51
|
Transformation pathways and metabolic activity of free chlorophyll compounds from chloroplast thylakoid membrane under in vitro gastrointestinal digestion and colonic fermentation in early life. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
52
|
He T, Rombouts W, Einerhand AWC, Hotrum N, van de Velde F. Gastric protein digestion of goat and cow milk infant formula and human milk under simulated infant conditions. Int J Food Sci Nutr 2021; 73:28-38. [PMID: 33957845 DOI: 10.1080/09637486.2021.1921705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The protein digestion kinetics of goat milk infant formula (GMF) is previously shown to be more comparable to that of human milk (HM) than cow milk infant formula (CMF). To evaluate whether gastric behaviour contributes to differences in protein digestion kinetics, fresh HM, a GMF and a CMF were subjected to in vitro gastric digestion simulating infant conditions. Coagulation behaviour, particle size distribution and viscosity of the digesta were evaluated. After centrifugation of the digesta, total solids and protein distribution, and protein hydrolysis in the cream, serum and pellet fraction were investigated. The GMF and CMF were in general similar with respect to physicochemical and protein breakdown properties. However, a number of notable differences in physicochemical behaviour were observed, which may contribute to faster initial protein digestion of GMF. HM behaved differently from both formulas. These differences provide new insights into the possibilities for improvement of infant formulas.
Collapse
Affiliation(s)
- Tao He
- Ausnutria B.V., Zwolle, The Netherlands
| | | | | | | | | |
Collapse
|
53
|
Teixeira JLDP, Caramês ETDS, Baptista DP, Gigante ML, Pallone JAL. Rapid adulteration detection of yogurt and cheese made from goat milk by vibrational spectroscopy and chemometric tools. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
54
|
Yu Z, Qiao C, Zhang X, Yan L, Li L, Liu Y. Screening of frozen-thawed conditions for keeping nutritive compositions and physicochemical characteristics of goat milk. J Dairy Sci 2021; 104:4108-4118. [PMID: 33612218 DOI: 10.3168/jds.2020-19238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/15/2020] [Indexed: 01/19/2023]
Abstract
Frozen milk can help producers overcome the seasonality of goat milk production, low goat production and short lactation periods, and avoid discarding milk during some special periods. We investigated effects of combination between freezing (cryogenic refrigerator of -16 to -20°C or ultra-cryogenic refrigerator of -76 to -80°C) and thawing (homeothermy of 20 to 25°C or refrigeration of 2 to 4°C) on nutritive compositions and physicochemical characteristics of raw goat milk during storage period (80 d). Compared with fresh goat milk, the frozen-thawed milk decreased contents of fat, protein, and lactose, as well as surface tension and stability coefficient, whereas increased effective diameter and polydispersity index. The average values of color values (L*, a*, and b*) in 4 group samples changed from 83.01 to 82.25, -1.40 to -1.54, 3.51 to 3.81, respectively, and the ΔE of most samples did not exceed 2. In contrast to the other 3 frozen-thawed treatments, goat milk treated with ultra-cryogenic freezing-homeothermic thawing (UFHT) possessed higher fat (5.20 g/100 g), smaller effective particle diameter (0.32 µm), and the lowest polydispersity index value (0.26). The color and confocal laser scanning microscopy images of UFHT were similar to those of fresh goat milk, illustrating UFHT was the optimal approach to maintain the natural quality of goat milk. Our finding provides a theoretical basis for producers to freeze surplus milk.
Collapse
Affiliation(s)
- Zhezhe Yu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Chunyan Qiao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xueru Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Lin Yan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
55
|
Shi Y, Wei G, Huang A. Simulated in vitro gastrointestinal digestion of traditional Chinese Rushan and Naizha cheese: Peptidome profiles and bioactivity elucidation. Food Res Int 2021; 142:110201. [PMID: 33773676 DOI: 10.1016/j.foodres.2021.110201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
Chinese Rushan and Naizha, the traditional acid coagulated cheese types produced from cow and yak milk, respectively, have been consumed for more than thousands of years. In this study, we aimed to characterise peptides of Rushan and Naizha in simulated in vitro gastrointestinal digestion using label-free based peptidomic. The identified peptide sequences were subjected to BIOPEP database driven bioactivity search. In total, 309 and 225 peptides were identified from Rushan and Naizha cheese, respectively, corresponding to 20 protein annotations. Analysis of label-free quantification found different protein digestibility, where casein was the primary source of peptides in Rushan, among which 62% represented β-casein by peptide count. The release of peptides was concentrated in specific residues 145-155 of β-casein in Rushan. In contrast, κ-casein and 7 minor milk proteins were dominant in digestion of Naizha cheese (p < 0.05). In particular, there were 11 peptides from digestion that were exact matches in databases to sequences with immunomodulatory, antibacterial, ACE-inhibition, DPP IV inhibition and antioxidant activities. Four novel angiotensin I-converting enzyme inhibitory (ACEI) activities peptides (YPFPGPIH, LKNWGEGW, RELEEIR, and HPHPHLS) were explored using molecular docking, chemically synthesized, and in vitro ACEI activity. The peptides had lower estimated free energy values (-5.34 to -7.66 kcal/mol), and exhibited the lowest IC50 value of 109.5, 77.7, 196.6, and 64.30 μM, respectively. Our study is the most comprehensive peptidomic analysis of Chinese Rushan and Naizha cheese to date.
Collapse
Affiliation(s)
- Yanan Shi
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
56
|
Prosser CG. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J Food Sci 2021; 86:257-265. [DOI: 10.1111/1750-3841.15574] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Colin G Prosser
- Dairy Goat Co‐operative (N.Z.) Ltd. 18 Gallagher Drive Hamilton 3240 New Zealand
| |
Collapse
|
57
|
ARAÚJO NG, SILVA JBD, MOREIRA RT, CARDARELLI HR. Effect of temperature and concentration of βeta-galactosidase on the composition of reduced lactose pasteurized goat milk. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.05220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
58
|
Li N, Xie Q, Chen Q, Evivie SE, Liu D, Dong J, Huo G, Li B. Cow, Goat, and Mare Milk Diets Differentially Modulated the Immune System and Gut Microbiota of Mice Colonized by Healthy Infant Feces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15345-15357. [PMID: 33300339 DOI: 10.1021/acs.jafc.0c06039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Studies on the possible alternative supplements to breastmilk are gaining research interests. Although milk from cow, goat, and mare is nutritious, its effects on the relationship between the immune system, metabolites, and gut microbiota remain unclear. This study aimed to comprehensively evaluate the effects of cow, goat, and mare milk on the immune system, metabolites, and gut microbiota of mice colonized by healthy infant feces using human milk as a standard. We examined the serum biochemistry parameters, immunity indicators, T cells, gut microbiota abundance, and metabolites. Results showed that the impact of human milk on alanine transaminase, glutamic oxaloacetic transaminase, total protein, globulin, and glucose values was different from the cow, goat, and mare milk types. The effects of mare milk on the percentage of CD4+ T, Th1, Th2, Th17, and Treg cells, and the levels of IL-2, IL-4, sIgA, and d-lactic acid in the serum of the human microbiota-associated mice were comparable to those of human milk. Also, bacterial 16S rRNA gene sequence analysis revealed that human milk enriched the relative abundance of Akkermansia and Bacteroides, cow milk increased the relative abundance of Lactobacillus, goat milk increased the relative abundance of Escherichia-Shigella, and mare milk improved the relative abundance of Klebsiella. Besides, mare milk was similar to human milk in the concentration of the metabolites we analyzed. Our findings suggest that mare milk can positively modulate the gut microbiota and immunity status of infants and thus could be a possible replacement for human milk.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Company LTD., Qiqihaer 164800, China
| | - Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Smith Etareri Evivie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria
| | - Deyu Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Jiahuan Dong
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
59
|
Roy D, Ye A, Moughan PJ, Singh H. Structural changes in cow, goat, and sheep skim milk during dynamic in vitro gastric digestion. J Dairy Sci 2020; 104:1394-1411. [PMID: 33309366 DOI: 10.3168/jds.2020-18779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/18/2020] [Indexed: 11/19/2022]
Abstract
Coagulation of milk in the stomach is the first crucial step in its digestion. Using a human gastric simulator, the dynamic gastric digestion of goat and sheep skim milk were compared with that of cow skim milk, focusing particularly on their physical characteristics. The gastric contents were analyzed for changes in dry matter and microstructure, and the extent of protein digestion. The study revealed that the skim milk from all species formed a curd within the first 15 min of gastric digestion, at which time the pH was ~6.1 to 6.3. Compared with cow skim milk, the dry matter contents of the clots formed from goat and sheep skim milk were lower and higher, respectively, which was due to the differences in their total solids and protein contents. Microstructural analysis showed that, as digestion progressed, the clot structure became more cohesive, along with a decrease in moisture content, which in turn affected the breakdown and hydrolysis of caseins by pepsin; this phenomenon was similar for milk from all species. However, the extent of moisture retained in the sheep skim milk clot appeared to be lower than those of the cow and goat skim milk clots. In addition, the relative firmness of the sheep milk clot was higher than those of the cow and goat milk clots at the end of gastric digestion. The pattern of protein hydrolysis by pepsin was similar for the milk of all species, despite the differences in the proportions of different proteins. The study provided insight into the coagulation kinetics of goat and sheep skim milk under in vitro gastric digestion conditions.
Collapse
Affiliation(s)
- Debashree Roy
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Paul J Moughan
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
60
|
RAMOS GLDPA, NASCIMENTO JDS. Pseudomonas SP. in uninspected raw goat’s milk in Rio de Janeiro, Brazil. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.21719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
61
|
Boukria O, El Hadrami EM, Sameen A, Sahar A, Khan S, Safarov J, Sultanova S, Leriche F, Aït-Kaddour A. Biochemical, Physicochemical and Sensory Properties of Yoghurts Made from Mixing Milks of Different Mammalian Species. Foods 2020; 9:E1722. [PMID: 33238624 PMCID: PMC7700313 DOI: 10.3390/foods9111722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
Among developed countries, bovine milk production makes a major contribution towards the economy. Elevating consumer demand for functional foods has triggered a niche for non-bovine milk-based products. Mixing milks from different species can be a strategy to increase the consumption of non-bovine milk and enable consumers and dairy companies to benefit from their nutritional and technological advantages. Thus, this review aimed to gather the most important research on yoghurts derived from processing mixtures of milks of different species. We discuss the impact of milk mixtures (i.e., species and milk ratio) on nutritional, physicochemical, sensory, rheological and microbiological properties of yoghurts. More specifically, this paper only highlights studies that have provided a clear comparison between yoghurts processed from a mixture of two milk species and yoghurts processed from a single species of milk. Finally, certain limitations and future trends are discussed, and some recommendations are suggested for future research.
Collapse
Affiliation(s)
- Oumayma Boukria
- Applied Organic Chemistry Laboratory, Sciences and Techniques Faculty, Sidi Mohamed Ben Abedallah University, BP 2202 Route d’Immouzer, Fez 30050, Morocco; (O.B.); (E.M.E.H.)
| | - El Mestafa El Hadrami
- Applied Organic Chemistry Laboratory, Sciences and Techniques Faculty, Sidi Mohamed Ben Abedallah University, BP 2202 Route d’Immouzer, Fez 30050, Morocco; (O.B.); (E.M.E.H.)
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab 38000, Pakistan;
| | - Amna Sahar
- Department of Food Engineering/National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab 38000, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan;
| | - Jasur Safarov
- Department of Food Engineering, Faculty of Mechanical Building, Tashkent State Technical University Named after Islam Karimov, University Str. 2, Tashkent 100095, Uzbekistan; (J.S.); (S.S.)
| | - Shakhnoza Sultanova
- Department of Food Engineering, Faculty of Mechanical Building, Tashkent State Technical University Named after Islam Karimov, University Str. 2, Tashkent 100095, Uzbekistan; (J.S.); (S.S.)
| | - Françoise Leriche
- Université Clermont Auvergne, INRA, VetAgro Sup, UMRF, F-63370 Lempdes, France;
| | | |
Collapse
|
62
|
Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients 2020; 12:nu12113486. [PMID: 33202897 PMCID: PMC7696746 DOI: 10.3390/nu12113486] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Cow milk is the most common dairy milk and has been extensively researched for its functional, technological and nutritional properties for a wide range of products. One such product category is infant formula, which is the most suitable alternative to feed infants, when breastfeeding is not possible. Most infant formulas are based on cow milk protein ingredients. For several reasons, consumers now seek alternatives such as goat milk, which has increasingly been used to manufacture infant, follow-on and young child formulas over the last 30 years. While similar in many aspects, compositional and functional differences exist between cow and goat milk. This offers the opportunity to explore different formulations or manufacturing options for formulas based on goat milk. The use of whole goat milk as the only source of proteins in formulas allows levels of milk fat, short and medium chain fatty acids, sn-2 palmitic acid, and milk fat globule membrane (MFGM) to be maximised. These features improve the composition and microstructure of whole goat milk-based infant formula, providing similarities to the complex human milk fat globules, and have been shown to benefit digestion, and cognitive and immune development. Recent research indicates a role for milk fat and MFGM on digestive health, the gut–brain axis and the gut–skin axis. This review highlights the lipid composition of whole goat milk-based infant formula and its potential for infant nutrition to support healthy digestion, brain development and immunity. Further work is warranted on the role of these components in allergy development and the advantages of goat milk fat and MFGM for infant nutrition and health.
Collapse
|
63
|
Ma Y, Hou Y, Han B, Xie K, Zhang L, Zhou P. Peptidome comparison following gastrointestinal digesta of bovine versus caprine milk serum. J Dairy Sci 2020; 104:47-60. [PMID: 33162096 DOI: 10.3168/jds.2020-18471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022]
Abstract
Infant formula is used as a supplement for newborns. Although bovine milk-based infant formulas dominate the market, caprine milk-based infant formula has attracted increasing attention because of its lower allergenicity. This study compared the digestive peptidome of bovine and caprine milk serum proteins by using in vitro infant simulating conditions. The result showed that the degradation pattern of milk proteins was similar, whereas the digestive rates of milk proteins differed between bovine and caprine milks. Several proteins, such as α-lactalbumin (LALBA), β-lactoglobulin (LGB), serum amyloid A protein (SAA1), glycosylation-dependent cell adhesion molecule 1 (GLYCAM1), and lactotransferrin (LTF), released more peptides during digestion of caprine milk serum than during digestion of bovine milk serum; however, more peptides derived from αS1-casein (CSN1S1) were found in bovine digesta. In addition, antimicrobial-related peptides were mostly only found in caprine intestinal digesta. The results of this study may be useful in understanding the digestion characteristics of milk serum proteins and providing guidance on the improvement of infant formula.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, China
| | - Binsong Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kui Xie
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
64
|
Roy D, Ye A, Moughan PJ, Singh H. Composition, Structure, and Digestive Dynamics of Milk From Different Species-A Review. Front Nutr 2020; 7:577759. [PMID: 33123547 PMCID: PMC7573072 DOI: 10.3389/fnut.2020.577759] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022] Open
Abstract
Background: The traditional dairy-cattle-based industry is becoming increasingly diversified with milk and milk products from non-cattle dairy species. The interest in non-cattle milks has increased because there have been several anecdotal reports about the nutritional benefits of these milks and reports both of individuals tolerating and digesting some non-cattle milks better than cattle milk and of certain characteristics that non-cattle milks are thought to share in common with human milk. Thus, non-cattle milks are considered to have potential applications in infant, children, and elderly nutrition for the development of specialized products with better nutritional profiles. However, there is very little scientific information and understanding about the digestion behavior of non-cattle milks. Scope and Approach: The general properties of some non-cattle milks, in comparison with human and cattle milks, particularly focusing on their protein profile, fat composition, hypoallergenic potential, and digestibility, are reviewed. The coagulation behaviors of different milks in the stomach and their impact on the rates of protein and fat digestion are reviewed in detail. Key findings and Conclusions: Milk from different species vary in composition, structure, and physicochemical properties. This may be a key factor in their different digestion behaviors. The curds formed in the stomach during the gastric digestion of some non-cattle milks are considered to be relatively softer than those formed from cattle milk, which is thought to contribute to the degree to which non-cattle milks can be easily digested or tolerated. The rates of protein and fat delivery to the small intestine are likely to be a function of the macro- and micro-structure of the curd formed in the stomach, which in turn is affected by factors such as casein composition, fat globule and casein micelle size distribution, and protein-to-fat ratio. However, as no information on the coagulation behavior of non-cattle milks in the human stomach is available, in-depth scientific studies are needed in order to understand the impact of compositional and structural differences on the digestive dynamics of milk from different species.
Collapse
Affiliation(s)
| | | | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
65
|
Abstract
This review outlines the current use of magnetic resonance (MR) techniques to study digestion and highlights their potential for providing markers of digestive processes such as texture changes and nutrient breakdown. In vivo digestion research can be challenging due to practical constraints and biological complexity. Therefore, digestion is primarily studied using in vitro models. These would benefit from further in vivo validation. NMR is widely used to characterise food systems. MRI is a related technique that can be used to study both in vitro model systems and in vivo gastro-intestinal processes. MRI allows visualisation and quantification of gastric processes such as gastric emptying and coagulation. Both MRI and NMR scan sequences can be configured to be sensitive to different aspects of gastric or intestinal contents. For example, magnetisation transfer and chemical exchange saturation transfer can detect proton (1H) exchange between water and proteins. MRI techniques have the potential to provide molecular-level and quantitative information on in vivo gastric (protein) digestion. This requires careful validation in order to understand what these MR markers of digestion mean in a specific digestion context. Combined with other measures they can be used to validate and inform in vitro digestion models. This may bridge the gap between in vitro and in vivo digestion research and can aid the optimisation of food properties for different applications in health and disease.
Collapse
|
66
|
Abstract
Probiotics are live microorganisms that, when administered in adequate numbers, confer health benefit/s on the host, while prebiotics are nondigestible food ingredients that are selectively stimulate the growth of beneficial microorganisms in the distal parts of the host digestive tract conferring health benefits. Dairy products manufactured mainly using bovine milk is the major vehicle in delivering probiotics to humans. At present, there is an increasing demand for non-bovine probiotic milk products. Both bovine and non-bovine dairy products contain several ingredients with prebiotic properties such as oligosaccharides that could positively interact with probiotics to alter their functional properties. Furthermore, these bovine and non-bovine products could be fortified with prebiotics from various sources such as inulin and oligofructose in order to provide additional health benefits. In addition, non-bovine milk products are good sources for isolating novel potential probiotics. Non-bovine milk such as goat, sheep, camel and donkey have been used in producing several probiotic products including set-yoghurt, drinking-yoghurt, stirred-yoghurt, ice cream and cheese. Prebiotic inclusions in non-bovine milk at present is mainly associated with goat and sheep milk products. In this context, this chapter focuses on the different types of non-bovine milk products containing probiotics and prebiotics, and product quality and microbiological characteristics with special reference to probiotic viability.
Collapse
|
67
|
Ahlborn N, Young W, Mullaney J, Samuelsson LM. In Vitro Fermentation of Sheep and Cow Milk Using Infant Fecal Bacteria. Nutrients 2020; 12:E1802. [PMID: 32560419 PMCID: PMC7353214 DOI: 10.3390/nu12061802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
While human milk is the optimal food for infants, formulas that contain ruminant milk can have an important role where breastfeeding is not possible. In this regard, cow milk is most commonly used. However, recent years have brought interest in other ruminant milk. While many similarities exist between ruminant milk, there are likely enough compositional differences to promote different effects in the infant. This may include effects on different bacteria in the large bowel, leading to different metabolites in the gut. In this study sheep and cow milk were digested using an in vitro infant digestive model, followed by fecal fermentation using cultures inoculated with fecal material from two infants of one month and five months of age. The effects of the cow and sheep milk on the fecal microbiota, short-chain fatty acids (SCFA), and other metabolites were investigated. Significant differences in microbial, SCFA, and metabolite composition were observed between fermentation of sheep and cow milk using fecal inoculum from a one-month-old infant, but comparatively minimal differences using fecal inoculum from a five-month-old infant. These results show that sheep milk and cow milk can have differential effects on the gut microbiota, while demonstrating the individuality of the gut microbiome.
Collapse
Affiliation(s)
- Natalie Ahlborn
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand; (N.A.); (W.Y.); (J.M.)
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany
| | - Wayne Young
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand; (N.A.); (W.Y.); (J.M.)
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High Value Nutrition, National Science Challenges, The Liggins Institute at the University of Auckland, Auckland 1010, New Zealand
| | - Jane Mullaney
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand; (N.A.); (W.Y.); (J.M.)
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High Value Nutrition, National Science Challenges, The Liggins Institute at the University of Auckland, Auckland 1010, New Zealand
| | - Linda M. Samuelsson
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand; (N.A.); (W.Y.); (J.M.)
| |
Collapse
|
68
|
da Silva M, Fernandes Sako AV, Micke GA, Vitali L. A rapid method for simultaneous determination of nitrate, nitrite and thiocyanate in milk by CZE-UV using quaternary ammonium chitosan as electroosmotic flow inverter. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
69
|
Boccia AC, Cusano E, Scano P, Consonni R. NMR Lipid Profile of Milk from Alpine Goats with Supplemented Hempseed and Linseed Diets. Molecules 2020; 25:molecules25071491. [PMID: 32218333 PMCID: PMC7181232 DOI: 10.3390/molecules25071491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
The supplementation of goat diets with natural products to obtain milk with nutraceutical components is a common practice. In these last years, the influence of supplementation of specifically designed diets has been studied with different analytical tools in order to explore possible beneficial effects in human consumption of animal milk and milk-derived products. In this study, the lipid fraction of milk from Alpine goats undergoing different dietary regimens was studied by 1H-NMR spectroscopy. Alpine goats were fed with linseed or hempseed supplements, and after 14 weeks of treatment, milk was collected and analyzed. Results showed that feeding diets supplemented with seeds positively affected the fatty acid composition with a pronounced increase in unsaturated fatty acids for both diets compared to a control diet. Specifically, linolenic acid content was more than doubled for linseed diet compared with the hempseed and control groups, while linoleic acid greatly increased only upon hempseed supplementation. However, a number of conjugated linoleic acid (CLA) isomers and higher levels of fatty acids with trans configuration were found in supplemented diets, particularly in the linseed diet.
Collapse
Affiliation(s)
- Antonella Caterina Boccia
- CNR, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—SCITEC, via A. Corti 12, 20133 Milano, Italy; (E.C.); (R.C.)
- Correspondence: ; Tel.: +39-02-2369-9212
| | - Erica Cusano
- CNR, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—SCITEC, via A. Corti 12, 20133 Milano, Italy; (E.C.); (R.C.)
| | - Paola Scano
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy;
| | - Roberto Consonni
- CNR, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—SCITEC, via A. Corti 12, 20133 Milano, Italy; (E.C.); (R.C.)
| |
Collapse
|
70
|
Wu CS, Guo JH, Lin MJ. Stability Evaluation of pH-Adjusted Goat Milk for Developing Ricotta Cheese with a Mixture of Cow Cheese Whey and Goat Milk. Foods 2020; 9:foods9030366. [PMID: 32245273 PMCID: PMC7143310 DOI: 10.3390/foods9030366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/21/2022] Open
Abstract
Excess summer milk and a lack of product diversity are major problems facing Taiwan’s dairy goat industry. Gouda and Mozzarella cheeses made with cow milk are popular products for leisure farms in Taiwan, and they produce a large amount of cheese whey as waste. Our objective is to identify the unstable phenomena of pH-adjusted goat milk through the use of Turbiscan Lab® Expert and to produce ricotta cheeses using cow cheese whey waste and excess goat milk. Delta backscattering (∆BS) profiles and the Turbiscan stability index (TSI) were used to evaluate the stability characteristics of goat milk adjusted to pH 6.7–5.2. The results show coagulation phenomena in skimmed goat milk and sedimentation phenomena in full-fat goat milk, when the pH was adjusted to 5.2. The TSI values of goat milk at pH 5.7 and 5.2 were significantly higher (p < 0.05) than that of a control. Therefore, 80/20 cow cheese whey/skimmed goat milk and 80/20 cow cheese whey/full-fat goat milk mixtures were acidified to pH 5.5 and heated at 90 °C for 30 min to produce ricotta cheeses A and B. The hardness value, moisture, protein, and ash contents of ricotta cheese A were significantly higher (p < 0.05) than that of ricotta cheese B, but no significant difference was found in terms of sensory evaluation.
Collapse
Affiliation(s)
- Chung-Shiuan Wu
- Department of Food Science, National Pingtung University of Science and Technology, Neipu 91201, Pingtung, Taiwan;
| | - Jia-Hsin Guo
- Department of Food Science, National Pingtung University of Science and Technology, Neipu 91201, Pingtung, Taiwan;
- Correspondence: (J.-H.G.); (M.-J.L.); Tel.: +886-8-7703202-7446 (J.-H.G.); +886-8-7703202-6189 (M.-J.L.)
| | - Mei-Jen Lin
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu 91201, Pingtung, Taiwan
- Correspondence: (J.-H.G.); (M.-J.L.); Tel.: +886-8-7703202-7446 (J.-H.G.); +886-8-7703202-6189 (M.-J.L.)
| |
Collapse
|
71
|
Le Roux L, Ménard O, Chacon R, Dupont D, Jeantet R, Deglaire A, Nau F. Are Faba Bean and Pea Proteins Potential Whey Protein Substitutes in Infant Formulas? An In Vitro Dynamic Digestion Approach. Foods 2020; 9:E362. [PMID: 32245044 PMCID: PMC7142966 DOI: 10.3390/foods9030362] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 01/03/2023] Open
Abstract
Infant formulas (IFs) are used as substitutes for human milk and are mostly based on cow milk proteins. For sustainability reasons, animal protein alternatives in food are increasingly being considered, as plant proteins offer interesting nutritional and functional benefits for the development of innovative IFs. This study aimed to assess how a partial substitution (50%) of dairy proteins with faba bean and pea proteins influenced the digestibility of IFs under simulated dynamic in vitro digestion, which were set up to mimic infant digestion. Pea- and faba bean-based IFs (PIF and FIF, respectively) have led to a faster aggregation than the reference milk-based IF (RIF) in the gastric compartment; that did not affect the digesta microstructure at the end of digestion. The extent of proteolysis was estimated via the hydrolysis degree, which was the highest for FIF (73%) and the lowest for RIF (50%). Finally, it was apparent that in vitro protein digestibility and protein digestibility-corrected amino acid score (PDCAAS)-like scores were similar for RIF and FIF (90% digestibility; 75% PDCAAS), but lower for PIF (75%; 67%). Therefore, this study confirms that faba bean proteins could be a good candidate for partial substitution of whey proteins in IFs from a nutritional point of view, provided that these in vitro results are confirmed in vivo.
Collapse
Affiliation(s)
- Linda Le Roux
- Sill Dairy International, Raden, 29860 Plouvien, France; (L.L.R.); (R.C.)
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| | - Olivia Ménard
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| | - Raphaël Chacon
- Sill Dairy International, Raden, 29860 Plouvien, France; (L.L.R.); (R.C.)
| | - Didier Dupont
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| | - Romain Jeantet
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| | - Amélie Deglaire
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| | - Françoise Nau
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| |
Collapse
|
72
|
Nguyen HTH, Gathercole JL, Day L, Dalziel JE. Differences in peptide generation following in vitro gastrointestinal digestion of yogurt and milk from cow, sheep and goat. Food Chem 2020; 317:126419. [PMID: 32088406 DOI: 10.1016/j.foodchem.2020.126419] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/22/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Fermentation of milk is commonly used throughout the world to produce a variety of foods with different health benefits. We hypothesised that due to differences in physicochemical properties and protein sequences among milk from different species and their fermented yogurt samples, their protein digestion and resulting peptide profiles would differ. Cow, goat and sheep milk and yogurt were compared at designated timepoints throughout in vitro gastric and intestinal digestion for differences in peptide profiles and peptide bioactivities. The results showed that most proteins in all milk and yogurt samples were digested within the early phase of gastric digestion. β-Lg and β-CN were digested faster in yogurt than milk, which was most evident for sheep products. Regardless of species, in vitro gastric and intestinal digestion released a higher concentration of specific peptides, particularly anti-hypertensives, from yogurt compared with their milk counterparts.
Collapse
Affiliation(s)
- Hanh T H Nguyen
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | - Jessica L Gathercole
- Proteins & Metabolites Team, Food & Bio-Based Products Group, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - Li Day
- Food & Fibre Sector, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Julie E Dalziel
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
73
|
Modifications of the volatile and nonvolatile metabolome of goat cheese due to adjunct of non-starter lactic acid bacteria. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
74
|
Wang Y, Eastwood B, Yang Z, de Campo L, Knott R, Prosser C, Carpenter E, Hemar Y. Rheological and structural characterization of acidified skim milks and infant formulae made from cow and goat milk. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
75
|
Ye A, Cui J, Carpenter E, Prosser C, Singh H. Dynamic in vitro gastric digestion of infant formulae made with goat milk and cow milk: Influence of protein composition. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
76
|
Sun Y, Wang C, Sun X, Guo M. Protein digestion properties of Xinong Saanen goat colostrum and mature milk using in vitro digestion model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5819-5825. [PMID: 31180140 DOI: 10.1002/jsfa.9852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Xinong Saanen goat milk is a raw material for goat milk-based infant formula production. This study aims to analyze digestion properties of Xinong Saanen goat colostrum and mature milk by simulating infant gastrointestinal digestion. Zeta potential, particles size, protein profile and peptides composition of these two kinds of milk during the digestion process were studied. RESULTS Zeta-potential values of the digested colostrum were lower than those of mature milk through the whole digestion. Absolute zeta potential of colostrum duodenal digestion samples showed a decrease from 16.63 ± 2.08 to 11.80 ± 2.03 mV while that of mature milk decreased sharply and then increased (P < 0.05). Colostrum had a larger particle size than mature milk and both milks showed decreased particle size with increasing digestion time but an increase for the last 30 min. Colostrum showed more high molecular weight (MW) proteins which cannot be hydrolyzed completely compared with mature milk. Digested peptides (< 10 kDa) were characterized using liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The casein-derived peptides identified in digested colostrum and mature milk accounted for 76.67% and 59.53%, respectively. β-Casein was the most abundant in colostrum while that in mature milk was αs1 -casein. Enterotoxin-binding glycoprotein PP20K, butyrophilin subfamily 1 member A1 (BTN1A1) and perilipin (PLIN) were only detected in digested mature milk. CONCLUSION Differences in digestion properties between goat colostrum and mature milk were mainly shown in duodenal digestion phase. Data may provide useful information about utilization of goat milk for infant formula formulation. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxue Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Jilin, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Jilin, China
| | - Xiaomeng Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Jilin, China
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT, USA
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
77
|
In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108278] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
78
|
Xavier AAO, Garrido-López JE, Aguayo-Maldonado J, Garrido-Fernández J, Fontecha J, Pérez-Gálvez AA. In Vitro Digestion of Human Milk: Influence of the Lactation Stage on the Micellar Carotenoids Content. Antioxidants (Basel) 2019; 8:E291. [PMID: 31394852 PMCID: PMC6720515 DOI: 10.3390/antiox8080291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022] Open
Abstract
Human milk is a complex fluid with nutritive and non-nutritive functions specifically structured to cover the needs of the newborn. The present study started with the study of carotenoid composition during progress of lactation (colostrum, collected at 3-5 d postpartum; mature milk, collected at 30 d postpartum) with samples donated from full-term lactating mothers (women with no chronic diseases, nonsmokers on a regular diet without supplements, n = 30). Subsequently, we applied an in vitro protocol to determine the micellarization efficiency of the carotenoids, which were separated by HPLC and quantified by the external standard method. That in vitro protocol is tailored for the biochemistry of the digestive tract of a newborn. To the best of our knowledge, the present study is the first report of carotenoids micellar contents, obtained in vitro. This study reveals, from the in vitro perspective, that colostrum and mature milk produce significant micellar contents of carotenoids despite lipids in milk are within highly complex structures. Indeed, the lactation period develops some influence on the micellarization efficiency, influence that might be attributed to the dynamics of the milk fat globule membrane (MFGM) during the progress of lactation.
Collapse
Affiliation(s)
- Ana A O Xavier
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | - Juan E Garrido-López
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | | | - Juan Garrido-Fernández
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | - Javier Fontecha
- Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain
| | - And Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain.
| |
Collapse
|
79
|
Liu W, Fu D, Zhang X, Chai J, Tian S, Han J. Development and validation of a new artificial gastric digestive system. Food Res Int 2019; 122:183-190. [DOI: 10.1016/j.foodres.2019.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 10/27/2022]
|
80
|
Sepe L, Argüello A. Recent advances in dairy goat products. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1306-1320. [PMID: 31357271 PMCID: PMC6668858 DOI: 10.5713/ajas.19.0487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/20/2019] [Accepted: 07/04/2019] [Indexed: 12/05/2022]
Abstract
Goat population world-wide is increasing, and the dairy goat sector is developing accordingly. Although the new technology applied to the goat industry is being introduced slowly because the weight of traditional subsector in the dairy sector, considerable advances have been made in the last decade. Present review focuses on the emerging topics in the dairy goat sector. Research and development of traditional and new dairy goat products are reviewed, including the new research in the use of goat milk in infant formula. The research in alternatives to brine, production of skimmed goat cheeses and the use of different modified atmosphere packaging are also addressed. Special attention is given to antibiotic residues and their determination in goat milk. Functional foods for human benefits are a trending topic. Health properties recently discovered in dairy goat products are included in the paper, with special attention to the antioxidant activity. The dual-purpose use of goats by humankind is affecting the way of how new technology is being incorporated in the dairy goat sector and will certainly affect the future development of dairy goat products.
Collapse
Affiliation(s)
- Lucia Sepe
- CREA Research Centre for Animal Production and Aquaculture, Bella
Muro 85051, Italy
| | - Anastasio Argüello
- Animal Production and Biotechnology Group, Institute of Animal
Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Arucas, Las
Palmas 35413, Spain
| |
Collapse
|
81
|
Ranadheera CS, Evans CA, Baines SK, Balthazar CF, Cruz AG, Esmerino EA, Freitas MQ, Pimentel TC, Wittwer AE, Naumovski N, Graça JS, Sant'Ana AS, Ajlouni S, Vasiljevic T. Probiotics in Goat Milk Products: Delivery Capacity and Ability to Improve Sensory Attributes. Compr Rev Food Sci Food Saf 2019; 18:867-882. [PMID: 33337004 DOI: 10.1111/1541-4337.12447] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
Dairy foods, particularly those of bovine origin, are the predominant vehicles for delivery of probiotic bacteria. Caprine (goat) milk also possesses potential for successful delivery of probiotics, and despite its less appealing flavor in some products, the use of goat milk as a probiotic carrier has rapidly increased over the last decade. This review reports on the diversity, applicability, and potential of using probiotics to enhance the sensory properties of goat milk and goat milk-based products. A brief conceptual introduction to probiotic microorganisms is followed by an account of the unique physicochemical, nutritive, and beneficial aspects of goat milk, emphasizing its advantages as a probiotic carrier. The sensory properties of probiotic-enriched goat milk products are also discussed. The maintenance of probiotic viability and desirable physicochemical characteristics in goat milk products over shelf life is possible. However, the unpleasant sensory features of some goat milk products remain a major disadvantage that hinder its wider utilization. Nevertheless, certain measures such as fortification with selected probiotic strains, inclusion of fruit pulps and popular flavor compounds, and production of commonly consumed tailor-made goat milk-based products have potential to overcome this limitation. In particular, certain probiotic bacteria release volatile compounds as a result of their metabolism, which are known to play a major role in the aroma profile and sensory aspects of the final products.
Collapse
Affiliation(s)
- C S Ranadheera
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Evans
- School of Environmental and Life Sciences, Univ. of Newcastle, NSW, 2308, Australia
| | - S K Baines
- School of Health Sciences, Univ. of Newcastle, NSW, 2308, Australia
| | - Celso F Balthazar
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | - Adriano G Cruz
- Dept. of Food, Federal Inst. of Rio de Janeiro, 20270-021, Rio de Janeiro, RJ, Brazil
| | - Erick A Esmerino
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | - Mônica Q Freitas
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | | | - A E Wittwer
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - N Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, Univ. of Canberra, Canberra, ACT, 2601, Australia.,Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, Canberra, ACT, 2601, Australia
| | - Juliana S Graça
- Dept. of Food Science, Faculty of Food Engineering, Univ. of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Dept. of Food Science, Faculty of Food Engineering, Univ. of Campinas, Campinas, São Paulo, Brazil
| | - S Ajlouni
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - T Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria Univ., Werribee, Victoria, 3030, Australia
| |
Collapse
|
82
|
Hodgkinson AJ, Wallace OA, Smolenski G, Prosser CG. Gastric digestion of cow and goat milk: Peptides derived from simulated conditions of infant digestion. Food Chem 2019; 276:619-625. [DOI: 10.1016/j.foodchem.2018.10.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
83
|
Verruck S, Dantas A, Prudencio ES. Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
84
|
Fernandez MA, Marette A. Novel perspectives on fermented milks and cardiometabolic health with a focus on type 2 diabetes. Nutr Rev 2018; 76:16-28. [PMID: 30452697 PMCID: PMC6280950 DOI: 10.1093/nutrit/nuy060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review will explore the observational and mechanistic evidence supporting the hypothesis that fermented milk consumption has beneficial effects on metabolism. Live cultures in fermented dairy are thought to contribute to gut microbial balance, which is likely an instrumental mechanism that protects the host against gut dysbiosis and systemic inflammation associated with cardiometabolic diseases. Lactic acid bacteria (LAB) release bioactive metabolites, such as exopolysaccharides and peptides, that have the potential to exert a wide range of metabolic and regulatory functions. In particular, peptides derived from fermented dairy products are likely to exert greater cardiometabolic and anti-inflammatory effects than nonfermented dairy. It is hypothesized that LAB-derived bioactive peptides have the potential to protect the host against cardiometabolic diseases through antimicrobial actions and to effect changes in gene expression of glucose regulatory and anti-inflammatory signaling pathways. The peptides released through fermentation may explain some of the health effects of fermented dairy products on cardiometabolic disease risk observed in epidemiological studies, particularly type 2 diabetes; however, mechanisms have yet to be explored in detail.
Collapse
Affiliation(s)
- Melissa Anne Fernandez
- Heart and Lung Institute of Quebec and the Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
- School of Nutrition, Faculty of Agricultural and Food Sciences, Laval University, Quebec, Canada
| | - André Marette
- Heart and Lung Institute of Quebec and the Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
- Department of Medicine Faculty of Medicine, Laval University, Quebec, Canada
| |
Collapse
|
85
|
Milan AM, Hodgkinson AJ, Mitchell SM, Prodhan UK, Prosser CG, Carpenter EA, Fraser K, Cameron-Smith D. Digestive Responses to Fortified Cow or Goat Dairy Drinks: A Randomised Controlled Trial. Nutrients 2018; 10:nu10101492. [PMID: 30322081 PMCID: PMC6213413 DOI: 10.3390/nu10101492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 01/11/2023] Open
Abstract
Fortified milk drinks are predominantly manufactured from bovine (cow) sources. Alternative formulations include those prepared with hydrolysed bovine milk proteins or from alternate bovidae species, such as caprine (goat) milk. Currently, there is little data on protein digestive and metabolic responses following ingestion of fortified milk drinks. To examine the digestive and metabolic responses to commercially-available fortified milks, young adults (n = 15 males: 15 females), in a randomised sequence, ingested isonitrogenous quantities of whole cow-protein (WC), whole goat-protein (WG), or partially-hydrolysed whey cow-protein (HC), commercial fortified milks. Plasma amino acid (AA) and hormonal responses were measured at baseline and again at 5 h after ingestion. Paracetamol recovery, breath hydrogen, and subjective digestive responses were also measured. Postprandial plasma AA was similar between WC and WG, while AA appearance was suppressed with HC. Following HC, there was a negative incremental AUC in plasma branched-chain AAs. Further, HC had delayed gastric emptying, increased transit time, and led to exaggerated insulin and GLP-1 responses, in comparison to whole protein formulas. Overall, WC and WG had similar protein and digestive responses with no differences in digestive comfort. Contrastingly, HC led to delayed gastric emptying, attenuated AA appearance, and a heightened circulating insulin response.
Collapse
Affiliation(s)
- Amber M Milan
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
| | - Alison J Hodgkinson
- Food and Bio-based Products, AgResearch, Private Bag 3123, Hamilton 3240, New Zealand.
| | - Sarah M Mitchell
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
| | - Utpal K Prodhan
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh.
| | - Colin G Prosser
- Dairy Goat Co-operative (NZ) Ltd., 18 Gallagher Dr, Melville, Hamilton 3206, New Zealand.
| | - Elizabeth A Carpenter
- Dairy Goat Co-operative (NZ) Ltd., 18 Gallagher Dr, Melville, Hamilton 3206, New Zealand.
| | - Karl Fraser
- AgResearch Grasslands, Private Bag 11008, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- AgResearch Grasslands, Private Bag 11008, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
86
|
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Antonio Vella
- AOUI-Policlinico GB Rossi, Section of Immunology, Verona, Italy
| |
Collapse
|