents exceeding 80% and exhibited a prolonged drug release pattern for up to 3 days. Moreover, this formulation displayed antibacterial activity against S. aureus and P. aeruginosa. In conclusion, the novel approach of c-CNF hydrogels loaded with PHMB through physical crosslinking shows promise as a potential system for prolonged drug release in topical drug delivery while also exhibiting excellent antibacterial activity.
Collapse
Affiliation(s)
- Pichapar O-chongpian
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.O.-c.); (T.C.)
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.O.-c.); (T.C.)
| | - Kittisak Jantanasakulwong
- Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (K.J.); (P.R.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (K.J.); (P.R.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.O.-c.); (T.C.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
94
|
Zaini HM, Saallah S, Roslan J, Sulaiman NS, Munsu E, Wahab NA, Pindi W. Banana biomass waste: A prospective nanocellulose source and its potential application in food industry - A review. Heliyon 2023; 9:e18734. [PMID: 37554779 PMCID: PMC10404743 DOI: 10.1016/j.heliyon.2023.e18734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Bananas are among the most produced and consumed fruit all over the world. However, a vast amount of banana biomass is generated because banana trees bear fruit only once in their lifetime. This massive amount of biomass waste is either disposed of in agricultural fields, combusted, or dumped at plantations, thus posing environmental concerns. Nanocellulose (NC) extraction from this source can be one approach to improve the value of banana biomass. Owing to its superb properties, such as high surface area and aspect ratio, good tensile strength, and high thermal stability, this has facilitated nanocellulose application in the food industry either as a functional ingredient, an additive or in food packaging. In this review, two different applications of banana biomass NC were identified: (i) food packaging and (ii) food stabilizers. Relevant publications were reviewed, focusing on the nanocellulose extraction from several banana biomass applications as food additives, as well as on the safety and regulatory aspects. Ultimately, further research is required to prompt a perspicuous conclusion about banana biomass NC safety, its potential hazards in food applications, as well as its validated standards for future commercialization.
Collapse
Affiliation(s)
- Hana Mohd Zaini
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jumardi Roslan
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | | | - Elisha Munsu
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Noorakmar A. Wahab
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Wolyna Pindi
- Functional Foods Research Group, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
95
|
Nitodas S(S, Skehan M, Liu H, Shah R. Current and Potential Applications of Green Membranes with Nanocellulose. MEMBRANES 2023; 13:694. [PMID: 37623755 PMCID: PMC10456796 DOI: 10.3390/membranes13080694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Large-scale applications of nanotechnology have been extensively studied within the last decade. By exploiting certain advantageous properties of nanomaterials, multifunctional products can be manufactured that can contribute to the improvement of everyday life. In recent years, one such material has been nanocellulose. Nanocellulose (NC) is a naturally occurring nanomaterial and a high-performance additive extracted from plant fibers. This sustainable material is characterized by a unique combination of exceptional properties, including high tensile strength, biocompatibility, and electrical conductivity. In recent studies, these unique properties of nanocellulose have been analyzed and applied to processes related to membrane technology. This article provides a review of recent synthesis methods and characterization of nanocellulose-based membranes, followed by a study of their applications on a larger scale. The article reviews successful case studies of the incorporation of nanocellulose in different types of membrane materials, as well as their utilization in water purification, desalination, gas separations/gas barriers, and antimicrobial applications, in an effort to provide an enhanced comprehension of their capabilities in commercial products.
Collapse
Affiliation(s)
- Stefanos (Steve) Nitodas
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
| | - Meredith Skehan
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
- Koehler Instrument Company Inc., Bohemia, NY 11794, USA;
| | - Henry Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
| | - Raj Shah
- Koehler Instrument Company Inc., Bohemia, NY 11794, USA;
| |
Collapse
|
96
|
Bressi AC, Dallinger A, Steksova Y, Greco F. Bioderived Laser-Induced Graphene for Sensors and Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37471123 PMCID: PMC10401514 DOI: 10.1021/acsami.3c07687] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The maskless and chemical-free conversion and patterning of synthetic polymer precursors into laser-induced graphene (LIG) via laser-induced pyrolysis is a relatively new but growing field. Bioderived precursors from lignocellulosic materials can also be converted to LIG, opening a path to sustainable and environmentally friendly applications. This review is designed as a starting point for researchers who are not familiar with LIG and/or who wish to switch to sustainable bioderived precursors for their applications. Bioderived precursors are described, and their performances (mainly crystallinity and sheet resistance of the obtained LIG) are compared. The three main fields of application are reviewed: supercapacitors and electrochemical and physical sensors. The key advantages and disadvantages of each precursor for each application are discussed and compared to those of a benchmark of polymer-derived LIG. LIG from bioderived precursors can match, or even outperform, its synthetic analogue and represents a viable and sometimes better alternative, also considering its low cost and biodegradability.
Collapse
Affiliation(s)
- Anna Chiara Bressi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alexander Dallinger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
| | - Yulia Steksova
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Francesco Greco
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
- Interdisciplinary Center on Sustainability and Climate, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
97
|
Elsherbiny DA, Abdelgawad AM, Hemdan BA, Montaser AS, El-Sayed IET, Jockenhoevel S, Ghazanfari S. Self-crosslinked polyvinyl alcohol/cellulose nanofibril cryogels loaded with synthesized aminophosphonates as antimicrobial wound dressings. J Mater Chem B 2023. [PMID: 37403540 DOI: 10.1039/d3tb00926b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Microbial infection is the most common obstacle in the wound healing process, leading to wound healing impairment and complications and ultimately increasing morbidity and mortality. Due to the rising number of pathogens evolving resistance to the existing antibiotics used for wound care, alternative approaches are urgently required. In this study, α-aminophosphonate derivatives as antimicrobial agents were synthesized and incorporated into self-crosslinked tri-component cryogels composed of fully hydrolyzed polyvinyl alcohol (PVA-F), partially hydrolyzed polyvinyl alcohol (PVA-P), and cellulose nanofibrils (CNFs). Initially, the antimicrobial activity of four α-aminophosphonate derivatives against selected skin bacterial species was tested and their minimum inhibitory concentration was determined based on which the most effective compound was loaded into the cryogels. Next, the physical and mechanical properties of cryogels with various blending ratios of PVA-P/PVA-F and fixed amounts of CNFs were assessed, and drug release profiles and biological activities of drug-loaded cryogels were analyzed. Assessment of α-aminophosphonate derivatives showed the highest efficacy of a cinnamaldehyde-based derivative (Cinnam) against both Gram-negative and Gram-positive bacteria compared to other derivatives. The physical and mechanical properties of cryogels showed that PVA-P/PVA-F with a 50/50 blending ratio had the highest swelling ratio (1600%), surface area (523 m2 g-1), and compression recoverability (72%) compared to that with other blending ratios. Finally, antimicrobial and biofilm development studies showed that the cryogel loaded with a Cinnam amount of 2 mg (relative to polymer weight) showed the most sustained drug release profile over 75 h and had the highest efficacy against Gram-negative and Gram-positive bacteria. In conclusion, self-crosslinked tri-component cryogels loaded with the synthesized α-aminophosphonate derivative, having both antimicrobial and anti-biofilm formation properties, can have a significant impact on the management of uprising wound infection.
Collapse
Affiliation(s)
- Dalia A Elsherbiny
- Department of Chemistry, Faculty of Science, Menoufia University, Egypt
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands.
| | - Abdelrahman M Abdelgawad
- Textile Research and Technology Institute, National Research Centre (Affiliation ID: 60014618), Dokki, Cairo, Egypt.
- Textile Engineering Chemistry and Science Department, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
- Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura City 35511, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Ahmed S Montaser
- Textile Research and Technology Institute, National Research Centre (Affiliation ID: 60014618), Dokki, Cairo, Egypt.
| | | | - Stefan Jockenhoevel
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands.
- Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands.
- Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany
| |
Collapse
|
98
|
Jang D, Beckett LE, Keum J, Korley LTJ. Leveraging peptide-cellulose interactions to tailor the hierarchy and mechanics of peptide-polymer hybrids. J Mater Chem B 2023; 11:5594-5606. [PMID: 37255364 PMCID: PMC10330573 DOI: 10.1039/d3tb00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Inspired by spider silk's hierarchical diversity, we leveraged peptide motifs with the capability to tune structural arrangement for controlling the mechanical properties of a conventional polymer framework. The addition of nanofiller with hydrogen bonding sites was used as another pathway towards hierarchical tuning via matrix-filler interactions. Specifically, peptide-polyurea hybrids (PPUs) were combined with cellulose nanocrystals (CNCs) to develop mechanically-tunable nanocomposites via tailored matrix-filler interactions (or peptide-cellulose interactions). In this material platform, we explored the effect of these matrix-filler interactions on the secondary structure, hierarchical ordering, and mechanical properties of the peptide hybrid nanocomposites. Interactions between the peptide matrix and CNCs occur in all of the PPU/CNC nanocomposites, preventing α-helical ordering, but promoting inter-molecular hydrogen bonded β-sheet formation. Depending on peptide and CNC content, the Young's modulus varies from 10 to 150 MPa. Unlike conventional cellulose-reinforced polymer nanocomposites, the mechanical properties of these composite materials are dictated by a balance of CNC reinforcement, peptidic ordering, and microphase-separated morphology. This research highlights that leveraging peptide-cellulose interactions is a strategy to create materials with targeted mechanical properties for a specific application using a limited selection of building blocks.
Collapse
Affiliation(s)
- Daseul Jang
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, Delaware, 19716, USA.
| | - Laura E Beckett
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, Delaware, 19716, USA.
| | - Jong Keum
- Center for Nanophase Materials Sciences and Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, 37830, Tennessee, USA
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, Delaware, 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware, 19716, USA
| |
Collapse
|
99
|
Ghilan A, Nicu R, Ciolacu DE, Ciolacu F. Insight into the Latest Medical Applications of Nanocellulose. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4447. [PMID: 37374630 DOI: 10.3390/ma16124447] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Nanocelluloses (NCs) are appealing nanomaterials that have experienced rapid development in recent years, with great potential in the biomedical field. This trend aligns with the increasing demand for sustainable materials, which will contribute both to an improvement in wellbeing and an extension of human life, and with the demand to keep up with advances in medical technology. In recent years, due to the diversity of their physical and biological properties and the possibility of tuning them according to the desired goal, these nanomaterials represent a point of maximum interest in the medical field. Applications such as tissue engineering, drug delivery, wound dressing, medical implants or those in cardiovascular health are some of the applications in which NCs have been successfully used. This review presents insight into the latest medical applications of NCs, in the forms of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs) and bacterial nanocellulose (BNC), with an emphasis on the domains that have recently experienced remarkable growth, namely wound dressing, tissue engineering and drug delivery. In order to highlight only the most recent achievements, the presented information is focused on studies from the last 3 years. Approaches to the preparation of NCs are discussed either by top-down (chemical or mechanical degradation) or by bottom-up (biosynthesis) techniques, along with their morphological characterization and unique properties, such as mechanical and biological properties. Finally, the main challenges, limitations and future research directions of NCs are identified in a sustained effort to identify their effective use in biomedical fields.
Collapse
Affiliation(s)
- Alina Ghilan
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Raluca Nicu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Diana E Ciolacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Florin Ciolacu
- Department of Natural and Synthetic Polymers, "Gheorghe Asachi" Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
100
|
Jang NS, Noh CH, Kim YH, Yang HJ, Lee HG, Oh H. Evaluation of a Hydrophobic Coating Agent Based on Cellulose Nanofiber and Alkyl Ketone Dimer. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4216. [PMID: 37374400 DOI: 10.3390/ma16124216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
In this study, we report on the development and testing of hydrophobic coatings using cellulose fibers. The developed hydrophobic coating agent secured hydrophobic performance over 120°. In addition, a pencil hardness test, rapid chloride ion penetration test, and carbonation test were conducted, and it was confirmed that concrete durability could be improved. We believe that this study will promote the research and development of hydrophobic coatings in the future.
Collapse
Affiliation(s)
- Nag-Seop Jang
- Department of Civil Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Chi-Hoon Noh
- Department of Civil Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Young-Hwan Kim
- Bricon Lab Inc., Advanced Construction Materials Testing Center, Daegu 42601, Republic of Korea
| | - Hee-Jun Yang
- Bricon Lab Inc., Advanced Construction Materials Testing Center, Daegu 42601, Republic of Korea
| | - Hyeon-Gi Lee
- Bricon Lab Inc., Advanced Construction Materials Testing Center, Daegu 42601, Republic of Korea
| | - HongSeob Oh
- Department of Civil Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea
| |
Collapse
|