51
|
Özenver N, Efferth T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol Res 2021; 170:105710. [PMID: 34089866 DOI: 10.1016/j.phrs.2021.105710] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome holds a crucial role in innate immune responses. Pathogen- and danger-associated molecular patterns may initiate inflammasome activation and following inflammatory cytokine release. The inflammasome formation and its-associated activity are involved in various pathological conditions such as cardiovascular, central nervous system, metabolic, renal, inflammatory and autoimmune diseases. Although the mechanism behind NLRP3-mediated disorders have not been entirely illuminated, many phytochemicals and medicinal plants have been described to prevent inflammatory disorders. In the present review, we mainly introduced phytochemicals inhibiting NLRP3 inflammasome in addition to NLRP3-mediated diseases. For this purpose, we performed a systematic literature search by screening PubMed, Scopus, and Google Scholar databases. By compiling the data of phytochemical inhibitors targeting NLRP3 inflammasome activation, a complex balance between inflammasome activation or inhibition with NLRP3 as central player was pointed out in NLRP3-driven pathological conditions. Phytochemicals represent potential therapeutic leads, enabling the generation of chemical derivatives with improved pharmacological features to treat NLRP3-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
52
|
Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol 2021; 12:590201. [PMID: 34054510 PMCID: PMC8163236 DOI: 10.3389/fphar.2021.590201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mf Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
53
|
Ali SA, Singh G, Datusalia AK. Potential therapeutic applications of phytoconstituents as immunomodulators: Pre-clinical and clinical evidences. Phytother Res 2021; 35:3702-3731. [PMID: 33734511 DOI: 10.1002/ptr.7068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune and infectious diseases are the major public health issues and have gained great attention in the last few years for the search of new agents with therapeutic benefits on the host immune functions. In recent years, natural products (NPs) have been studied broadly for their multi-targeted activities under pathological conditions. Interestingly, several attempts have been made to outline the immunomodulatory properties of NPs. Research on in-vitro and in-vivo models have shown the immunomodulatory activity of NPs, is due to their antiinflammatory property, induction of phagocytosis and immune cells stimulation activity. Moreover, studies on humans have suggested that phytomedicines reduce inflammation and could provide appropriate benefits either in single form or complex combinations with other agents preventing disease progression, subsequently enhancing the efficacy of treatment to combat multiple malignancies. However, the exact mechanism of immunomodulation is far from clear, warranting more detailed investigations on their effectiveness. Nevertheless, the reduction of inflammatory cascades is considered as a prime protective mechanism in a number of inflammation regulated autoimmune diseases. Altogether, this review will discuss the biological activities of plant-derived secondary metabolites, such as polyphenols, alkaloids, saponins, polysaccharides and so forth, against various diseases and their potential use as an immunomodulatory agent under pathological conditions.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Gurpreet Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
54
|
Fei X, Qi Y, Lei Y, Wang S, Hu H, Wei A. Transcriptome and Metabolome Dynamics Explain Aroma Differences between Green and Red Prickly Ash Fruit. Foods 2021; 10:391. [PMID: 33579038 PMCID: PMC7916813 DOI: 10.3390/foods10020391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/04/2022] Open
Abstract
Green prickly ash (Zanthoxylum armatum) and red prickly ash (Zanthoxylum bungeanum) fruit have unique flavor and aroma characteristics that affect consumers' purchasing preferences. However, differences in aroma components and relevant biosynthesis genes have not been systematically investigated in green and red prickly ash. Here, through the analysis of differentially expressed genes (DEGs), differentially abundant metabolites, and terpenoid biosynthetic pathways, we characterize the different aroma components of green and red prickly ash fruits and identify key genes in the terpenoid biosynthetic pathway. Gas chromatography-mass spectrometry (GC-MS) was used to identify 41 terpenoids from green prickly ash and 61 terpenoids from red prickly ash. Piperitone was the most abundant terpenoid in green prickly ash fruit, whereas limonene was most abundant in red prickly ash. Intergroup correlation analysis and redundancy analysis showed that HDS2, MVK2, and MVD are key genes for terpenoid synthesis in green prickly ash, whereas FDPS2 and FDPS3 play an important role in the terpenoid synthesis of red prickly ash. In summary, differences in the composition and content of terpenoids are the main factors that cause differences in the aromas of green and red prickly ash, and these differences reflect contrasting expression patterns of terpenoid synthesis genes.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Yu Lei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Shujie Wang
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| |
Collapse
|
55
|
Ren C, Kong D, Ning C, Xing H, Cheng Y, Zhang Y, Lu Y, Li N, Chen X, Zhao D. Improved Pharmacokinetic Characteristics of Ursolic Acid in Rats Following Intratracheal Instillation and Nose-Only Inhalation Exposure. J Pharm Sci 2021; 110:905-913. [PMID: 33049258 DOI: 10.1016/j.xphs.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022]
Abstract
Ursolic acid (UA) is a common pentacyclic triterpene phytochemical with various pharmacological activities. However, UA is classified as a class IV drug in BCS system and its development as an oral drug is limited. Pulmonary delivery is an effective way to improve the bioavailability of drugs with low absorption. In this study, the differences in pharmacokinetic behaviors of UA after pulmonary and oral administration was explored in rats. Compared with oral administration, the plasma concentration of UA increased rapidly after pulmonary administration, and the bioavailability increased about 80 times. UA instantly accumulated in the lungs after pulmonary administration, and the pulmonary AUC0-t/dose increased by 114 times compared to oral dosing. Incubation experiments showed that the metabolism of UA in rat lung microsomes was significantly reduced compared with that in liver microsomes, in which the clearance rate of phase I and phase II metabolism was reduced by 14.7 times and 1.4 times respectively. These results indicated that pulmonary administration could improve the bioavailability of UA and reduce its metabolism. This study not only provides a preferable route of administration for the application of UA but also offers new insights for the development of phytochemical drug candidates with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Chang Ren
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Dexuan Kong
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Ning
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yujie Cheng
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ning Li
- National Experimental Teaching Demonstration Center of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
56
|
Rafeeq M, Murad HAS, Abdallah HM, El-Halawany AM. Protective effect of 6-paradol in acetic acid-induced ulcerative colitis in rats. BMC Complement Med Ther 2021; 21:28. [PMID: 33441125 PMCID: PMC7805070 DOI: 10.1186/s12906-021-03203-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background Ulcerative colitis is a gut inflammatory disorder due to altered immune response to gut microbiome, with interplay of environmental and genetic factors. TNF-α activates inflammatory response through a cascade of immune responses, augmenting pro-inflammatory mediators and proteases, activating chemotaxis, and infiltration of inflammatory cells, leading to ulceration and haemorrhage through cytotoxic reactive oxygen species. 6-Paradol, a dietary component in several plants belonging to the Zingiberaceae family, has shown anti-inflammatory and antioxidant activities. Current study evaluates the effect of 6-paradol in amelioration of ulcerative colitis in rats for the first time. Methods 6-Paradol (95% purity) was obtained from seeds of Aframomum melegueta. Rats were divided randomly into six groups (n = 8). Group one was administered normal saline; group two was treated with the vehicle only; group three, sulfasalazine 500 mg/kg; and groups four, five, and six, were given 6-paradol (50, 100, 200, respectively) mg/kg orally through gastric gavage for 7 days. Colitis was induced on 4th day by intrarectal administration of 2 ml acetic acid (3%), approximately 3 cm from anal verge. On 8th day, rats were sacrificed, and distal one-third of the colon extending proximally up to 4 cm from anal orifice was taken for biochemical and gross examination. Two centimetres of injured mucosal portion was taken for histopathological investigations. SPSS (ver.26) was used for statistical analysis. Results Colonic and serum glutathione (GSH) levels decreased, while colonic and serum malondialdehyde (MDA), colonic myeloperoxidase (MPO) activity, serum interleukin-6 (IL-6), serum tumour necrosis factor-α (TNF-α) levels, and colon weight to length ratio were increased significantly in the colitis untreated group compared to normal control. Treatment with 6-paradol considerably improved all these parameters, especially at a dose of 200 mg/kg (p < 0.001), revealing non-significant differences with sulfasalazine 500 mg/kg and normal control (p = 0.998). Sulfasalazine and 6-paradol in a dose dependent manner also markedly reversed mucosal oedema, atrophy and inflammation, cryptic damage, haemorrhage, and ulceration. There were non-significant differences between low and medium doses and between medium and high doses of 6-paradol for IL-6 and serum MDA levels. Conclusion 6-Paradol demonstrated protection against acetic acid-induced ulcerative colitis, probably by anti-inflammatory and antioxidant actions. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03203-7.
Collapse
Affiliation(s)
- Misbahuddin Rafeeq
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University (KAU), Rabigh Campus, Jeddah, 21589, Saudi Arabia.
| | - Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University (KAU), Rabigh Campus, Jeddah, 21589, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, 11562, Egypt
| | - Hossam Mohammed Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, KAU, Jeddah, 21589, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ali M El-Halawany
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, KAU, Jeddah, 21589, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
57
|
Nagoor Meeran M, Seenipandi A, Javed H, Sharma C, Hashiesh HM, Goyal SN, Jha NK, Ojha S. Can limonene be a possible candidate for evaluation as an agent or adjuvant against infection, immunity, and inflammation in COVID-19? Heliyon 2021; 7:e05703. [PMID: 33490659 PMCID: PMC7810623 DOI: 10.1016/j.heliyon.2020.e05703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite the tremendous social preventive measures. The therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. The identification of candidate drugs effective for COVID-19 is crucial, thus many natural products including phytochemicals are also being proposed for repurposing and evaluated for their potential in COVID-19. Among numerous phytochemicals, limonene (LMN), a dietary terpene of natural origin has been recently showed to target viral proteins in the in-silico studies. LMN is one of the main compounds identified in many citrus plants, available and accessible in diets and well-studied for its therapeutic benefits. Due to dietary nature, relative safety and efficacy along with favorable physicochemical properties, LMN has been suggested to be a fascinating candidate for further investigation in COVID-19. LMN showed to modulate numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. We hypothesized that given the pathogenesis of COVID-19 involving infection, inflammation, and immunity, LMN may have potential to limit the severity and progression of the disease owing to its immunomodulatory, anti-inflammatory, and antiviral properties. The present article discusses the possibilities of LMN in SARS-CoV-2 infections based on its immunomodulatory, anti-inflammatory, and antiviral properties. Though, the suggestion on the possible use of LMN in COVID-19 remains inconclusive until the in-silico effects confirmed in the experimental studies and further proof of the concept studies. The candidature of LMN in COVID-19 treatment somewhat appear speculative but cannot be overlooked provided favorable physiochemical and druggable properties. The safety and efficacy of LMN are necessary to be established in preclinical and clinical studies before making suggestions for use in humans.
Collapse
Affiliation(s)
- M.F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - A. Seenipandi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
58
|
Zuo X, Gu Y, Wang C, Zhang J, Zhang J, Wang G, Wang F. A Systematic Review of the Anti-Inflammatory and Immunomodulatory Properties of 16 Essential Oils of Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8878927. [PMID: 33354224 PMCID: PMC7735857 DOI: 10.1155/2020/8878927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Inflammation is a host defense mechanism in the body after it is infected and damaged. If inflammation is not treated in time, then it may cause a variety of diseases, such as cancer and autoimmune diseases. Herbal essential oils are natural extracts that can suppress inflammation effectively and are expected to be used in therapeutic drugs for anti-inflammatory diseases in the future. Aim of the review. We review the anti-inflammatory and immunomodulatory effects of essential oils derived from 16 herbs. Materials and methods. We searched the literature of the fields of anti-inflammatory and immunomodulatory herbal essential oil activity published in English within the past five years via databases (PubMed, EMBASE, Scopus, and The Web of Science). RESULTS A total of 1932 papers were found by searching, and 132 papers were screened after removing duplicates and reading article titles. Fifteen articles met the requirements to be included in this review. Among those selected, 11 articles reported in vivo research results, and 10 articles showed research results. CONCLUSION Essential oils extracted from herbs can reduce inflammation by regulating the release of inflammatory cytokines involved in multiple signalling pathways. Herbal essential oils are expected to be developed as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yinuo Gu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Chao Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jinrong Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jing Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
59
|
Ossipov V, Koivuniemi A, Mizina P, Salminen JP. UPLC-PDA-Q Exactive Orbitrap-MS profiling of the lipophilic compounds product isolated from Eucalyptus viminalis plants. Heliyon 2020; 6:e05768. [PMID: 33385084 PMCID: PMC7772544 DOI: 10.1016/j.heliyon.2020.e05768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/23/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
The lipophilic compounds product (LCP), which was isolated and purified from Eucalyptus viminalis plants, has shown earlier broad antimicrobial and anti-inflammatory activities. To study secondary compounds responsible for the pharmacological activities, chemical composition of the LCP was studied with application of ultra-performance liquid chromatography combined with photodiode array detector and high-resolution Q Exactive Orbitrap mass spectrometer (UPLC-PDA-HRMS/MS). There were found thirty two compounds: twenty phloroglucinol derivatives (isopentyl diformyl phloroglucinol, macrocarpals, sideroxylonals, etc.), eight ursane type triterpenoids (loxanic acid, dehydroursolic acid lactone, dehydroursolic acid lactone acetate, two isomers of p-coumaroyl-dehydroursolic acid lactone and two isomers of feruloyl-dehydroursolic acid lactone), sequiterpenoid (S)-β-macrocarpene and three unknown phenolics. The major compounds of the LCP were pharmacologically active macrocarpals A and B, dehydroursolic acid lactone and its derivatives. It is supposed that previously discovered antimicrobial and anti-inflammatory activities of the LCP is due to the high contents of these secondary compounds.
Collapse
Affiliation(s)
- Vladimir Ossipov
- Natural Chemistry Research Group, Department of Chemistry, FI-20014 University of Turku, Finland
- All-Russian Institute of Medicinal and Aromatic Plants, 117216, Moscow, Grina 7, Russian Federation
| | - Anne Koivuniemi
- Natural Chemistry Research Group, Department of Chemistry, FI-20014 University of Turku, Finland
| | - Praskovia Mizina
- All-Russian Institute of Medicinal and Aromatic Plants, 117216, Moscow, Grina 7, Russian Federation
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, FI-20014 University of Turku, Finland
| |
Collapse
|
60
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
61
|
Sun N, Han Z, Wang H, Guo Z, Deng C, Dong W, Zhuang G, Zhang R. Effects of Ursolic Acid on the Expression of Th1-Th2-related Cytokines in a Rat Model of Allergic Rhinitis After PM2.5 Exposure. Am J Rhinol Allergy 2020; 34:587-596. [PMID: 32208746 DOI: 10.1177/1945892420913430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a global health problem and closely related to environmental factors. Ursolic acid (UA) has potential in the treatment of allergic inflammation. The effects of UA intervention on PM2.5-induced AR remain uncertain. OBJECTIVE To assess the effects of UA on nasal symptoms and the expression of T-helper (Th)1-Th2-related cytokines in a rat model of AR after fine particulate matter (particulate matter ≤ 2.5 µm [PM2.5]) exposure. METHODS A total of 40 healthy female Sprague-Dawley rats were randomly divided into 4 groups: normal control group (NC group), ovalbumin (OVA)- induced AR model (AR group), PM2.5-exposed AR group exposed to 200 g/m3 PM2.5 for 30 days via inhalation (ARE group), and a group with UA intervention to the AR model after PM2.5 exposure (UA group). UA intervention was adopted after PM2.5 exposure in the UA group. Nasal symptoms and levels of Th1-Th2 cytokines in the serum were detected in each individual rat. The pathological changes and expression of Eotaxin in the nasal mucosa of each individual rat were examined by histology. RESULTS PM2.5 significantly increased the number of sneezes and nasal rubs in the rats with AR, and UA alleviated these symptoms. UA decreased interleukin (IL)-4, IL-5, IL-13, Eotaxin-1, and OVA Immunoglobulin E (IgE) protein levels. In the AR group, hematoxylin and eosin staining showed disordered arrangement of the nasal mucosa epithelium, cell shedding, eosinophilic infiltration, swelling of the glands, and submucosal vascular congestion. UA group showed reduced eosinophilic infiltration and orderly arrangement of the mucosal epithelium when compared with the ARE group. Immunohistochemical results showed that the expression of Eotaxin in the UA group was lower than that in the ARE group. CONCLUSION UA could relieve nasal symptoms caused by PM2.5 exposure, the possible mechanism of which is to inhibit the expression of Th2 cytokines, eosinophilic infiltration, and specific IgE production.
Collapse
Affiliation(s)
- Na Sun
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhijin Han
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Hong Wang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Guo
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Congrui Deng
- Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Weiyang Dong
- Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Guoshun Zhuang
- Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
62
|
Zhang J, Wang N, Zhou Y, Wang K, Sun Y, Yan H, Han W, Wang X, Wei B, Ke Y, Xu X. Oridonin induces ferroptosis by inhibiting gamma-glutamyl cycle in TE1 cells. Phytother Res 2020; 35:494-503. [PMID: 32869425 DOI: 10.1002/ptr.6829] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Oridonin (Ori) is a natural tetracyclic diterpenoid active compound with excellent antitumor activity, but the mechanism of Ori on esophageal cancer cell, TE1, remains unclear. In this study, we examined the levels of intracellular iron, malondialdehyde, and reactive oxygen species after Ori treatment, while interfering with the effects of Ori with ferroptosis inhibitor, demonstrating that Ori's inhibition of TE1 cell proliferation is associated with ferroptosis. To understand the molecular mechanism of Ori, we performed UPLC-MS/MS metabolomics profiling on TE1 cells, which show that gamma-glutamyl amino acids (gamma-glutamylleucine, gamma-glutamylvaline), 5-oxoproline, glutamate, GSH, and GSSG are changed significantly after Ori treatment. Meanwhile, the activity of gamma-glutamyl transpeptidase 1 (GGT1) decreased. This revealed that Ori inhibited the gamma-glutamyl cycle in TE1 cells. Furthermore, we found that Ori can covalently bind to cysteine to form the conjugate oridonin-cysteine (Ori-Cys), resulting in the inhibition of glutathione synthesis, which is consistent with the decrease in the enzymatic activity of glutamate cysteine ligase catalytic subunit (GCLC). Eventually, the value of intracellular GSH/GSSG was reduced, and the enzymatic activity of the glutathione peroxidase 4 (GPX4) was significantly decreased. In conclusion, our experiments indicated that Ori can inhibit the gamma-glutamyl cycle, thereby inducing ferroptosis to exert anti-cancer activity.
Collapse
Affiliation(s)
- Junhong Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Ni Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Yuanyuan Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Kaili Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Yaxin Sun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Hao Yan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Wenchao Han
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Xinying Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Yu Ke
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
63
|
Antifungal Properties of Nerolidol-Containing Liposomes in Association with Fluconazole. MEMBRANES 2020; 10:membranes10090194. [PMID: 32825411 PMCID: PMC7558210 DOI: 10.3390/membranes10090194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
(1) Background: Infections by Candida species represent a serious threat to the health of immunocompromised individuals. Evidence has indicated that nerolidol has significant antifungal properties. Nonetheless, its use is restricted due to a low water solubility and high photosensitivity. The incorporation into liposomes may represent an efficient alternative to improve the physicochemical and biopharmaceutical properties of this compound. The present study aimed to characterize the antifungal properties of liposomal nerolidol, alone or in combination with fluconazole. Of note, this is the first study reporting the antifungal activity of liposomal nerolidol and its potentiating effect in association with fluconazole. (2) Methods: The Inhibitory Concentration 50%-IC50 and minimum fungicide concentrations (MFC) of the substances against Candida albicans (CA), Candida tropicalis (CT), and Candida krusei (CK) were established by subculture in a solid medium. To evaluate the antifungal-enhancing effect, the MFC of fluconazole was determined in the presence or absence of subinhibitory concentrations of nerolidol (free or liposomal). The analysis of fungal dimorphism was performed through optical microscopy and the characterization of liposomes was carried out considering the vesicular size, polydispersion index, and zeta medium potential, in addition to a scanning electron microscopy analysis. (3) Results: The physicochemical characterization revealed that liposomes were obtained as homogenous populations of spherical vesicles. The data obtained in the present study indicate that nerolidol acts as an antifungal agent against Candida albicans and Candida tropicalis, in addition to potentiating (only in the liposomal form) the effect of fluconazole. However, the compound had little inhibitory effect on fungal dimorphism. (4) Conclusions: The incorporation of nerolidol into liposomes improved its antifungal-modulating properties.
Collapse
|
64
|
Petrine JCP, Del Bianco-Borges B. The influence of phytoestrogens on different physiological and pathological processes: An overview. Phytother Res 2020; 35:180-197. [PMID: 32780464 DOI: 10.1002/ptr.6816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Functional foods have nutritional properties and organic functions, which are beneficial to health. Certain types of functional food components are so-called phytoestrogens, non-steroidal compounds derived from the metabolism of precursors contained in plants, which originate secondary metabotypes known to induce biological responses and by mimicry or modulating the action of endogenous estrogen. These molecules are involved in several physiological and pathological processes related to reproduction, bone remodeling, skin, cardiovascular, nervous, immune systems, and metabolism. This review aimed to present an overview of phytoestrogens regarding their chemical structure, actions, and effects in the organism given several pathologies. Several studies have demonstrated beneficial phytoestrogen actions, such as lipid profile improvement, cognitive function, menopause, oxidative stress, among others. Phytoestrogens effects are not completely elucidated, being necessary future research to understand the exact action mechanisms, whether they are via estrogen receptor or whether other hidden mechanisms produce these effects. Thus, this review makes a general approach to the phytoestrogen actions, beneficial effects, risk and limitations. However, the complexities of biological effects after ingestion of phytoestrogens and the differences in their metabolism and bioavailability indicate that interpretation of either risk or benefits needs to be made with caution.
Collapse
Affiliation(s)
- Jéssica C P Petrine
- Departamento de Ciências da Saúde, Universidade Federal de Lavras, Lavras, Brasil
| | | |
Collapse
|
65
|
Saleh HA, Raafat KM, Temraz TA, Noureldin N, Breitinger HG, Breitinger U. Sarcophine and (7S, 8R)-dihydroxydeepoxysarcophine from the Red Sea soft coral Sarcophyton glaucum as in vitro and in vivo modulators of glycine receptors. Neurotoxicology 2020; 80:105-111. [PMID: 32702364 DOI: 10.1016/j.neuro.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023]
Abstract
The inhibitory glycine receptor (GlyR) is a key mediator of synaptic signalling in spinal cord, brain stem, and higher centres of the central nervous system. We examined the glycinergic activity of sarcophine (SN), a marine terpenoid known for its various biological activities, and its trans-diol derivative (7S, 8R)-dihydroxy-deepoxysarcophine (DSN). SN was isolated from the Red Sea soft coral Sacrophyton glaucum, DSN was semisynthesized by hydrolysis of the epoxide ring. In cytotoxicity tests against HEK293 cells, SN and DSN had LD50 values of 29.3 ± 3.0 mM and 123.5 ± 13.0 mM, respectively. Both compounds were tested against recombinant human α1 glycine receptors in HEK293 cells using whole-cell recording techniques. Both, SN and DSN were shown for the first time to be inhibitors of recombinant glycine receptors, with KIvalues of 2.1 ± 0.3 μM for SN, and 109 ± 9 μM for DSN. Receptor inhibition was also studied in vivo in a mouse model of strychnine toxicity. Surprisingly, in mouse experiments strychnine inhibition was not augmented by either terpenoid. While DSN had no significant effect on strychnine toxicity, SN even delayed strychnine effects. This could be accounted for by assuming that strychnine and sarcophine derivatives compete for the same binding site on the receptor, so the less toxic sarcophine can prevent strychnine from binding. The combination of modulatory activity and low level of toxicity makes sarcophines attractive structures for novel glycinergic drugs.
Collapse
Affiliation(s)
- Hesham A Saleh
- Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo, Egypt
| | - Karim M Raafat
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Tarek A Temraz
- Department of Marine Sciences, Suez Canal University, Ismailia, Egypt
| | - Nazih Noureldin
- Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo, Egypt.
| | | | - Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| |
Collapse
|
66
|
Anti-allergy effect of mojabanchromanol isolated from Sargassum horneri in bone marrow-derived cultured mast cells. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
67
|
Lin HC, Lin JY. Characterization of guava (Psidium guajava Linn) seed polysaccharides with an immunomodulatory activity. Int J Biol Macromol 2020; 154:511-520. [PMID: 32194116 DOI: 10.1016/j.ijbiomac.2020.03.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 02/08/2023]
Abstract
To clarify the property of a novel guava seed polysaccharide (GSPS), GSPS was subjected to purify using Sepharose 6B gel filtration chromatography and further characterize the property of each individual isolated fraction. GSPS further resolved into three purified fractions, guava seed polysaccharide fraction 1 (GSF1), GSF2 and GSF3. Isolated GSF1, GSF2 and GSF3 were respectively subjected to high performance size exclusion chromatography; molecular weights of three polysaccharide fractions were determined. GSPS, GSF1, GSF2 and GSF3 were suggested to be proteopolysaccharides or glycoproteins. GSPS, GSF1, GSF2 and GSF3, particularly GSF3, were found to have a Th2-inclination property and anti-inflammatory potential. Heated GSF3 did not significantly (P > .05) decreased its immunomodulatory activity, suggesting that GSF3 is a proteopolysaccharide. The deproteinated GSF3 markedly lost its immunomodulatory activity, suggesting that both protein and carbohydrate moiety in GSF3 are essential to its immunomodulatory function. Analyses of monosaccharides composition in GSF3 using a pre-column derivatization high performance liquid chromatography exhibited that GSF3 was composed of glucuronic acid (3.28%), galacturonic acid (28.13%), galactose (14.88%), mannose (3.96%), glucose (22.99%), arabinose (7.31%), ribose (1.55%), xylose (14.81%), fucose (1.68%) and rhamnose (1.43%). Overall, we evidence that GSF3 is a low molecular weight proteopolysaccharide with potent anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Hsiao-Chien Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan, ROC
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan, ROC.
| |
Collapse
|
68
|
Arafa WM, Abolhadid SM, Moawad A, Abdelaty AS, Moawad UK, Shokier KAM, Shehata O, Gadelhaq SM. Thymol efficacy against coccidiosis in pigeon (Columba livia domestica). Prev Vet Med 2020; 176:104914. [PMID: 32066028 DOI: 10.1016/j.prevetmed.2020.104914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
Investigation of thymol efficacy to control pigeon coccidiosis was performed using in-vitro and in-vivo studies. The in-vitro experiment was conducted by treatment of unsporulated oocysts of Eimeria species of pigeon by five concentrations (0.625-10%) from either thymol, eucalyptus essential oil or amprolium anticoccidial drug and incubation for 72 h. The in-vitro study revealed that thymol concentrations ≥1.25 % caused significant deformity on sporulated and unsporulated oocysts compared to the other two products. Eucalyptus oil was active at both 5 and 10 % concentrations on unsporulated oocysts but showed non-significant changes on sporulated ones at all tested concentration. Meanwhile, in-vivo testing of thymol was conducted using 45 squabs which were equally divided into three groups; untreated uninfected (UU) negative control, untreated infected (UI) positive control and thymol treated (TT). TT group received 40 mg/kg BWt thymol in feed for 15 days. At day five post thymol supplementation, the UI and TT groups were orally infected by 25 × 103sporulated oocysts of pigeon Eimeria labbeana. The in-vivo study showed that thymol minimized the adverse effect of Eimeria infection in pigeon as observed by less severity of clinical signs, low oocysts count and improvement of body weight when compared with untreated infected birds. In addition, the biochemical parameters including liver and kidney functions tests proved thymol safety in pigeon. Moreover, thymol showed excellent antioxidant activity that was estimated by significantly lower value of malondialdehyde in TT than UI groups. The histopathological findings of TT group showed intact intestinal villi with mild sloughed epithelium, degenerated coccidian developmental stages and massive infiltrations of mononuclear cells in lamina propria. In conclusion, thymol can be safely used to control pigeon coccidiosis as a natural effective compound.
Collapse
Affiliation(s)
- Waleed M Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Shawky M Abolhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Abeer Moawad
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Usama K Moawad
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Olfat Shehata
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sahar M Gadelhaq
- Department of Parasitology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
69
|
Matailo A, Bec N, Calva J, Ramírez J, Andrade JM, Larroque C, Vidari G, Armijos C. Selective BuChE inhibitory activity, chemical composition, and enantiomer content of the volatile oil from the Ecuadorian plant Clinopodium brownei. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
70
|
Li H, Li L, Mei H, Pan G, Wang X, Huang X, Wang T, Jiang Z, Zhang L, Sun L. Antitumor properties of triptolide: phenotype regulation of macrophage differentiation. Cancer Biol Ther 2019; 21:178-188. [PMID: 31663424 DOI: 10.1080/15384047.2019.1679555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs), which generally exhibit an M2-like phenotype, play a critical role in tumor development. Triptolide exerts a unique bioactive spectrum of anticancer activities. The aim of this study was to determine whether triptolide has any effect on the activation of TAMs and the production of tumor-promoting mediators. ICR-1 mice with azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumors and BALB/c mice co-inoculated with 4T1 cells and M2-polarized RAW264.7 cells were used to examine whether the inhibitory effect of triptolide on tumor progression was mediated by the targeting of TAMs. Real-time PCR, Western blot, immunofluorescence staining, and flow cytometry assays were performed to determine the expression of cell surface markers and cytokine production. The results showed that triptolide inhibited macrophage differentiation toward the M2 phenotype and abolished M2 macrophage-mediated tumor progression. Furthermore, triptolide inhibited the expression of M2 markers, such as CD206, Arginase 1, and CD204, and inhibited the secretion of anti-inflammatory cytokines. Thus our study indicated that triptolide selectively inhibited the functions of M2-polarized macrophages and TAMs, and this inhibitory effect of triptolide on TAM viability, differentiation, and cytokine production might elucidate the major mechanisms underlying its antitumor activity. Our findings provide important information for the potential clinical application of triptolide in cancer therapy.
Collapse
Affiliation(s)
- Han Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Liping Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Huifang Mei
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Guofeng Pan
- Department of TCM, Beijing Shijitan Hospital Affiliated with Capital Medical University, Beijing, China
| | - Xinzhi Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China.,Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
71
|
Mohtashami L, Shakeri A, Javadi B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem Int 2019; 129:104516. [DOI: 10.1016/j.neuint.2019.104516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
|
72
|
Zhang J, Zhou Y, Sun Y, Yan H, Han W, Wang X, Wang K, Wei B, Xu X. Beneficial effects of Oridonin on myocardial ischemia/reperfusion injury: Insight gained by metabolomic approaches. Eur J Pharmacol 2019; 861:172587. [PMID: 31377155 DOI: 10.1016/j.ejphar.2019.172587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022]
Abstract
Oridonin is a diterpenoid isolated from Rabdosia rubescens (Hemsl.) Hara, a well-known herbal tea in China with many health benefits. To provide a better understanding of the potential cardioprotective effect of Oridonin, we investigated the metabolic alterations in heart tissue and serum of rat subjected to myocardial ischemia/reperfusion (MI/R) injury with or without pretreatment of Oridonin by UPLC-MS/MS metabolomics approach. Rats were randomly divided into groups as follows: Control, Sham, MI/R and pretreated with Oridonin (10 mg/kg)+MI/R. After 24 h of reperfusion, heart tissue and serum were collected for biochemical and metabolomic analysis. Pretreatment with Oridonin significantly decreased infarct size and reversed the abnormal elevated myocardial zymogram in serum. Moreover, Oridonin regulated several metabolic pathways, including glycolysis, branched chain amino acid, kynurenine, arginine, glutamine and bile acid metabolism. Our results suggest that Oridonin indeed displays outstanding cardioprotective effect mainly by regulating energy and amino acid metabolism.
Collapse
Affiliation(s)
- Junhong Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yuanyuan Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yaxin Sun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hao Yan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Wenchao Han
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xinying Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Kaili Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
73
|
Huang XL, Li XJ, Qin QF, Li YS, Zhang WK, Tang HB. Anti-inflammatory and antinociceptive effects of active ingredients in the essential oils from Gynura procumbens, a traditional medicine and a new and popular food material. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111916. [PMID: 31034956 DOI: 10.1016/j.jep.2019.111916] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynura procumbens is applied topically for the treatment of traumatic injuries in South China. MATERIALS AND METHODS This study was conducted to identify the active ingredients in the essential oils from Gynura procumbens (GPEO) by Gas Chromatography-Mass Spectrometer (GC-MS) and to elucidate the mechanisms underlying the anti-inflammatory and antinociceptive effects in vivo and in vitro. RESULTS A reduction in dswelling and pain were observed in mice treated with GPEO or its active ingredients (α-pinene, 3-carene, and limonene) compared with mice treated with a solvent control. GPEO or its three active ingredients had potent pharmacological effects on COX-2 overexpression and LPS-induced migration of Raw264.7 macrophages. All three ingredients inhibited nociceptive stimulus-induced inflammatory infiltrates and COX-2 overexpression, which could be responsible for the anti-inflammatory effect of GPEO. However, only 3-carene produced an antinociceptive effect. CONCLUSION Consistent with the traditional usage in Southern China, GPEO may serve as a promising potent external therapeutic agent for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xia-Ling Huang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, No. 182, Minyuan Road, Wuhan 430074, China.
| | - Xiao-Jun Li
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, No. 182, Minyuan Road, Wuhan 430074, China.
| | - Qiu-Fang Qin
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, No. 182, Minyuan Road, Wuhan 430074, China.
| | - Yu-Sang Li
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, No. 182, Minyuan Road, Wuhan 430074, China.
| | - Wei Kevin Zhang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, No. 182, Minyuan Road, Wuhan 430074, China.
| | - He-Bin Tang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, No. 182, Minyuan Road, Wuhan 430074, China.
| |
Collapse
|
74
|
Luo D, Yi Y, Peng K, Liu T, Yang J, Liu S, Zhao W, Qu X, Yu W, Gu Y, Wan S. Oridonin derivatives as potential anticancer drug candidates triggering apoptosis through mitochondrial pathway in the liver cancer cells. Eur J Med Chem 2019; 178:365-379. [PMID: 31200238 DOI: 10.1016/j.ejmech.2019.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
The biological function of the natural ent-kaurene diterpenoid isolated from genus Isodon, oridonin, has been intensively studied. However, its mechanism studies and clinical applications were hampered by its moderate biological activities. In order to enlarge the applied range of oridonin and explore its mechanism of action, a series of derivatives were designed and synthesized based on the structure of oridonin. Some of the derivatives were significantly more potent than oridonin against four cancer cell lines. Especially, the most potent compound 20 markedly inhibited the proliferation of well differentiated HepG2 and poorly differentiated PLC/PRF/5 cells, with IC50 values as low as 1.36 μM and 0.78 μM respectively, while the IC50 values of oridonin are 8.12 μM and 7.41 μM. We found that compound 20 inhibited liver cancer cell proliferation via arresting cell cycle at G1 phase. Moreover, it induced liver cancer cell apoptosis by decreasing the mitochondrial membrane potential, increasing intracellular reactive oxygen species level and inducing the expression of apoptosis-related proteins. Furthermore, compound 20 significantly inhibited growth of PLC/PRF/5 xenograft tumors in nude mice and had no observable toxic effect. Altogether, these results indicated that compound 20 is a promising lead for liver cancer therapeutics.
Collapse
Affiliation(s)
- Dongdong Luo
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Yujiao Yi
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Kai Peng
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Tangrong Liu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Jiayu Yang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Shan Liu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Wanzhou Zhao
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), Nanjing OGpharma Co. Ltd., Nanjing, 210036, China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wengong Yu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Yuchao Gu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China.
| | - Shengbiao Wan
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China.
| |
Collapse
|
75
|
Plat J, Baumgartner S, Vanmierlo T, Lütjohann D, Calkins KL, Burrin DG, Guthrie G, Thijs C, Te Velde AA, Vreugdenhil ACE, Sverdlov R, Garssen J, Wouters K, Trautwein EA, Wolfs TG, van Gorp C, Mulder MT, Riksen NP, Groen AK, Mensink RP. Plant-based sterols and stanols in health & disease: "Consequences of human development in a plant-based environment?". Prog Lipid Res 2019; 74:87-102. [PMID: 30822462 DOI: 10.1016/j.plipres.2019.02.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 01/27/2023]
Abstract
Dietary plant sterols and stanols as present in our diet and in functional foods are well-known for their inhibitory effects on intestinal cholesterol absorption, which translates into lower low-density lipoprotein cholesterol concentrations. However, emerging evidence suggests that plant sterols and stanols have numerous additional health effects, which are largely unnoticed in the current scientific literature. Therefore, in this review we pose the intriguing question "What would have occurred if plant sterols and stanols had been discovered and embraced by disciplines such as immunology, hepatology, pulmonology or gastroenterology before being positioned as cholesterol-lowering molecules?" What would then have been the main benefits and fields of application of plant sterols and stanols today? We here discuss potential effects ranging from its presence and function intrauterine and in breast milk towards a potential role in the development of non-alcoholic steatohepatitis (NASH), cardiovascular disease (CVD), inflammatory bowel diseases (IBD) and allergic asthma. Interestingly, effects clearly depend on the route of entrance as observed in intestinal-failure associated liver disease (IFALD) during parenteral nutrition regimens. It is only until recently that effects beyond lowering of cholesterol concentrations are being explored systematically. Thus, there is a clear need to understand the full health effects of plant sterols and stanols.
Collapse
Affiliation(s)
- J Plat
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands.
| | - S Baumgartner
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - T Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute (Biomed) Hasselt University, Hasselt, Belgium; Division of Translational Neuroscience, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, the Netherlands
| | - D Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - K L Calkins
- David Geffen School of Medicine, University of California Los Angeles, Mattel Children's Hospital at UCLA, Los Angeles, CA; Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, USA
| | - D G Burrin
- Department of Pediatrics, USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, USA
| | - G Guthrie
- Department of Pediatrics, USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, USA
| | - C Thijs
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - A A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Medical Center, the Netherlands
| | - A C E Vreugdenhil
- Department of Pediatrics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - R Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - J Garssen
- Utrecht University, Division Pharmacology, Utrecht Institute for Pharmaceutical Sciences, the Netherlands
| | - K Wouters
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - T G Wolfs
- Department of Pediatrics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - C van Gorp
- Department of Pediatrics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - M T Mulder
- Department of Internal Medicine, Rotterdam University, Rotterdam, the Netherlands
| | - N P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A K Groen
- Amsterdam Diabetes Center and Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - R P Mensink
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
76
|
Hou W, Fan Q, Su L, Xu H. Synthesis of Oridonin Derivatives via Mizoroki-Heck Reaction and Click Chemistry for Cytotoxic Activity. Anticancer Agents Med Chem 2019; 19:935-947. [PMID: 30657049 DOI: 10.2174/1871520619666190118121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products (NPs) are evolutionarily chosen "privileged structures" that have a profound impact upon the anticancer drug discovery and development progress. However, the search for new drugs based on structure modification of NPs has often been hindered due to the tedious and complicated synthetic pathways. Fortunately, Mizoroki-Heck reaction and copper-catalyzed alkyne-azide cycloaddition (CuAAC) could provide perfect strategies for selective modification on NPs even in the presence of liable functionalities. OBJECTIVE Here, we used oridonin, an ent-kaurane diterpenoid that showed a wide range of biological activities, as a parent molecule for the generation of analogues with anticancer activity. METHODS Derivatives of oridonin were generated based on the structure-activity relationship study of oridonin and synthesized via Mizoroki-Heck reaction and CuAAC. The cytotoxicity of new oridonin derivatives were evaluated on both cancer cells and normal cells. Furthermore, the apoptotic effect and cell cycle arrest effect of the selected potent analogue were evaluated by flow cytometry and western blotting analysis. RESULTS Two series of novel C-14 and C-17 modified derivatives of oridonin were obtained via Heck reaction and copper-catalyzed alkyne-azide cycloaddition (CuAAC), respectively. In vitro antiproliferative activities showed that the introduction of C-14 (2-triazole)acetoxyl- moiety could retain or enhance cytotoxicity, whereas the introduction of C-17 phenyl ring might exert negative effect. Further studies demonstrated that derivative 23 exhibited broad-spectrum antiproliferative activity, effectively overcame drug-resistance and showed weak cytotoxicity on non-cancer cells. Preliminary mechanistic studies indicated that 23 might cause G2/M phase arrest and induce apoptosis in PC-3 cells. CONCLUSION Mizoroki-Heck reaction and CuAAC are perfect strategies for structure modification of complex natural products. The introduction of C-14 (2-triazole)acetoxyl- moiety could retain or enhance the cytotoxicity of oridonin, the introduction of C-17 phenyl group might exert negative effect on its cytotoxicity.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology (IDD&CB), Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiuju Fan
- Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Lin Su
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology (IDD&CB), Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China
| |
Collapse
|
77
|
Omonijo FA, Liu S, Hui Q, Zhang H, Lahaye L, Bodin JC, Gong J, Nyachoti M, Yang C. Thymol Improves Barrier Function and Attenuates Inflammatory Responses in Porcine Intestinal Epithelial Cells during Lipopolysaccharide (LPS)-Induced Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:615-624. [PMID: 30567427 DOI: 10.1021/acs.jafc.8b05480] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It is well-known that essential oil thymol exhibits antibacterial activity. The protective effects of thymol on pig intestine during inflammation is yet to be investigated. In this study, an in vitro lipopolysaccharide (LPS)-induced inflammation model using IPEC-J2 cells was established. Cells were pretreated with thymol for 1 h and then exposed to LPS for various assays. Interleukin 8 (IL-8) secretion, the mRNA abundance of cytokines, reactive oxygen species (ROS), nutrient transporters, and tight junction proteins was measured. The results showed that LPS stimulation increased IL-8 secretion, ROS production, and tumor necrosis factor alpha (TNF-α) mRNA abundance ( P < 0.05), but the mRNA abundance of sodium-dependent glucose transporter 1 (SGLT1), excitatory amino acid transporter 1 (EAAC1), and H+/peptide cotransporter 1 (PepT1) were decreased ( P < 0.05). Thymol blocked ROS production ( P < 0.05) and tended to decrease the production of LPS-induced IL-8 secretion ( P = 0.0766). The mRNA abundance of IL-8 and TNF-α was reduced by thymol pretreatment ( P < 0.05), but thymol did not improve the gene expression of nutrient transporters ( P > 0.05). The transepithelial electrical resistance (TEER) was reduced and cell permeability increased by LPS treatment ( P < 0.05), but these effects were attenuated by thymol ( P < 0.05). Moreover, thymol increased zonula occludens-1 (ZO-1) and actin staining in the cells. However, the mRNA abundance of ZO-1 and occludin-3 was not affected by either LPS or thymol treatments. These results indicated that thymol enhances barrier function and reduce ROS production and pro-inflammatory cytokine gene expression in the epithelial cells during inflammation. The regulation of barrier function by thymol and LPS may be at post-transcriptional or post-translational levels.
Collapse
Affiliation(s)
- Faith A Omonijo
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Shangxi Liu
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Qianru Hui
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Hua Zhang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Ludovic Lahaye
- Jefo Nutrition Inc. , Saint-Hyacinthe , Quebec J2S 7B6 , Canada
| | | | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Martin Nyachoti
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Chengbo Yang
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|
78
|
Mazutti da Silva SM, Rezende Costa CR, Martins Gelfuso G, Silva Guerra EN, de Medeiros Nóbrega YK, Gomes SM, Pic-Taylor A, Fonseca-Bazzo YM, Silveira D, Magalhães PDO. Wound Healing Effect of Essential Oil Extracted from Eugenia dysenterica DC (Myrtaceae) Leaves. Molecules 2018; 24:molecules24010002. [PMID: 30577426 PMCID: PMC6337431 DOI: 10.3390/molecules24010002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
The use of natural oils in topical pharmaceutical preparations has usually presented safe agents for the improvement of human health. Based on research into the immense potential of wound management and healing, we aimed to validate the use of topical natural products by studying the ability of the essential oil of Eugenia dysenterica DC leaves (oEd) to stimulate in vitro skin cell migration. Skin cytotoxicity was evaluated using a fibroblast cell line (L929) by MTT assay. The oil chemical profile was investigated by GC-MS. Moreover, the inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in the macrophage cell line (RAW 264.7) tested. The Chick Chorioallantoic Membrane (CAM) assay was used to evaluate the angiogenic activity and irritating potential of the oil. The oEd induces skin cell migration in a scratch assay at a concentration of 542.2 µg/mL. α-humulene and β-caryophyllene, the major compounds of this oil, as determined by GC-MS, may partly explain the migration effect. The inhibition of nitric oxide by oEd and α-humulene suggested an anti-inflammatory effect. The CAM assay showed that treatment with oEd ≤ 292 µg/mL did not cause skin injury, and that it can promote angiogenesis in vivo. Hence, these results indicate the feasibility of the essential oil of Eugenia dysenterica DC leaves to developed dermatological products capable of helping the body to repair damaged tissue.
Collapse
Affiliation(s)
- Sandra Márcia Mazutti da Silva
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | | | - Guilherme Martins Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70910-900 Campus Universitario Darcy Ribeiro, Brasília-DF 70910-900, Brazil.
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, 70910-900 Brasília, Brazil.
| | - Yanna Karla de Medeiros Nóbrega
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | - Sueli Maria Gomes
- Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, Campus Universitário Darcy Ribeiro, Brasília-DF 70910-900, Brazil.
| | - Aline Pic-Taylor
- Laboratory of Embryology and Developmental Biology, Genetics and Morphology Department, Institute of Biological Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, Brasília-DF 70910-900, Brazil.
| | - Yris Maria Fonseca-Bazzo
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | - Damaris Silveira
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | - Pérola de Oliveira Magalhães
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| |
Collapse
|
79
|
Kilic K, Sakat MS, Yildirim S, Kandemir FM, Gozeler MS, Dortbudak MB, Kucukler S. The amendatory effect of hesperidin and thymol in allergic rhinitis: an ovalbumin-induced rat model. Eur Arch Otorhinolaryngol 2018; 276:407-415. [DOI: 10.1007/s00405-018-5222-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023]
|
80
|
Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf B Biointerfaces 2018; 171:566-578. [DOI: 10.1016/j.colsurfb.2018.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023]
|
81
|
Jung YY, Hwang ST, Sethi G, Fan L, Arfuso F, Ahn KS. Potential Anti-Inflammatory and Anti-Cancer Properties of Farnesol. Molecules 2018; 23:molecules23112827. [PMID: 30384444 PMCID: PMC6278318 DOI: 10.3390/molecules23112827] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Farnesol, an acyclic sesquiterpene alcohol, is predominantly found in essential oils of various plants in nature. It has been reported to exhibit anti-cancer and anti-inflammatory effects, and also alleviate allergic asthma, gliosis, and edema. In numerous tumor cell lines, farnesol can modulate various tumorigenic proteins and/or modulates diverse signal transduction cascades. It can also induce apoptosis and downregulate cell proliferation, angiogenesis, and cell survival. To exert its anti-inflammatory/anti-oncogenic effects, farnesol can modulate Ras protein and nuclear factor kappa-light-chain-enhancer of activated B cells activation to downregulate the expression of various inflammatory mediators such as cyclooxygenase-2, inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin-6. In this review, we describe the potential mechanisms of action underlying the therapeutic effects of farnesol against cancers and inflammatory disorders. Furthermore, these findings support the clinical development of farnesol as a potential pharmacological agent in clinical studies.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Sun Tae Hwang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6009, Australia.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Department of Korean Pathology, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
82
|
Quintans JSS, Shanmugam S, Heimfarth L, Araújo AAS, Almeida JRGDS, Picot L, Quintans-Júnior LJ. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2018; 123:233-257. [PMID: 30389585 DOI: 10.1016/j.fct.2018.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory response can be driven by cytokine production and is a pivotal target in the management of inflammatory diseases. Monoterpenes have shown that promising profile as agents which reduce the inflammatory process and also modulate the key chemical mediators of inflammation, such as pro and anti-inflammatory cytokines. The main interest focused on monoterpenes were to develop the analgesic and anti-inflammatory drugs. In this review, we summarized current knowledge on monoterpenes that produce anti-inflammatory effects by modulating the release of cytokines, as well as suggesting that which monoterpenoid molecules may be most effective in the treatment of inflammatory disease. Several different inflammatory markers were evaluated as a target of monoterpenes. The proinflammatory and anti-inflammatory cytokines were found TNF-α, IL-1β, IL-2, IL-5, IL-4, IL-6, IL-8, IL-10, IL-12 IL-13, IL-17A, IFNγ, TGF-β1 and IFN-γ. Our review found evidence that NF-κB and MAPK signaling are important pathways for the anti-inflammatory action of monoterpenes. We found 24 monoterpenes that modulate the production of cytokines, which appears to be the major pharmacological mechanism these compounds possess in relation to the attenuation of inflammatory response. Despite the compelling evidence supporting the anti-inflammatory effect of monoterpenes, further studies are necessary to fully explore their potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Saravanan Shanmugam
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Jackson R G da S Almeida
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
83
|
Salehi B, Mnayer D, Özçelik B, Altin G, Kasapoğlu KN, Daskaya-Dikmen C, Sharifi-Rad M, Selamoglu Z, Acharya K, Sen S, Matthews KR, Fokou PVT, Sharopov F, Setzer WN, Martorell M, Sharifi-Rad J. Plants of the Genus Lavandula: From Farm to Pharmacy. Nat Prod Commun 2018; 13. [DOI: 10.1177/1934578x1801301037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2024] Open
Abstract
The Lavandula genus, belonging to the Lamiaceae, includes 39 species, with nearly 400 registered cultivars. Lavandula are worldwide plants that occur over the Mediterranean, Europe, North Africa, southwest Asia to southeast India. Lavandula plants have been used since ancient time to flavor and preserved food, to treat diseases including wound healing, sedative, antispasmodic, microbial and viral infections. Numerous researches have described the chemical composition and the primary components of lavender oils are the monoterpenoids (linalool, linalyl acetate, 1,8-cineole, β-ocimene, terpinen-4-ol, and camphor), sesquiterpenoids (β-caryophyllene and nerolidol) and other terpenoid compounds (e.g., perillyl alcohol). The high concentrations of linalyl acetate make them attractive in perfumery, flavoring, cosmetics and soap industries. Currently, data on the antimicrobial activity of lavender plants have been scientifically confirmed. Indeed, lavender essential oils possess wide spectra of biological activities such as antispasmodic, carminative, analgesic, sedative, hypotensive, antiseptic, antimicrobial, antifungal, antidiuretic and general tonic action. In addition, clinical studies support their uses as treatment of health conditions. However, further clinical studies are necessary to define the magnitude of the efficacy, mechanisms of action, optimal doses, long-term safety, and, potential side effects of lavender plants.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Fanar, Beirut, Lebanon
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer, 34467, Istanbul, Turkey
| | - Gokce Altin
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Kadriye Nur Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ceren Daskaya-Dikmen
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, 51240, Nigde, Turkey
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal – 743331, India
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003, Dushanbe, Tajikistan
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Aromatic Plant Research Center, 615 St. George Square Court, Suite 300, Winston-Salem, NC 27103, USA
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
84
|
Ke Y, Liang JJ, Hou RJ, Li MM, Zhao LF, Wang W, Liu Y, Xie H, Yang RH, Hu TX, Wang JY, Liu HM. Synthesis and biological evaluation of novel Jiyuan Oridonin A-1,2,3-triazole-azole derivatives as antiproliferative agents. Eur J Med Chem 2018; 157:1249-1263. [DOI: 10.1016/j.ejmech.2018.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/05/2023]
|
85
|
Moreno ÉM, Leal SM, Stashenko EE, García LT. Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:225. [PMID: 30053848 PMCID: PMC6062979 DOI: 10.1186/s12906-018-2293-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/18/2018] [Indexed: 11/10/2022]
Abstract
Background Chagas Disease caused by Trypanosoma cruzi infection, is one of the most important neglected tropical diseases (NTD), without an effective therapy for the successful parasite eradication or for the blocking of the disease’s progression, in its advanced stages. Due to their low toxicity, wide pharmacologic spectrum, and potential synergies, medicinal plants as Lippia alba, offer a promising reserve of bioactive molecules. The principal goal of this work is to characterize the inhibitory properties and cellular effects of the Citral and Carvone L. alba chemotype essential oils (EOs) and their main bioactive terpenes (and the synergies among them) on T. cruzi forms. Methods Twelve L. alba EOs, produced under diverse environmental conditions, were extracted by microwave assisted hydrodistillation, and chemically characterized using gas chromatography coupled mass spectrometry. Trypanocidal activity and cytotoxicity were determined for each oil, and their major compounds, on epimastigotes (Epi), trypomastigotes (Tryp), amastigotes (Amas), and Vero cells. Pharmacologic interactions were defined by a matrix of combinations among the most trypanocidal terpenes (limonene, carvone; citral and caryophyllene oxide). The treated cell phenotype was assessed by fluorescent and optic microscopy, flow cytometry, and DNA electrophoresis assays. Results The L. alba EOs displayed significant differences in their chemical composition and trypanocidal performance (p = 0.0001). Citral chemotype oils were more trypanocidal than Carvone EOs, with Inhibitory Concentration 50 (IC50) of 14 ± 1.5 μg/mL, 22 ± 1.4 μg/mL and 74 ± 4.4 μg/mL, on Epi, Tryp and Amas, respectively. Limonene exhibited synergistic interaction with citral, caryophyllene oxide and Benznidazole (decreasing by 17 times its IC50) and was the most effective and selective treatment. The cellular analysis suggested that these oils or their bioactive terpenes (citral, caryophyllene oxide and limonene) could be inducing T. cruzi cell death by an apoptotic-like mechanism. Conclusions EOs extracted from L. alba Citral chemotype demonstrated significant trypanocidal activity on the three forms of T. cruzi studied, and their composition and trypanocidal performance were influenced by production parameters. Citral, caryophyllene oxide, and limonene showed a possible induction of an apoptotic-like phenotype. The best selective anti-T. cruzi activity was achieved by limonene, the effects of which were also synergic with citral, caryophyllene oxide and benznidazole.
Collapse
|
86
|
Saleh-E-In MM, Van Staden J. Ethnobotany, phytochemistry and pharmacology of Arctotis arctotoides (L.f.) O. Hoffm.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:294-320. [PMID: 29331315 DOI: 10.1016/j.jep.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctotis arctotoides (Asteraceae) is part of the genus Arctotis. Arctotis is an African genus of approximately 70 species that occur widely in the African continent with diverse medicinal values. This plant is used for the treatment of indigestion and catarrh of the stomach, epilepsy, topical wounds and skin disorders among the ethnic groups in South Africa and reported to have a wide spectrum of pharmacological properties. AIM OF THE REVIEW The aim of the present review is to appraise the botany, traditional uses, phytochemistry, pharmacological potential, analytical methods and safety issues of A. arctotoides. Additionally, this review will help to fill the existing gaps in knowledge and highlight further research prospects in the field of phytochemistry and pharmacology. MATERIALS AND METHODS Information on A. arctotoides was collected from various resources, including books on African medicinal herbs and Zulu medicinal plants, theses, reports and the internet databases such as SciFinder, Google Scholar, Pubmed, Scopus, Web of Science, and Mendeley by using a combination of various meaningful keywords. This review surveys the available literature of the species from 1962 to April 2017. RESULTS In vitro and in vivo studies of the medicinal properties of A. arctotoides were reviewed. The main isolated and identified compounds were reported as sesquiterpenes, farnesol derivatives, germacranolide, guaianolides and some steroids, of which, nine were reported as antimicrobial. Monoterpenoids and sesquiterpenoids were the predominant essential oil compound classes of the leaves, flowers, stems and roots. The present review revealed potential pharmacological properties such as anti-oxidant, antibacterial, antifungal and anticancer activities of plant extracts as well as isolated compounds. Moreover, the review reports the safety profile (toxicity) of the crude extracts that had been screened on brine shrimps, rats and human cell lines. CONCLUSIONS The present review has focused on the phytochemistry, botany, ethnopharmacology, biological activities and toxicological information of A. arctotoides. On the basis of reported data, A. arctotoides has emerged as a good source of natural medicine for the treatment of microbial infections, skin diseases, anti-inflammatory and anticancer agents and also provides new insights for further isolation of new bioactive compounds, especially the discovery of antimicrobial, anti-inflammatory and anticancer novel therapeutic lead drug molecules. Additionally, intensive investigations regarding pharmacological properties, safety assessment and efficacy with their mechanism of action could be future research interests before starting clinical trials for medicinal practices.
Collapse
Key Words
- (E)-3-methyl-4-(4-((E)-4-methyl-5-oxopent-3-enyl)-5-oxo-2,5-dihydro-furan-2-yl)but-2-enyl acetate (PubChem CID: not found)
- (E)-5-(5-((E)-4-hydroxy-2-methylbut-2-enyl)-2-oxo-2,5-dihydrofuran-3-yl) -2-methylpent-2-enal (PubChem CID: not found)
- (E, E)-5-[4-(Acetyloxy)-2-methyl-2-butenyl]-3-[5-(acetyloxy)-4-methyl-3- pentenyl]-2(5H)-furanone (PubChem CID: not found)
- 1, 8-Cineole (PubChem CID: 2758)
- 10,14-Deoxyarctolide (PubChem CID: not found)
- 11β, 13-Dihydro-10, 14-desoxoarctiolide (PubChem CID: not found)
- 11β, 13-Dihydroarctiolide (PubChem CID: not found)
- 12, 14-Diacetoxy-2Z-farnesyl acetate (PubChem CID: not found)
- 14-Acetoxy-12-hydroxy-2Z-farnesol (PubChem CID: not found)
- 3-Deacetyl-3-isobutyryl arctolide (PubChem CID: not found)
- 3-Deacetyl-3-propionyl-11, 14-deoxoarctolide (PubChem CID: not found)
- 3-Deacetyl-3-propionylarctolide (PubChem CID: not found)
- 3-Desacetyl-10,14-desoxoarctolide (PubChem CID: not found)
- 3-O-[β-D-(6´-nonadeanoate) glucopyranosyl]-β-sitosterol (PubChem CID: not found)
- 4β, 15-dihydro-3-dehydro-zaluzanin C (PubChem CID: not found)
- Abietic acid (PubChem CID: 10569)
- Arctiolide (PubChem CID: not found)
- Arctodecurrolide (PubChem CID: not found)
- Arctolide (PubChem CID: 442144)
- Arctotis arctotoides
- Asteraceae
- Bicyclogermacrene (PubChem CID: 5315347)
- Botany and toxicology
- Caryophyllene oxide (PubChem CID: 1742210)
- Daucosterol (PubChem CID: 296119)
- Dehydrobrachylaenolide (PubChem CID: 44566739)
- Dehydrocostus lactone (PubChem CID: 73174)
- Ethnopharmacology
- Germacranolide (PubChem CID: not found)
- Glycerol-1-docosanoate (PubChem CID: 53480989)
- Grosshemin (PubChem CID: 442256)
- Limonene (PubChem CID: 440917)
- Linalool (PubChem CID: 6549)
- Lupeol (PubChem CID: 259846)
- Lupeol acetate (PubChem CID: 92157)
- Myrtenol (PubChem CID: 10582)
- Nepetin (PubChem CID: 5317284)
- Pedalitin (PubChem CID: 31161)
- Perydiscolic acid (PubChem CID: not found)
- Phytochemistry
- Piperitone (PubChem CID: 6987)
- Serratagenic acid (PubChem CID: 21594175)
- Spathulenol (PubChem CID: 92231)
- Stigmasterol (PubChem CID: 5280794)
- Terpinen-4-ol (PubChem CID: 11230)
- Zaluzanin C (PubChem CID: 72646)
- Zaluzanin D (PubChem CID: 12445012)
- cis-Nerolidol (PubChem CID: 5320128)
- cis-α-Bergamotene (PubChem CID: 91753502)
- cis-α-Bergamotol acetate (PubChem CID: 102208434)
- cis-α-Farnesene (PubChem CID: 5317320)
- trans-α-Bergamotol (PubChem CID: 6429302)
- α-Cadinol (PubChem CID: 6431302)
- β-Bisabolol (PubChem CID: 27208)
- β-Caryophyllene (PubChem CID: 5281515)
- β-Farnesene (PubChem CID: 5281517)
- β-sitosterol (PubChem CID: 222284)
- γ-Curcumene (PubChem CID: 12304273)
- γ-Terpinene (PubChem CID: 7461)
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
87
|
Plastina P, Apriantini A, Meijerink J, Witkamp R, Gabriele B, Fazio A. In Vitro Anti-Inflammatory and Radical Scavenging Properties of Chinotto ( Citrus myrtifolia Raf.) Essential Oils. Nutrients 2018; 10:nu10060783. [PMID: 29912150 PMCID: PMC6024861 DOI: 10.3390/nu10060783] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 01/07/2023] Open
Abstract
Chinotto (Citrus myrtifolia Raf.) is a widely diffused plant native from China and its fruits have a wide-spread use in confectionary and drinks. Remarkably, only little has been reported thus far on its bioactive properties, in contrast to those of the taxonomically related bergamot (Citrus bergamia Risso). The present study aimed to investigate potential in vitro anti-inflammatory and radical scavenging properties of chinotto essential oils (CEOs) and to establish to what extent their composition and bioactivities are dependent on maturation. Essential oil from half ripe chinotto (CEO2) reduced the production of nitric oxide (NO) and the expression of inflammatory genes, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), cytokines, including interleukin-1β (IL-1β) and interleukin-6 (IL-6), and chemokine monocyte chemotactic protein-1 (MCP-1) by lipopolysaccharide (LPS)-stimulated RAW264,7 macrophages. Limonene, linalool, linalyl acetate, and γ-terpinene were found to be the main components in CEO2. Moreover, CEO2 showed high radical scavenging activity measured as Trolox equivalents (TE) against both 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). These findings show that chinotto essential oil represents a valuable part of this fruit and warrants further in vivo studies to validate its anti-inflammatory potential.
Collapse
Affiliation(s)
- Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Astari Apriantini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, 6700 AA Wageningen, The Netherlands.
| | - Renger Witkamp
- Division of Human Nutrition, Wageningen University, 6700 AA Wageningen, The Netherlands.
| | - Bartolo Gabriele
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
88
|
Choi DW, Kwon DA, Jung SK, See HJ, Jung SY, Shon DH, Shin HS. Silkworm dropping extract ameliorate trimellitic anhydride-induced allergic contact dermatitis by regulating Th1/Th2 immune response. Biosci Biotechnol Biochem 2018; 82:1531-1538. [PMID: 29806566 DOI: 10.1080/09168451.2018.1475210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Allergic contact dermatitis (ACD) is an inflammatory skin disease caused by hapten-specific immune response. Silkworm droppings are known to exert beneficial effects during the treatment of inflammatory diseases. Here, we studied whether topical treatment and oral administration of silkworm dropping extract (SDE) ameliorate trimellitic anhydride (TMA)-induced ACD. In ACD mice model, SDE treatment significantly suppressed the increase in both ear thickness and serum IgE levels. Furthermore, IL-1β and TNF-α levels were reduced by SDE. In allergic responses, SDE treatment significantly attenuated the production of the Th2-associated cytokine IL-4 in both ear tissue and draining lymph nodes. However, it increased the production of the Th1-mediated cytokine IL-12. Thus, these results showed that SDE attenuated TMA-induced ACD symptoms through regulation of Th1/Th2 immune response. Taken together, we suggest that SDE treatment might be a potential agent in the prevention or therapy of Th2-mediated inflammatory skin diseases such as ACD and atopic dermatitis. ABBREVIATIONS ACD: allergic contact dermatitis; AD: atopic dermatitis; APC: antigen presenting cells; CCL: chemokine (C-C motif) ligand; CCR: C-C chemokine receptor; Dex: dexamethasone; ELISA: enzyme-linked immunosorbent assay; IFN: interferon; Ig: immunoglobulin; IL: interleukin; OVA: ovalbumin; PS: prednisolone; SDE: silkworm dropping extract; Th: T helper; TMA: trimellitic anhydride; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Dae Woon Choi
- a Food Biotechnology Program , Korea University of Science and Technology , Republic of Korea.,b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea
| | - Da-Ae Kwon
- b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea
| | - Sung Keun Jung
- a Food Biotechnology Program , Korea University of Science and Technology , Republic of Korea.,c Division of Functional Food Research , Korea Food Research Institute , Wanju-gun , Republic of Korea.,e School of Food Science and Biotechnology , Kyungpook National University , Daegu , Republic of Korea
| | - Hye-Jeong See
- b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea
| | - Sun Young Jung
- a Food Biotechnology Program , Korea University of Science and Technology , Republic of Korea.,b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea
| | - Dong-Hwa Shon
- b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea.,d Department of Food Processing and Distribution , Gangneung-Wonju National University , Gangneung , Republic of Korea
| | - Hee Soon Shin
- a Food Biotechnology Program , Korea University of Science and Technology , Republic of Korea.,b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea
| |
Collapse
|
89
|
Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MDM, Segura-Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi-Rad J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother Res 2018; 32:1688-1706. [DOI: 10.1002/ptr.6109] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Student Research Committee; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Abhay Prakash Mishra
- Faculty of Pharmaceutical Chemistry; H. N. B. Garhwal University; Srinagar Garhwal 246174 India
| | - Ila Shukla
- Pharmacognosy and Ethnopharmacology Division; CSIR-National Botanical Research Institute; Lucknow 226001 India
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology; Zabol University of Medical Sciences; Zabol 61663-335 Iran
| | - María del Mar Contreras
- Departamento de Ingeniería Química, Ambiental y de los Materiales; Universidad de Jaén; Jaén Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n Granada 18071 Spain
- Research and Development Functional Food Centre (CIDAF); Bioregión Building, Health Science Technological Park; Avenida del Conocimiento s /n Granada Spain
| | - Hannane Fathi
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Nafiseh Nasri Nasrabadi
- Pharmaceutical Sciences Research Centre, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex; The University of Winnipeg; 599 Portage Avenue Winnipeg MB R3B 2G3 Canada
| |
Collapse
|
90
|
Huang W, Huang M, Ouyang H, Peng J, Liang J. Oridonin inhibits vascular inflammation by blocking NF-κB and MAPK activation. Eur J Pharmacol 2018. [DOI: 10.1016/j.ejphar.2018.02.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
91
|
Xie Z, Yu H, Sun X, Tang P, Jie Z, Chen S, Wang J, Qin A, Fan S. A Novel Diterpenoid Suppresses Osteoclastogenesis and Promotes Osteogenesis by Inhibiting Ifrd1-Mediated and IκBα-Mediated p65 Nuclear Translocation. J Bone Miner Res 2018; 33:667-678. [PMID: 29091322 DOI: 10.1002/jbmr.3334] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/22/2017] [Accepted: 10/31/2017] [Indexed: 11/05/2022]
Abstract
Osteoporosis develops because of impaired bone formation and/or excessive bone resorption. Although the pharmacological treatment of osteoporosis has been extensively developed, alternative treatments are still needed. Here, we showed that oridonin (ORI), a diterpenoid isolated from Rabdosia rubescens, can suppress osteoclastogenesis and enhance osteogenesis. ORI inhibited the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation and bone resorption through the inhibition of p65 nuclear translocation. ORI-induced inhibition of this translocation led to an increase in osteoblast differentiation and mineralization through the promotion of Smad1/Smad5 phosphorylation. Further analyses demonstrated that the inhibition of p65 nuclear translocation is due to the suppression of IκBα phosphorylation and the induced proteasomal degradation of interferon-related development regulator 1 (Ifrd1), a transcriptional corepressor that is involved in the suppression of NF-κB nuclear translocation. Moreover, mice treated with ORI at catabolic and anabolic windows showed a considerable attenuation of ovariectomy (OVX)-induced osteoporosis. Taken together, our findings reveal that ORI protects against OVX-induced bone loss via inhibiting osteoclastic bone resorption but enhancing osteoblastic bone formation through abolishing both Ifrd1-mediating and IκBα-mediated p65 nuclear translocation. These results show the potential of ORI for treatment of osteoporosis and highlight Ifrd1 as a another novel promising target for anti-osteoporotic drugs. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zi'ang Xie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Hejun Yu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuewu Sun
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Pan Tang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Shuai Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiying Wang
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
92
|
Kurtys E, Eisel ULM, Hageman RJJ, Verkuyl JM, Broersen LM, Dierckx RAJO, de Vries EFJ. Anti-inflammatory effects of rice bran components. Nutr Rev 2018. [DOI: 10.1093/nutrit/nuy011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ewelina Kurtys
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, RB Groningen, The Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, RB Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, RB Groningen, The Netherlands
| |
Collapse
|
93
|
Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacol Res 2018; 129:262-273. [DOI: 10.1016/j.phrs.2017.11.030] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022]
|
94
|
Therapeutic Potential of Oridonin and Its Analogs: From Anticancer and Antiinflammation to Neuroprotection. Molecules 2018; 23:molecules23020474. [PMID: 29470395 PMCID: PMC6017549 DOI: 10.3390/molecules23020474] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Oridonin, a diterpenoid natural product commonly used in East Asian herbal medicine, is garnering increased attention in the biomedical community due to its extensive biological activities that include antitumor, anti-inflammatory, antimicrobial, hepatic fibrosis prevention, and neurological effects. Over the past decade, significant progress has been made in structure activity relationship and mechanism of action studies of oridonin for the treatment of cancer and other diseases. This review provides a brief summary on oridonin and its analogs in cancer drug discovery and antiinflammation and highlights its emerging therapeutic potential in neuroprotection applications.
Collapse
|
95
|
First evaluation of drug-in-cyclodextrin-in-liposomes as an encapsulating system for nerolidol. Food Chem 2018; 255:399-404. [PMID: 29571492 DOI: 10.1016/j.foodchem.2018.02.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/25/2017] [Accepted: 02/11/2018] [Indexed: 11/20/2022]
Abstract
Nerolidol, a naturally occurring sesquiterpene with antimicrobial activities, is a promising candidate as a natural alternative for synthetic preservatives in food. However, its application is limited by low aqueous solubility and stability. In this study, conventional liposomes and drug-in-cyclodextrin-in-liposomes (DCLs) were evaluated for the first time as encapsulating materials for nerolidol. The size, encapsulation efficiency (EE%), loading rate (LR%), photo- and storage stabilities of both systems were characterized. Moreover, the in vitro release of nerolidol from liposomes and DCLs was investigated over time. Nerolidol was efficiently entrapped in both carriers with high EE% and LR% values. In addition, DCLs prolonged the release of nerolidol over one week and enhanced the photostability more effectively than conventional liposomes. Finally, all formulations were stable after 12 months of storage at 4 °C (>60% incorporated nerolidol). Therefore, DCLs are promising carriers for new applications of sesquiterpenes in the pharmaceutical and food industries.
Collapse
|
96
|
Khazdair MR, Ghorani V, Alavinezhad A, Boskabady MH. Pharmacological effects of Zataria multiflora
Boiss L. and its constituents focus on their anti-inflammatory, antioxidant, and immunomodulatory effects. Fundam Clin Pharmacol 2018; 32:26-50. [DOI: 10.1111/fcp.12331] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Reza Khazdair
- Department of Physiology; School of Medicine; Pharmaceutical Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee; Mashhad University of Medical Sciences; Mashhad Iran
| | - Vahideh Ghorani
- Department of Physiology; School of Medicine; Pharmaceutical Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Azam Alavinezhad
- Department of Physiology; School of Medicine; Neurogenic Inflammation Research Centre; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology; School of Medicine; Neurogenic Inflammation Research Centre; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
97
|
Water accelerated transformation of d-limonene induced by ultraviolet irradiation and air exposure. Food Chem 2018; 239:434-441. [PMID: 28873588 DOI: 10.1016/j.foodchem.2017.06.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/08/2017] [Accepted: 06/12/2017] [Indexed: 11/23/2022]
Abstract
d-Limonene is a fragrant chemical that widely exists in aromatic products. Isotopic labelling of water molecules plus GC-MS and GC-PCI-Q-TOF analyses were used to investigate the influence of water molecules on chemical transformation of d-limonene induced by UV irradiation and air exposure. The results showed that the synergistic effect of UV irradiation, air exposure and water presence could facilitate d-limonene transformation into the limonene oxides: p-mentha-2,8-dienols, hydroperoxides, carveols, l-carvone and carvone oxide. UV irradiation, air exposure, or water alone, however, caused negligible d-limonene transformation. With the aid of isotopic labelling of water and oxygen molecules, it was found that water molecules were split into hydrogen radicals and hydroxyl radicals, and the hydrogen radicals, in particular, promoted the transformation reactions. This study has elucidated the mechanism and factors that influence the transformation of d-limonene, which will benefit industries involved in production and storage of d-limonene-containing products.
Collapse
|
98
|
Shen QK, Chen ZA, Zhang HJ, Li JL, Liu CF, Gong GH, Quan ZS. Design and synthesis of novel oridonin analogues as potent anticancer agents. J Enzyme Inhib Med Chem 2018; 33:324-333. [PMID: 29303372 PMCID: PMC6054517 DOI: 10.1080/14756366.2017.1419219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To identify anticancer agents with higher potency and lower toxicity, a series of oridonin derivatives with substituted benzene moieties at the C17 position were designed, synthesised, and evaluated for their antiproliferative properties. Most of the derivatives exhibited antiproliferative effects against AGS, MGC803, Bel7402, HCT116, A549, and HeLa cells. Compound 2p (IC50 = 1.05 µM) exhibited the most potent antiproliferative activity against HCT116 cells; it was more potent than oridonin (IC50 = 6.84 µM) and 5-fluorouracil (5-FU) (IC50 = 24.80 µM). The IC50 value of 2p in L02 cells was 6.5-fold higher than that in HCT116 cells. Overall, it exhibited better selective antiproliferative activity and specificity than oridonin and 5-FU. Furthermore, compound 2p arrested HCT116 cells at the G2 phase of the cell cycle and increased the percentage of apoptotic cells to a greater extent than oridonin.
Collapse
Affiliation(s)
- Qing-Kun Shen
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Zheng-Ai Chen
- b Department of Pharmacology , Medical School of Yanbian University , Yanji , China
| | - Hong-Jian Zhang
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Jia-Li Li
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Chuan-Feng Liu
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Guo-Hua Gong
- c Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities , Tongliao , China.,d Inner Mongolia Autonomous Region Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System , Tongliao , China
| | - Zhe-Shan Quan
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| |
Collapse
|
99
|
Berni R, Romi M, Cantini C, Hausman JF, Guerriero G, Cai G. Functional Molecules in Locally-Adapted Crops: The Case Study of Tomatoes, Onions, and Sweet Cherry Fruits From Tuscany in Italy. FRONTIERS IN PLANT SCIENCE 2018; 9:1983. [PMID: 30697223 PMCID: PMC6341061 DOI: 10.3389/fpls.2018.01983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/20/2018] [Indexed: 05/07/2023]
Abstract
The human diet is characterized by highly energetic molecules, but it also requires non-energetic compounds that are equally useful for cell functioning and for preserving the organism's health status. These "functional" molecules are represented by a wide variety of plant secondary metabolites, such as terpenoids, vitamins and polyphenols with antioxidant power. Widespread commercial crop varieties often contain scarce levels of functional molecules, because they have been mostly selected for productivity, rather than for the content of secondary metabolites. Different scenarios (global economic situation, foreseeable environmental changes) are pushing farmers to review the use of high yield crops and to focus on the valorization of locally-adapted plants. This renewed interest is strengthened by the growing need of consumers for functional foods with beneficial effects on human health and by the willingness to promote sustainable low-input agricultural practices exploiting local climate, soil, water, and (micro)biota. Here, we want to discuss a specific case study concerning locally-adapted crops in Tuscany (Italy). Analyses of nutraceutical molecules in locally-grown crop varieties (namely tomatoes, sweet cherries and onions) have shown that they are characterized by substantially higher functional molecule contents than commercial varieties. Our goal is to promote the high-throughput study of locally-adapted varieties to understand, in a medium-term perspective, whether the cultivation of such plants is a valuable support for the diet and an adequate local economic resource. Such plants can provide a boost to the regional economy, by diversifying the local crop-market landscape. Moreover, the exploitation of locally-grown plants results in the manufacture of fully-traceable products (from the raw bioresource to the finished product) with a "0 km" concept that minimizes the C footprint.
Collapse
Affiliation(s)
- Roberto Berni
- Department of Life Sciences, University of Siena, Siena, Italy
- Trees and Timber Institute-National Research Council of Italy (CNR-IVALSA), Follonica, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudio Cantini
- Trees and Timber Institute-National Research Council of Italy (CNR-IVALSA), Follonica, Italy
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
- *Correspondence: Giampiero Cai
| |
Collapse
|
100
|
Kim HJ, Kim D, Lee M, Jang A. Anti-inflammatory effect of dietary pork extract on proliferation and cytokine secretion using mouse primary splenocytes. Food Res Int 2017; 102:710-716. [PMID: 29196004 DOI: 10.1016/j.foodres.2017.09.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 11/27/2022]
Abstract
The anti-inflammatory effects of boiled pork meat (BPM) and hot water extracts of pork meat (WPM) on splenocyte proliferation and T cell cytokine regulation in BALB/c mice were evaluated. The proliferation of splenocytes in high concentration WPM groups was significantly higher than the control stimulated by LPS and Con A. In the white blood cells, WPM groups had significantly higher counts of lymphocytes and lower counts of neutrophils than the control (p<0.05). The Th1 (IFN-γ, TNF-α, IL-2) and Th2 (IL-4, IL-5, IL-10) cytokine levels in high-concentration WPM groups were higher than those in the control. In addition, TNF-α/IL-10 and IL-2/IL-4 secretions of splenocytes in the high concentration WPM group with LPS or Con A treatment was significantly lower than the control (p<0.05). Therefore, this study suggested that high concentration of WPM had anti-inflammatory effects on the primary splenocyte, which indicating that water extracts of pork meat can enhance the immune system of mice.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Animal Products and Food Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Animal Products and Food Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mooha Lee
- The Korean Academy of Science & Technology, Seongnam 13630, Republic of Korea
| | - Aera Jang
- Department of Animal Products and Food Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|