51
|
Zarei M, Shivanandappa T. Neuroprotective effect of Decalepis hamiltonii on cyclophosphamide-induced oxidative stress in the mouse brain. J Basic Clin Physiol Pharmacol 2016; 27:341-348. [PMID: 26894576 DOI: 10.1515/jbcpp-2015-0114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/19/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Cyclophosphamide (CP), one of the most widely used antineoplastic drugs, causes toxic side effects on vital organs including brain. In this study, we have investigated neuroprotective potential of the aqueous extract of the roots of Decalepis hamiltonii (DHA) against CP-induced oxidative stress in the mouse brain. METHODS Swiss albino male mice were pre-treated with DHA (50 and 100 mg/kg b.w.) for 10 consecutive days followed by an injection with CP intraperitoneally (25 mg/kg b.w.) for 10 days 1 h after DHA treatment; 16 h later, they were euthanized, their brains were immediately removed, and biochemical and molecular analyses were conducted. RESULTS The results indicated that injection of CP induced oxidative stress in the mouse brain as evident from the increased lipid peroxidation, reactive oxygen species, depletion of glutathione and reduced activities of the antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase. Treatment with DHA significantly mitigated the CP-induced oxidative stress. Moreover, expression of genes for the antioxidant enzymes was downregulated by CP treatment which was reversed by DHA. CONCLUSIONS In conclusion, DHA protected the brain from oxidative stress induced by CP, and therefore, it could be a promising nutraceutical as a supplement in cancer chemotherapy in order to ameliorate the toxic side effects of cancer drugs.
Collapse
|
52
|
Hepatoprotective standardized EtOH-water extract from the seeds of Fraxinus rhynchophylla Hance. J Tradit Complement Med 2016; 7:158-164. [PMID: 28417085 PMCID: PMC5388085 DOI: 10.1016/j.jtcme.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/01/2023] Open
Abstract
Fraxinus rhynchophylla Hance (Oleaceae), its stem barks are known as Cortex fraxini (秦皮 qín pí) listed in Chinese Pharmacopoeia. Phytochemical study has indicated that methanol extracts from Qinpi has protective effect on acute liver injury. The present study investigates the hepatoprotective activity of EtOH–water extract from the seeds of F. rhynchophylla Hance against carbon tetrachloride-induced liver injury in mice. The EtOH–water extract significantly alleviated liver damage as indicated by the decreased levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the malondialdehyde (MDA) content, and increased the levels of superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px), and reduced the pathological tissue injury induced by CCl4. Quantitative analysis of seven major constituents (1–7) in EtOH–water extract (EWE) was developed by high performance liquid chromatography-diode-array detector (HPLC-DAD). The current research indicates that the EWE from the seeds of F. rhynchophylla Hance decreased liver index, inhibited the increase of serum aminotransferase induced by CCl4, and decreased hepatic MDA content, SOD and GSH-Px activities. These results suggested that the pretreatment with EWE protected mice against CCl4-induced liver injuries. Based on the results, the EtOH–water extract from the seeds of F. rhynchophylla Hance is efficacious for prevention and treatment of CCl4-induced hepatic injury in mice. Secoiridoid and tyrosol glucosides might be the active ingredients responsible for the biological and pharmacological activities of hepatoprotection.
Collapse
|
53
|
He Q, Li Y, Liu J, Zhang P, Yan S, He X, Zhang A. Hepatoprotective Activity of Lophatherum gracile Leaves of Ethanol Extracts Against Carbon Tetrachloride-induced Liver Damage in Mice. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.387.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
54
|
Abdul QA, Choi RJ, Jung HA, Choi JS. Health benefit of fucosterol from marine algae: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1856-1866. [PMID: 26455344 DOI: 10.1002/jsfa.7489] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Seaweeds belong to a group of marine plants known as algae, which are consumed as sea vegetables in several Asian countries. Recent studies have focused on the biological and pharmacological activities of seaweeds and their highly bioactive secondary metabolites because of their potential in the development of new pharmaceutical agents. Although several varieties of bioactive novel compounds such as phlorotannins, diterpenes and polysaccharides from seaweeds have already been well scrutinized, fucosterol as a phytosterol still needs to reinvent itself. Fucosterol (24-ethylidene cholesterol) is a sterol that can be isolated from algae, seaweed and diatoms. Fucosterol exhibits various biological therapeutics, including anticancer, antidiabetic, antioxidant, hepatoprotective, antihyperlipidemic, antifungal, antihistaminic, anticholinergic, antiadipogenic, antiphotodamaging, anti-osteoporotic, blood cholesterol reducing, blood vessel thrombosis preventive and butyrylcholinesterase inhibitory activities. In this review, we address some potential approaches for arbitrating novel fucosterol biologics in the medical field, focusing on the selection of personalized drug candidates and highlighting the challenges and opportunities regarding medical breakthroughs. We also highlight recent advances made in the design of this novel compound, as the significant health benefits from using these optimized applications apply to the nutraceutical and pharmaceutical fields.
Collapse
Affiliation(s)
- Qudeer Ahmed Abdul
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Ran Joo Choi
- Angiogenesis and Chinese Medicine Laboratory, Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
55
|
Hfaiedh M, Brahmi D, Zourgui L. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:339-349. [PMID: 25270677 DOI: 10.1002/tox.22048] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Taraxacum officinale (L.) Weber, commonly known as Dandelion, has been widely used as a folkloric medicine for the treatment of liver and kidney disorders and some women diseases such as breast and uterus cancers. The main objective of the present study was to assess the efficiency of T. officinale leaf extract (TOE) in treating sodium dichromate hazards; it is a major environmental pollutant known for its wide toxic manifestations witch induced liver injury. TOE at a dose of 500 mg/kg b.w was orally administered once per day for 30 days consecutively, followed by 10 mg/kg b.w sodium dichromate was injected (intraperitoneal) for 10 days. Our results using Wistar rats showed that sodium dichromate significantly increased serum biochemical parameters. In the liver, it was found to induce an oxidative stress, evidenced from increase in lipid peroxidation and changes in antioxidative activities. In addition, histopathological observation revealed that sodium dichromate causes acute liver damage, necrosis of hepatocytes, as well as DNA fragmentation. Interestingly, animals that were pretreated with TOE, prior to sodium dichromate administration, showed a significant hepatoprotection, revealed by a significant reduction of sodium dichromate-induced oxidative damage for all tested markers. These finding powerfully supports that TOE was effective in the protection against sodium dichromate-induced hepatotoxicity and genotoxicity and, therefore, suggest a potential therapeutic use of this plant as an alternative medicine for patients with acute liver diseases.
Collapse
Affiliation(s)
- Mbarka Hfaiedh
- Research unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences Gafsa, 2112, University of Gafsa, Tunisia
| | - Dalel Brahmi
- Research unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences Gafsa, 2112, University of Gafsa, Tunisia
| | - Lazhar Zourgui
- Research unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences Gafsa, 2112, University of Gafsa, Tunisia
- Higher Institute of Applied Biology ISBAM Medenine, University of Gabes, Tunisia
| |
Collapse
|
56
|
Protective Effect of Gallotannin-Enriched Extract Isolated from Galla Rhois against CCl₄-Induced Hepatotoxicity in ICR Mice. Nutrients 2016; 8:107. [PMID: 26907337 PMCID: PMC4808837 DOI: 10.3390/nu8030107] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 01/31/2016] [Accepted: 02/14/2016] [Indexed: 02/07/2023] Open
Abstract
To investigate the toxicity, protective effects, and action mechanism of gallotannin-enriched extracts isolated from Galla Rhois (GEGR) against carbon tetrachloride (CCl₄)-induced hepatotoxicity in Institute for Cancer Research (ICR) mice, alterations in serum biochemical indicators, histopathological structure, antioxidative status, hepatic apoptosis-related proteins, and liver fibrosis regulating factors were measured in mice pretreated with GEGR for five days before CCl₄ injection. The GEGR/CCl₄ treated group showed decreased levels of three serum marker enzymes (ALP, AST, and ALT) representing liver toxicity, although LDH levels remained constant. Necrotic area indicating hepatic cell death significantly inhibited, while malondialdehyde (MDA) concentration and superoxide dismutase (SOD) expression were dramatically recovered in the GEGR preadministrated group. In mechanism analyses of GEGR, the formation of active caspase-3 and enhancement of Bax/Bcl-2 expression was effectively inhibited in the GEGR/CCl₄ treated group. The level of pro-inflammatory cytokines, TNF-α and IL-6, as well as the phosphorylation of p38 and JNK in the TNF-α downstream signaling pathway was rapidly recovered in the GEGR/CCl₄ treated group, while anti-inflammatory cytokine (IL-10) increased slightly in the same group. Furthermore, the GEGR/CCl₄ treated group showed a significant decrease in collagen accumulation results from alleviation of MMP-2 expression, TGF-β1 secretion and the phosphorylation of Smad2/3. Taken together, these results suggest that GEGR may induce remarkable protective effects against hepatic injury induced by CCl₄ treatment through upregulation of the anti-inflammatory and antioxidant system.
Collapse
|
57
|
Gebregiorgis Amabye T, Frehiwot Mekonen A. Phytochemical Constituents and Antioxidant Activity of Delonix elata L. in Flower Extract. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/japlr.2016.02.00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
58
|
Kamel EM, Mahmoud AM, Ahmed SA, Lamsabhi AM. A phytochemical and computational study on flavonoids isolated from Trifolium resupinatum L. and their novel hepatoprotective activity. Food Funct 2016; 7:2094-106. [DOI: 10.1039/c6fo00194g] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plants from the genus Trifolium have been utilized in the treatment of chronic diseases by many cultures.
Collapse
Affiliation(s)
- Emadeldin M. Kamel
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- Campus de Excelencia UAM-CSIC Cantoblanco
- Madrid
| | - Ayman M. Mahmoud
- Physiology Division
- Zoology Department
- Faculty of Science
- Beni-Suef University
- Beni-Suef
| | - Sayed A. Ahmed
- Organic Chemistry Department
- Faculty of Science
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Al Mokhtar Lamsabhi
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- Campus de Excelencia UAM-CSIC Cantoblanco
- Madrid
| |
Collapse
|
59
|
Nasri R, Abdelhedi O, Jemil I, Daoued I, Hamden K, Kallel C, Elfeki A, Lamri-Senhadji M, Boualga A, Nasri M, Karra-Châabouni M. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats. Chem Biol Interact 2015; 242:71-80. [DOI: 10.1016/j.cbi.2015.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/03/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022]
|
60
|
Zhao P, Qi C, Wang G, Dai X, Hou X. Enrichment and purification of total flavonoids from Cortex Juglandis Mandshuricae extracts and their suppressive effect on carbon tetrachloride-induced hepatic injury in Mice. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1007:8-17. [DOI: 10.1016/j.jchromb.2015.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/04/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
|
61
|
Ma T, Sun X, Tian C, Zheng Y, Zheng C, Zhan J. Chemical composition and hepatoprotective effects of polyphenols extracted from the stems and leaves of Sphallerocarpus gracilis. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
62
|
Mahmoud AM, Al Dera HS. 18β-Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: potential role of PPARγ and Nrf2 upregulation. GENES AND NUTRITION 2015; 10:41. [PMID: 26386843 DOI: 10.1007/s12263-015-0491-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/08/2015] [Indexed: 01/06/2023]
Abstract
18β-Glycyrrhetinic acid (18β-GA) has been proposed as a promising hepatoprotective agent. The current study aimed to investigate the protective action and the possible mechanisms of 18β-GA against cyclophosphamide (CP)-induced liver injury in rats, focusing on the role of peroxisome proliferator-activated receptor gamma (PPARγ) and NF-E2-related factor-2 (Nrf2). Rats were administered 18β-GA at doses 25 and 50 mg/kg 2 weeks prior to CP injection. Five days after CP administration, animals were sacrificed and samples were collected. CP induced hepatic damage evidenced by the histopathological changes and significant increase in serum pro-inflammatory cytokines, liver marker enzymes, and liver lipid peroxidation and nitric oxide (NO) levels. 18β-GA counteracted CP-induced oxidative stress and inflammation as assessed by restoration of the antioxidant defenses and diminishing of pro-inflammatory cytokines, lipid peroxidation, and NO production. These hepatoprotective effects appear to depend on activation of Nrf2 and PPARγ, and subsequent suppression of nuclear factor-kappa B. In conclusion, the present study provides evidence that 18β-GA exerts hepatoprotective effects against CP through induction of antioxidant defenses and suppression of inflammatory response. This report also confers new information that 18β-GA protects liver against the toxic effect of chemotherapeutic alkylating agents via activation of Nrf2 and PPARγ.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt.
| | - Hussein S Al Dera
- Basic Medical Sciences Department, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
63
|
Sahreen S, Khan MR, Khan RA, Alkreathy HM. Protective effects of Carissa opaca fruits against CCl4-induced oxidative kidney lipid peroxidation and trauma in rat. Food Nutr Res 2015; 59:28438. [PMID: 26350293 PMCID: PMC4563101 DOI: 10.3402/fnr.v59.28438] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Carbon tetrachloride (CCl4) is a potent nephrotoxin, as it causes acute as well as chronic toxicity in kidneys. Therefore, this study was carried out to assess the pharmacological potential of different fractions of Carissa opaca fruits on CCl4-induced oxidative trauma in the kidney. METHODS The parameters studied in this respect were the kidney function tests viz, serum profile, urine profile, genotoxicity, characteristic morphological findings, and antioxidant enzymatic level of kidneys. RESULT The protective effects of various fractions of C. opaca fruits against CCl4 administration were reviewed by rat renal function alterations. Chronic toxicity caused by 8-week treatment of CCl4 to the rats significantly decreased the pH level, activities of antioxidant enzymes, and glutathione contents, whereas a significant increase was found in the case of specific gravity, red blood cells, white blood cells, level of urea, and lipid peroxidation in comparison to control group. Administration of various fractions of C. opaca fruit with CCl4 showed protective ability against CCl4 intoxication by restoring the urine profile, activities of antioxidant enzymes, and lipid peroxidation in rat. CCl4 induction in rats also caused DNA fragmentation and glomerular atrophy by means of dilation, disappearance of Bowmen's space, congestion in the capillary loops, dilation in renal tubules, and foamy look of epithelial cells of tubular region, which were restored by co-admiration of various fractions of C. opaca. CONCLUSION Results revealed that the methanolic fractions of C. opaca are the most potent and helpful in kidney trauma.
Collapse
Affiliation(s)
- Sumaira Sahreen
- Botanical Sciences Division, Pakistan Museum of Natural History, Islamabad, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rahmat Ali Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan;
| | - Huda Mohammad Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
64
|
Ritesh K, Suganya A, Dileepkumar H, Rajashekar Y, Shivanandappa T. A single acute hepatotoxic dose of CCl 4 causes oxidative stress in the rat brain. Toxicol Rep 2015; 2:891-895. [PMID: 28962426 PMCID: PMC5598138 DOI: 10.1016/j.toxrep.2015.05.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 02/05/2023] Open
Abstract
Carbon tetrachloride (CCl4), a hepatotoxic agent is widely used to study the toxic mechanisms in experimental animals. We have investigated whether oxidative stress is induced in the brain at a single hepatotoxic dosage (1 ml/kg bw) of CCl4. Increased lipid peroxidation (LPO), protein carbonyls (PC) content and glutathione (GSH) depletion were observed in the brain regions of rats treated with CCl4 which was higher than that of liver. A drastic reduction in the activity of glutathione-S-transferase (GST) was seen in the brain regions which was higher than that of liver. Similarly, activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), NADH- and NADPH-dehydrogenase were reduced in the brain regions similar to that of liver. Higher induction of oxidative stress in the brain compared to that of liver implies vulnerability of the brain for CCl4 neurotoxicity. Our study shows that a single hepatotoxic dose of CCl4 is equally neurotoxic to rats.
Collapse
Affiliation(s)
- K.R. Ritesh
- Department of Food Protectants and Infestation Control, CSIR – Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - A. Suganya
- Department of Food Protectants and Infestation Control, CSIR – Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - H.V. Dileepkumar
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - Y. Rajashekar
- Department of Food Protectants and Infestation Control, CSIR – Central Food Technological Research Institute, Mysore 570020, Karnataka, India
- Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Takyelpat, Imphal 795001, Manipur, India
| | - T. Shivanandappa
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| |
Collapse
|
65
|
Huang Y, Chen N, Miao D. Biological effects of pyrroloquinoline quinone on liver damage in Bmi-1 knockout mice. Exp Ther Med 2015; 10:451-458. [PMID: 26622336 DOI: 10.3892/etm.2015.2532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) has been demonstrated to function as an antioxidant by scavenging free radicals and subsequently protecting the mitochondria from oxidative stress-induced damage. The aim of the present study was to investigate whether PQQ is able to rescue premature senescence in the liver, induced by the deletion of B cell-specific Moloney MLV insertion site-1 (Bmi-1), by inhibiting oxidative stress. In vivo, the mice were allocated into three groups that underwent the following treatment protocols. WT mice received a normal diet, while BKO mice also received a normal diet. An additional group of BKO mice were fed a PQQ-supplemented diet (BKO + PQQ; 4 mg PQQ/kg in the normal diet). The results indicated that PQQ partially rescued the liver damage induced by the deletion of Bmi-1. PQQ was demonstrated to exhibit these therapeutic effects on liver damage through multiple aspects, including the promotion of proliferation, antiapoptotic effects, the inhibition of senescence, the upregulation of antioxidant ability, the downregulation of cell cycle protein expression, the scavenging of reactive oxygen species and the reduction of DNA damage. The results of these experiments indicated that treatment of BKO mice with a moderate dose of PQQ significantly protected the liver from deleterious effects by inhibiting oxidative stress and participating in DNA damage repair. Therefore, PQQ has great potential as a therapeutic agent against oxidative stress during liver damage.
Collapse
Affiliation(s)
- Yuanqing Huang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China ; Department of Stomatology, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Ning Chen
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
66
|
Fahmy NM, Al-Sayed E, Abdel-Daim MM, Karonen M, Singab AN. Protective effect of Terminalia muelleri against carbon tetrachloride-induced hepato and nephro-toxicity in mice and characterization of its bioactive constituents. PHARMACEUTICAL BIOLOGY 2015; 54:303-313. [PMID: 25894213 DOI: 10.3109/13880209.2015.1035794] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Terminalia is used in folk medicine for the treatment of various diseases. OBJECTIVE The objective of this study is to investigate the hepatonephro protective activity of a polyphenol-rich fraction (TMEF) obtained from Terminalia muelleri Benth. (Combretaceae) against CCl4-induced toxicity in mice. MATERIALS AND METHODS TMEF was administered (100, 200, and 400 mg/kg/d) for 5 d. CCl4 was administered at the end of the experiment. Hepatic and renal biomarkers were measured in the serum. Glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) were estimated in the liver and kidney tissues. The active constituents of TMEF were identified by HPLC-PDA-ESI/MS/MS. RESULTS TMEF is rich in ellagitannins, galloyl esters, phenolic acids, and flavone-C-glucosides. TMEF pretreatment significantly (p < 0.001) inhibited the CCl4-induced increase in ALT (17, 43, and 53%), AST (20, 46, and 58%), ALP (20, 48, and 56%), LDH (21, 47, and 58%), hepatic MDA (23, 49, and 54%), renal MDA (22, 35, and 52%), creatinine (48, 66, and 91%), uric acid (16, 34, and 59%), urea (22, 39, and 59%), and cholesterol (20, 27, and 46%). Furthermore, TMEF administration significantly (p < 0.001) increased hepatic GSH (15, 51, and 79%), renal GSH (23, 45, and 73%), hepatic SOD (9, 52, and 95%), renal SOD (39, 66, and 85%) and protein levels (17, 24, and 29%) at the tested doses of TMEF, respectively. Pretreatment with TMEF preserved the hepatic architecture and protected from ballooning degeneration, liver necrosis, renal inflammation, and degeneration of the kidney tubules. CONCLUSION TMEF has a marked hepato-nephro protective effect.
Collapse
Affiliation(s)
- Nouran Mohamed Fahmy
- a Department of Pharmacognosy , Faculty of Pharmacy, Ain-Shams University , Cairo , Egypt
| | - Eman Al-Sayed
- a Department of Pharmacognosy , Faculty of Pharmacy, Ain-Shams University , Cairo , Egypt
| | - Mohamed M Abdel-Daim
- b Department of Pharmacology , Faculty of Veterinary Medicine, Suez Canal University , Ismailia , Egypt , and
| | - Maarit Karonen
- c Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry , University of Turku , Turku , Finland
| | - Abdel Nasser Singab
- a Department of Pharmacognosy , Faculty of Pharmacy, Ain-Shams University , Cairo , Egypt
| |
Collapse
|
67
|
Je JY, Lee DB. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation. Food Funct 2015; 6:1911-8. [DOI: 10.1039/c5fo00201j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nelumbo nucifera leaves ameliorated hepatotoxicity via antioxidant action.
Collapse
Affiliation(s)
- Jae-Young Je
- Department of Marine-Bio Convergence Science
- Pukyong National University
- Busan 608-737
- Republic of Korea
| | - Da-Bin Lee
- School of Food Technology and Nutrition
- Chonnam National University
- Yeosu 550-749
- Republic of Korea
| |
Collapse
|
68
|
Masuda H, Hironaka S, Matsui Y, Hirooka S, Hirai M, Hirata Y, Akao M, Kumagai H. Comparative Study of the Antioxidative Activity of Culinary Herbs and Spices, and Hepatoprotective Effects of Three Selected Lamiaceae Plants on Carbon Tetrachloride-Induced Oxidative Stress in Rats. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - So Hironaka
- Laboratory of Food Chemistry, Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | | | | | - Mami Hirai
- Laboratory of Food Chemistry, Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Yushi Hirata
- Laboratory of Food Chemistry, Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Makoto Akao
- Laboratory of Food Chemistry, Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Hitomi Kumagai
- Laboratory of Food Chemistry, Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| |
Collapse
|
69
|
Shah MD, Gnanaraj C, Haque ATME, Iqbal M. Antioxidative and chemopreventive effects of Nephrolepis biserrata against carbon tetrachloride (CCl4)-induced oxidative stress and hepatic dysfunction in rats. PHARMACEUTICAL BIOLOGY 2015; 53:31-39. [PMID: 25243876 DOI: 10.3109/13880209.2014.909502] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Nephrolepis biserrata L. (Nephrolepidaceae) has been used in folk medicine for protection against different diseases. OBJECTIVE The current research investigated the protective effect of the methanol extract of N. biserrata leaves against carbon tetrachloride (CCl4)-induced hepatic damage in rats. MATERIALS AND METHODS Total phenolic content and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were estimated. In addition, Sprague-Dawley (SD) rats were randomly divided into six groups: control, CCl4 (1.0 mg/kg b wt), N. biserrata extract (at doses of 125, 250, and 375 mg/kg b wt) with CCl4 and N. biserrata extract (at dose of 375 mg/kg b wt) alone. After 2 weeks all rats were sacrificed and hepatoprotective effect of N. biserrata was evaluated. RESULTS Our results indicated that the high total phenolic content (127.28 ± 1.57 mg GAE/g) of N. biserrata may be the major contributor to strong antioxidant activities. Moreover, N. biserrata significantly depleted the elevation of enzymatic levels of alanine aminotransferase and aspartate aminotransferase (20-93% recovery), reduced the extent of malondialdehyde (47-90% recovery), increased the level of reduced glutathione (25-39% recovery), and elevated the activities of catalase, glutathione reductase, glutathione peroxidase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and quinone reductase (5-34% recovery). Histopathological observations also revealed that N. biserrata decreased fatty degeneration and necrosis in CCl4 administered rats. DISCUSSION AND CONCLUSION N. biserrata has strong antioxidant activities and significant protective effects against CCl4 induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Muhammad Dawood Shah
- Biotechnology Research Institute, Universiti Malaysia Sabah , Jalan UMS, Kota Kinabalu, Sabah , Malaysia and
| | | | | | | |
Collapse
|
70
|
Al-Sayed E, El-Lakkany NM, Seif El-Din SH, Sabra ANA, Hammam OA. Hepatoprotective and antioxidant activity of Melaleuca styphelioides on carbon tetrachloride-induced hepatotoxicity in mice. PHARMACEUTICAL BIOLOGY 2014; 52:1581-1590. [PMID: 25243881 DOI: 10.3109/13880209.2014.908398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Liver disease is a serious problem. Polyphenolic compounds have marked antioxidant effect and can prevent the liver damage caused by free radicals. In vitro studies have revealed the strong antioxidant activity of an ellagitannin-rich plant, namely, Melaleuca styphelioides Sm. (Myrtaceae). OBJECTIVE In view of the limited therapeutic options available for the treatment of liver diseases, the hepatoprotective potential of the methanol extract of M. styphelioides leaves (MSE) was investigated against CCl4-induced liver injury in mice. MATERIALS AND METHODS MSE was administered (500 and 1000 mg/kg/d p.o.) along with CCl4 for 6 weeks. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were determined in the serum. Glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione transferase (GST), and malondialdehyde (MDA) were estimated in the liver homogenate. The bioactive components of MSE were identified by NMR, UV and HRESI-MS/MS data. RESULTS MSE treatment (500 and 1000 mg/kg/d) markedly inhibited the CCl4-induced increase in the levels of AST (31 and 38%), ALT (29 and 32%), ALP (13 and 19%), and MDA (22 and 37%) at the tested doses, respectively. MSE treatment markedly increased the levels of GSH (29 and 57%) and antioxidant enzymes compared with the CCl4-treated group. MSE was more effective than silymarin in restoring the liver architecture and reducing the fatty changes, central vein congestion, Kupffer cell hyperplasia, inflammatory infiltration, and necrosis induced by CCl4. The LD50 of MSE was more than 5000 mg/kg. CONCLUSION MSE confers potent antioxidant and hepatoprotective effects against CCl4-induced toxicity.
Collapse
Affiliation(s)
- Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University , Cairo , Egypt
| | | | | | | | | |
Collapse
|
71
|
Moreira PR, Maioli MA, Medeiros HCD, Guelfi M, Pereira FTV, Mingatto FE. Protective effect of bixin on carbon tetrachloride-induced hepatotoxicity in rats. Biol Res 2014; 47:49. [PMID: 25299839 PMCID: PMC4192761 DOI: 10.1186/0717-6287-47-49] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background The liver is an important organ for its ability to transform xenobiotics, making the liver tissue a prime target for toxic substances. The carotenoid bixin present in annatto is an antioxidant that can protect cells and tissues against the deleterious effects of free radicals. In this study, we evaluated the protective effect of bixin on liver damage induced by carbon tetrachloride (CCl4) in rats. Results The animals were divided into four groups with six rats in each group. CCl4 (0.125 mL kg-1 body wt.) was injected intraperitoneally, and bixin (5.0 mg kg-1 body wt.) was given by gavage 7 days before the CCl4 injection. Bixin prevented the liver damage caused by CCl4, as noted by the significant decrease in serum aminotransferases release. Bixin protected the liver against the oxidizing effects of CCl4 by preventing a decrease in glutathione reductase activity and the levels of reduced glutathione and NADPH. The peroxidation of membrane lipids and histopathological damage of the liver was significantly prevented by bixin treatment. Conclusion Therefore, we can conclude that the protective effect of bixin against hepatotoxicity induced by CCl4 is related to the antioxidant activity of the compound.
Collapse
Affiliation(s)
- Priscila R Moreira
- Laboratório de Bioquímica Metabólica e Toxicológica (LaBMeT), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| | - Marcos A Maioli
- Laboratório de Bioquímica Metabólica e Toxicológica (LaBMeT), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| | - Hyllana C D Medeiros
- Laboratório de Bioquímica Metabólica e Toxicológica (LaBMeT), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| | - Marieli Guelfi
- Laboratório de Bioquímica Metabólica e Toxicológica (LaBMeT), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| | - Flávia T V Pereira
- Laboratório de Morfologia da Placenta e Embrião (L@MPE), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| | - Fábio E Mingatto
- Laboratório de Bioquímica Metabólica e Toxicológica (LaBMeT), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| |
Collapse
|
72
|
Mahmoud AM. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation of oxidative stress and inflammation. Can J Physiol Pharmacol 2014; 92:717-24. [DOI: 10.1139/cjpp-2014-0204] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most important reason for the non-approval and withdrawal of drugs by the Food and Drug Administration is hepatotoxicity. Therefore, this study was undertaken to evaluate the protective effects of hesperidin against cyclophosphamide (CYP)-induced hepatotoxicity in Wistar rats. The rats received a single intraperitoneal dose of CYP of 200 mg/kg body mass, followed by treatment with hesperidin, orally, at doses of 25 and 50 mg/kg for 11 consecutive days. CYP induced hepatic damage, as evidenced by the significantly elevated levels of serum pro-inflammatory cytokines, serum transaminases, liver lipid peroxidation, and nitric oxide. As a consequence, there was reduced glutathione content, and the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, were markedly reduced. In addition, CYP administration induced a considerable downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and upregulation of nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) mRNA expression. Hesperidin, in a dose-dependent manner, rejuvenated the altered markers to an almost normal state. In conclusion, hesperidin showed a potent protective effect against CYP-induced oxidative stress and inflammation leading to hepatotoxicity. The study suggests that hesperidin exerts its protective effect against CYP-induced hepatotoxicity through upregulation of hepatic PPARγ expression and abrogation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, 62514 Beni-Suef, Egypt
| |
Collapse
|
73
|
Vedi M, Rasool M, Sabina EP. Amelioration of bromobenzene hepatotoxicity by Withania somnifera pretreatment: Role of mitochondrial oxidative stress. Toxicol Rep 2014; 1:629-638. [PMID: 28962276 PMCID: PMC5598216 DOI: 10.1016/j.toxrep.2014.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022] Open
Abstract
Administration of bromobenzene to rats caused increased levels of liver marker enzymes, lipid peroxidation, TNF-α, IL-1β, VEGF, depletion in levels of mitochondrial enzymes and antioxidants. Pre-treatment with Withania somnifera normalized the levels of liver marker enzymes, TNF-α, IL-1β, VEGF, mitochondrial enzymes, antioxidants and ameliorated histopathological manifestations in bromobenzene-treated rats. Molecular dockings studies showed strong interactions between pro-inflammatory mediator NF-ƙB and various active components of W. somnifera (Withaferin A, Withanolide D and Withanolide E), thus blocking it from causing progressive tissue damage.
The present study investigated the possible protective role of Withania somnifera (Linn.) Dunal (Solanaceae) root powder against bromobenzene-induced oxidative damage in rat liver mitochondria. Administration of bromobenzene (10 mmol/kg body weight) to rats resulted in increased levels of liver marker enzymes, lipid peroxidation, TNF-α, IL-1β and VEGF. There was also marked depletion in the levels of mitochondrial enzymes and antioxidant activity. Pre-treatment with W. somnifera significantly decreased the levels of liver marker enzymes, TNF-α, IL-1β, VEGF and ameliorated histopathological manifestations in bromobenzene-treated rats. The molecular docking analysis predicted that the pro-inflammatory mediator NF-κB showed significant interaction with selected various active components of W. somnifera (withaferin A, withanolide D and withanolide E). This study demonstrates a good protective effect of W. somnifera against bromobenzene-induced oxidative stress.
Collapse
Affiliation(s)
- Mahima Vedi
- VIT University, Vellore 632014 Tamil Nadu, India
| | | | | |
Collapse
|
74
|
Protective effect of Pelargonium graveolens against carbon tetrachloride-induced hepatotoxicity in mice and characterization of its bioactive constituents by HPLC–PDA–ESI–MS/MS analysis. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1218-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Naseem M, Parvez S. Hesperidin restores experimentally induced neurotoxicity in Wistar rats. Toxicol Mech Methods 2014; 24:512-9. [DOI: 10.3109/15376516.2014.945108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
76
|
Antioxidant and prophylactic effects of Delonix elata L., stem bark extracts, and flavonoid isolated quercetin against carbon tetrachloride-induced hepatotoxicity in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:507851. [PMID: 24987689 PMCID: PMC4060769 DOI: 10.1155/2014/507851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 01/24/2023]
Abstract
Delonix elata L. (Ceasalpinaceae), is widely used by the traditional medical practitioners of Karnataka, India, to cure jaundice, and bronchial and rheumatic problems. The objective of this study was to screen the in vitro antioxidant and hepatoprotective activity of the stem bark extracts against CCl4-induced liver damage in rats. Among different stem bark extracts tested, the ethanol extract (DSE) has shown significant in vitro antioxidant property in radicals scavenging, metal chelating, and lipid peroxidation inhibition assays. HPLC analysis of the DSE revealed the presence of known antioxidant molecules, namely, gallic acid, ellagic acid, coumaric acid, quercetin, and rutin. Bioassay-guided fractionation of DSE has resulted in the isolation and characterization of quercetin. DSE and quercetin have shown significant prophylactic effects by restoring the liver function markers (AST, ALT, ALP, serum bilirubin, and total protein) and antioxidant enzymes (SOD, CAT, GPx, and GST). These results were proved to be hepatoprotective at par with silymarin and well supported by the histological observations of liver sections with distinct hepatic cells, and mild degree of fatty change and necrosis. The results indicated that the DSE and quercetin were significant for prophylactic activity against CCl4-induced liver damage in rats. This activity could be attributed to the antioxidant constituents in the DSE and hence justified the ethnomedicinal claims.
Collapse
|
77
|
Hepatoprotective and antioxidant effect of Bauhinia hookeri extract against carbon tetrachloride-induced hepatotoxicity in mice and characterization of its bioactive compounds by HPLC-PDA-ESI-MS/MS. BIOMED RESEARCH INTERNATIONAL 2014; 2014:245171. [PMID: 24955350 PMCID: PMC4053259 DOI: 10.1155/2014/245171] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/26/2014] [Accepted: 04/26/2014] [Indexed: 01/01/2023]
Abstract
The hepatoprotective and antioxidant activity of Bauhinia hookeri ethanol extract (BHE) against CCl4-induced liver injury was investigated in mice. BHE was administered (500 and 1000 mg/kg/day) along with CCl4 for 6 weeks. The hepatic marker enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were determined in the serum. The antioxidant parameters: glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione transferase (GST), and malondialdehyde (MDA) were estimated in the liver homogenate. BHE treatment significantly inhibited the CCl4-induced increase in ALT (44 and 64%), AST (36 and 46%), ALP (28 and 42%), and MDA (39 and 51%) levels at the tested doses, respectively. Moreover, BHE treatment markedly increased the activity of antioxidant parameters GSH, GPx, GR, GST, and SOD. Histological observations confirmed the strong hepatoprotective activity. These results suggest that a dietary supplement of BHE could exert a beneficial effect against oxidative stress and various liver diseases by enhancing the antioxidant defense status, reducing lipid peroxidation, and protecting against the pathological changes of the liver. The hepatoprotective activity of BHE is mediated, at least in part, by the antioxidant effect of its constituents. The active constituents of BHE were identified by HPLC-PDA-ESI/MS/MS.
Collapse
|
78
|
Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S. Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl 2014; 29:303-317. [PMID: 24522241 DOI: 10.1177/0885328214523323] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclophosphamide (CP) is the most commonly used chemotherapeutic drug for various types of cancer. However, its use causes severe cytotoxicity to normal cells in human. It is well known that the undesirable side effects are caused due to the formation of reactive oxygen species. Selenium is an essential micronutrient for both animals and humans and has antioxidant and membrane stabilizing property, but selenium is also toxic above certain level. Nano selenium has been well proved to be less toxic than inorganic selenium as well as certain organoselenium compounds. The objective of the study is to evaluate the protective role of Nano-Se against CP-induced hepatotoxicity and genotoxicity in Swiss albino mice. CP was administered intraperitoneally (25 mg/kg b.w.) and Nano-Se was given by oral gavages (2 mg Se/kg b.w.) in concomitant and pretreatment scheme. Intraperitoneal administration of CP induced hepatic damage as indicated by the serum marker enzymes aspartate and alanine transaminases and increased the malonaldehyde level, depleted the glutathione content and antioxidant enzyme activity (glutathione peroxidase, glutathione-s-transferase, superoxide dismutase and catalase), and induced DNA damage and chromosomal aberration. Oral administration of Nano-Se caused a significant reduction in malonaldehyde, ROS level and glutathione levels, restoration of antioxidant enzyme activity, reduction in chromosomal aberration in bone marrow, and DNA damage in lymphocytes and also in bone marrow. Moreover, the chemoprotective efficiency of Nano-Se against CP induced toxicity was confirmed by histopathological evaluation. The results support the protective effect of Nano-Se against CP-induced hepatotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Arin Bhattacharjee
- Chittaranjan National Cancer Institute, Department of Cancer Chemoprevention, Kolkata, West Bengal, India
| | - Abhishek Basu
- Chittaranjan National Cancer Institute, Department of Cancer Chemoprevention, Kolkata, West Bengal, India
| | - Prosenjit Ghosh
- Chittaranjan National Cancer Institute, Department of Cancer Chemoprevention, Kolkata, West Bengal, India
| | - Jaydip Biswas
- Chittaranjan National Cancer Institute, Department of Translational Research, Kolkata, West Bengal, India
| | - Sudin Bhattacharya
- Chittaranjan National Cancer Institute, Department of Cancer Chemoprevention, Kolkata, West Bengal, India
| |
Collapse
|
79
|
Samal PK, Dangi JS. Isolation, preliminary characterization and hepatoprotective activity of polysaccharides from Tamarindus indica L. Carbohydr Polym 2014; 102:1-7. [DOI: 10.1016/j.carbpol.2013.10.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 11/27/2022]
|
80
|
Sun ZX, Liu S, Zhao ZQ, Su RQ. Protective Effect of Chlorogenic Acid against Carbon Tetrachloride-induced Acute Liver Damage in Rats. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60004-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
81
|
Baligar NS, Aladakatti RH, Ahmed M, Hiremath MB. Hepatoprotective activity of the neem-based constituent azadirachtin-A in carbon tetrachloride intoxicated Wistar rats. Can J Physiol Pharmacol 2014; 92:267-77. [PMID: 24708208 DOI: 10.1139/cjpp-2013-0449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the hepatoprotective role of azadirachtin-A in carbon tetrachloride (CCl4) induced hepatotoxicity in rats. The group allotment for the animals used in the hepatoprotective study included a vehicle treatment group, CCl4 (1 mL · (kg body mass)(-1)) treatment group, silymarin (100 μg · (kg body mass)(-1) · day(-1)) + CCl4 treatment group, and groups treated with different doses of azadirachtin-A (100 or 200 μg · (kg body mass)(-1) · day(-1)) + CCl4. On the 9th day, blood was obtained for measuring the biochemical parameters, and liver tissue was obtained for pathological examination. The acute toxicity test with azadirachtin-A (500, 1000, or 2000 μg · (kg body mass)(-1)) indicated no mortality after 14 days of treatment; further, there was no change in behavior, food consumption, or organ mass. However with the higher dose, some hematological parameters showed changes. Hepatoprotective studies revealed that the CCl4 treatment group exhibited a decrease in total protein and albumin levels, whereas a significant increase in BUN, AST, ALT, and ALP levels were noticed compared with the vehicle-treated control, indicating that there was liver damage caused by CCl4. Histology and ultrastructure study confirmed that pretreatment with azadirachtin-A dose-dependently reduced hepatocellular necrosis and, therefore, protected the liver against toxicity caused by CCl4. The results from this study indicate that pretreatment with azadirachtin-A at the higher dose levels, moderately restores the rat liver to normal. This study confirms that azadirachtin-A possesses greater hepatoprotective action; however, the effective concentration needs to be determined.
Collapse
Affiliation(s)
- N S Baligar
- a KLES Kidney Foundation, KLES Prabhakar Kore Hospital & MRC, Belgaum 590 010, Karnataka, India
| | | | | | | |
Collapse
|
82
|
Srivastava A, Shivanandappa T. Prevention of hexachlorocyclohexane-induced neuronal oxidative stress by natural antioxidants. Nutr Neurosci 2013; 17:164-71. [PMID: 24257078 DOI: 10.1179/1476830513y.0000000075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Decalepis hamiltonii roots are traditionally consumed as general vitalizer and used in ayurvedic medicine preparations. We have isolated/characterized potent antioxidants from the aqueous extract of the root of this plant. In this study, we examined the antioxidant potential of the aqueous extract of the roots of D. hamiltonii (DHAE) against hexachlorocyclohexane (HCH)-induced oxidative stress in four major regions of the rat brain. METHODS The antioxidant activity of the standardized DHAE with known antioxidant constituents was tested against HCH-induced oxidative stress in the major brain regions of 60-day-old adult male Wistar rats. RESULTS Pretreatment of rats with multiple doses of DHAE, 50 and 100 mg/kg body weight (b.w.), for 7 consecutive days significantly prevented the HCH-induced (single dose -500 mg/kg b.w.) increase in lipid peroxidation, reduction in glutathione, and altered antioxidant enzyme activities viz. superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase in major rat brain regions viz. cortex, cerebellum, midbrain, and brain stem. DHAE, per se, elevated the antioxidant status of the rat brain. DISCUSSION DHAE shows protective action against HCH-induced oxidative stress in rat brain regions. The protective effect of DHAE could be ascribed to the isolated/characterized antioxidant compounds which could be prospective novel nutraceuticals.
Collapse
|
83
|
Subhapradha N, Saravanan R, Ramasamy P, Srinivasan A, Shanmugam V, Shanmugam A. Hepatoprotective effect of β-chitosan from gladius of Sepioteuthis lessoniana against carbon tetrachloride-induced oxidative stress in Wistar rats. Appl Biochem Biotechnol 2013; 172:9-20. [PMID: 24043453 DOI: 10.1007/s12010-013-0499-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 08/31/2013] [Indexed: 11/26/2022]
Abstract
Chitosan has attracted much attention as a biomedical material, owing to its unique biological activities. In this study, hepatoprotective effect of β-chitosan obtained from the gladius of squid Sepioteuthis lessoniana was studied against carbon tetrachloride (CCl4)-induced oxidative stress and liver injury in rats. The rats that received β-chitosan along with the administration of CCl4 showed significantly decreased plasma and tissue alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and total cholesterol, triglyceride (TG) and free fatty acid (FFA) contents, whereas the treatment with β-chitosan alone markedly increased rat hepatic and circulatory superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) and reduced glutathione (GSH) levels and decreased the malondialdehyde level. Histopathological observations recommended the marked hepatoprotective effect of β-chitosan. The CCl4-induced alterations on circulatory and hepatic antioxidant defence system were normalised by β-chitosan, and it could be concluded that the hepatoprotective effect of chitosan may be due to its antioxidant and antilipidemic property. Therefore, β-chitosan could be considered as antihepatotoxic agent.
Collapse
Affiliation(s)
- Namasivayam Subhapradha
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608502, India
| | | | | | | | | | | |
Collapse
|
84
|
Lu X, Zhao Y, Sun Y, Yang S, Yang X. Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects. Food Chem 2013; 141:3415-23. [PMID: 23993501 DOI: 10.1016/j.foodchem.2013.06.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/10/2013] [Accepted: 06/13/2013] [Indexed: 11/28/2022]
Abstract
This study was to examine the hepatoprotective effects of polysaccharides from green tea of Huangshan Maofeng (HMTP) against CCl4-induced oxidative damage in mice. HMTP is an acidic heteropolysaccharide with galactose (35.0%, mol.%), arabinose (28.9%) and galacturonic acid (11.3%) being the main monosaccharide components. HMTP (400 and 800 mg/kg·bw) administered orally daily for 14 days before CCl4 administration significantly reduced the impact of CCl4 toxicity on the serum markers of liver damage, alanine aminotransferase, aspartate aminotransferase, total-cholesterol and triglycerides. This method of HMTP administration also markedly restrained hepatic lipid peroxidation formation of malondialdehyde and 15-F2t isoprostanes, and elevated the antioxidant levels of hepatic glutathione and superoxide dismutase. These results together with liver histopathology indicated that HMTP exhibited hepatoprotection against CCl4-induced injury, which was found to be comparable to that of biphenyldicarboxylate. The hepatoprotective effects of HMTP may be due to both the inhibition of lipid peroxidation and the increase of antioxidant activity.
Collapse
Affiliation(s)
- Xinshan Lu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | | | |
Collapse
|
85
|
Efficacy evaluation of the protein isolated from Peganum harmala seeds as an antioxidant in liver of rats. ASIAN PAC J TROP MED 2013; 6:285-95. [DOI: 10.1016/s1995-7645(13)60058-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/30/2012] [Accepted: 12/15/2012] [Indexed: 11/18/2022] Open
|
86
|
Amelioration of cyclophosphamide-induced hepatotoxicity by the root extract of Decalepis hamiltonii in mice. Food Chem Toxicol 2013; 57:179-84. [PMID: 23542512 DOI: 10.1016/j.fct.2013.03.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/24/2022]
Abstract
Hepatoprotective potential of the aqueous extract of the roots of Decalepis hamiltonii (DHA) against cyclophosphamide (CP)-induced oxidative stress has been investigated in mice. Administration of CP (25mg/kg b.w., i.p) for 10 days induced hepatic damage as indicated by the serum marker enzymes aspartate and alanine transaminases (AST, ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Parallel to these changes CP induced oxidative stress in the liver as evident from the increased lipid peroxidation (LPO), reactive oxygen species (ROS), depletion of glutathione (GSH), and reduced activities of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST). Treatment with DHA (50 and 100 mg/kg b.w., po) mitigated the CP-induced oxidative stress. Moreover, expression of genes for the antioxidant enzymes, were down-regulated by CP treatment which was reversed by DHA. Our study shows the DHA protected the liver from toxicity induced by CP and therefore, it could be serve as a safe medicinal supplement during cyclophosphamide chemotherapy.
Collapse
|
87
|
Makhmoor T, Naheed S, Shujaat S, Jalil S, Hayat S, Choudhary MI, Khan KM, Alam JM, Nazir S. Hepatoprotection by chemical constituents of the marine brown alga Spatoglossum variabile: a relation to free radical scavenging potential. PHARMACEUTICAL BIOLOGY 2013; 51:383-90. [PMID: 23406359 DOI: 10.3109/13880209.2012.732582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT In the course of searching hepatoprotective agents from natural sources, the protective effect of chemical constituents of the marine brown alga Spatoglossum variabile Figaro et DE Notar (Dictyoaceae) against CCl₄-induced liver damage in Wistar rats was investigated. The compounds were first investigated for in vitro radical scavenging potential and were also tested for β-glucuronidase inhibition to further explore the relationship between hepatoprotection and antiradical potential. METHODS The compounds cinnamic acid esters 1 and 2 and aurone derivatives 3 and 4 were first investigated for in vitro radical scavenging potential against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), and superoxide anion radicals. In vivo hepatoprotective studies were performed in seven groups (n = 6) of Wistar rats. The test groups were pretreated with compounds (10 mg/kg body weight, po) orally for 30 min before the intraperitoneal administration of a dose of 20% CCl₄ diluted with dietary cooking oil. Moreover, compounds were also tested for β-glucuronidase inhibition to explore the relationship between hepatoprotection and radical scavenging potential. RESULTS The test compounds 1-4 were found to exhibit antiradical activity against 1,1-diphenyl-2-picrylhydrazyl radicals with IC₅₀ values ranging between 54 and 138 µM, whereas aurone derivatives 3 and 4 additionally exhibited superoxide anion scavenging effects with IC₅₀ values of 95 and 87 µM, respectively. In addition, these compounds were found to be weak inhibitors of xanthine oxidase (IC₅₀ ≥1000 µM). In animal model, pretreatment with compounds 2-4 significantly blocked the CCl₄-induced increase in the levels of the serum biochemical markers. CONCLUSION It appears that the hepatoprotection afforded by these compounds was mainly due to their radical scavenging activity that protected the cells from the free radicals generated by CCl₄-induced hepatotoxicity.
Collapse
Affiliation(s)
- Talat Makhmoor
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Mihailović V, Mihailović M, Uskoković A, Arambašić J, Mišić D, Stanković V, Katanić J, Mladenović M, Solujić S, Matić S. Hepatoprotective effects of Gentiana asclepiadea L. extracts against carbon tetrachloride induced liver injury in rats. Food Chem Toxicol 2013; 52:83-90. [DOI: 10.1016/j.fct.2012.10.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/24/2012] [Accepted: 10/26/2012] [Indexed: 12/18/2022]
|
89
|
Hepatoprotective Activity of the Total Saponins from Actinidia valvata Dunn Root against Carbon Tetrachloride-Induced Liver Damage in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:216061. [PMID: 23243434 PMCID: PMC3518303 DOI: 10.1155/2012/216061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/27/2012] [Accepted: 10/04/2012] [Indexed: 01/12/2023]
Abstract
The protective activity of the total saponins from Actinidia valvata Dunn root (TSAV) was studied against carbon-tetrachloride- (CCl4-) induced acute liver injury in mice. Mice were orally administered TSAV (50, 100, and 200 mg/kg) for five days and then given CCl4. TSAV pretreatment significantly prevented the CCl4-induced hepatic damage as indicated by the serum marker enzymes (AST, ALT, and ALP). Parallel to these changes, TSAV also prevented CCl4-induced oxidative stress by inhibiting lipid peroxidation (MDA) and restoring the levels of antioxidant enzymes (SOD, CAT, GR, and GPX), GSH and GSSG. In addition, TSAV attenuated the serum TNF-α and IL-6 levels and inhibited the serum iNOS and NO levels. Liver histopathology indicated that TSAV alleviated CCl4-induced inflammatory infiltration and focal necrosis. TSAV (200 mg/kg) also significantly decreased Bak, Bax mRNA and Fas, FasL, p53, and NF-κB p65 protein expressions and increased Bcl-2 mRNA and protein expressions. Meanwhile, TSAV significantly downregulated caspase-3 and caspase-8 activities and prevented CCl4-induced hepatic cell apoptosis. In addition, TSAV exhibited antioxidant activity through scavenging hydroxyl and DPPH free radicals in vitro. These results indicated that TSAV could protect mice against CCl4-induced acute liver damage possibly through antioxidant, anti-inflammatory activities and regulating apoptotic-related genes.
Collapse
|
90
|
Tiwari SS, Srivastava A, Srivastava S, Rawat AKS. ISOLATION AND QUANTIFICATION OF VANILLIN THROUGH FLASH & HPTLC CHROMATOGRAPHIC TECHNIQUES FROM DECALEPIS HAMILTONII WIGHT AND ARN ROOT AND THEIR ANTIOXIDANT STUDIES. J LIQ CHROMATOGR R T 2012. [DOI: 10.1080/10826076.2011.633675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shashi Shankar Tiwari
- a Pharmacognosy & Ethnopharmacology Division, National Botanical Research Institute (CSIR) , Lucknow , India
| | - Amit Srivastava
- a Pharmacognosy & Ethnopharmacology Division, National Botanical Research Institute (CSIR) , Lucknow , India
| | - Sharad Srivastava
- a Pharmacognosy & Ethnopharmacology Division, National Botanical Research Institute (CSIR) , Lucknow , India
| | - A. K. S. Rawat
- a Pharmacognosy & Ethnopharmacology Division, National Botanical Research Institute (CSIR) , Lucknow , India
| |
Collapse
|
91
|
Srivastava A, Jagan Mohan Rao L, Shivanandappa T. 4-(2-Hydroxypropan-2-yl)-1-methylcyclohexane-1,2-diol prevents xenobiotic induced cytotoxicity. Toxicol In Vitro 2012; 26:1040-6. [DOI: 10.1016/j.tiv.2012.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022]
|
92
|
Srivastava A, Jagan Mohan Rao L, Shivanandappa T. A novel cytoprotective antioxidant: 4-Hydroxyisophthalic acid. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
93
|
Radical scavenging activity of decalpoline, a novel compound characterized from Decalepis hamiltonii. Chem Nat Compd 2012. [DOI: 10.1007/s10600-012-0210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
94
|
Srivastava A, Jagan Mohan Rao L, Shivanandappa T. 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one scavenges free radicals and protects against xenobiotic-induced cytotoxicity. Free Radic Res 2012; 46:320-8. [PMID: 22239689 DOI: 10.3109/10715762.2012.655729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Currently, there is a great deal of interest in the study of natural compounds with free-radical-scavenging activity because of their potential role in maintaining human health and preventing diseases. In this paper, we report the antioxidant and cytoprotective properties of 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one (TBO) isolated from the aqueous extract of Decalepis hamiltonii roots. Our results show that TBO is a potent scavenger of superoxide (O(2)·-), hydroxyl (·OH), nitric oxide (·NO) and lipid peroxide (LOO·) - physiologically relevant free radicals with IC(50) values in nmolar (42-281) range. TBO also exhibited concentration-dependent secondary antioxidant activities such as reducing power, metal-chelating activity and inhibition of protein carbonylation. Further, TBO at nmolar concentration prevented CuSO(4)-induced human LDL oxidation. Apart from the in vitro free-radical-scavenging activity, TBO demonstrated cytoprotective activity in primary hepatocytes and Ehrlich ascites tumour (EAT) cells against oxidative-stress-inducing xenobiotics. The mechanism of cytoprotective action involved maintaining the intracellular glutathione (GSH), scavenging of reactive oxygen species (ROS) and inhibiting lipid peroxidation (LPO). Based on the results, it is suggested that TBO is a novel bioactive molecule with implications in both prevention and amelioration of diseases involving oxidative stress as well as in the general well-being.
Collapse
Affiliation(s)
- Anup Srivastava
- Department of Food Protectants and Infestation Control, Central Food Technological Research Institute, Mysore, Karnataka, India
| | | | | |
Collapse
|
95
|
Srivastava A, Rao LJM, Shivanandappa T. 14-aminotetradecanoic acid exhibits antioxidant activity and ameliorates xenobiotics-induced cytotoxicity. Mol Cell Biochem 2011; 364:1-9. [PMID: 22198290 DOI: 10.1007/s11010-011-1196-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/13/2011] [Indexed: 12/27/2022]
Abstract
Natural compounds with free-radical scavenging activity have potential role in maintaining human health and preventing diseases. In this study, we report the antioxidant and cytoprotective properties of 14-aminotetradecanoic acid (ATDA) isolated from the Decalepis hamiltonii roots. ATDA is a potent scavenger of superoxide (O(2) (•-)), hydroxyl ((•)OH), nitric oxide ((•)NO), and lipid peroxide (LOO(•)) physiologically relevant free radicals with IC(50) values in nM (36-323) range. ATDA also exhibits concentration-dependent secondary antioxidant activities like reducing power, metal-chelating activity, and inhibition of protein carbonylation. Further, ATDA at nM concentration prevented CuSO(4)-induced human LDL oxidation. ATDA demonstrated cytoprotective activity in primary hepatocytes and Ehrlich ascites tumor cells against oxidative stress inducing xenobiotics apart from the in vitro free-radical scavenging activity. The mechanism of cytoprotective action involved maintaining the intracellular glutathione, scavenging of reactive oxygen species, and inhibition of lipid peroxidation. It is suggested that ATDA is a novel bioactive molecule with potential health implications.
Collapse
Affiliation(s)
- Anup Srivastava
- Department of Food Protectants and Infestation Control, Central Food Technological Research Institute, Mysore, 570020 Karnataka, India.
| | | | | |
Collapse
|
96
|
Protective Role of Ficus carica Stem Extract against Hepatic Oxidative Damage Induced by Methanol in Male Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:150458. [PMID: 22203864 PMCID: PMC3235718 DOI: 10.1155/2012/150458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/11/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022]
Abstract
The present study was aimed to investigate the antioxidant activity of Ficus carica stem extract (FE) in methanol-induced hepatotoxicity in male Wistar rats. The rats were divided into two batches: 16 control rats (C) drinking tap water and 16 treated rats drinking Ficus carica stem extract for six weeks. Then, each group was divided into two subgroups, and one of them was intraperitoneally injected (i.p.) daily methanol at a dose of 2.37 g/kg body weight i.p. for 30 days, for four weeks. The results showed that FE was found to contain large amounts of polyphenols and carotenoids. The treatment with methanol exhibited a significant increase of serum hepatic biochemical parameters (ALT, AST, ALP, and LDH) and hepatic lipid peroxidation. Hepatic antioxidant enzymes, namely, SOD, CAT, and GSH-Px, were significantly decreased in methanol-treated animals. FE treatment prior to methanol intoxication has significant role in protecting animals from methanol-induced hepatic oxidative damage.
Collapse
|
97
|
Altaş S, Kızıl G, Kızıl M, Ketani A, Haris PI. Protective effect of Diyarbakır watermelon juice on carbon tetrachloride-induced toxicity in rats. Food Chem Toxicol 2011; 49:2433-8. [DOI: 10.1016/j.fct.2011.06.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/03/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
|
98
|
Sahreen S, Khan MR, Khan RA. Hepatoprotective effects of methanol extract of Carissa opaca leaves on CCl4-induced damage in rat. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 11:48. [PMID: 21699742 PMCID: PMC3141600 DOI: 10.1186/1472-6882-11-48] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Carissa opaca (Apocynaceae) leaves possess antioxidant activity and hepatoprotective effects, and so may provide a possible therapeutic alternative in hepatic disorders. The effect produced by methanolic extract of Carissa opaca leaves (MCL) was investigated on CCl4-induced liver damages in rat. METHODS 30 rats were divided into five groups of six animals of each, having free access to food and water ad libitum. Group I (control) was given olive oil and DMSO, while group II, III and IV were injected intraperitoneally with CCl4 (0.5 ml/kg) as a 20% (v/v) solution in olive oil twice a week for 8 weeks. Animals of group II received only CCl4. Rats of group III were given MCL intragastrically at a dose of 200 mg/kg bw while that of group IV received silymarin at a dose of 50 mg/kg bw twice a week for 8 weeks. However, animals of group V received MCL only at a dose of 200 mg/kg bw twice a week for 8 weeks. The activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and γ-glutamyltransferase (γ-GT) were determined in serum. Catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GSH-Px), glutathione reductase (GSR) and quinone reductase (QR) activity was measured in liver homogenates. Lipid peroxidation (thiobarbituric acid reactive substances; TBARS), glutathione (GSH) and hydrogen peroxide (H2O2) concentration was also assessed in liver homogenates. Phytochemicals in MCL were determined through qualitative and high performance liquid chromatography (HPLC) analysis. RESULTS Hepatotoxicity induced with CCl4 was evidenced by significant increase in lipid peroxidation (TBARS) and H2O2 level, serum activities of AST, ALT, ALP, LDH and γ-GT. Level of GSH determined in liver was significantly reduced, as were the activities of antioxidant enzymes; CAT, POD, SOD, GSH-Px, GSR, GST and QR. On cirrhotic animals treated with CCl4, histological studies showed centrilobular necrosis and infiltration of lymphocytes. MCL (200 mg/kg bw) and silymarin (50 mg/kg bw) co-treatment prevented all the changes observed with CCl4-treated rats. The phytochemical analysis of MCL indicated the presence of flavonoids, tannins, alkaloids, phlobatannins, terpenoids, coumarins, anthraquinones, and cardiac glycosides. Isoquercetin, hyperoside, vitexin, myricetin and kaempherol was determined in MCL. CONCLUSION These results indicate that MCL has a significant protective effect against CCl4 induced hepatotoxicity in rat, which may be due to its antioxidant and membrane stabilizing properties.
Collapse
Affiliation(s)
- Sumaira Sahreen
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 44000, Pakistan
| | - Muhammad R Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 44000, Pakistan
| | - Rahmat A Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 44000, Pakistan
| |
Collapse
|
99
|
Chen Y, Huang B, He J, Han L, Zhan Y, Wang Y. In vitro and in vivo antioxidant effects of the ethanolic extract of Swertia chirayita. JOURNAL OF ETHNOPHARMACOLOGY 2011; 136:309-315. [PMID: 21549823 DOI: 10.1016/j.jep.2011.04.058] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 04/13/2011] [Accepted: 04/20/2011] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Swertia chirayita, a medicinal herb endemic to the Tibetan region, is used as a special remedy for liver disorders. The hepatoprotective activity of its plant extracts has been associated with its antioxidant activity. This paper aims to investigate the in vitro and in vivo antioxidant effects of Swertia chirayita extracts (SCE). MATERIALS AND METHODS Antioxidant ability of Swertia chirayita was investigated by employing several established in vitro methods. In vivo antioxidant activity was tested against CCl(4)-induced toxicity in mice. The levels and activities of malondialdehyde (MDA) and antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), were then assayed using standard procedures. RESULTS SCE exhibited strong antioxidant ability in vitro. The liver and kidney of CCl(4)-intoxicated animals exhibited a significant (p<0.001) decrease in SOD, CAT, and GSH levels. Additionally, these organs exhibited a significant (p<0.001) increase in MDA level. CCl(4) did not exhibit toxicity on mice treated with SCE and Vitamin E. The effects of Swertia chirayita (three dosages) were comparable to those of Vitamin E, except in MDA level in the liver and GSH level in the kidney (p<0.05). CONCLUSION This study suggests that the ethanolic extract of Swertia chirayita possesses in vitro and in vivo antioxidant effects. This supports the traditional use of Swertia chirayita in Tibetan medicine to cure liver diseases.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China
| | | | | | | | | | | |
Collapse
|
100
|
Koh PH, Mokhtar RAM, Iqbal M. Antioxidant potential of Cymbopogon citratus extract: alleviation of carbon tetrachloride-induced hepatic oxidative stress and toxicity. Hum Exp Toxicol 2011; 31:81-91. [PMID: 21508074 DOI: 10.1177/0960327111407226] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was aimed to evaluate the effect of Cymbopogon citratus against carbon tetrachloride (CCl(4))-mediated hepatic oxidative damage in rats. Rats were administrated with C. citratus extract (100, 200 and 300 mg/kg b.w.) for 14 days before the challenge of CCl(4) (1.2 ml/kg b.w. p.o) on 13th and 14th days. Hepatic damage was evaluated by employing serum biochemical parameters (alanine aminotransferase-ALT, aspartate aminotransferase-AST and lactate dehydrogenase-LDH), malondialdehye (MDA) level, reduced GSH and antioxidant enzymes (catalase: CAT, glutathione peroxidase: GPX, quinone reductase: QR, glutathione S-transferase: GST, glutathione reductase: GR, glucose-6-phosphate dehyrogenase: G6PD). In addition, CCl(4)-mediated hepatic damage was further evaluated by histopathological examination. However, most of these changes were alleviated by prophylactic treatment of animals with C. citratus dose dependently (p < 0.05). The protection was further evident through decreased histopathological alterations in liver. The results of the present study indicated that the hepatoprotective effect of C. citratus might be ascribable to its antioxidant and free radical scavenging property.
Collapse
Affiliation(s)
- Pei Hoon Koh
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| | | | | |
Collapse
|