51
|
Yu M, Ding Y, Du Q, Liao Y, Miao W, Deng S, Cullen PJ, Zhou R. Efficacy of Chitosan Oligosaccharide Combined with Cold Atmospheric Plasma for Controlling Quality Deterioration and Spoilage Bacterial Growth of Chilled Pacific White Shrimp ( Litopenaeus vannamei). Foods 2023; 12:foods12091763. [PMID: 37174301 PMCID: PMC10178389 DOI: 10.3390/foods12091763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
A novel food processing technique based on the combination of cold atmospheric plasma (CAP) and chitosan oligosaccharide treatment (COS) was developed to enhance antibacterial performance and extend the shelf life of Pacific white shrimp (Litopenaeus vannamei). Effects of different treatments on the microbial community composition, physicochemical properties, and post-storage behaviors of Pacific white shrimp were evaluated during chilled storage for up to 10 days. Results showed that the synergistic effects of COS and CAP could be obtained, largely inhibiting the growth of microorganisms. The content of total volatile basic nitrogen (TVB-N), total viable counts (TVC), and pH value in treated groups were lower than in the control group and the loss of moisture content, water activity, and sensory score were observed. Compared to the control group, shrimp was on the verge of spoilage on the 6th day of storage, while the COS-CAP-treated shrimp had a 4-day lag period. Moreover, the COS and CAP could effectively inhibit the growth of Aliivibrio, the predominant microbial group in the ultimate storage period. This study suggests that the combined utilization of COS and CAP could be a high-efficacy technique for extending the shelf-life of shrimp.
Collapse
Affiliation(s)
- Mijia Yu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yixuan Ding
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qi Du
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yueqin Liao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wenhua Miao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanggui Deng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
52
|
Zhang X, Wu YT, Wei XY, Xie YY, Zhou T. Preparation, antioxidant and tyrosinase inhibitory activities of chitosan oligosaccharide-hydroxypyridinone conjugates. Food Chem 2023; 420:136093. [PMID: 37062084 DOI: 10.1016/j.foodchem.2023.136093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Two novel chitosan oligosaccharide (COS)-hydroxypyridone (HPO) conjugates were prepared by reacting chitosan oligosaccharide with 2-chloromethyl-5-hydroxypyridone (HPO), which was synthesized by a series of reactions starting from kojic acid. The degree of substitution of COS-HPO2 reached 1.2, with a yield of 74.9%. The structure of the two conjugates (COS-HPO1 and COS-HPO2) was identified by NMR and FT-IR analysis. The two conjugates showed significantly higher free radical (DPPH•, ABTS+• and •OH) scavenging activity and reducing power than those of COS and HPO (p < 0.05). Both COS-HPO1 and COS-HPO2 possessed significantly stronger tyrosinase inhibitory activity than those of COS, with IC50 values of 0.67 and 0.28 mg/mL for monophenolase, 0.73 and 0.30 mg/mL for diphenolase, respectively. In addition, the conjugates were found to be non-toxic to RAW264.7 macrophages and MRC-5 human lung cells. This work proposes a facile method to enhance the oxidative and tyrosinase inhibitory properties of COS.
Collapse
Affiliation(s)
- Xu Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Yun-Tao Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Xiao-Yi Wei
- Department of Food Science, Faculty of Hospitality Management, Shanghai Business School, Shanghai 200235, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
53
|
Liu YW, Li QH, Li SY, Huang GQ, Xiao JX. Interfacial adsorption behavior of the Aspergillus oryzae lipase-chitosan complex and stability evaluation of the resultant Pickering emulsion. Int J Biol Macromol 2023; 233:123599. [PMID: 36773866 DOI: 10.1016/j.ijbiomac.2023.123599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/05/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
To prompt the application of the chitosan (CS)-Aspergillus oryzae lipase (AOL) complex in the construction of novel biphasic catalysis medium, its Pickering emulsion stabilization ability as well as adsorption behavior in the oil-water interface were investigated and the stability of resultant emulsion was evaluated. The results indicated that the CS-AOL complex assembled in mass ratio 1:5 was an effective Pickering stabilizer and up to 90 % AOL could be retained in the emulsion interface. Quartz crystal microbalance with dissipation monitoring suggested that the CS-AOL complex spontaneously absorbed to oil-water interface; absorption dynamics analysis revealed that the adsorption was driven by diffusion accompanied by rapid structural rearrangement; while interfacial dilatational rheology demonstrated the formation of an elastic film in the oil-water interface. The Pickering emulsions were pseudoplastic and that in oil fraction 0.6 exhibited the elastic behavior in contrast to the viscous behavior in oil fractions 0.2 and 0.4. The Pickering emulsion exhibited excellent stability against storage for up to 28 d, pHs 2.0-12.0, heating at 25-90 °C, and up to 500 mmol/L NaCl, and the corresponding interfacial AOL retentions exceeded 80 % during exposure to these conditions. Hence, the CS-AOL complex could be used as a stabilizer to construct Pickering emulsion-based biphasic catalysis systems.
Collapse
Affiliation(s)
- Yan-Wei Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qing-Hao Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Shi-Yu Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Qing Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Xia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
54
|
Yang S, Wu C, Yan Q, Li X, Jiang Z. Nondigestible Functional Oligosaccharides: Enzymatic Production and Food Applications for Intestinal Health. Annu Rev Food Sci Technol 2023; 14:297-322. [PMID: 36972156 DOI: 10.1146/annurev-food-052720-114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nondigestible functional oligosaccharides are of particular interest in recent years because of their unique prebiotic activities, technological characteristics, and physiological effects. Among different types of strategies for the production of nondigestible functional oligosaccharides, enzymatic methods are preferred owing to the predictability and controllability of the structure and composition of the reaction products. Nondigestible functional oligosaccharides have been proved to show excellent prebiotic effects as well as other benefits to intestinal health. They have exhibited great application potential as functional food ingredients for various food products with improved quality and physicochemical characteristics. This article reviews the research progress on the enzymatic production of several typical nondigestible functional oligosaccharides in the food industry, including galacto-oligosaccharides, xylo-oligosaccharides, manno-oligosaccharides, chito-oligosaccharides, and human milk oligosaccharides. Moreover, their physicochemical properties and prebiotic activities are discussed as well as their contributions to intestinal health and applications in foods.
Collapse
Affiliation(s)
- Shaoqing Yang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Chenxuan Wu
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| |
Collapse
|
55
|
Jeong DY, Lee ET, Lee J, Shin DC, Lee YH, Park JK. Effect of chemical structural properties of chitooligosaccharides on the immune activity of macrophages. Macromol Res 2023. [DOI: 10.1007/s13233-023-00143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
56
|
Eswar K, Mukherjee S, Ganesan P, Kumar Rengan A. Immunomodulatory Natural Polysaccharides: An Overview of the Mechanisms Involved. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
57
|
Liu N, Shen H, Zhang F, Liu X, Xiao Q, Jiang Q, Tan B, Ma X. Applications and prospects of functional oligosaccharides in pig nutrition: A review. ANIMAL NUTRITION 2023. [DOI: 10.1016/j.aninu.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
58
|
Hossein Zadeh Z, Najdegerami EH, Niko M, Nejati V, Ahmadi Gavlighi H. Low-molecular weight oligosaccharides from gum tragacanth ( Astragalus gossypinus) ameliorate nonalcoholic fatty liver disease (NAFLD) in Wistar male rats. Food Sci Nutr 2023; 11:765-777. [PMID: 36789034 PMCID: PMC9922153 DOI: 10.1002/fsn3.3112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/24/2022] [Accepted: 10/09/2022] [Indexed: 11/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease affecting 25% of the world's population. The effects of oligosaccharides from Gum tragacanth (Astragalus gossypinus) (GT) on oxidative stress, glucose metabolism, and expression of autophagy genes were investigated in induced non-alcoholic fatty liver. Twenty-four male healthy rats were divided into four groups, Control; high-fat diet, high-fat diet + 100 mg GT oligosaccharides/kg body weight, high-fat diet + 200 mg GT oligosaccharides/kg body weight and fed with the trial diets for 70 days. At the end of the experiment, the results indicated that GT oligosaccharides affected the weight gain and liver weight in NAFLD-induced rats. In addition, the results showed that the use of GT oligosaccharides significantly decreased oxidative stress, liver injury, and hyperglycemia (p < .05) and upregulated the expression of autophagy genes in NAFLD-induced rats. Practical applications Overall, the results of the current study demonstrated that the use of GT oligosaccharides obtained from Gum tragacanth (Astragalus gossypinus) showed significant antioxidant properties and hypoglycemia in NAFLD induced rats and could be used as a useful nutritional strategy for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
| | | | - Mehdi Niko
- Department of Pathobiology and Quality Control, Artemia & Aquaculture Research InstituteUrmia UniversityUrmiaIran
| | - Vahid Nejati
- Department of Biology, Faculty of ScienceUrmia UniversityUrmiaIran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
59
|
Azelee NIW, Noor NM, Rasid ZIA, Suhaimi SH, Salamun N, Jasman SM, Manas NHA, Hasham@Hisam R. Marine waste for nutraceutical and cosmeceutical production. VALORIZATION OF WASTES FOR SUSTAINABLE DEVELOPMENT 2023:241-272. [DOI: 10.1016/b978-0-323-95417-4.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
60
|
Evaluation of the Cytotoxicity of Cationic Polymers on Glioblastoma Cancer Stem Cells. J Funct Biomater 2022; 14:jfb14010017. [PMID: 36662064 PMCID: PMC9862959 DOI: 10.3390/jfb14010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Cationic polymers such as polyethylenimine (PEI) have found a pervasive place in laboratories across the world as gene delivery agents. However, their applications are not limited to this role, having found a place as delivery agents for drugs, in complexes known as polymer-drug conjugates (PDCs). Yet a potentially underexplored domain of research is in their inherent potential as anti-cancer therapeutic agents, which has been indicated by several studies. Even more interesting is the recent observation that certain polycations may present a significantly greater toxicity towards the clinically important cancer stem cell (CSC) niche than towards more differentiated bulk tumour cells. These cells, which possess the stem-like characteristics of self-renewal and differentiation, are highly implicated in cancer drug resistance, tumour recurrence and poor clinical prognosis. The search for compounds which may target and eliminate these cells is thus of great research interest. As such, the observation in our previous study on a PEI-based PDC which showed a considerably higher toxicity of PEI towards glioblastoma CSCs (GSCs) than on more differentiated glioma (U87) cells led us to investigate other cationic polymers for a similar effect. The evaluation of the toxicity of a range of different types of polycations, and an investigation into the potential source of GSC's sensitivity to such compounds is thus described.
Collapse
|
61
|
Tang C, Zhai Y, Wang Z, Zhao X, Yang C, Zhao Y, Zeng LB, Zhang DY. Metabolomics and transcriptomics reveal the effect of hetero-chitooligosaccharides in promoting growth of Brassica napus. Sci Rep 2022; 12:21197. [PMID: 36482110 PMCID: PMC9731942 DOI: 10.1038/s41598-022-25850-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The hetero-chitooligosaccharide (HTCOS) is a naturally occurring biopolymer in the exoskeleton of crustaceans and insects. Although some studies have been carried out on HTCOS in inducing plant resistance and promoting growth, the molecular mechanism of HTCOS in plants is not clear. In this study, an integrated analysis of metabolomics and transcriptomics was performed to analyze the response of Brassica napus to hetero-chitooligosaccharides treatment. The levels of 26 metabolites in B. napus were significantly changed under the HTCOS treatment. Amongst these metabolites, 9 metabolites were significantly up-regulated, including pentonic acid, indole-3-acetate, and γ-aminobutyric acid. Transcriptome data showed that there were 817 significantly up-regulated genes and 1064 significantly down-regulated genes in B. napus under the HTCOS treatment. Interestingly, the indole-3-acetate (IAA) content under the HTCOS treatment was about five times higher than that under the control condition. Moreover, four genes related to plant hormone signal transduction, three AUX/IAA genes, and one ARF gene, were significantly up-regulated under the HTCOS treatment. Furthermore, the plant height, branching number, and biomass of B. napus under the HTCOS treatment were significantly increased compared to that in the control condition. This evidence indicated that the HTCOS treatment contributed to accumulating the content of plant hormone IAA in the B. napus, up-regulating the expression of key genes in the signaling pathway of plant growth and improving the agronomic traits of B. napus.
Collapse
Affiliation(s)
- Chao Tang
- grid.257160.70000 0004 1761 0331College of Plant Protection, Hunan Agricultural University, No. 1, Nongda Road, Furong District, Changsha City, 410208 Hunan Province China ,grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Yang Zhai
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Zhuo Wang
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xin Zhao
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Chen Yang
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Yong Zhao
- ZhongkeRunxin (Suzhou) Biotechnology Co., Ltd., Suzhou, 215152 Jiangsu China
| | - Liang-bin Zeng
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - De-yong Zhang
- grid.257160.70000 0004 1761 0331College of Plant Protection, Hunan Agricultural University, No. 1, Nongda Road, Furong District, Changsha City, 410208 Hunan Province China
| |
Collapse
|
62
|
Synthesis, Characterization of Low Molecular Weight Chitosan Selenium Nanoparticles and Its Effect on DSS-Induced Ulcerative Colitis in Mice. Int J Mol Sci 2022; 23:ijms232415527. [PMID: 36555167 PMCID: PMC9779469 DOI: 10.3390/ijms232415527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Selenium nanoparticles have attracted extensive attention due to their good bioavailability and activity. In the present study, a new form of selenium nanoparticle (Low molecular weight chitosan selenium nanoparticles (LCS-SeNPs)) were synthesized in a system of sodium selenite and acetic acid. The size, element state, morphology and elementary composition of LCS-SeNPs were characterized by using various spectroscopic and microscopic measurements. The protection of LCS-SeNPs against dextran sulfate sodium (DSS)-induced intestinal barrier dysfunction and the inherent mechanisms of this process were investigated. The results showed that LCS-SeNPs, with an average diameter of 198 nm, zero-valent and orange-red relatively uniform spherical particles were prepared. LCS-SeNPs were mainly composed of C, N, O and Se elements, of which Se accounted for 39.03% of the four elements C, N, O and Se. LCS-SeNPs reduced colon injury and inflammation symptoms and improved intestinal barrier dysfunction. LCS-SeNPs significantly reduced serum and colonic inflammatory cytokines TNF-α and IL-6 levels. Moreover, LCS-SeNPs remarkably increased antioxidant enzyme GSH-Px levels in serum and colonic tissue. Further studies on inflammatory pathways showed that LCS-SeNPs alleviated DSS-induced colitis through the NF-κB signaling pathway, and relieved inflammatory associated oxidative stress through the Nrf2 signaling pathway. Our findings suggested that LCS-SeNPs are a promising selenium species with potential applications in the treatment of oxidative stress related inflammatory intestinal diseases.
Collapse
|
63
|
Miron A, Sarbu A, Zaharia A, Sandu T, Iovu H, Fierascu RC, Neagu AL, Chiriac AL, Iordache TV. A Top-Down Procedure for Synthesizing Calcium Carbonate-Enriched Chitosan from Shrimp Shell Wastes. Gels 2022; 8:742. [PMID: 36421564 PMCID: PMC9690297 DOI: 10.3390/gels8110742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 07/29/2023] Open
Abstract
Chitosan is used in medicine, pharmaceuticals, cosmetics, agriculture, water treatment, and food due to its superior biocompatibility and biodegradability. Nevertheless, the complex and relatively expensive extraction costs hamper its exploitation and, implicitly, the recycling of marine waste, the most abundant source of chitosan. In the spirit of developing environmental-friendly and cost-effective procedures, the present study describes one method worth consideration to deliver calcium-carbonate-enriched chitosan from shrimp shell waste, which proposes to maintain the native minerals in the structure of chitin in order to improve the thermal stability and processability of chitosan. Therefore, a synthesis protocol was developed starting from an optimized deacetylation procedure using commercial chitin. The ultimate chitosan product from shrimp shells, containing native calcium carbonate, was further compared to commercial chitosan and chitosan synthesized from commercial chitin. Finally, the collected data during the study pointed out that the prospected method succeeded in delivering calcium-carbonate-enriched chitosan with high deacetylation degree (approximately 75%), low molecular weight (Mn ≈ 10.000 g/ mol), a crystallinity above 59 calculated in the (020) plane, high thermal stability (maximum decomposition temperature over 300 °C), and constant viscosity on a wide range of share rates (quasi-Newtonian behavior), becoming a viable candidate for future chitosan-based materials that can expand the application horizon.
Collapse
Affiliation(s)
- Andreea Miron
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest,1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Anamaria Zaharia
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Teodor Sandu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest,1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Radu Claudiu Fierascu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Ana-Lorena Neagu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Anita-Laura Chiriac
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| |
Collapse
|
64
|
Guo Q, Xu S, Liu HM, Liu MW, Wang CX, Qin Z, Wang XD. Effects of roasting temperature and duration on color and flavor of a sesame oligosaccharide-protein complex in a Maillard reaction model. Food Chem X 2022; 16:100483. [PMID: 36304205 PMCID: PMC9594108 DOI: 10.1016/j.fochx.2022.100483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/08/2022] Open
Abstract
The sesame oligosaccharide-protein Maillard model was established in this work. Sesame oligosaccharides decreased more than protein during roasting. Heterocyclics and phenols greatly increased after roasting.
In this work, sesame oligosaccharides (SOL) and sesame protein isolate (SPI) were isolated from dehulled sesame meal, combined and then tested as a sesame model system, to investigate the effects of roasting temperature and duration on color and flavor. The results demonstrated that SOL was more easily degraded than SPI; specifically, SOL and SPI gradually degraded at 100 °C and 150 °C, respectively. FT-IR analysis showed that characteristic bonds existing in the roasted samples were somewhat destroyed. Galactose, fructose, lysine, cysteine, and arginine showed great reduction and played an important role in color variation and flavor compound formation according to monosaccharide and amino acid analysis. Total color difference (ΔE) and browning intensity increased with roasting temperature and roasting duration. The types and concentrations of volatile flavor compounds were significantly increased, particularly heterocyclics (14.1 %–34.4 %) and phenols (28.4 %–32.4 %), corresponding to 0.3 % and 8.9 % of the unroasted samples.
Collapse
|
65
|
Chitosan Oligosaccharide Supplementation Affects Immunity Markers in Ewes and Lambs during Gestation and Lactation. Animals (Basel) 2022; 12:ani12192609. [PMID: 36230349 PMCID: PMC9558557 DOI: 10.3390/ani12192609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Chitosan oligosaccharide (COS) is derived through deacetylation of chitin from crustacean shells. Previous studies reported the benefits of COS to gut microbiota, immunity and health of host species. In this study, 120 pregnant composite ewes were subdivided into treatment and control groups in duplicate. COS was supplemented via a loose lick to provide an estimated intake of COS @100−600 mg/d/ewe for five weeks pre-lambing until lamb marking. Body weight was recorded pre-treatment for ewes, and at lamb marking and weaning for both ewes and lambs. Serum immunity markers immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), secretory immunoglobulin A (sIgA), interleukin (IL)-2, IL10 and faecal sIgA were determined for ewes and lambs at lamb marking and weaning by enzyme-linked immunosorbent assay (ELISA). We found that COS can be incorporated in sheep feed without compromising palatability. Maternal COS supplementation did not influence the body weight of ewes or lambs. It did, however, significantly increase the concentrations of serum IL2 in ewes at marking and weaning (p < 0.001). In lambs, COS also significantly increased the IL2 concentration at making (p = 0.018) and weaning (p = 0.029) and serum IgM at marking (p < 0.001). No significant effect was observed in the concentration of any other immune marker or cytokine in either ewes or lambs. In conclusion, maternal COS supplementation significantly modulated some immunity markers in both ewes and lambs. The short duration of maternal COS supplementation and optimal seasonal conditions during the trial may explain the lack of significant body weight in ewes and lambs from the COS supplementation.
Collapse
|
66
|
Zheng H, Cui S, Sun B, Zhang B, Tao D, Wang Z, Zhang Y, Ma F. Synergistic effect of discrete ultrasonic and H2O2 on physicochemical properties of chitosan. Carbohydr Polym 2022; 291:119598. [DOI: 10.1016/j.carbpol.2022.119598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
|
67
|
Agbohessou PS, Mandiki SNM, Mbondo Biyong SR, Cornet V, Nguyen TM, Lambert J, Jauniaux T, Lalèyè PA, Kestemont P. Intestinal histopathology and immune responses following Escherichia coli lipopolysaccharide challenge in Nile tilapia fed enriched black soldier fly larval (BSF) meal supplemented with chitinase. FISH & SHELLFISH IMMUNOLOGY 2022; 128:620-633. [PMID: 36038101 DOI: 10.1016/j.fsi.2022.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to determine to what extend the addition of chitinase to black soldier fly larvae (BSF) meals enriched with either PUFA or LC-PUFA could improve the gut health of Nile tilapia and increase its immune status. Two types of BSF meals enriched with either α-linolenic acid (ALA) or ALA + eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) were produced using BSF larvae cultured on vegetable substrates (VGS) or fish offal substrates (FOS), respectively. Seven diets were formulated: a control FMFO diet and two other control diets VGD0 vs FOD0 containing the meals of each type of BSF meal as total replacement for fishmeal (FM) and fish oil (FO), as well as four diets supplemented with chitinase. Two doses of commercial chitinase from Aspergillus niger (2 g/kg and 5 g/kg of feed) were supplemented to the other diets VGD0 and FOD0 to formulate VGD2, VGD5, FOD2 and FOD5. After 53 days of feeding, FOD5 diet induced a similar growth performance as the FMFO control diet, while a significant decrease of growth was observed for the other BSF larval-based diets. BSF/FOS meal led to higher SGR of fish than BSF/VGS, as for the FOD5 compared to VGD5. At day 53, lysozyme values showed an increasing trend in fish fed all the BSF-based diets, especially those fed the VGD5. After the Escherichia coli lipopolysaccharide (LPS) injection (day 54), the same increasing trend was observed in lysozyme activity, and modulation was observed only in the VGD5 fish. ACH50 activity was reduced by the BSF-based diets except for the FOD5 diet at day 53, and LPS modulation was only observed for the VGS-chitinase-based diets at day 54. Peroxidase activity and total immunoglobulin (Igs) blood level were not affected by substrate, chitinase dose or LPS injection. At day 53, the low or high dose of chitinase increased the expressions of tlr2, il-1β and il-6 genes in the head kidney of fish fed the BSF/VGS diets compared to those fed the VGD0 or FMFO control diets. At day 54 after LPS injection, the high dose of chitinase decreased the expressions of tlr5 gene in the spleen and mhcII-α gene in the head kidney of fish fed FOD5 diets compared to those fed FOD0 diets. BSF/VGS but not BSF/FOS based diets increased fish sub-epithelial mucosa (SM) and lamina propria (LP) thickness and the number of goblet cells (GC) in fish, but dietary chitinase seemed to prevent some of these effects, especially at low dose. Results showed that chitinase supplementation of 5 g/kg of chitinase to a BSF-based diet enriched with LC-PUFA improved growth, prevented histological changes in the proximal intestine and enhanced some innate immune functions of Nile tilapia without any clear booster effect after challenge with E. coli LPS.
Collapse
Affiliation(s)
- Pamphile S Agbohessou
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin.
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Serge R Mbondo Biyong
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Thierry Jauniaux
- Department of Veterinary Pathology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liege, Belgium
| | - Philippe A Lalèyè
- Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium.
| |
Collapse
|
68
|
Liu Y, Wen F, Yang H, Bao L, Zhao Z, Zhong Z. The preparation and antioxidant activities of three phenyl-acylchitooligosaccharides. Heliyon 2022; 8:e10624. [PMID: 36164516 PMCID: PMC9508514 DOI: 10.1016/j.heliyon.2022.e10624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/07/2022] [Accepted: 09/08/2022] [Indexed: 10/26/2022] Open
Abstract
Chitooligosaccharides with two different molecular weights are acylated with three containing benzene carboxylic acids: salicylic acid (BHA), α-naphthylacetic acid (NAA) and indole-3-butyric acid (IBA) to obtain o-hydroxybenzoyl-chitooligosaccharide, α-naphthylacetyl-chitooligosaccharide, and 3-Indolebutyryl-chitooligosaccharide. The structure of the derivatives was characterized by FT-IR spectroscopy, 13C NMR spectroscopy and elemental analysis. According to several amide characteristic absorption peaks between 1750 cm-1-1500 cm-1 in the FT-IR spectrum, it can be determined that the target group has been successfully grafted. And there are obvious characteristic absorption peaks of aromatic ring at 900-650 cm-1. The six chemical shifts of 98.02, 76.42, 74.83, 72.00, 60.39, 55.37 ppm in 13C NMR proved that the chitooligosaccharide did not destroy its own sugar ring structure during the reaction. The antioxidant activities of the derivatives, such as hydroxyl radical (·OH) scavenging ability, superoxide anion (O2·-) scavenging ability, reducing ability, and DPPH radical scavenging ability were investigated using various established systems. Comparing with chitooligosaccharide and containing benzene carboxylic acids, most derivatives have strong scavenging ability toward superoxide anions and DPPH radicals, and the clearance rate up to 47.44% and 80.27% separately. The reducing ability and hydroxyl free radical scavenging ability of the derivatives are only 0.032 Abs and 11.43%. The above results showed that the antioxidant activity of some derivatives was higher than that of chitooligosaccharide. The water solubility of the new derivatives was also greatly improved than that of containing benzene carboxylic acids. Therefore, the application of phenyl-acyl-chitooligosaccharide in antioxidants has laid a foundation, and has certain potential application value in the fields of medicine and agriculture and animal husbandry.
Collapse
Affiliation(s)
- Yao Liu
- College of Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Fang Wen
- College of Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Hehe Yang
- College of Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Liangliang Bao
- College of Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhihong Zhao
- College of Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhimei Zhong
- College of Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot, 010018, China.,Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot, 010018, China
| |
Collapse
|
69
|
Yadav N, Mudgal D, Anand R, Jindal S, Mishra V. Recent development in nanoencapsulation and delivery of natural bioactives through chitosan scaffolds for various biological applications. Int J Biol Macromol 2022; 220:537-572. [PMID: 35987359 DOI: 10.1016/j.ijbiomac.2022.08.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 12/19/2022]
Abstract
Nowadays, nano/micro-encapsulation as a pioneering technique may significantly improve the bioavailability and durability of Natural bioactives. For this purpose, chitosan as a bioactive cationic natural polysaccharide has been frequently used as a carrier because of its distinct chemical and biological properties, including polycationic nature, biocompatibility, and biodegradability. Moreover, polysaccharide-based nano/micro-formulations are a new and extensive trend in scientific research and development in the disciplines of biomedicine, bioorganic/ medicinal chemistry, pharmaceutics, agrochemistry, and the food industry. It promises a new paradigm in drug delivery systems and nanocarrier formulations. This review aims to summarize current developments in approaches for designing innovative chitosan micro/nano-matrix, with an emphasis on the encapsulation of natural bioactives. The special emphasis led to a detailed integrative scientific achievement of the functionalities and abilities for encapsulating natural bioactives and mechanisms regulated in vitro/in vivo release in various biological/physiological environments.
Collapse
Affiliation(s)
- Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Deeksha Mudgal
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Ritesh Anand
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Simran Jindal
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India.
| |
Collapse
|
70
|
Wen J, Niu X, Chen S, Chen Z, Wu S, Wang X, Yong Y, Liu X, Yu Z, Ma X, Abd El-Aty A, Ju X. Chitosan oligosaccharide improves the mucosal immunity of small intestine through activating SIgA production in mice: Proteomic analysis. Int Immunopharmacol 2022; 109:108826. [DOI: 10.1016/j.intimp.2022.108826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
|
71
|
Obianwuna UE, Chang XY, Wang J, Zhang HJ, Qi GH, Qiu K, Wu SG. Dietary Fructooligosaccharides Effectively Facilitate the Production of High-Quality Eggs via Improving the Physiological Status of Laying Hens. Foods 2022; 11:foods11131828. [PMID: 35804644 PMCID: PMC9266114 DOI: 10.3390/foods11131828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
The focus of this study was to investigate the influence of prebiotics, such as fructooligosaccharides (FOS), on laying performance, egg quality, apparent fecal amino acid digestibility, jejunal morphology, hematological indices, immunological response, and antioxidant capacity in laying hens. A total of 216 healthy Hy-Line Brown laying hens aged 30 weeks were randomly assigned to one of three dietary treatments: basal diet, basal diet supplemented with 0.3 percent FOS, or 0.6 percent FOS. For 84 days, each treatment was fed the corresponding experimental diet. According to the findings, dietary supplementation with FOS enhanced laying performance and egg mass while lowering mortality rate. Albumen height, thick albumen content, Haugh unit, and eggshell thickness were also improved by the prebiotics. Prebiotics also boosted antioxidant status by increasing the activity of antioxidant enzymes, improved morphological development of the jejunum as demonstrated by significant increases in villi height, villi width, ratio of villi height to crypt depth, and reduced crypt depth. The prebiotics group showed a considerable increase in immunoglobulin M, G, and A (IgM, IgG, and IgA) levels, as well as a similar effect on complement proteins (C3). Furthermore, the apparent fecal amino acid digestibility of most essential amino acids was significantly enhanced. Conclusively, fructooligosaccharides at inclusion level of 0.6% efficiently enhanced laying performance and production of high-quality eggs while positively modulating amino acid digestibility, jejunal morphology, antioxidant status, and immune functions of the laying hens.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (X.-Y.C.); (J.W.); (H.-J.Z.); (G.-H.Q.)
- National Engineering Research Center of Biological Feed, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin-Yu Chang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (X.-Y.C.); (J.W.); (H.-J.Z.); (G.-H.Q.)
| | - Jing Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (X.-Y.C.); (J.W.); (H.-J.Z.); (G.-H.Q.)
| | - Hai-Jun Zhang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (X.-Y.C.); (J.W.); (H.-J.Z.); (G.-H.Q.)
| | - Guang-Hai Qi
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (X.-Y.C.); (J.W.); (H.-J.Z.); (G.-H.Q.)
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (K.Q.); (S.-G.W.)
| | - Shu-Geng Wu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (X.-Y.C.); (J.W.); (H.-J.Z.); (G.-H.Q.)
- Correspondence: (K.Q.); (S.-G.W.)
| |
Collapse
|
72
|
Blagodatskikh IV, Vyshivannaya OV, Bezrodnykh EA, Tikhonov VE, Orlov VN, Shabelnikova YL, Khokhlov AR. Peculiarities of the interaction of sodium dodecyl sulfate with chitosan in acidic and alkaline media. Int J Biol Macromol 2022; 214:192-202. [PMID: 35709870 DOI: 10.1016/j.ijbiomac.2022.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
In this work, the interaction between the negatively charged surfactant sodium dodecyl sulfate (SDS) and partially N-reacetylated chitosan (RA-CHI), which is soluble at pH range up to pH 12, is studied in a wide pH range including alkaline media by light scattering (LS) and isothermic titration calorimetry (ITC). It is shown that in the weakly alkaline medium (pH 7.4), RA-CHI/SDS interaction is exothermic and cooperative. This interaction is found to be coupled with proton transfer from the buffer substance to chitosan as it is revealed by the dependence of the measured heat release on the ionization enthalpy of the buffer. At higher pH values (pH > 8), another mechanism of interaction is observed that include SDS micellization induced by hydrophobic interactions with polymer segments, so that no phase separation occurred in these mixtures. The results obtained can contribute to expand the knowledge about application of chitosan for preparation of pharmaceutical and cosmetic compositions containing anionic surfactants.
Collapse
Affiliation(s)
- Inesa V Blagodatskikh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia.
| | - Oxana V Vyshivannaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Victor N Orlov
- A. N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskie Gory, 1-40, Moscow 119992, Russia
| | - Yana L Shabelnikova
- Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Academician Osipyan St. 6, 142432 Chernogolovka, Moscow Region, Russia
| | - Alexey R Khokhlov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia; Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
73
|
Zeng B, Zhao S, Zhou R, Zhou Y, Jin W, Yi Z, Zhang G. Engineering and screening of novel β-1,3-xylanases with desired hydrolysate type by optimized ancestor sequence reconstruction and data mining. Comput Struct Biotechnol J 2022; 20:3313-3321. [PMID: 35832630 PMCID: PMC9251504 DOI: 10.1016/j.csbj.2022.06.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
A novel integrative strategy for engineering β-1,3-xylanases with desired products. AncXyl10 is the first successful example of ASR to shift the hydrolysate types. The hydrolysates of AncXyl10 was only β-1,3-xylobiose and β-1,3-xylotriose. The underlying mechanism laid a new groundwork towards hydrolase engineering.
Engineering of hydrolases to shift their hydrolysate types has not been attempted so far, though computer-assisted enzyme design has been successful. A novel integrative strategy for engineering and screening the β-1,3-xylanase with desired hydrolysate types was proposed, with the purpose to solve problems that the separation and preparation of β-1,3-xylo-oligosaccharides was in high cost yet in low yield as monosaccharides existed in the hydrolysates. By classifying the hydrolysate types and coding them into numerical values, two robust mathematical models with five selected attributes from molecular docking were established based on LogitBoost and partial least squares regression with overall accuracy of 83.3% and 100%, respectively. Then, they were adopted for efficient screening the potential mutagenesis library of β-1,3-xylanases that only product oligosaccharides. The virtually designed AncXyl10 was selected and experimentally verified to produce only β-1,3-xylobiose (60.38%) and β-1,3-xylotriose (39.62%), which facilitated the preparation of oligosaccharides with high purity. The underlying mechanism of AncXyl10 may associated with the gap processing and ancestral amino acid substitution in the process of ancestral sequence reconstruction. Since many carbohydrate-active enzymes have highly conserved active sites, the strategy and their biomolecular basis will shield a new light for engineering carbohydrates hydrolase to produce specific oligosaccharides.
Collapse
|
74
|
Amphiphilic nano-delivery system based on modified-chitosan and ovalbumin: Delivery and stability in simulated digestion. Carbohydr Polym 2022; 294:119779. [DOI: 10.1016/j.carbpol.2022.119779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
|
75
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
76
|
Zhang CX, Wang Y, Duan X, Chen K, Li HW, Wu Y. Development of cytidine 5′-monophosphate-protected gold-nanoclusters to be a direct luminescent substrate via aggregation-induced emission enhancement for ratiometric determination of alkaline phosphatase and inhibitor evaluation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
77
|
Li X, Qin C, Fang Z, Sun X, Shi H, Wang Q, Zhao H. Replacing Dietary Fish Meal with Defatted Black Soldier Fly (Hermetia illucens) Larvae Meal Affected Growth, Digestive Physiology and Muscle Quality of Tongue Sole (Cynoglossus semilaevis). Front Physiol 2022; 13:855957. [PMID: 35492617 PMCID: PMC9043493 DOI: 10.3389/fphys.2022.855957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
For solving the global shortage of fish meal (FM) supplies from fisheries, the black soldier fly (Hermetia illucens) has become a new protein alternative in aquatic feeds. The present study investigated the effects of dietary inclusion of defatted H. illucens larvae meal (DBLM) on growth, serum biochemical parameters, digestive function, and muscle quality of tongue sole (Cynoglossus semilaevis). The feeding experiment consisted of five experimental diets: a control diet based on FM protein (H0) and four DBLM diets, substituting 25% (H25), 50% (H50), 75% (H75), and 100% (H100) of FM. C. semilaevis (initial weight 563.48 ± 22.81 g) were randomly allocated over five treatments in quadruplicate. After 65 days of feeding, the weight gain rate (WGR), specific growth rate (SGR), and protein efficiency ratio (PER) were significantly higher in H0 and H25 groups with less feed conversion ratio (FCR) and feed intake (FI). The concentrations of serum ALT, TG, T-CHO, ALB, and GLO and their ratio (i.e., A/G) in the H25 group were also significantly higher than those in the other DBLM diet-feeding groups. The digestive enzyme activities first increased (from 25% to 75%) and then decreased (from 75%) with the increased level of DBLM in diets. Meanwhile, there were significant improvements in the thickness of the intestinal longitudinal muscle (LM), circular muscle (CM), columnar epithelium (CE), and lamina propria (LP) in H25 C. semilaevis compared to the control group (p < 0.05). The fish from the other DBLM diets groups presented significant reductions in the thicknesses of LM, CM, CE, and LP, as well as the length of microvilli (ML) in a dose-dependent manner (p < 0.05). However, the substitution of FM increased up to 50% would result in intestinal structural damage. Moreover, the proximate compositions, antioxidant and water holding capacity, and muscular structures of C. semilaevis fillets were all significantly affected after substituting 25% FM with DBLM (p < 0.05). Except for the dry matter, moisture, ash, crude fat, and protein contents were significantly higher in H25 C. semilaevis muscles. The SOD activity in the H0 group was significantly lower than that in the H25 group. The CAT activity in C. semilaevis muscles prominently reduced along with the increase in DBLM content in feeding diets (p < 0.05). The water holding capacity of C. semilaevis fillets was best in the H25 group. In summary, the optimum proportion of DBLM with FM for feeding C. semilaevis may be around 25%.
Collapse
Affiliation(s)
- Xueting Li
- Department of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Zhenzhen Fang
- Department of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xueliang Sun
- Department of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Hongyue Shi
- Department of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Qingkui Wang
- Department of Fisheries, Tianjin Agricultural University, Tianjin, China
- *Correspondence: Qingkui Wang, ; Honghao Zhao,
| | - Honghao Zhao
- Department of Fisheries, Tianjin Agricultural University, Tianjin, China
- *Correspondence: Qingkui Wang, ; Honghao Zhao,
| |
Collapse
|
78
|
Tuesta-Chavez T, Monteza J, Silva Jaimes MI, Ruiz -Pacco GA, Changanaqui K, Espinoza – Suarez JB, Alarcon H, Osorio – Anaya AM, Valderrama – Negrón A, Sotomayor MD. Characterization and evaluation of antioxidant and antimicrobial capacity of prepared liquid smoke-loaded chitosan nanoparticles. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
79
|
Overview of antimicrobial polyurethane-based nanocomposite materials and associated signalling pathways. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
80
|
Wan Mahari WA, Waiho K, Fazhan H, Necibi MC, Hafsa J, Mrid RB, Fal S, El Arroussi H, Peng W, Tabatabaei M, Aghbashlo M, Almomani F, Lam SS, Sillanpää M. Progress in valorisation of agriculture, aquaculture and shellfish biomass into biochemicals and biomaterials towards sustainable bioeconomy. CHEMOSPHERE 2022; 291:133036. [PMID: 34822867 DOI: 10.1016/j.chemosphere.2021.133036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The recurrent environmental and economic issues associated with the diminution of fossil fuels are the main impetus towards the conversion of agriculture, aquaculture and shellfish biomass and the wastes into alternative commodities in a sustainable approach. In this review, the recent progress on recovering and processing these biomass and waste feedstocks to produce a variety of value-added products via various valorisation technologies, including hydrolysis, extraction, pyrolysis, and chemical modifications are presented, analysed, and discussed. These technologies have gained widespread attention among researchers, industrialists and decision makers alike to provide markets with bio-based chemicals and materials at viable prices, leading to less emissions of CO2 and sustainable management of these resources. In order to echo the thriving research, development and innovation, bioresources and biomass from various origins were reviewed including agro-industrial, herbaceous, aquaculture, shellfish bioresources and microorganisms that possess a high content of starch, cellulose, lignin, lipid and chitin. Additionally, a variety of technologies and processes enabling the conversion of such highly available bioresources is thoroughly analysed, with a special focus on recent studies on designing, optimising and even innovating new processes to produce biochemicals and biomaterials. Despite all these efforts, there is still a need to determine the more cost-effective and efficient technologies to produce bio-based commodities.
Collapse
Affiliation(s)
- Wan Adibah Wan Mahari
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China; Centre for Chemical Biology, Universiti Sains Malaysia, Minden, Malaysia
| | - Hanafiah Fazhan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Mohamed Chaker Necibi
- International Water Research Institute, Mohammed VI Polytechnic University, 43150 Ben-Guerir, Morocco.
| | - Jawhar Hafsa
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, 43150 Ben-Guerir, Morocco
| | - Reda Ben Mrid
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, 43150 Ben-Guerir, Morocco
| | - Soufiane Fal
- Green Biotechnology laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR). Madinat Al Irfane, Rabat 10100 Morocco; Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment. Faculty of Sciences, Mohammed V University of Rabat, 10000, Morocco
| | - Hicham El Arroussi
- Green Biotechnology laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR). Madinat Al Irfane, Rabat 10100 Morocco
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Malaysia Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India.
| |
Collapse
|
81
|
Wang R, Chen J, Gooneratne R, He X, Huang J, Zhao Z. Effects of varied molecular weight of chitosan oligosaccharides on growth performance, carcass trait, meat quality, and fat metabolism in indigenous yellow-feathered chickens. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2021.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
82
|
Elnesr SS, Elwan HAM, El Sabry MI, Shehata AM, Alagawany M. Impact of chitosan on productive and physiological performance and gut health of poultry. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2041992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hamada A. M. Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya, Egypt
| | - Mohamed I. El Sabry
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
83
|
Biomedyczne właściwości chitozanu – zastosowanie w inżynierii tkankowej Biomedical properties of chitosan: Application in tissue engineering. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Inżynieria tkankowa to interdyscyplinarna dziedzina badań, która stosuje zasady inżynierii i nauk przyrodniczych do opracowywania substytutów biologicznych, przywracania, utrzymywania lub poprawy funkcji tkanek. Łączy medycy-nę kliniczną, inżynierię mechaniczną, materiałoznawstwo i biologię molekularną. Chitozan jest związkiem, który może być stosowany na szeroką skalę w biomedycynie, m.in. jako nośnik leków, nici chirurgiczne, materiały opatrunkowe przeznaczone do przyspieszonego gojenia ran oraz rusztowania komórkowe w inżynierii tkankowej. Chitozon spełnia najważniejsze kryteria dla biomateriałów, m.in. kompatybilność, odpowiednie właściwości mechaniczne, morfologia i porowatość, nietoksyczność i biodegradowalność. Rusztowania chitozanowe mogą sprzyjać adhezji, różnicowaniu i proliferacji na powierzchni komórek. Z chitozanu można tworzyć różne formy funkcjonalne w zależności od potrzeb i wymagań, w tym: hydrożele 3D, gąbki 3D, folie i membrany oraz nanowłókna. Ze względu na unikalne właściwości fizykochemiczne biopolimer ten może być również wykorzystany do oczyszczania białek terapeutycznych z endotoksyn bakteryjnych, co jest dziś istotnym problemem w oczyszczaniu produktu końcowego w zastosowaniach medycznych. Obecnie terapie oparte na białkach rekombinowanych znajdują szerokie zastosowanie w terapiach celowanych, inżynierii tkankowej oraz szeroko pojętej medycynie regeneracyjnej. Dlatego tak ważny jest współistniejący, dobrze zapro-jektowany system oczyszczania produktu białkowego, który nie zmieni swoich zasadniczych właściwości. Artykuł jest przeglądem aktualnych badań nad zastosowaniem materiałów bioaktywnych na bazie chitozanu w medycynie regene-racyjnej różnych tkanek i narządów (m.in. tkanki chrzęstnej i kostnej, tkanki skórnej czy tkanki nerwowej).
Collapse
|
84
|
Expression and Surface Display of an Acidic Cold-Active Chitosanase in Pichia pastoris Using Multi-Copy Expression and High-Density Cultivation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030800. [PMID: 35164064 PMCID: PMC8839494 DOI: 10.3390/molecules27030800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Chitosanase hydrolyzes β-(1,4)-linked glycosidic bonds are used in chitosan chains to release oligosaccharide mixtures. Here, we cloned and expressed a cold-adapted chitosanase (CDA, Genbank: MW094131) using multi-copy expression plasmids (CDA1/2/3/4) in Pichia pastoris. We identified elevated CDA expression levels in multi-copy strains, with strain PCDA4 selected for high-density fermentation and enzyme-activity studies. The high-density fermentation approach generated a CDA yield of 20014.8 U/mL, with temperature and pH optimization experiments revealing the highest CDA activity at 20 °C and 5.0, respectively. CDA was stable at 10 °C and 20 °C. Thus, CDA could be used at low temperatures. CDA was then displayed on P. pastoris using multi-copy expression plasmids. Then, multi-copy strains were constructed and labelled as PCDA(1-3)-AGα1. Further studies showed that the expression of CDA(1-3)-AGα1 in multi-copy strains was increased, and that strain PCDA3-AGα1 was chosen for high-density fermentation and enzyme activity studies. By using a multi-copy expression and high-density fermentation approach, we observed CDA-AGα1 expression yields of 102415 U/g dry cell weight. These data showed that the displayed CDA exhibited improved thermostability and was more stable over wider temperature and pH ranges than free CDA. In addition, displayed CDA could be reused. Thus, the data showed that displaying enzymes on P. pastoris may have applications in industrial settings.
Collapse
|
85
|
Zhao L, Khan IM, Wang B, Yue L, Zhang Y, Wang Z, Xia W. Synthesis and antibacterial properties of new monomethyl fumaric acid‐modified chitosan oligosaccharide derivatives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingyu Zhao
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Bin Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan Chengdu University Chengdu 610106 PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Key Laboratory of Meat Processing of Sichuan Chengdu University Chengdu 610106 PR China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| |
Collapse
|
86
|
Rasweefali M, Sabu S, Muhammed Azad K, Raseel Rahman M, Sunooj K, Sasidharan A, Anoop K. Influence of deproteinization and demineralization process sequences on the physicochemical and structural characteristics of chitin isolated from Deep-sea mud shrimp (Solenocera hextii). ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2022. [DOI: 10.1016/j.abst.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
87
|
Yu M, Meng T, He W, Huang H, Liu C, Fu X, He J, Yin Y, Xiao D. Dietary Chito-oligosaccharides Improve Intestinal Immunity via Regulating Microbiota and Th17/Treg Balance-Related Immune Signaling in Piglets Challenged by Enterotoxigenic E. coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15195-15207. [PMID: 34881888 DOI: 10.1021/acs.jafc.1c06029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study was conducted to investigate how chito-oligosaccharides (COSs) affect the growth performance and immune stress response and to further explain their mechanisms. A total of 32 boars that were 28 days old and three-way weaned were randomly allotted to four equal groups [CON (basal diet) group, enterotoxigenic Escherichia coli (ETEC) group, COS group, and COS*ETEC group]. The results showed that COS partially reversed the negative changes in the average daily gain and average daily feed intake caused by the ETEC challenge and thereby alleviated the increase in the feed conversion ratio. Dietary COS increased the villus length as compared with the CON group and improved the ileal morphological structure. Additionally, it increased the bacterial diversity and Bacteroidetes abundance and lowered the Firmicutes abundance and Firmicutes-to-Bacteroidetes ratio at the phylum level. COS treatment lowered the abundance of Lactobacillus, Streptococcus, and Anarovovrio in the intestines of piglets, while it increased Muribaculaceae_unclassified and Prevotella at the genus level. COS had a significant inhibitory effect on the increase in the relative expression abundance of STAT3 mRNA caused by ETEC. The IL-10 and FOXP3 mRNAs were found to be significantly lower in the COS, ETEC, and COS*ETEC groups as compared to the CON group. These results demonstrate that COS could be beneficial for improving the growth performance and attenuating ETEC-challenged intestinal inflammation via regulating microbiota and Th17/Treg balance-related immune signaling pathways.
Collapse
Affiliation(s)
- Manrong Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Wenxiang He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hui Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chunming Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoqin Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410128, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
88
|
Xing Y, Zhu L, Zhang K, Li T, Huang S. Nanodelivery of triamcinolone acetonide with PLGA-chitosan nanoparticles for the treatment of ocular inflammation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:308-316. [PMID: 33739906 DOI: 10.1080/21691401.2021.1895184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Triamcinolone acetonide (TA) is widely indicated in the treatment of several ocular disorders, but the free drug suspension limits its clinical benefits and commercial compositions cause adverse ocular effects. In this study, TA was formulated in poly(d,l-lactide-co-glycolide) (PLGA)-chitosan (PLC) nanoparticles (NPs) for the treatment of ocular inflammatory diseases. TA-loaded PLC NPs exhibited excellent anti-inflammatory activity against human corneal epithelial (HCE) cells and significantly reduced the secretion of interleukin (IL)-6 in tumour necrosis factor (TNF)-α activated cells. In a rabbit model, TA-loaded PLC NPs did not show any typical clinical signs of eye inflammation and significantly alleviated inflammatory signs, compared with free TA suspension, at 24 h after a single dose. TA-loaded PLC NPs exhibited a greater aqueous humour transparency (%AHT), compared with that of normal saline (NS) or free TA suspension, indicating reduction in anterior chamber fogginess. Pharmacokinetic analysis of rabbit eyes revealed that TA-loaded PLC NPs peaked at 6 h. Substantial concentrations of TA were observed until 24 h, indicating the superiority of this PLC-based nanocarrier system. Overall, PLC-based NP formulations offer a new approach for the treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Yi Xing
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijuan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Teng Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaohua Huang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
89
|
Niu W, Dong Y, Fu Z, Lv J, Wang L, Zhang Z, Huo J, Ju J. Effects of molecular weight of chitosan on anti-inflammatory activity and modulation of intestinal microflora in an ulcerative colitis model. Int J Biol Macromol 2021; 193:1927-1936. [PMID: 34748786 DOI: 10.1016/j.ijbiomac.2021.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
This study investigated the therapeutic effects and mechanisms of chitosans (CSs) with different molecular weights on ulcerative colitis (UC). Three size classes of CSs (Mw ≤ 3, 50, and 200 kDa) were used in this study. The effect of large CSs (Mw ≤ 200 kDa) on UC was the best, followed by that of medium CSs (Mw ≤ 50 kDa), and that of small CSs (Mw ≤ 3 kDa) was the least in the LPS-induced Raw 264.7 cell model and DSS-induced UC mice model. The therapeutic mechanisms of three CSs are related to anti-oxidation, anti-inflammation, and regulation of immunoglobulin and intestinal flora by attenuating body weight loss, decreasing the disease activity index (DAI) and MPO activity, suppressing proinflammatory cytokines and IgG levels, down-regulating the level of oxidative stress, increasing anti-inflammatory cytokines, SOD activity and Prevotellaceae_UCG-001 levels, and reducing the abundance of Proteobacteria, Actinobacteria, and Escherichia-Shigella. In general, the molecular weight of CSs influences their efficacy against UC. CSs with an optimal molecular weight demonstrate good development prospects for ameliorating UC.
Collapse
Affiliation(s)
- Wei Niu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yuelin Dong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ziwei Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jiajie Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ligui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
90
|
Moine L, Canali MM, Porporatto C, Correa SG. Reviewing the biological activity of chitosan in the mucosa: Focus on intestinal immunity. Int J Biol Macromol 2021; 189:324-334. [PMID: 34419549 DOI: 10.1016/j.ijbiomac.2021.08.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is a polymer derived from the partial deacetylation of chitin with particular characteristics, such as mucoadhesiveness, tolerability, biocompatibility and biodegradability. Biomedical uses of chitosan cover a wide spectrum of applications as dietary fiber, immunoadjuvant and regulator of the intestinal microbiota or delivery agent. Chemical modification of chitosan is feasible because its reactive amino and hydroxyl groups can be modified by a diverse array of ligands, functional groups and molecules. This gives rise to numerous derivatives that allow different formulation types influencing their activity. Considering the multiple events resulting from the interaction with mucosal tissues, chitosan is a singular candidate for strategies targeting immune stimulation (i.e., tolerance induction, vaccination). Its role as a prebiotic and probiotic carrier represents an effective option to manage intestinal dysbiosis. In the intestinal scenario where the exposure of the immune system to a wide variety of antigens is permanent, chitosan increases IgA levels and favors a tolerogenic environment, thus becoming a key ally for host homeostasis.
Collapse
Affiliation(s)
- L Moine
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP: 5016 Córdoba Capital, Córdoba, Argentina
| | - M M Canali
- Université Côte d'Azur, INSERM, CNRS, IPMC, France
| | - C Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900 Villa María, Córdoba, Argentina
| | - S G Correa
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP: 5016 Córdoba Capital, Córdoba, Argentina.
| |
Collapse
|
91
|
Yu M, Xia Y, Xie W, Li Y, Yu X, Zheng J, Zhang Y. Enzymatic extraction of pectic oligosaccharides from finger citron ( Citrus medica L. var. sarcodactylis Swingle) pomace with antioxidant potential. Food Funct 2021; 12:9855-9865. [PMID: 34664579 DOI: 10.1039/d1fo01576a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Finger citron pomace is a cheap and renewable by-product of the citrus processing industry, representing up to 60% of the fruit biomass. In this study, a pectinase-based and ultrasonic-assisted method was firstly used to extract pectic oligosaccharides (POS) from finger citron pomace. Using the orthogonal experiment design (OED), the maximum conversion rate of up to 64.5% from pomace to POS was obtained under the extraction conditions of 0.25 mg mL-1 pectinase and 50 mg mL-1 pectin at 45 °C and pH 4.5 for 2 h. The extracted POS was then fractionated and purified to homogeneous oligosaccharides (FCPOS-1) with a molecular weight of 2.15 kDa, and the analyses of monosaccharide composition, FTIR, NMR and ESI-MS indicated that FCPOS-1 consisted of GalA and a small amount of mannose, galactose and arabinose. Multiple antioxidant activity assays in vitro revealed that FCPOS-1 possessed remarkable antioxidant properties, especially scavenging activity against DPPH radicals up to 94.07%. FCPOS-1 has the potential to be an effective natural antioxidant for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Min Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuandan Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wangling Xie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yunlong Li
- Zhejiang Fomdas Foods Co., Ltd, Meizhu Agro Product Processing Park, Xinchang 312500, Zhejiang, China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
92
|
van Leeuwe TM, Arentshorst M, Punt PJ, Ram AF. Interrogation of the cell wall integrity pathway in Aspergillus niger identifies a putative negative regulator of transcription involved in chitin deposition. Gene 2021; 763S:100028. [PMID: 32550555 PMCID: PMC7285910 DOI: 10.1016/j.gene.2020.100028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 01/26/2023]
Abstract
Post-fermentation fungal biomass waste provides a viable source for chitin. Cell wall chitin of filamentous fungi, and in particular its de-N-acetylated derivative chitosan, has a wide range of commercial applications. Although the cell wall of filamentous fungi comprises 10–30% chitin, these yields are too low for cost-effective production. Therefore, we aimed to identify the genes involved in increased chitin deposition by screening a collection of UV-derived cell wall mutants in Aspergillus niger. This screen revealed a mutant strain (RD15.4#55) that showed a 30–40% increase in cell wall chitin compared to the wild type. In addition to the cell wall chitin phenotype, this strain also exhibited sensitivity to SDS and produces an unknown yellow pigment. Genome sequencing combined with classical genetic linkage analysis identified two mutated genes on chromosome VII that were linked with the mutant phenotype. Single gene knockouts and subsequent complementation analysis revealed that an 8 bp deletion in NRRL3_09595 is solely responsible for the associated phenotypes of RD15.4#55. The mutated gene, which was named cwcA (cell wall chitin A), encodes an orthologue of Saccharomyces cerevisiae Bypass of ESS1 (BYE1), a negative regulator of transcription elongation. We propose that this conserved fungal protein is involved in preventing cell wall integrity signaling under non-inducing conditions, where loss of function results in constitutive activation of the cell wall stress response pathway, and consequently leads to increased chitin content in the mutant cell wall. An Aspergillus niger UV-mutant with increased cell wall chitin was characterized. Causative mutation was identified in a single gene, named cell wall chitin A (cwcA). CwcA is orthologous to yeast Bye1p and exists as a single copy gene. Three relevant domains are found in both CwcA and Bye1p: PHD, TFIIS and SPOC. CwcA acts as negative regulator of CWI signaling.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Peter J. Punt
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Arthur F.J. Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Corresponding author at: Leiden University, Institute of Biology, Department Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
93
|
Tao W, Wang G, Wei J. The Role of Chitosan Oligosaccharide in Metabolic Syndrome: A Review of Possible Mechanisms. Mar Drugs 2021; 19:md19090501. [PMID: 34564163 PMCID: PMC8465579 DOI: 10.3390/md19090501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome, a cluster of metabolic disorders including central obesity, insulin resistance, hyperglycemia, dyslipidemia, and hypertension, has become a major public health problem worldwide. It is of great significance to develop natural products to prevent and treat metabolic syndrome. Chitosan oligosaccharide (COS) is an oligomer of chitosan prepared by the deacetylation of chitin, which is the second most abundant polymer in nature. In recent years, COS has received widespread attention due to its various biological activities. The present review will summarize the evidence from both in vitro and in vivo studies of the beneficial effects of COS on obesity, dyslipidemia, diabetes mellitus, hyperglycemia, and hypertension, and focus attention on possible mechanisms of the prevention and treatment of metabolic syndrome by COS.
Collapse
Affiliation(s)
- Wenjing Tao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Geng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China;
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Correspondence:
| |
Collapse
|
94
|
Production of Ulvan Oligosaccharides with Antioxidant and Angiotensin-Converting Enzyme-Inhibitory Activities by Microbial Enzymatic Hydrolysis. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seaweed oligosaccharides have attracted attention in food, agricultural, and medical applications recently. Compared to red and brown seaweeds, fewer studies have focused on the biological activity of green seaweed’s oligosaccharides. This study aimed to produce bioactive ulvan oligosaccharides via enzymatic hydrolysis from green seaweed Ulva lactuca. Ulvan, a water-soluble polysaccharide, was obtained by hot water extraction. Two isolated marine bacteria, Pseudomonas vesicularis MA103 and Aeromonas salmonicida MAEF108, were used to produce multiple hydrolases, such as ulvanolytic enzymes, amylase, cellulase, and xylanase, to degrade the ulvan extract. An ultrafiltration system was used to separate the enzymatic hydrolysate to acquire the ulvan oligosaccharides (UOS). The characteristics of the ulvan extract and the UOS were determined by yield, reducing sugar, uronic acid, sulfate group, and total phenols. The FT-IR spectrum indicated that the ulvan extract and the UOS presented the bands associated with O-H, C=O, C-O, and S=O stretching. Angiotensin I converting enzyme (ACE) inhibition and antioxidant activities in vitro were evaluated in the ulvan extract and the UOS. These results provide a practical approach to producing bioactive UOS by microbial enzymatic hydrolysis that can benefit the development of seaweed-based products at the industrial scale.
Collapse
|
95
|
Chen Y, Fang L, Zhou W, Chang J, Zhang X, He C, Chen C, Yan R, Yan Y, Lu Y, Xu C, Xiang G. Nitric oxide-releasing micelles with intelligent targeting for enhanced anti-tumor effect of cisplatin in hypoxia. J Nanobiotechnology 2021; 19:246. [PMID: 34399762 PMCID: PMC8365946 DOI: 10.1186/s12951-021-00989-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hypoxic tumor microenvironment (TME) promotes tumor metastasis and drug resistance, leading to low efficiency of cancer chemotherapy. The development of targeted agents or multi-target therapies regulating hypoxic microenvironment is an important approach to overcome drug resistance and metastasis. Methods In this study, chitosan oligosaccharide (COS)-coated and sialic acid (SA) receptor-targeted nano-micelles were prepared using film dispersion method to co-deliver cisplatin (CDDP) and nitric oxide (NO) (denoted as CTP/CDDP). In addition, we explored the mechanisms by which NO reversed CDDP resistance as well as enhanced anti-metastatic efficacy in hypoxic cancer cells. Results Because of the different affinities of COS and SA to phenylboronic acid (PBA) under different pH regimes, CTP/CDDP micelles with intelligent targeting property increased cellular uptake of CDDP and enhanced cytotoxicity to tumors, but reduced systemic toxicity to normal organs or tissues. In addition, CTP/CDDP showed stimulus-responsive release in TME. In terms of anti-tumor mechanism, CTP/CDDP reduced CDDP efflux and inhibited epithelial-mesenchymal transition (EMT) process of tumor by down-regulating hypoxia-inducible factor-1α (HIF-1α), glutathione (GSH), multidrug resistance-associated protein 2 (MRP2) and matrix metalloproteinase 9 (MMP9) expression, thus reversing drug resistance and metastasis of hypoxic tumor cells. Conclusions The designed micelles significantly enhanced anti-tumor effects both in vitro and in vivo. These results suggested that CTP/CDDP represented a promising strategy to treat resistance and metastatic tumors. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00989-z.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Fang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weixin Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinghan Chang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaojuan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanchuan He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruicong Yan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yakai Yan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
96
|
Shen X, Liang X, Ji X, You J, Zhuang X, Song Y, Yin H, Zhao M, Zhao L. CD36 and DGAT2 facilitate the lipid-lowering effect of chitooligosaccharides via fatty acid intake and triglyceride synthesis signaling. Food Funct 2021; 12:8681-8693. [PMID: 34351342 DOI: 10.1039/d1fo01472b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study examined the impact of chitobiose (GlcN)2 and chitotriose (GlcN)3 on lipid accumulation modification and their inhibitory functionalities. (GlcN)2 and (GlcN)3 significantly inhibited the total cholesterol (TC), triglyceride (TG), and low-density lipid cholesterol (LDL-c) levels in the liver of the ob/ob-/- mice fed a non-high-fat diet. This phenomenon was associated with a reduction in the mRNA and protein expression of TG synthesis and fatty acid uptake-related signaling, significantly affecting the cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase 2 (DGAT2). Furthermore, the CD36 and DGAT2 genes were overexpressed by constructing a plasmid and transfecting it into HepG2 cells, after which the phenotypic traits of lipid accumulation were assessed in vitro. Consequently, it was evident that (GlcN)2 and (GlcN)3 reduced the overexpression of these proteins and relieved cellular lipid accumulation. In conclusion, these results indicated that (GlcN)2 and (GlcN)3 acted positively against NAFLD while regulating steatosis in the non-high-fat diet NAFLD model. The potential NAFLD treatment strategies, such as targeting CD36 and DGAT2 signaling, could provide scientific insight into further applying food-derived ingredients to reduce the risk of high-fat metabolism.
Collapse
Affiliation(s)
- Xin Shen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinyi Liang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiangshan You
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinye Zhuang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Yudong Song
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China. and Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| |
Collapse
|
97
|
Ouyang A, Wang H, Su J, Liu X. Mannose Receptor Mediates the Activation of Chitooligosaccharides on Blunt Snout Bream ( Megalobrama amblycephala) Macrophages. Front Immunol 2021; 12:686846. [PMID: 34408745 PMCID: PMC8365301 DOI: 10.3389/fimmu.2021.686846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chitooligosaccharide (COS) is an important immune enhancer and has been proven to have a variety of biological activities. Our previous research has established an M1 polarization mode by COS in blunt snout bream (Megalobrama amblycephala) macrophages, but the mechanism of COS activation of blunt snout bream macrophages remains unclear. In this study, we further explored the internalization mechanism and signal transduction pathway of chitooligosaccharide hexamer (COS6) in blunt snout bream macrophages. The results showed that mannose receptor C-type lectin-like domain 4-8 of M. amblycephala (MaMR CTLD4-8) could recognize and bind to COS6 and mediate COS6 into macrophages by both clathrin-dependent and caveolin-dependent pathways. In the inflammatory response of macrophages activated by COS6, the gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and nitric oxide synthase 2 (NOS2) was significantly inhibited after MaMR CTLD4-8-specific antibody blockade. However, even if it was blocked, the expression of these inflammation-related genes was still relatively upregulated, which suggested that there are other receptors involved in immune regulation. Further studies indicated that MaMR CTLD4-8 and Toll-like receptor 4 (TLR4) cooperated to regulate the pro-inflammatory response of macrophages caused by COS6. Taken together, these results revealed that mannose receptor (MR) CTLD4-8 is indispensable in the process of recognition, binding, internalization, and immunoregulation of COS in macrophages of blunt snout bream.
Collapse
Affiliation(s)
- Aotian Ouyang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Huabing Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| |
Collapse
|
98
|
Agostini SBN, Malta IHS, Rodrigues RF, Freitas JTJ, Lino MEDS, Dos Santos RS, Elisei LS, Moraes TR, Giusto LADR, de Oliveira MK, Bassi da Silva J, Bruschi ML, Santos AMD, Nogueira DA, Novaes RD, Pereira GR, Galdino G, Carvalho FC. Preclinical evaluation of methotrexate-loaded polyelectrolyte complexes and thermosensitive hydrogels as treatment for rheumatoid arthritis. Eur J Pharm Sci 2021; 163:105856. [PMID: 33882329 DOI: 10.1016/j.ejps.2021.105856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022]
Abstract
This work proposes new methotrexate (MTX) loaded drug delivery systems (DDS) to treat rheumatoid arthritis via the intra-articular route: a poloxamer based thermosensitive hydrogel (MTX-HG), oligochitosan and hypromellose phthalate-based polyelectrolyte complexes (MTX-PEC) and their association (MTX-PEC-HG). MTX-PEC showed 470 ± 166 nm particle size, 0.298 ± 0.108 polydispersity index, +26 ± 2 mV and 74.3 ± 5.8% MTX efficiency entrapment and particle formation was confirmed by infrared spectroscopy and thermal analysis. MTX-HG and MTX-PEC-HG gelled at 36.7°C. MTX drug release profile was prolonged for MTX-HG and MTX-PEC-HG, and faster for MTX-PEC and free MTX. The in vivo effect of the MTX-DDSs systems was evaluated in induced arthritis rats as single intra-articular dose. The assessed parameters were the mechanical nociceptive threshold, the plasmatic IL-1β level and histological analysis of the tibiofemoral joint. MTX-HG and MTX-PEC-HG performance were similar to free MTX and worse than oral MTX, used as positive control. All DDSs showed some irritative effect, for which further studies are required. MTX-PEC was the best treatment on recovering cartilage damage and decreasing allodynia. Thus, MTX-PEC demonstrated potential to treat rheumatoid arthritis, with the possibility of decreasing the systemic exposure to the drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Merelym Ketterym de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Ciências Fisiológicas, Universidade Federal de Alfenas, Brazil
| | - Jéssica Bassi da Silva
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Marcos Luciano Bruschi
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Aline Martins Dos Santos
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Julio de Mesquita Filho". UNESP, Araraquara, Brazil
| | | | - Rômulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Brazil
| | - Gislaine Ribeiro Pereira
- Escola de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil
| | - Giovane Galdino
- Instituto de Ciência da Motricidade, Universidade Federal de Alfenas, Brazil
| | - Flávia Chiva Carvalho
- Escola de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil
| |
Collapse
|
99
|
Zhang P, Liu S, Yang S, Wang Y, Jiang T, Yu M, Lv Z. Simultaneous determination of chito-oligosaccharides in rat plasma by the LC-MS/MS method: application to a pharmacokinetic study. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3242-3248. [PMID: 34184005 DOI: 10.1039/d1ay00772f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A simple and sensitive method for the simultaneous determination of chito-oligosaccharides (COSs) with degrees of polymerization (DPs) from 2 to 7 was developed and used for COS quantification in rat plasma. Samples were separated on a Waters XBridge Amide column (3.5 μm, 2.1 × 150 mm) by isometric elution with 10 mM aqueous ammonium acetate (pH = 9) in acetonitrile and 10 mM aqueous ammonium acetate (pH = 9) (v/v, 50 : 50) employing multiple reaction monitoring (MRM) detection. Analytes and internal standards (IS) were extracted from rat plasma by protein precipitation with acetonitrile. The assay was linear over a concentration range of 20-10 000 ng mL-1 for COS2-7. The intra-day and inter-day precision of the investigated components exhibited an RSD within 15%, and the accuracy (RE%) ranged from -7.3% to 7.6%. The extraction recoveries of the six constituents were determined to be between 82.5% and 94.3%. No significant matrix effects for COS2-7 were observed in rat plasma. COS in plasma remained stable for 24 h at room temperature (short-term), after freeze-thaw cycles, and 30 days in a -40 °C freezer. In comparison to reported COS quantitation methods, this method is simple, sensitive and cost-effective and could be used for the simultaneous quantitation of COS2-7. This method meets the Food and Drug Administration guidelines and had been successfully applied to the analysis of pharmacokinetic samples collected from rats.
Collapse
Affiliation(s)
- Pengpeng Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China.
| | - Shuai Liu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China.
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China and Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China and Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Yuanhong Wang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China and Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China and Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Tingfu Jiang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China and Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China and Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China and Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China and Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China and Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China and Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
100
|
Kandile NG, Mohamed HM. New chitosan derivatives inspired on heterocyclic anhydride of potential bioactive for medical applications. Int J Biol Macromol 2021; 182:1543-1553. [PMID: 34022310 DOI: 10.1016/j.ijbiomac.2021.05.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/22/2021] [Accepted: 05/11/2021] [Indexed: 01/17/2023]
Abstract
In the present work new chitosan derivatives inspired heterocyclic anhydride were prepared to improve the biological activities of chitosan via imidization reaction of chitosan (CS) and N-(1,3-dioxoisoindolin-2-yl)-1,3-dioxo-1,3-dihydroiso-benzofuran-5-carboxamide (5) to yield amic acid CS-6 at room temperature and imide CS-8 thermally. However, the reaction between (CS) and anhydride (5) in presence of sodium tripolyphosphate (TPP) or Poly (ethylene glycol) diglycidyl ether (PEGDG) at room temperature yielded CS-6 NPs and CS-7 respectively. The structure of new chitosan derivatives was characterized using morphological and spectroscopic analyses. From evaluation of the biological activities, the greatest enzymatic inhibitory for trypsin and α-chymotrypsin revealed by CS-7 at 88.33 ± 2.27 and 79.63 ± 3.16% respectively. Furthermore, the highest inhibition zones, (MIC) and (MBC) against S. aureus and B. subtilis recorded by CS-6 NPs at 21 ± 0.75, 22 ± 0.98 mm, 19.5, 19.5, 38 and 38 ppm respectively. Additionally, CS-8 displayed the best cell growth inhibition against vero cell line at 93.17 ± 0.29%.
Collapse
Affiliation(s)
- Nadia G Kandile
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis, 11757 Cairo, Egypt.
| | - Hemat M Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis, 11757 Cairo, Egypt
| |
Collapse
|