51
|
Cao W, Yan L, Li M, Liu X, Xu Y, Xie Z, Liu H. Identification and engineering a C4-dicarboxylate transporter for improvement of malic acid production in Aspergillus niger. Appl Microbiol Biotechnol 2020; 104:9773-9783. [DOI: 10.1007/s00253-020-10932-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/12/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
52
|
Atallah O, Yassin S. Aspergillus spp. eliminate Sclerotinia sclerotiorum by imbalancing the ambient oxalic acid concentration and parasitizing its sclerotia. Environ Microbiol 2020; 22:5265-5279. [PMID: 32844537 DOI: 10.1111/1462-2920.15213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/23/2020] [Indexed: 12/29/2022]
Abstract
Sclerotinia sclerotiorum, a pathogen of more than 600 host plants, secretes oxalic acid to regulate the ambient acidity and provide conducive environment for pathogenicity and reproduction. Few Aspergillus spp. were previously proposed as potential biocontrol agents for S. sclerotiorum as they deteriorate sclerotia and prevent pathogen's overwintering and initial infections. We studied the nature of physical and biochemical interactions between Aspergillus and Sclerotinia. Aspergillus species inhibited sclerotial germination as they colonized its rind layer. However, Aspergillus-infested sclerotia remain solid and viable for vegetative and carpogenic germination, indicating that Aspergillus infestation is superficial. Aspergillus spp. of section Nigri (Aspergillus japonicus and Aspergillus niger) were also capable of suppressing sclerotial formation by S. sclerotiorum on agar plates. Their culture filtrate contained high levels of oxalic, citric and glutaric acids comparing to the other Aspergillus spp. tested. Exogenous supplementation of oxalic acid altered growth and reproduction of S. sclerotiorum at low concentrations. Inhibitory concentrations of oxalic acid displayed lower pH values comparing to their parallel concentrations of other organic acids. Thus, S. sclerotiorum growth and reproduction are sensitive to the ambient oxalic acid fluctuations and the environmental acidity. Together, Aspergillus species parasitize colonies of Sclerotinia and prevent sclerotial formation through their acidic secretions.
Collapse
Affiliation(s)
- Osama Atallah
- Department of Plant Pathology, Zagazig University, Zagazig, 44519, Egypt
| | - Sherene Yassin
- Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| |
Collapse
|
53
|
Cséfalvay E, Hajas T, Mika LT. Environmental sustainability assessment of a biomass-based chemical industry in the Visegrad countries: Czech Republic, Hungary, Poland, and Slovakia. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThree recently introduced ethanol equivalent-based sustainability metrics i.e., the sustainability value of resource replacement, the sustainability value of the fate of waste, and the sustainability indicator were used to assess the environmental sustainability of the possible bioethanol-based chemical industry in the Visegrad countries: Czech Republic, Hungary, Poland, and Slovakia. The production of basic chemicals such as ethylene, propylene, toluene, xylenes, styrene, and benzene from bioethanol was evaluated. The theory is based on the utilization of cornstarch-based, first-generation bioethanol as a feedstock to produce bio-ethylene, which could be subsequently used as a starting material of well-established chemical technologies to synthesize the listed bulk chemicals. The analysis, which is a non-life-cycle assessment-based approach enlightened that although the switch of the chemical industry from crude oil to bioethanol would be theoretically feasible, the actual bioethanol production was far less than required to cover the raw material needs. Due to the high conversion and selectivity of the reactions studied, the sustainability value of the fate of the waste approached the sustainable value in case of ethylene production (i.e., 1), and the sustainability value of resource replacement acted as the limiting factor in sustainability indicator calculation. We showed a possibility to replace fossil-fuel resources with bioethanol, though the actual bioethanol volumes are not enough to cover the resource needs. Of the Visegrad countries, Slovakia shows the highest sustainability, but none of them can reach the minimum sustainable value of 0.5 up to now.
Collapse
|
54
|
Shah SS, Palmieri MC, Sponchiado SRP, Bevilaqua D. Enhanced bio-recovery of aluminum from low-grade bauxite using adapted fungal strains. Braz J Microbiol 2020; 51:1909-1918. [PMID: 32748245 DOI: 10.1007/s42770-020-00342-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/17/2020] [Indexed: 01/10/2023] Open
Abstract
Filamentous fungi have been proved to have a pronounced capability to recover metals from mineral ores. However, the metal recovery yield is reduced due to toxic effects triggered by various heavy metals present in the ore. The current study highlights the fungal adaptations to the toxic effects of metals at higher pulp densities for the enhanced bio-recovery of aluminum from low-grade bauxite. In the previous studies, a drastic decrease in the aluminum dissolution was observed when the bauxite pulp density was increased from 1 to 10% (w/v) due to the high metal toxicity and low tolerance of Aspergillus niger and Penicillium simplicissium to heavy metals. These fungi were adapted in order to increase heavy metal tolerance of these fungal strains and also to get maximum Al dissolution. A novel approach was employed for the adaptation of fungal strains using a liquid growth medium containing 5% bauxite pulp density supplemented with molasses as an energy source. The mycelia of adapted strains were harvested and subsequently cultured in a low-cost oat-agar medium. Batch experiments were performed to compare the aluminum leaching efficiencies in the direct one-step and the direct two-step bioleaching processes. FE-SEM analysis revealed the direct destructive and corrosive action by the bauxite-tolerant strains due to the extension and penetration of the vegetative mycelium filaments into the bauxite matrix. XRD analysis of the bioleached bauxite samples showed a considerable decline in oxide minerals such as corundum and gibbsite. Results showed a high amount of total Al (≥ 98%) was successfully bioleached and solubilized from low-grade bauxite by the adapted fungal strains grown in the presence of 5% pulp density and molasses as a low-cost substrate. Graphical abstract.
Collapse
Affiliation(s)
- Syed Sikandar Shah
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry Araraquara, Araraquara, SP, 14800-060, Brazil. .,Department of Chemical Engineering, Polytechnic School of University of Sao Paulo (USP), Sao Paulo, SP, 05508-010, Brazil.
| | | | - Sandra Regina Pombeiro Sponchiado
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry Araraquara, Araraquara, SP, 14800-060, Brazil
| | - Denise Bevilaqua
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry Araraquara, Araraquara, SP, 14800-060, Brazil
| |
Collapse
|
55
|
Yang L, Nilsson L, Lübeck M, Ahring BK, Bruno KS, Lübeck PS. Disruption and overexpression of 6-phosphofructo-2-kinase influence organic acid production in Aspergillus carbonarius ITEM 5010. World J Microbiol Biotechnol 2020; 36:98. [PMID: 32601748 DOI: 10.1007/s11274-020-02877-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
Aspergillus carbonarius is an efficient producer of organic acids with great potential for bio-based production of organic acids. In this study, we identified a gene f2kp encoding the enzyme 6-phosphofructo-2-kinase known as an allosteric regulator of the glycolytic flux and investigated its role in the production of organic acid. The strategy was to examine the impact of citric acid and malic acid production by overexpressing and disrupting f2kp, respectively. The overexpressing transformants expressed f2kp at higher level than the wild type, whereas no expression of f2kp was detected in the knockout transformants. Citric acid and malic acid production by the knockout strains decreased sharply along with a significant lower sugar consumption, though the overexpressing transformants produced similar amounts of citric acid and malic acid as the wild type. We conclude that 6-phosphofructo-2-kinase has an important regulatory role for the glycolytic flux and organic acid production in A. carbonarius.
Collapse
Affiliation(s)
- Lei Yang
- Section for Sustainable Biotechnology, Department of Chemistry and BioScience, Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen, SV, Denmark
| | - Lena Nilsson
- Section for Sustainable Biotechnology, Department of Chemistry and BioScience, Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen, SV, Denmark.,Office for Research and Relations, Technical University of Denmark, Anker Engelunds Vej, 2800, Kgs. Lyngby, Denmark
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and BioScience, Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen, SV, Denmark
| | - Birgitte K Ahring
- Section for Sustainable Biotechnology, Department of Chemistry and BioScience, Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen, SV, Denmark.,Sciences & Engineering Laboratory, Voiland School of Chemical Engineering and Bioengineering & Biological Systems Engineering, Washington State University, 2710 Crimson Way, BioproductsRichland, WA, USA
| | - Kenneth S Bruno
- Pacific Northwest National Laboratory, PO Box 99, Richland, WA, 99352, USA.,Zymergen, 5980 Horton St Suite 105, Emeryville, CA, 94608, USA
| | - Peter S Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and BioScience, Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen, SV, Denmark.
| |
Collapse
|
56
|
Salgado-Bautista D, Volke-Sepúlveda T, Figueroa-Martínez F, Carrasco-Navarro U, Chagolla-López A, Favela-Torres E. Solid-state fermentation increases secretome complexity in Aspergillus brasiliensis. Fungal Biol 2020; 124:723-734. [PMID: 32690254 DOI: 10.1016/j.funbio.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus is used for the industrial production of enzymes and organic acids, mainly by submerged fermentation (SmF). However, solid-state fermentation (SSF) offers several advantages over SmF. Although differences related to lower catabolite repression and substrate inhibition, as well as higher extracellular enzyme production in SSF compared to SmF have been shown, the mechanisms undelaying such differences are still unknown. To explain some differences among SSF and SmF, the secretome of Aspergillus brasiliensis obtained from cultures in a homogeneous physiological state with high glucose concentrations was analyzed. Of the regulated proteins produced by SmF, 74% were downregulated by increasing the glucose concentration, whereas all those produced by SSF were upregulated. The most abundant and upregulated protein found in SSF was the transaldolase, which could perform a moonlighting function in fungal adhesion to the solid support. This study evidenced that SSF: (i) improves the kinetic parameters in relation to SmF, (ii) prevents the catabolite repression, (iii) increases the branching level of hyphae and oxidative metabolism, as well as the concentration and diversity of secreted proteins, and (iv) favors the secretion of typically intracellular proteins that could be involved in fungal adhesion. All these differences can be related to the fact that molds are more specialized to growth in solid materials because they mimic their natural habitat.
Collapse
Affiliation(s)
- Daniel Salgado-Bautista
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico.
| | - Tania Volke-Sepúlveda
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico.
| | - Francisco Figueroa-Martínez
- CONACyT Research Fellow, Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico.
| | - Ulises Carrasco-Navarro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico.
| | - Alicia Chagolla-López
- Laboratorio de Proteómica- Cinvestav Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, 36824, Guanajuato, Mexico.
| | - Ernesto Favela-Torres
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico.
| |
Collapse
|
57
|
Alternative transcription start sites of the enolase-encoding gene enoA are stringently used in glycolytic/gluconeogenic conditions in Aspergillus oryzae. Curr Genet 2020; 66:729-747. [PMID: 32072240 DOI: 10.1007/s00294-020-01053-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Gene expression using alternative transcription start sites (TSSs) is an important transcriptional regulatory mechanism for environmental responses in eukaryotes. Here, we identify two alternative TSSs in the enolase-encoding gene (enoA) in Aspergillus oryzae, an industrially important filamentous fungus. TSS use in enoA is strictly dependent on the difference in glycolytic and gluconeogenic carbon sources. Transcription from the upstream TSS (uTSS) or downstream TSS (dTSS) predominantly occurs under gluconeogenic or glycolytic conditions, respectively. In addition to enoA, most glycolytic genes involved in reversible reactions possess alternative TSSs. The fbaA gene, which encodes fructose-bisphosphate aldolase, also shows stringent alternative TSS selection, similar to enoA. Alignment of promoter sequences of enolase-encoding genes in Aspergillus predicted two conserved regions that contain a putative cis-element required for enoA transcription from each TSS. However, uTSS-mediated transcription of the acuN gene, an enoA ortholog in Aspergillus nidulans, is not strictly dependent on carbon source, unlike enoA. Furthermore, enoA transcript levels in glycolytic conditions are higher than in gluconeogenic conditions. Conversely, acuN is more highly transcribed in gluconeogenic conditions. This suggests that the stringent usage of alternative TSSs and higher transcription in glycolytic conditions in enoA may reflect that the A. oryzae evolutionary genetic background was domesticated by exclusive growth in starch-rich environments. These findings provide novel insights into the complexity and diversity of transcriptional regulation of glycolytic/gluconeogenic genes among Aspergilli.
Collapse
|
58
|
Brisson VL, Zhuang WQ, Alvarez-Cohen L. Metabolomic Analysis Reveals Contributions of Citric and Citramalic Acids to Rare Earth Bioleaching by a Paecilomyces Fungus. Front Microbiol 2020; 10:3008. [PMID: 31993037 PMCID: PMC6971059 DOI: 10.3389/fmicb.2019.03008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Conventional methods for extracting rare earth elements from monazite ore require high energy inputs and produce environmentally damaging waste streams. Bioleaching offers a potentially more environmentally friendly alternative extraction process. In order to better understand bioleaching mechanisms, we conducted an exo-metabolomic analysis of a previously isolated rare earth bioleaching fungus from the genus Paecilomyces (GenBank accession numbers KM874779 and KM 874781) to identify contributions of compounds exuded by this fungus to bioleaching activity. Exuded compounds were compared under two growth conditions: growth with monazite ore as the only phosphate source, and growth with a soluble phosphate source (K2HPO4) added. Overall metabolite profiling, in combination with glucose consumption and biomass accumulation data, reflected a lag in growth when this organism was grown with only monazite. We analyzed the relationships between metabolite concentrations, rare earth solubilization, and growth conditions, and identified several metabolites potentially associated with bioleaching. Further investigation using laboratory prepared solutions of 17 of these metabolites indicated statistically significant leaching contributions from both citric and citramalic acids. These contributions (16.4 and 15.0 mg/L total rare earths solubilized) accounted for a portion, but not all, of the leaching achieved with direct bioleaching (42 ± 15 mg/L final rare earth concentration). Additionally, citramalic acid released significantly less of the radioactive element thorium than did citric acid (0.25 ± 0.01 mg/L compared to 1.18 ± 0.01 mg/L), suggesting that citramalic acid may have preferable leaching properties for a monazite bioleaching process.
Collapse
Affiliation(s)
- Vanessa L Brisson
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
59
|
Villena GK, Kitazono AA, Hernández-Macedo M L. Bioengineering Fungi and Yeast for the Production of Enzymes, Metabolites, and Value-Added Compounds. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Selective Parameters and Bioleaching Kinetics for Leaching Vanadium from Red Mud Using Aspergillus niger and Penicillium tricolor. MINERALS 2019. [DOI: 10.3390/min9110697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the present study, using Aspergillus niger and Penicillium tricolor, the influence of the selected parameters, including sucrose concentration, inoculation size of spores, pulp density, and pre-culture time, on the bioleaching efficiency (biomass, organic acids production, and vanadium extraction, respectively) of red mud were studied. The bioleaching kinetics under optimal conditions were also explored. Sucrose concentration showed a positive linear effect on bioleaching efficiency below 143.44 and 141.82 g/L using A. niger and P. tricolor, respectively. However, a higher concentration was unfavorable for vanadium extraction. The inoculation size of spores showed an insignificant effect on both biomass and vanadium extraction if it exceeded the lowest coded levels (0.5 × 107/mL). Red mud pulp density showed a negative effect on the bioleaching efficiency of A. niger but a positive effect on organic acids production and vanadium extraction of P. tricolor. A pre-culture was indispensable for A. niger but not for P. tricolor due to the fact of its isolation from the red mud examined in this study. The kinetics analysis showed that the leaching rate of vanadium followed a two-domain behavior: initially, a rapid leaching period of approximately 10–15 days and, subsequently, a slow leaching period. Considering the change of the particles’ appearance as well as in the elemental composition of the bioleached red mud, it is speculated that the rate of leaching agents through the silicon minerals was the rate-limiting step of dissolution kinetics under the fungal bioleaching process.
Collapse
|
61
|
Yang L, Linde T, Hossain AH, Lübeck M, Punt PJ, Lübeck PS. Disruption of a putative mitochondrial oxaloacetate shuttle protein in Aspergillus carbonarius results in secretion of malic acid at the expense of citric acid production. BMC Biotechnol 2019; 19:72. [PMID: 31684928 PMCID: PMC6829807 DOI: 10.1186/s12896-019-0572-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In filamentous fungi, transport of organic acids across the mitochondrial membrane is facilitated by active transport via shuttle proteins. These transporters may transfer different organic acids across the membrane while taking others the opposite direction. In Aspergillus niger, accumulation of malate in the cytosol can trigger production of citric acid via the exchange of malate and citrate across the mitochondrial membrane. Several mitochondrial organic acid transporters were recently studied in A. niger showing their effects on organic acid production. RESULTS In this work, we studied another citric acid producing fungus, Aspergillus carbonarius, and identified by genome-mining a putative mitochondrial transporter MtpA, which was not previously studied, that might be involved in production of citric acid. This gene named mtpA encoding a putative oxaloacetate transport protein was expressed constitutively in A. carbonarius based on transcription analysis. To study its role in organic acid production, we disrupted the gene and analyzed its effects on production of citric acid and other organic acids, such as malic acid. In total, 6 transformants with gene mtpA disrupted were obtained and they showed secretion of malic acid at the expense of citric acid production. CONCLUSION A putative oxaloacetate transporter gene which is potentially involved in organic acid production by A. carbonarius was identified and further investigated on its effects on production of citric acid and malic acid. The mtpA knockout strains obtained produced less citric acid and more malic acid than the wild type, in agreement with our original hypothesis. More extensive studies should be conducted in order to further reveal the mechanism of organic acid transport as mediated by the MtpA transporter.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark
| | - Tore Linde
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark.,Present address: AGC Biologics, Vandtaarnsvej 83B, DK-2860, Soeborg, Copenhagen, Denmark
| | - Abeer H Hossain
- Dutch DNA Biotech BV, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Mette Lübeck
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark
| | - Peter J Punt
- Dutch DNA Biotech BV, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Peter S Lübeck
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark.
| |
Collapse
|
62
|
Qin J, Lyu A, Zhang QH, Yang L, Zhang J, Wu MD, Li GQ. Strain identification and metabolites isolation of Aspergillus capensis CanS-34A from Brassica napus. Mol Biol Rep 2019; 46:3451-3460. [PMID: 31012026 DOI: 10.1007/s11033-019-04808-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/10/2019] [Indexed: 11/25/2022]
Abstract
An isolate (CanS-34A) of Aspergillus from a healthy plant of oilseed rape (Brassica napus) was identified based on morphological characterization and multi-locus phylogeny using the sequences of internal transcribed spacer (ITS)-5.8S rDNA region, BenA (for β-tubulin), CaM (for calmodulin) and RPB2 (for RNA polymerase II). The results showed that CanS-34A belongs to Aspergillus capensis Hirooka et al. The antifungal metabolites produced by CanS-34A in potato dextrose broth (PDB) were extracted with chloroform. Three antifungal metabolites were isolated and purified from the chloroform extract of the PDB cultural filtrates of CanS-34A, and chemically identified as methyl dichloroasterrate, penicillither and rosellichalasin. They all showed antifungal activity against the plant pathogenic fungi Botrytis cinerea, Monilinia fructicola, Sclerotinia sclerotiorum and Sclerotinia trifoliorum with the EC50 values ranging from 2.46 to 65.00 μg/mL. To our knowledge, this is the first report about production of penicillither by Aspergillus and about the antifungal activity of methyl dichloroasterrate, penicillither and rosellichalasin against the four plant pathogenic fungi.
Collapse
Affiliation(s)
- Jing Qin
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Ang Lyu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Hua Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming-de Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guo-Qing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
63
|
Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biological itaconic acid production can by catalyzed by Aspergillus terreus (a filamentous fungi) where the fermentation medium pH is of prominent importance. Therefore, in this work, we investigated what benefits the different pH regulation options might offer in enhancing the process. The batch itaconic acid fermentation data underwent a kinetic analysis and the pH control alternatives were ranked subsequently. It would appear that the pH-shift strategy (initial adjustment of pH to 3 and its maintenance at 2.5 after 48 h) resulted in the most attractive fermentation pattern and could hence be recommended to achieve itaconic acid production with an improved performance using A. terreus from carbohydrate, such as glucose. Under this condition, the itaconic acid titer potential, the maximal itaconic acid (titer) production rate, the length of lag-phase and itaconic acid yield were 87.32 g/L, 0.22 g/L/h, 56.04 h and 0.35 g/g glucose, respectively.
Collapse
|
64
|
Lübeck PS, Lübeck M. Discovery of a Novel Fungus with an Extraordinary β-Glucosidase and Potential for On-Site Production of High Value Products. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 1796:25-33. [PMID: 29856043 DOI: 10.1007/978-1-4939-7877-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Among cellulases, β-glucosidases play a key role in the final conversion of cellulose into glucose as well as they boost the performance of the other cellulases, in particular cellobiohydrolases in relieving product inhibition. This chapter serves as case example from screening for novel fungal cellulases focusing on β-glucosidases to identifying a gene encoding the key β-glucosidase in the fungus with highest activity. In the case example, the β-glucosidase-producing fungus showed to belong to an unknown fungal species, Aspergillus saccharolyticus, not previously described. The gene was expressed in Trichoderma reesei, which has low indigenous β-glucosidase activity, and the activity of the purified enzyme was assessed in hydrolysis of various pretreated lignocellulosic biomasses. The potential of using the natural producing strain for on-site production of β-glucosidases using lignocellulosic biorefinery waste streams as substrates is discussed. Finally, the potential of the fungus for consolidated bioprocessing of waste streams into valuable compounds, such as organic acids is highlighted.
Collapse
Affiliation(s)
- Peter Stephensen Lübeck
- Section of Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Copenhagen, Denmark.
| | - Mette Lübeck
- Section of Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Copenhagen, Denmark
| |
Collapse
|
65
|
Liu G, Qu Y. Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects. Biotechnol Adv 2018; 37:519-529. [PMID: 30576717 DOI: 10.1016/j.biotechadv.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/17/2023]
Abstract
Filamentous fungi, as the main producers of lignocellulolytic enzymes in industry, need to be engineered to improve the economy of large-scale lignocellulose conversion. Investigation of the cellular processes involved in lignocellulolytic enzyme production, as well as optimization of enzyme mixtures for higher hydrolysis efficiency, have provided effective targets for the engineering of lignocellulolytic fungi. Recently, the development of efficient genetic manipulation systems in several lignocellulolytic fungi opens up the possibility of systems engineering of these strains. Here, we review the recent progresses made in the engineering of lignocellulolytic fungi and highlight the research gaps in this area.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; National Glycoengineering Research Center, Shandong University, Qingdao 266237, China.
| |
Collapse
|
66
|
Aleem B, Rashid MH, Zeb N, Saqib A, Ihsan A, Iqbal M, Ali H. Random mutagenesis of super Koji (Aspergillus oryzae): improvement in production and thermal stability of α-amylases for maltose syrup production. BMC Microbiol 2018; 18:200. [PMID: 30486793 PMCID: PMC6264608 DOI: 10.1186/s12866-018-1345-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/16/2018] [Indexed: 01/26/2023] Open
Abstract
Background Alpha-amylases hydrolyze 1,4 α-glycosidic bonds of starch and produce malto-oligosaccharides. It is an important enzyme generally applied in textile, food and brewing industries. Enhancement in thermal stability and productivity of enzymes are the two most sought after properties for industrial use. The Aspergillus oryzae (Koji) has Generally Recognized as Safe (GRAS) status and safe for use in food industry. Hence, Koji strain’s development for the screening of potent mutants, hyper producer of thermostable α-amylases, with desired attributes is the need of the time. Results A process has been developed to improve super Koji (A. oryzae cmc1) strain through γ-rays treatment. The doses i.e. 0.60, 0.80, 1.00, 1.20 & 1.40 KGy gave more than 3.0 log kill. Initially, 52 Koji mutants resistant to 1% (w/v) Triton X-100 were selected. 2nd screening was based on α-amylases hyper production and 23 mutants were sorted out by measuring clearing zones index (CI). Afterwards nine potent mutants, resistant to 2-deoxy D-glucose, were screened based on CI. These were further analyzed for thermal stability and productivity of α-amylase under submerged conditions. The mutants’ M-80(10), M-100(6) & M-120(5) gave about four fold increases in α-amylases productivity. The half life of M-100(6) α-amylase at 55 °C was 52 min and was highest among the mutants. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis confirmed that mutants did not produce aflatoxins. Field Emission Scanning Electron Microscopy (FESEM) of Koji mycelia depicted that exposure to gamma rays increased rigidity of the mycelium. The potent Koji mutant M-100(6) was grown on soluble starch in 10L fermenter and produced 40.0 IU ml-1 of α-amylases with specific activity of 2461 IU mg-1 protein. Growth kinetic parameters were: μ = Specific growth rate= 0.069 h-1, td = Biomass doubling time= 10.0 h, Yp/x = Product yield coefficient with respect to cell mass = 482 U g-1; qp= Specific rate of product formation= 33.29 U g-1 h-1. Conclusion It was concluded that the developed five step screening process has great potential to generate potent mutants for the hyper production of thermostable enzymes through γ-rays mediated physical mutagenesis. The developed thermostable α-amylases of super Koji mutantM-100(6) has immense potential for application in saccharification process for maltose syrup production. Moreover, the developed five step strain’s development process may be used for the simultaneous improvement in productivity and thermal stability of other microbial enzymes. Electronic supplementary material The online version of this article (10.1186/s12866-018-1345-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bushra Aleem
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P. O. Box 577, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamaabd, Pakistan
| | - Muhammad Hamid Rashid
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P. O. Box 577, Faisalabad, Pakistan. .,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamaabd, Pakistan.
| | - Neelam Zeb
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P. O. Box 577, Faisalabad, Pakistan
| | - Anam Saqib
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P. O. Box 577, Faisalabad, Pakistan
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P. O. Box 577, Faisalabad, Pakistan
| | - Mazhar Iqbal
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P. O. Box 577, Faisalabad, Pakistan
| | - Hazrat Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P. O. Box 577, Faisalabad, Pakistan
| |
Collapse
|
67
|
Laothanachareon T, Tamayo-Ramos JA, Nijsse B, Schaap PJ. Forward Genetics by Genome Sequencing Uncovers the Central Role of the Aspergillus niger goxB Locus in Hydrogen Peroxide Induced Glucose Oxidase Expression. Front Microbiol 2018; 9:2269. [PMID: 30319579 PMCID: PMC6165874 DOI: 10.3389/fmicb.2018.02269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023] Open
Abstract
Aspergillus niger is an industrially important source for gluconic acid and glucose oxidase (GOx), a secreted commercially important flavoprotein which catalyses the oxidation of β-D-glucose by molecular oxygen to D-glucolactone and hydrogen peroxide. Expression of goxC, the GOx encoding gene and the concomitant two step conversion of glucose to gluconic acid requires oxygen and the presence of significant amounts of glucose in the medium and is optimally induced at pH 5.5. The molecular mechanisms underlying regulation of goxC expression are, however, still enigmatic. Genetic studies aimed at understanding GOx induction have indicated the involvement of at least seven complementation groups, for none of which the molecular basis has been resolved. In this study, a mapping-by-sequencing forward genetics approach was used to uncover the molecular role of the goxB locus in goxC expression. Using the Illumina and PacBio sequencing platforms a hybrid high quality draft genome assembly of laboratory strain N402 was obtained and used as a reference for mapping of genomic reads obtained from the derivative NW103:goxB mutant strain. The goxB locus encodes a thioredoxin reductase. A deletion of the encoding gene in the N402 parent strain led to a high constitutive expression level of the GOx and the lactonase encoding genes required for the two-step conversion of glucose in gluconic acid and of the catR gene encoding catalase R. This high constitutive level of expression was observed to be irrespective of the carbon source and oxidative stress applied. A model clarifying the role of GoxB in the regulation of the expression of goxC involving hydrogen peroxide as second messenger is presented.
Collapse
Affiliation(s)
- Thanaporn Laothanachareon
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands.,Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | | | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
68
|
Ben Mefteh F, Daoud A, Chenari Bouket A, Thissera B, Kadri Y, Cherif-Silini H, Eshelli M, Alenezi FN, Vallat A, Oszako T, Kadri A, Ros-García JM, Rateb ME, Gharsallah N, Belbahri L. Date Palm Trees Root-Derived Endophytes as Fungal Cell Factories for Diverse Bioactive Metabolites. Int J Mol Sci 2018; 19:ijms19071986. [PMID: 29986518 PMCID: PMC6073733 DOI: 10.3390/ijms19071986] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022] Open
Abstract
Endophytic fungi of healthy and brittle leaf diseased (BLD) date palm trees (Phoenix dactylifera L.) represent a promising source of bioactive compounds with biomedical, industrial, and pharmaceutical applications. The fungal endophytes Penicillium citrinum isolate TDPEF34, and Geotrichum candidum isolate TDPEF20 from healthy and BLD date palm trees, respectively, proved very effective in confrontation assays against three pathogenic bacteria, including two Gram-positive bacteria Bacillus thuringiensis (Bt) and Enterococcus faecalis (Ef), and one Gram-negative bacterium Salmonella enterica (St). They also inhibited the growth of three fungi Trichoderma sp. (Ti), Fusarium sporotrichioides (Fs), Trichoderma sp. (Ts). Additionally, their volatile organic compounds (VOCs) were shown to be in part responsible for the inhibition of Ti and Ts and could account for the full inhibition of Fs. Therefore, we have explored their potential as fungal cell factories for bioactive metabolites production. Four extracts of each endophyte were prepared using different solvent polarities, ethanol (EtOH), ethyl acetate (EtOAc), hexane (Hex), and methanol (MetOH). Both endophyte species showed varying degrees of inhibition of the bacterial and fungal pathogens according to the solvent used. These results suggest a good relationship between fungal bioactivities and their produced secondary metabolites. Targeting the discovery of potential anti-diabetic, anti-hemolysis, anti-inflammatory, anti-obesity, and cytotoxic activities, endophytic extracts showed promising results. The EtOAc extract of G. candidum displayed IC50 value comparable to the positive control diclofenac sodium in the anti-inflammatory assays. Antioxidant activity was evaluated using α,α-diphenyl-β-picrylhydrazyl (DPPH), β-carotene bleaching, reducing power (RP), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonique) (ABTS) radical scavenging assays. The findings revealed strong anti-oxidant power with an IC50 of 177.55 µg/mL for G. candidum EtOAc extract using DPPH assay, probably due to high polyphenol and flavonoid content in both fungal extracts. Finally, LC-HRMS (Liquid Chromatography–High Resolution Mass Spectrometry) and GC-MS (Gas Chromatography–Mass Spectrometry) analysis of G. candidum and P. citrinum extracts revealed an impressive arsenal of compounds with previously reported biological activities, partly explaining the obtained results. Finally, LC-HRMS analysis indicated the presence of new fungal metabolites that have never been reported, which represent good candidates to follow for the discovery of new bioactive molecules.
Collapse
Affiliation(s)
- Fedia Ben Mefteh
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - Amal Daoud
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, 5153715898 Tabriz, Iran.
| | - Bathini Thissera
- School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Yamina Kadri
- Labroratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax,95, 3052 Sfax, Tunisia.
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, 19000 Setif, Algeria.
| | - Manal Eshelli
- School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK.
- Department of Food Science & Technology, Faculty of Agriculture, University of Tripoli, 13275 Tripoli, Libya.
| | | | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | | | - Adel Kadri
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - José María Ros-García
- Department of Food Science & Technology and Human Nutrition, University of Murcia, 30100 Murcia, Spain.
| | - Mostafa E Rateb
- School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Neji Gharsallah
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, 3030 Agareb, Tunisia.
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland.
| |
Collapse
|
69
|
|
70
|
Gáplovská K, Šimonovičová A, Halko R, Okenicová L, Žemberyová M, Čerňanský S, Brandeburová P, Mackuľak T. Study of the binding sites in the biomass of Aspergillus niger wild-type strains by FTIR spectroscopy. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0487-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
71
|
Zaikova E, Benison KC, Mormile MR, Johnson SS. Microbial communities and their predicted metabolic functions in a desiccating acid salt lake. Extremophiles 2018; 22:367-379. [PMID: 29350297 DOI: 10.1007/s00792-018-1000-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/02/2018] [Indexed: 11/30/2022]
Abstract
The waters of Lake Magic in Western Australia are among the most geochemically extreme on Earth. This ephemeral saline lake is characterized by pH as low as 1.6 salinity as high as 32% total dissolved solids, and unusually complex geochemistry, including extremely high concentrations of aluminum, silica, and iron. We examined the microbial composition and putative function in this extreme acid brine environment by analyzing lake water, groundwater, and sediment samples collected during the austral summer near peak evapoconcentration. Our results reveal that the lake water metagenome, surprisingly, was comprised of mostly eukaryote sequences, particularly fungi and to a lesser extent, green algae. Groundwater and sediment samples were dominated by acidophilic Firmicutes, with eukaryotic community members only detected at low abundances. The lake water bacterial community was less diverse than that in groundwater and sediment, and was overwhelmingly represented by a single OTU affiliated with Salinisphaera. Pathways associated with halotolerance were found in the metagenomes, as were genes associated with biosynthesis of protective carotenoids. During periods of complete desiccation of the lake, we hypothesize that dormancy and entrapment in fluid inclusions in halite crystals may increase long-term survival, leading to the resilience of complex eukaryotes in this extreme environment.
Collapse
Affiliation(s)
- Elena Zaikova
- Department of Biology, Georgetown University, Washington, USA
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, USA
| | - Melanie R Mormile
- Department of Biology, Missouri University of Science and Technology, Rolla, USA
| | - Sarah Stewart Johnson
- Department of Biology, Georgetown University, Washington, USA. .,Program on Science, Technology, and International Affairs, Georgetown University, Washington, USA.
| |
Collapse
|
72
|
Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem Rev 2017; 118:505-613. [DOI: 10.1021/acs.chemrev.7b00395] [Citation(s) in RCA: 662] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- László T. Mika
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary
| | - Edit Cséfalvay
- Department
of Energy Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Áron Németh
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
73
|
|
74
|
Hu W, Li W, Chen H, Liu J, Wang S, Chen J. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger. PLoS One 2017. [PMID: 28650980 PMCID: PMC5484496 DOI: 10.1371/journal.pone.0180120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research.
Collapse
Affiliation(s)
- Wei Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou city, Gansu Province, China
- * E-mail: (WH); (JC)
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou city, Gansu Province, China
| | - Hao Chen
- College of food science and engineering, Gansu Agricultural University, Lanzhou city, Gansu Province, China
| | - Jing Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou city, Gansu Province, China
| | - Shuyang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou city, Gansu Province, China
| | - Jihong Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou city, Gansu Province, China
- * E-mail: (WH); (JC)
| |
Collapse
|
75
|
Overexpression of a C 4-dicarboxylate transporter is the key for rerouting citric acid to C 4-dicarboxylic acid production in Aspergillus carbonarius. Microb Cell Fact 2017; 16:43. [PMID: 28288640 PMCID: PMC5348913 DOI: 10.1186/s12934-017-0660-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
Background C4-dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C4-dicarboxylic acids have been with limited success. Results In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C4-dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C4-dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C4-dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. Conclusions This study demonstrates that the key to change the citric acid production into production of C4-dicarboxylic acids in A. carbonarius is the C4-dicarboxylate transporter. Furthermore it shows that the C4-dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C4-dicarboxylic acid production.
Collapse
|