51
|
Thivya P, Gururaj PN, Reddy NBP, Rajam R. Recent advances in protein-polysaccharide based biocomposites and their potential applications in food packaging: A review. Int J Biol Macromol 2024; 268:131757. [PMID: 38657934 DOI: 10.1016/j.ijbiomac.2024.131757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
This review addresses the current trend of replacing petroleum-based polymers in food packaging with bio-based alternatives, specifically focusing on proteins and polysaccharides. While these biopolymers exhibit excellent film-forming properties and are abundant in nature, their individual use in packaging lacks ideal plastic-like characteristics, especially in terms of mechanical and barrier properties. A recent solution involves the formulation of biocomposites through the reinforcement of one biopolymer with another (e.g., protein with a polysaccharide), significantly enhancing the physical, mechanical, and barrier properties of packaging materials. The review concentrates on the integration of proteins and polysaccharides in biocomposite materials, emphasizing their potential applications in active and intelligent food packaging systems. It covers sources, manufacturing methods, interaction mechanisms, recent developments, perspectives, and opportunities. The exploration extends to practical implementations of these biocomposites in enhancing food quality, safety, and shelf life-a green technological approach contributing to the reduction of food waste and loss.
Collapse
Affiliation(s)
- P Thivya
- Department of Food Technology, Kalasalingam Academy of Research and Education (KARE), Krishnankoil, Virudhunagar, Tamilnadu, India.
| | - P N Gururaj
- Department of Food Science and Technology, Hamelmalo Agricultural College, Hamelmalo, Zoba-Anseba, Eritrea
| | - N Bhanu Prakash Reddy
- Department of Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management, (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | - R Rajam
- Department of Food Technology, Kalasalingam Academy of Research and Education (KARE), Virudhunagar 626126, Tamilnadu, India
| |
Collapse
|
52
|
Wang X, Jia L, Xie Y, He T, Wang S, Jin X, Xie F. Deciphering the interaction mechanism between soy protein isolate and fat-soluble anthocyanin on experiments and molecular simulations. Int J Biol Macromol 2024; 266:131308. [PMID: 38569996 DOI: 10.1016/j.ijbiomac.2024.131308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
In this work, the acylated anthocyanin (Ca-An) was prepared by enzymatic modification of black rice anthocyanin with caffeic acid, and the binding mechanism of Ca-An to soybean protein isolate (SPI) was investigated by experiments and computer simulation to expand the potential application of anthocyanin in food industry. Multi-spectroscopic studies revealed that the stable binding of Ca-An to SPI induced the folding of protein polypeptide chain, which transformed the secondary structure of SPI trended to be flexible. The microenvironment of protein was transformed from hydrophobic to hydrophilic, while tyrosine played dominant role in quenching process. The binding sites and forces of the complexes were determined by computer simulation for further explored. The protein conformation of the 7S and 11S binding regions to Ca-An changed, and the amino acid microenvironment shifted to hydrophilic after binding. The results showed that more non-polar amino acids existed in the binding sites, while in binding process van der Waals forces and hydrogen bonding played a major role hydrophobicity played a minor role. Based on MM-PBSA analysis, the binding constants of 7S-Ca-An and 11S-Ca-An were 0.518 × 106 mol-1 and 5.437 × 10-3 mol-1, respectively. This information provides theoretical guidance for further studying the interaction between modified anthocyanins and biomacromolecules.
Collapse
Affiliation(s)
- Xinhui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lingyue Jia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuqi Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shijiao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoyu Jin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
53
|
Zhao J, Yuan H, Chen Y, Fang X, Li Y, Yao H, Li W. Soy protein isolate-catechin complexes conjugated by pre-heating treatment for enhancing emulsifying properties: Molecular structures and binding mechanisms. Int J Biol Macromol 2024; 267:131157. [PMID: 38552684 DOI: 10.1016/j.ijbiomac.2024.131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to investigate the impact of different pre-heating temperatures (ranging from 40 °C to 80 °C) on the interactions between soy protein isolate (SPI) and catechin to effectively control catechin encapsulation efficiency and optimize the emulsifying properties of soy protein isolate. Results showed that optimal heat treatment at 70 °C improved catechin encapsulation efficiency up to 93.71 ± 0.14 %, along with the highest solubility, enhanced emulsification activity index and improved thermal stability of the protein. Multiple spectroscopic techniques revealed that increasing pretreatment temperature (from 40 °C to 70 °C) altered the secondary structures of SPI, resulting in a more stable unfolded structure for the composite system with a significant increase in α-helical structures and a decrease in random coil and β-sheet structures. Moreover, optimal heat treatment also leads to an augmentation of free sulfhydryl groups within complex as well as exposure of more internal chromophore amino acids on molecular surface. Size-exclusion high-performance liquid chromatography and SDS-PAGE analysis indicated that the band intensity of newly formed high-molecular-weight soluble macromolecules (>180 kDa) increased as the pre-heating temperature rose. Furthermore, fluorescence spectroscopy and molecular docking analysis suggest that hydrophobic and covalent interactions were involved in complex formation, which intensified with increasing temperature.
Collapse
Affiliation(s)
- Juyang Zhao
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China; College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| | - Huiping Yuan
- School of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou, Henan 450064, China
| | - Yiyu Chen
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xuwei Fang
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yuqi Li
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Hengzhe Yao
- Culinary Arts Department, Qingdao Vocational and Technical College of Hotel Management, Qingdao, Shandong 266100, China
| | - Wenlan Li
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
54
|
Li Z, Al-Wraikat M, Hao C, Liu Y. Comparison of Non-Covalent and Covalent Interactions between Lactoferrin and Chlorogenic Acid. Foods 2024; 13:1245. [PMID: 38672917 PMCID: PMC11048835 DOI: 10.3390/foods13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Adding polyphenols to improve the absorption of functional proteins has become a hot topic. Chlorogenic acid is a natural plant polyphenol with anti-inflammatory, antioxidant, and anticancer properties. Bovine lactoferrin is known for its immunomodulatory, anticancer, antibacterial, and iron-chelating properties. Therefore, the non-covalent binding of chlorogenic acid (CA) and bovine lactoferrin (BLF) with different concentrations under neutral conditions was studied. CA was grafted onto lactoferrin molecules by laccase catalysis, free radical grafting, and alkali treatment. The formation mechanism of non-covalent and covalent complexes of CA-BLF was analyzed by experimental test and theoretical prediction. Compared with the control BLF, the secondary structure of BLF in the non-covalent complex was rearranged and unfolded to provide more active sites, the tertiary structure of the covalent conjugate was changed, and the amino group of the protein participated in the covalent reaction. After adding CA, the covalent conjugates have better functional activity. These lactoferrin-polyphenol couplings can carry various bioactive compounds to create milk-based delivery systems for encapsulation.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| | - Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| | - Changchun Hao
- College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| |
Collapse
|
55
|
Saini RK, Khan MI, Shang X, Kumar V, Kumari V, Kesarwani A, Ko EY. Dietary Sources, Stabilization, Health Benefits, and Industrial Application of Anthocyanins-A Review. Foods 2024; 13:1227. [PMID: 38672900 PMCID: PMC11049351 DOI: 10.3390/foods13081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Natural phytochemicals are well known to protect against numerous metabolic disorders. Anthocyanins are vacuolar pigments belonging to the parent class of flavonoids. They are well known for their potent antioxidant and gut microbiome-modulating properties, primarily responsible for minimizing the risk of cardiovascular diseases, diabetes, obesity, neurodegenerative diseases, cancer, and several other diseases associated with metabolic syndromes. Berries are the primary source of anthocyanin in the diet. The color and stability of anthocyanins are substantially influenced by external environmental conditions, constraining their applications in foods. Furthermore, the significantly low bioavailability of anthocyanins greatly diminishes the extent of the actual health benefits linked to these bioactive compounds. Multiple strategies have been successfully developed and utilized to enhance the stability and bioavailability of anthocyanins. This review provides a comprehensive view of the recent advancements in chemistry, biosynthesis, dietary sources, stabilization, bioavailability, industrial applications, and health benefits of anthocyanins. Finally, we summarize the prospects and challenges of applications of anthocyanin in foods.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Varsha Kumari
- Department of Plant Breeding and Genetics, Sri Karan Narendra Agriculture University, Jobner, Jaipur 302001, Rajasthan, India;
| | - Amit Kesarwani
- Department of Agronomy, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India;
| | - Eun-Young Ko
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
56
|
Khalifa I, Li Z, Zou X, Nawaz A, Walayat N, Manoharadas S, Sobhy R. RuBisCo can conjugate and stabilize peonidin-3-O-p-coumaroylrutinoside-5-O-glucoside in isotonic sport models: Mechanisms from kinetics, multispectral, and libDock assays. Food Chem 2024; 438:138006. [PMID: 37989023 DOI: 10.1016/j.foodchem.2023.138006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
The co-pigmentation behaviour of RuBisCo proteins (with different concentrations) on peonidin-3-O-p-coumaroylrutinoside-5-O-glucoside (P3C5G, extracted from Rosetta potato's peels) conjugates in isotonic sport drinks (ISD) was examined using multispectral, thermal stability kinetics, and libDock-based molecular docking approaches. The colorant effects of RuBisCo on P3C5G were also studied in spray-dried microencapsulated ISD-models. RuBisCo, especially at a concentration of 10 mg/mL in ISD, showed a co-pigmentation effect on the color of P3C5G, mostly owing to its superior hyperchromicity, pKH-levels, and thermal stability. Results from multispectral approaches also revealed that RuBisCo could noncovalently interact with P3C5G as confirmed by libDock findings, where P3C5G strongly bound with RuBisCo via H-bonding and π-π forces, thereby altering its secondary structure. RuBisCo also preserved color of P3C5G in ISD-powdered models. These detailed results imply that RuBisCo could be utilized in ISD-liquid and powder models that might industrially be applied as potential food colorants in products under different conditions.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China; Food Technology Department, Faculty of Agriculture, Benha University, 13736 Moshtohor, Egypt
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China.
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, Hunan, China
| | - Noman Walayat
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Remah Sobhy
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Agriculture, Benha University, 13736 Moshtohor, Egypt
| |
Collapse
|
57
|
Wei X, Li H, Liu Y, Lin Q, Wu X, Wu W. Effect of epigallocatechin-3-gallate modification on the structure and emulsion stability of rice bran protein in the presence of soybean protein isolate. Int J Biol Macromol 2024; 263:130269. [PMID: 38387630 DOI: 10.1016/j.ijbiomac.2024.130269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
For improving the emulsion stability of rice bran protein (RBP), RBP was modified by different concentrations of epigallocatechin-3-gallate (EGCG) in the presence of soybean protein isolate (SPI), and RBP-EGCG-SPI conjugate was prepared by alkaline pH-shifting. The results showed that the addition of EGCG led to an increase in the bound phenol content and the flexibility of the secondary structure, a decrease in the free sulfhydryl and disulfide bond content of the RBP-EGCG-SPI conjugate. EGCG covalently bound to RBP and SPI through non-disulfide bonds. When the concentration of EGCG was 10 % (w/v), the emulsifying activity index and emulsion stability index of conjugate reached the maximum value (36.61 m2/g and 255.61 min, respectively), and the conjugate had the best emulsion stability. However, an EGCG concentration above 10 % (w/v) negatively affected the emulsion stability, with increasing particle size due to protein aggregation. Summarily, the modification of EGCG improved the emulsion stability of conjugate by regulating the spatial structure of RBP-EGCG-SPI conjugate. The work provided an important guide to further improve the emulsion stability of RBP.
Collapse
Affiliation(s)
- Xialing Wei
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yu Liu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
58
|
Guo X, Wei Y, Liu P, Deng X, Zhu X, Wang Z, Zhang J. Study of four polyphenol- Coregonus peled (C. peled) myofibrillar protein interactions on protein structure and gel properties. Food Chem X 2024; 21:101063. [PMID: 38162040 PMCID: PMC10757253 DOI: 10.1016/j.fochx.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
The effects of four polyphenols-chlorogenic acid (CA), gallic acid (GA), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) on the structure, gel properties, and interaction mechanisms of myofibrillar protein (MP) were studied. The changes in MP structure with polyphenols were analyzed using circular dichroism. The ultraviolet and fluorescence spectra and thermodynamic analysis indicated that the type of binding between the four polyphenols with the MP was static quenching of complex formation. GA had a more pronounced effect on improving MP gel properties. Finally, molecular docking determined that the affinity of the protein with the four polyphenols was in the order EGCG > ECG > CA > GA, with the main interaction force being hydrophobic interactions and hydrogen bonding, but hydrogen bonding dominates the interaction between GA and the protein. The findings illuminate the mechanism of MP binding to different polyphenols and facilitate the study of polyphenol-protein properties.
Collapse
Affiliation(s)
- Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xinrong Zhu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhouping Wang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
59
|
Ballon A, Romero MP, Rodriguez-Saona LE, de Lamo-Castellví S, Güell C, Ferrando M. Conjugation of lesser mealworm (Alphitobius diaperinus) larvae protein with polyphenols for the development of innovative antioxidant emulsifiers. Food Chem 2024; 434:137494. [PMID: 37742546 DOI: 10.1016/j.foodchem.2023.137494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Lesser mealworm protein concentrate (LMPC) was conjugated with chlorogenic acid (CA) or tannic acid (TA) using an alkaline method. The impact of polyphenol type and concentration on the physicochemical and structural characteristics, antioxidant, interfacial, and emulsifying properties of the LMPC-polyphenol conjugates were investigated. Under the conditions tested, TA demonstrated higher affinity for LMPC compared to CA. The conjugation of LMPC induced conformational changes as showed by intrinsic fluorescence and FT-MIR raw spectra analysis. The surface hydrophobicity of the conjugates was reduced, leading to increased interfacial tension values for LMPC-TA conjugates without impairment of the emulsifying activity. The antioxidant properties were significantly improved by the conjugation. Flaxseed oil-in-water (O/W) emulsions stabilized by the conjugates and LMPC remained physically stable for 12 days at 50 °C with a notable reduction of secondary oxidation products when conjugates were used. LMPC-TA and LMPC-CA exhibited potential to be used as novel antioxidant emulsifiers in O/W emulsions.
Collapse
Affiliation(s)
- Aurélie Ballon
- Department d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Maria-Paz Romero
- Food Technology Department, Escuela Técnica Superior de Ingeniería Agraria, Universidad de Lleida, Avda. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Luis E Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, United States
| | - Sílvia de Lamo-Castellví
- Department d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Carme Güell
- Department d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Montserrat Ferrando
- Department d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| |
Collapse
|
60
|
Wang XH, Tai ZJ, Song XJ, Li ZJ, Zhang DJ. Effects of Germination on the Structure, Functional Properties, and In Vitro Digestibility of a Black Bean ( Glycine max (L.) Merr.) Protein Isolate. Foods 2024; 13:488. [PMID: 38338623 PMCID: PMC10855124 DOI: 10.3390/foods13030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The utilization of black beans as a protein-rich ingredient presents remarkable prospects in the protein food industry. The objective of this study was to assess the impact of germination treatment on the physicochemical, structural, and functional characteristics of a black bean protein isolate. The findings indicate that germination resulted in an increase in both the total and soluble protein contents of black beans, while SDS-PAGE demonstrated an increase in the proportion of 11S and 7S globulin subunits. After germination, the particle size of the black bean protein isolate decreased in the solution, while the absolute value of the zeta potential increased. The above results show that the stability of the solution was improved. The contents of β-sheet and β-turn gradually decreased, while the content of α-helix increased, and the fluorescence spectrum of the black bean protein isolate showed a red shift phenomenon, indicating that the structure of the protein isolate and its polypeptide chain were prolonged, and the foaming property, emulsification property and in vitro digestibility were significantly improved after germination. Therefore, germination not only improves functional properties, but also nutritional content.
Collapse
Affiliation(s)
- Xin-Hui Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Zhen-Jia Tai
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Xue-Jian Song
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Zhi-Jiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Dong-Jie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
| |
Collapse
|
61
|
Wang D, Li H, Hou TY, Zhang ZJ, Li HZ. Effects of conjugated interactions between Perilla seed meal proteins and different polyphenols on the structural and functional properties of proteins. Food Chem 2024; 433:137345. [PMID: 37666124 DOI: 10.1016/j.foodchem.2023.137345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The study aims to perform alkali-induced covalent modification of perilla seed meal protein (PSMP) using different polyphenols: gallic acid (GA), protocatechuic acid (PCA), caffeic acid (CA), apigenin (API) and luteolin (LU). Covalent binding between different polyphenols and PSMP was found to occur, with PSMP-LU showing the highest binding rate of 90.89 ± 1.37 mg/g; the fluorescence spectrum of PSMP-CA showed a maximum blue shift of Δ13.4 nm; the solubility increased from 69.626 ± 1.39 % to 83.102 ± 0.98 %. In order to better understand how these covalent conjugates, stabilize -carotene in emulsions, they were utilized as emulsifiers in an emulsion delivery method. The work further reveals the formation of PSMP-polyphenol conjugates and develops a novel emulsification system to deliver readily decomposable functional factors, providing a potential scenario for the application of PSMP and bioactive conjugates.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - He Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| | - Tian-Yu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Zhi-Jun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Hui-Zhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
62
|
Li Y, Wang H, Zhao Y, Chen Q, Xia X, Liu Q, Kong B. Evaluation of the Emulsifying Property and Oxidative Stability of Myofibrillar Protein-Diacylglycerol Emulsions Containing Catechin Subjected to Different pH Values. Foods 2024; 13:253. [PMID: 38254554 PMCID: PMC10814794 DOI: 10.3390/foods13020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Myofibrillar protein-diacylglycerol emulsions containing catechin (MP-DAG-C) possess outstanding emulsifying property and oxidative stability. However, the effect of pH on MP-DAG-C emulsions should be revealed to provide possibilities for their application in practical meat products. Therefore, MP-DAG-C emulsions at different pH values were used in this study, in which lard, unpurified glycerolytic lard (UGL), and purified glycerolytic lard (PGL) were used as the oil phases. The results indicated that the emulsifying property of the UGL- and PGL-based emulsions increased compared to those of the lard-based emulsions (p < 0.05). The emulsifying activity and stability indices, absolute value of ζ-potential, and rheological characteristics increased with the increase in pH values (p < 0.05), with the droplets were smallest and distributed most uniformly at a pH of 6.5 compared to the other acidic environment (p < 0.05). The thiobarbituric acid substance and carbonyl content increased (p < 0.05), while the total sulfydryl content decreased (p < 0.05) during storage. However, there was no statistical difference between the oxidative stability of the MP-DAG-C emulsions with different pH values (p > 0.05). The results implied that the emulsifying property of MP-DAG-C emulsions increased with an increase in pH values. The oxidative stability of the MP-DAG-C emulsions at high pH values was improved by catechin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (H.W.); (Y.Z.); (Q.C.); (X.X.); (Q.L.)
| |
Collapse
|
63
|
Zhao W, Chi Y, Chi Y. Tracking transformation behavior of soluble to insoluble components in liquid egg yolk under heat treatment and the intervention effect of xylitol. Int J Biol Macromol 2024; 254:127272. [PMID: 37804885 DOI: 10.1016/j.ijbiomac.2023.127272] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The heat sensitivity of egg yolk limits its application, and xylitol can improve its thermal stability. The soluble and insoluble components of egg yolk and egg yolk containing xylitol treated at different temperatures were explored from the aspects of thermal instability behavior characterization and structure property. Magnetic resonance imaging and low field nuclear magnetic resonance showed that increased temperature induced liberation and transfer of hydrogen protons. Meanwhile, the apparent viscosity of soluble components increased, while that of insoluble components decreased. Microstructure showed that heat treatment induced aggregation and lipid transfer. SDS-PAGE showed that heat treatment induced aggregation and transformation of γ-livetin and apo-LDL. The change in crystal structure, Raman spectroscopy, and 3D fluorescence spectra showed that heat treatment resulted in the unfolding of yolk proteins, especially plasma proteins. Xylitol could alleviate transformation of components by stabilizing protein structure, alleviating the damage in protein integrity and elevation in aggregation size.
Collapse
Affiliation(s)
- Wenfei Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
64
|
Xu PW, Yue XJ, Yuan XF, Zhao B. Non-covalent interaction between hemp seed globulin and two hemp seed phenolic compounds: Mechanism and effects on protein structure, bioactivity, and in vitro simulated digestion. Int J Biol Macromol 2024; 255:128077. [PMID: 37977470 DOI: 10.1016/j.ijbiomac.2023.128077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
This study focused on elucidating the non-covalent interactions between hemp seed globulin (GLB) and two hemp seed phenolic compounds, Cannabisin A (CA) and Cannabisin B (CB), and to explore these interactions on the protein's structure, conformation, and functionality. Fluorescence quenching and thermodynamic analysis revealed that static quenching governed non-covalent interaction processes, with hydrogen bonds and van der Waals forces functioning as major forces. This was further substantiated by molecular docking studies. The binding affinity order was CA > CB, indicating that the specific phenolic compound had a notable impact on the binding affinity. Furthermore, when complexed with CA, Tyr and Trp residues were exposed to a more hydrophilic environment than when complexed with CB. It was noted that the complexation with either CA or CB consistently affects GLB's secondary structure, particle size, and ζ-potential. GLB treated with the phenolic compounds exhibited enhanced ABTS and DPPH scavenging activities and improved digestibility compared to untreated GLB. Furthermore, the non-covalent interactions significantly increased CA's water solubility, highlighting GLB as a promising natural carrier for hydrophobic bioactive components. These findings hold potential implications for enhancing hemp seed protein applications within the food industry by positively influencing its functional properties and bioactivity.
Collapse
Affiliation(s)
- Peng-Wei Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Jie Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Fan Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
65
|
Chen M, Pan Q, Wu B, Wang H, Yi Y, Xu W, Guo D. Effect of Fenugreek ( Trigonella foenum-graecum L.) Seed Extracts on the Structure of Myofibrillar Protein Oxidation in Duck Meat. Foods 2023; 12:4482. [PMID: 38137286 PMCID: PMC10742523 DOI: 10.3390/foods12244482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The effect of fenugreek (Trigonella foenum-graecum L.) seed extracts (FSEs) on the structure of duck myofibrillar protein (MP) oxidation was researched via particle size, zeta potential, Fourier transform infrared (FTIR), fluorescence spectroscopy, SDS-PAGE, and scanning electron microscopy (SEM) in the Fenton oxidation system. FSE (0.3 mg/mL) could scavenge 58.79% of the hydroxyl radical and possessed good antioxidation. FSE could retard the oxidation of MP, and the carbonyl formation and total sulfhydryl loss of MP decreased by 42.00% and 105.94%, respectively, after 4.67% of FSE treatment. SDS-PAGE results showed that 0.67% and 2.67% of FSE decreased the strength of the myosin heavy chain (MHC) and actin bands of the oxidized MP, respectively. The FSE changed the secondary structures of the MP and promoted the unfolding of the MP structure and the transformation from α-helix to β-turn. When treated with 0.67% of FSE, the hydrophobicity of the MP declined by 26.14%, and solubility was improved by 37.21% compared with the oxidation group. After 0.67% of FSE treatment, the particle size and zeta potential of the MP returned to the level of the blank group. Scanning electron microscopy revealed that FSE improved the apparent morphology of the MP. Overall, FSE had positive effects on the antioxidation of the duck MP, and it could improve the structure and characteristics of the MP. It is hoped that FSE could be considered as a natural antioxidant to retard the oxidation of the MP in meat products.
Collapse
Affiliation(s)
- Mingyue Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (B.W.); (H.W.); (Y.Y.); (D.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Qingmei Pan
- Hongan County Public Inspection and Testing Center, Hongan 438400, China;
| | - Binbin Wu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (B.W.); (H.W.); (Y.Y.); (D.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Hongxun Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (B.W.); (H.W.); (Y.Y.); (D.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Yang Yi
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (B.W.); (H.W.); (Y.Y.); (D.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Wei Xu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (B.W.); (H.W.); (Y.Y.); (D.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Danjun Guo
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (B.W.); (H.W.); (Y.Y.); (D.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| |
Collapse
|
66
|
Li M, Wang J, Zhang J, Lv Y, Guo S, Van der Meeren P. In vitro protein digestibility of different soy-based products: effects of microstructure, physico-chemical properties and protein aggregation. Food Funct 2023; 14:10964-10976. [PMID: 38013460 DOI: 10.1039/d3fo02410e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
This study investigates the effects of protein structure and food microstructure on the in vitro protein gastrointestinal digestibility of different soy-based products, such as soy drink, reconstituted soy drink powder, firm tofu, and yuba. The results of the chemical cross-linking analysis showed that hydrogen bonds and hydrophobic interactions were the main forces driving protein aggregation in (reconstituted) soy drink powder and firm tofu, whereas disulphide bonds were significantly more important for soy drink and yuba. The β-sheet content of soy drink (36.5%) was lower than that of yuba (43.3%), but significantly higher than those of soy drink powder (23.2%) and firm tofu (29.8%). The in vitro protein digestibility decreased in the order of firm tofu > reconstituted soy drink powder > yuba > soy drink. Principal component analysis showed that protein gastrointestinal digestibility was positively correlated with the surface SH content and soluble protein content released by SDS + urea (SB-SA) but negatively correlated with the disulphide bonds and β-sheet content for the four soybean products.
Collapse
Affiliation(s)
- Mengdi Li
- Beijing Laboratory for Food Quality and Safety; Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides; Food Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China.
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jing Wang
- Beijing Laboratory for Food Quality and Safety; Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides; Food Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Jiayu Zhang
- Beijing Laboratory for Food Quality and Safety; Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides; Food Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Ying Lv
- Beijing Laboratory for Food Quality and Safety; Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides; Food Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Shuntang Guo
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
67
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. A comparative study of the impacts of preparation techniques on the rheological and textural characteristics of emulsion gels (emulgels). Adv Colloid Interface Sci 2023; 322:103051. [PMID: 37981462 DOI: 10.1016/j.cis.2023.103051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
A subtype of soft solid-like substances are emulsion gels (emulgels; EGs). These composite material's structures either consist of a network of aggregated emulsion droplets or a polymeric gel matrix that contains emulsion droplets. The product's rheological signature can be used to determine how effective it is for a specific application. The interactions between these structured system's separate components and production process, however, have a substantial impact on their rheological imprint. Therefore, rational comprehension of interdependent elements, their structural configurations, and the resulting characteristics of a system are essential for accelerating our progress techniques as well as for fine-tuning the technological and functional characteristics of the finished product. This article presents a comprehensive overview of the mechanisms and procedures of producing EGs (i.e., cold-set and heat-set) in order to determine the ensuing rheological features for various commercial applications, such as food systems. It also describes the influence of these methods on the rheological and textural characteristics of the EGs. Diverse preparation methods are the cause of the rheological-property correlations between different EGs. In many ways, EGs can be produced using various matrix polymers, processing techniques, and purposes. This may lead to various EG matrix structures and interactions between them, which in turn may affect the composition of EGs and ultimately their textural and rheological characteristics.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
68
|
Zhou S, Meng L, Lin Y, Dong X, Dong M. Exploring the Interactions of Soybean 7S Globulin with Gallic Acid, Chlorogenic Acid and (-)-Epigallocatechin Gallate. Foods 2023; 12:4013. [PMID: 37959132 PMCID: PMC10649178 DOI: 10.3390/foods12214013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, the noncovalent interaction mechanisms between soybean 7S globulin and three polyphenols (gallic acid (GA), chlorogenic acid (CA) and (-)-epigallocatechin gallate (EGCG)) were explored and compared using various techniques. Fluorescence experiments showed that GA and EGCG had strong static quenching effects on 7S fluorescence, and that of CA was the result of multiple mechanisms. The interactions caused changes to the secondary and tertiary structure of 7S, and the surface hydrophobicity was decreased. Thermodynamic experiments showed that the combinations of polyphenols with 7S were exothermic processes. Hydrogen bonds and van der Waals forces were the primary driving forces promoting the binding of EGCG and CA to 7S. The combination of GA was mainly affected by electrostatic interaction. The results showed that the structure and molecular weight of polyphenols play an important role in their interactions. This work is helpful for developing products containing polyphenols and soybean protein.
Collapse
Affiliation(s)
- Siduo Zhou
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China;
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan 250117, China
| | - Yanfei Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueqian Dong
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China;
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
69
|
Santos MAS, Fonseca LR, Okuro PK, Cunha RL. High internal phase emulsion stabilized by sodium caseinate:quercetin complex as antioxidant emulsifier. Food Res Int 2023; 173:113247. [PMID: 37803560 DOI: 10.1016/j.foodres.2023.113247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
High internal phase emulsion (HIPE) was produced and stabilized using a novel antioxidant emulsifier formed by the complexation between sodium caseinate (SC) and quercetin (Q). Colloidal complexes, produced via an alkaline process, showed great ability to reduce the interfacial tension between oil-water phases, promoting stabilization of the HIPEs even at low concentrations (1.5% w/v in the aqueous fraction). HIPEs at 0.80 volume fraction of dispersed phase presented remarkable viscosity due to the high-packing network of oil droplets surrounded by a thin liquid layer. Moreover, the emulsions showed a gel-like behavior and kinetic stability for 45-days at 25 °C. The approach of SC:Q complexes on HIPEs development is promising to reduce lipid oxidation, translated by the formation of hydroperoxides and malondialdehyde during storage, especially for the complex formed with the highest amount of the phenolic compound. In this study, the development of HIPEs with outstanding kinetic and oxidative stability is reported as a potential alternative for the development of healthier products with reduced saturated and trans-fat content.
Collapse
Affiliation(s)
- Matheus A S Santos
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil.
| | - Larissa R Fonseca
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| | - Paula K Okuro
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| | - Rosiane L Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| |
Collapse
|
70
|
Günal-Köroğlu D, Lorenzo JM, Capanoglu E. Plant-Based Protein-Phenolic Interactions: Effect on different matrices and in vitro gastrointestinal digestion. Food Res Int 2023; 173:113269. [PMID: 37803589 DOI: 10.1016/j.foodres.2023.113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
This review summarizes the literature on the interaction between plant-based proteins and phenolics. The structure of the phenolic compound, the plant source of proteins, matrix properties (pH, temperature), and interaction mechanism (covalent and non-covalent) change the secondary structure, ζ-potential, surface hydrophobicity, and thermal stability of proteins as well as their functional properties including solubility, foaming, and emulsifying properties. Studies indicated that the foaming and emulsifying properties may be affected either positively or negatively according to the type and concentration of the phenolic compound. Protein digestibility, on the other hand, differs depending on (1) the phenolic concentration, (2) whether the food matrix is solid or liquid, and (3) the state of the food-whether it is heat-treated or prepared as a mixture without heat treatment in the presence of phenolics. This review comprehensively covers the effects of protein-phenolic interactions on the structure and properties of proteins, including functional properties and digestibility both in model systems and real food matrix.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, Parque Tecnológico de Galicia, 32900 Ourense, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
71
|
Deng Z, Xia Y, Chen L, Zhao Y, Wang R, Liang G. Insight into covalent conjugates of β-lactoglobulin with rutin: Characterizing allergenicity, digestibility, and antioxidant properties in vitro. Food Res Int 2023; 173:113401. [PMID: 37803745 DOI: 10.1016/j.foodres.2023.113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
β-lactoglobulin (β-LG) is an essential nutrient in milk, but it is the primary allergen causing dairy allergy in humans. Currently, researchers are focusing on using flavonoids to covalently modify β-LG for improving its functionality. However, the impact and underlying mechanisms of rutin covalent modification on the functional properties and allergenicity of β-LG remain unclear. Here, we aim to investigate the changes in allergenicity, digestive characteristics, and antioxidant properties of β-LG after covalent modification using a combination of spectroscopy, enzyme-linked immunosorbent assay (ELISA), simulated digestion, and antioxidant assays. The results indicate that rutin forms covalent bonds with the free amino group, sulfhydryl group, and tryptophan of β-LG, leading to alterations in the secondary structure of β-LG. Furthermore, the modified β-LG exhibits improved antioxidant capacity and decreased allergenicity, along with reduced resistance to pancreatin digestion in vitro. This study provides novel insights and strategies to expand the functional application of β-LG.
Collapse
Affiliation(s)
- Zhifen Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Yuting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Lang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Yi Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Ruihong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
72
|
Liu C, Li X, Zeng Y, Liang S, Sun J, Bai W. Interaction between a Commercial Mannoprotein and Cyanidin-3- O-glucoside-4-vinylphenol and Its Stability and Antioxidative Properties as a Novel Functional Pigment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37910136 DOI: 10.1021/acs.jafc.3c05643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Hydroxyphenyl-pyranoanthocyanins, which are derived from anthocyanins and phenolic acids during the fermentation and aging of red wine, are prone to polymerization and precipitation, which largely limits their application and bioactivity research. In the present study, cyanidin-3-O-glucoside-4-vinylphenol (C3GVP), a hydroxyphenyl-pyranoanthocaynin, was prepared from C3G and p-coumaric acid, and mannoprotein (MP) was employed to improve its stability in various complex solvents by forming a stable anthocyanin-MP complex. We used scanning electron microscopy, ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, and circular dichroism spectroscopy to observe structural changes in C3GVP and MP. The results demonstrated that the intermolecular polymerization of C3GVP was mitigated and the secondary conformation of MP was changed slightly. Fluorescence spectroscopy and molecular docking indicated that C3GVP and MP interacted via hydrogen bonds and hydrophobic interactions. Importantly, the C3GVP-MP complex exhibited better thermal stability and antioxidant capacity than C3G.
Collapse
Affiliation(s)
- Chuqi Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Shuyan Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
73
|
Zhang M, Xue D, Chen Y, Li Y, Li C. Evaluation of sono-physico-chemical and processing effects in the mixed sarcoplasmic protein/soy protein isolate system. ULTRASONICS SONOCHEMISTRY 2023; 100:106639. [PMID: 37820412 PMCID: PMC10571030 DOI: 10.1016/j.ultsonch.2023.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Since it may be employed to guide the production of high-quality plant protein as a partial substitute for animal protein using sono-physico-chemical effects, it is important to investigate the mixing of animal and plant protein in ultrasound (UID)-assisted processing systems. A study group of sono-physico-chemical processing with five distinct soy protein isolate (SPI)/ sarcoplasmic protein (SPN) ratios was developed in this work. The results showed that adding additional SPN to the mixed protein can increase its sono-physico-chemical impact, and this effect is greatest when the ratio of SPI to SPN is 1:3. The high SPN group's grafting rate rose from 39.13% to 55.26% in comparison to the high SPI content group. Quercetin (Que) may more readily modify SPN than SPI in the "dual protein" system used in this work, highlighting the critical function of plant protein in controlling the effects of UID-assisted processing in the "dual protein" system. Changes in apparent viscosity and microstructure are the primary parameters that affect the severity of sono-physico-chemical effects in SPI/SPN mixed protein systems, in addition to structural variables.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; International Joint Collaborative Research Laboratory for Animal Health and Food Safety, MOE, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejiang Xue
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya Chen
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanan Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
74
|
Yan S, Wang Q, Yu J, Li Y, Qi B. Soy protein interactions with polyphenols: Structural and functional changes in natural and cationized forms. Food Chem X 2023; 19:100866. [PMID: 37780344 PMCID: PMC10534206 DOI: 10.1016/j.fochx.2023.100866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Herein, cationic soy protein (NSPI) was synthesized by grafting Ethylenediamine (EDA) onto soy protein isolate (SPI), and protein-gallic acid (GA) complexes were formed by mixing NSPI with GA in various ratios. We assessed the structure, particle size, thermal stability, emulsifying ability, and antioxidant capacity of NSPI and complexes. Results show that grafting with EDA introduced a positive charge to SPI and resulted in a uniform particle size, and enhanced thermal stability, emulsifying ability, and antioxidant capacity. In addition, NSPI presented more amino groups and stronger interactions with GA compared to SPI. EDA and GA synergistically increased the flexibility of SPI, reducing the α-helix content and increasing the random coil content. Moreover, the interactions between SPI, NSPI, and GA were static, and hydrophobic and electrostatic between GA and SPI and NSPI, respectively. Grafting SPI with EDA improved functionality and interactions with GA, implying that NSPI-GA complexes may function as emulsifiers and antioxidants.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaye Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
75
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
76
|
Lan T, Dong Y, Xu Z, Zhang Y, Jiang L, Zhou W, Sui X. Quercetin directed transformation of calcium carbonate into porous calcite and their application as delivery system for future foods. Biomaterials 2023; 301:122216. [PMID: 37413843 DOI: 10.1016/j.biomaterials.2023.122216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/21/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
The hierarchically porous property of CaCO3 has attracted considerable attention in the field of active delivery ingredients due to its high adsorption capacity. Here, a facile and high-efficient approach to control the calcification processes of CaCO3 ending with calcite microparticles with superior porosity and stability is reported and evaluated. In this work, a series of quercetin promoted CaCO3 microparticles, using soy protein isolate (SPI) as entrapment agent, was synthesized, characterized, and their digestive behavior and antibacterial activity were evaluated. Results obtained indicated that quercetin showed good ability to direct the calcification pathway of amorphous calcium carbonate (ACC) with the formation of flower- and petal-like structures. The quercetin-loaded CaCO3 microparticles (QCM) had a macro-meso-micropore structure, which was identified to be the calcite form. The macro-meso-micropore structure provided QCM with the largest surface area of 78.984 m2g-1. The loading ratio of SPI to QCM was up to 200.94 μg per mg of QCM. The protein and quercetin composite microparticles (PQM) were produced by simply dissolving the CaCO3 core, and the obtained PQM was used for the delivery of quercetin and protein. Thermogravimetric analysis showed PQM presented with good thermal stability without the CaCO3 core. Furthermore, minor discrepancy was noted in protein conformational structures after removing the CaCO3 core. In vitro digestion revealed that approximately 80% of the loaded quercetin was released from PQM during intestinal digestion, and the released quercetin exhibited efficient transportation across the Caco-2 cell monolayer. More importantly, the PQM digesta retained enhanced antibacterial activities to inhibit growth of Escherichia coli and Staphylococcus aureus. Porous calcites show a high potential as a delivery system for food applications.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
77
|
Li D, Wang R, Ma Y, Yu D. Covalent modification of (+)-catechin to improve the physicochemical, rheological, and oxidative stability properties of rice bran protein emulsion. Int J Biol Macromol 2023; 249:126003. [PMID: 37517762 DOI: 10.1016/j.ijbiomac.2023.126003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The aim of this study is the effects of (+)-catechin (CC) covalent cross-linking (CCCI) (0.05-0.25 %, w/v) on the physicochemical properties, rheological properties, and oxidative stability of rice bran protein (RBP) emulsion. Analysis of particle size, ζ-potential, circular dichroism, fluorescence spectroscopy, surface hydrophobicity, and emulsifying properties demonstrated that a concentration of 0.15 % (w/v) CCCI facilitated protein structure unfolding, resulting in reduced particle size, enhanced electrostatic repulsion, and improved emulsion stability. Moreover, the covalent complexes of RBP-0.15 %CC (w/v) exhibited increased viscosity and shear stress, reflected by the highest G' and G″ values, ultimately enhancing the oxidative stability. Furthermore, analysis using atomic force microscopy and confocal laser scanning microscopy revealed that the RBP-0.15 %CC complexes exhibited the smallest particle size (164 nm) and displayed greater homogeneity. An increase in CC concentration to 0.25 % (w/v) resulted in a higher emulsion aggregation. The emulsions stabilized by CCCI exhibited superior rheological properties and enhanced oxidation stability compared to the control. In conclusion, an appropriate amount of CC can enhance the rheology and oxidation stability of the RBP emulsion, while CCCI treatment holds potential for expanding the utility of RBP in various applications.
Collapse
Affiliation(s)
- Dan Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
78
|
Wang Y, Chen Y, Lv J, Li C, Wang F. Characterization of walnut protein isolate-polyphenol nanoconjugates for the developing a food-grade delivery system. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2454-2467. [PMID: 37424579 PMCID: PMC10326209 DOI: 10.1007/s13197-023-05768-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023]
Abstract
This study investigated the effects of the interaction of walnut protein isolate (WPI) with epigallocatechin gallate (EGCG), chlorogenic acid (CLA), (+)-catechin (CA), and ellagic acid (EA) on the structural and functional properties of proteins. The results for polyphenol binding equivalents and content of free amino and sulfhydryl groups as well as those from sodium dodecyl sulfate‒polyacrylamide gel electrophoresis confirmed the covalent interaction between WPI and the polyphenols. The binding capacities of the WPI-polyphenol mixtures and conjugates were as follows: WPI-EGCG > WPI-CLA > WPI-CA > WPI-EA. Fourier transform infrared spectroscopy (FTIR) and fluorescence spectrum analysis identified changes in the protein structure. The conjugation process obviously increased the polyphenols' antioxidant properties and the surface hydrophobicity was substantially reduced. WPI-EGCG conjugates had the best functional properties, followed by WPI-CLA, WPI-CA, and WPI-EA. Lycopene (LYC) was loaded into nanocarriers by WPI-EGCG self-assembly. These results indicated that WPI-polyphenol conjugates can be utilized to develop food-grade delivery systems to protect chemically lipophilic bioactive compounds. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05768-2.
Collapse
Affiliation(s)
- Yuzhen Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Yu Chen
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Jiao Lv
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Chang Li
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083 China
| |
Collapse
|
79
|
Chawla P, Sridhar K, Bains A. Interactions of legume phenols-rice protein concentrate towards improving vegan food quality: Development of a protein-phenols enriched fruit smoothie. Food Res Int 2023; 171:113075. [PMID: 37330833 DOI: 10.1016/j.foodres.2023.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Phenol-protein interaction is considered an effective tool to improve the functional properties of vegan proteins. The present work aimed to evaluate the covalent interaction between kidney bean polyphenols with rice protein concentrate and studied their characteristics for quality improvement in vegan-based foods. The impact of interaction on the techno-functional properties of protein was evaluated and the nutritional composition revealed that kidney bean was rich in carbohydrates. Furthermore, a noticeable antioxidant activity (58.11 ± 1.075 %) due to the presence of phenols (5.5 mg GAE/g) was observed for the kidney bean extract. Moreover, caffeic acid and p-Coumaric acid were confirmed using ultra-pressure liquid chromatography and the amount was 194.43 and 0.9272 mg/kg, respectively. A range of rice protein- phenols complexes (PPC0.025, PPC0.050, PPC0.075, PPC0.1, PPC0.2, PPC 0.5, PPC1) were examined and PPC0.2 and PPC0.5 showed significantly (p < 0.05) higher binding efficiency with proteins via covalent interaction. The conjugation reveals changes in physicochemical properties of rice protein, including, reduced size (178.4 nm) and imparted negative charges (-19.5 mV) of the native protein. The presence of amide Ⅰ, Ⅱ, Ⅲ, was confirmed in native protein and protein-phenol complex with vibration bands, particularly at 3784.92, 1631.07, and 1234 cm-1, respectively. The X-ray diffraction pattern depicted a slight decrease in crystallinity after the complexation and scanning electron microscopy revealed the alteration in morphology from less to improved smoothness and continuous surface characteristics for the complex. Thermo gravimetric analysis revealed high thermal stability of the complex with a maximum weight loss at a temperature range of 400-500 °C. Protein-phenol complex added fruit-based smoothie was developed and it was found to be acceptable in terms of various sensory attributes including color & appearance, textural consistency, and mouthfeel as compared to the control smoothie. Overall, this study provided novel insights to understand the phenol-protein interactions and the possible use of the phenol-rice protein complex in the development of vegan-based food products.
Collapse
Affiliation(s)
- Prince Chawla
- Department Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
80
|
Li Y, Jia S, Zhang Y, Huang L, He R, Ma H. Characterization of the interaction between allicin and soy protein isolate and functional properties of the adducts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5156-5164. [PMID: 37005328 DOI: 10.1002/jsfa.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Soybean meal, a by-product of the soybean oil production industry, has a high protein content but the compact globular structure of the protein from soybean meal limits its wide application in food processing. Allicin has been found to have numerous functional properties. In this study, allicin was interacted with soy protein isolate (SPI). The functional properties of the adducts were investigated. RESULTS Binding with allicin significantly quenched the fluorescence intensity of SPI. Static quenching was the main quenching mechanism. The stability of adducts decreased with increasing temperature. The greatest extent of binding between allicin and sulfhydryl groups (SH) of SPI was obtained at an allicin/SH molar ratio of 1:2. The amino groups of SPI did not bind with allicin covalently. Soy protein isolate was modified by allicin through covalent and non-covalent interactions. Compared with SPI, the emulsifying activity index and foaming capacity of adducts with a ratio of 3:1 were improved by 39.91% and 64.29%, respectively. Soy protein isolate-allicin adducts also exhibited obvious antibacterial effects. The minimum inhibitory concentrations (MICs) of SPI-allicin adducts on Escherichia coli and Staphylococcus aureus were 200 and 160 μg mL-1 , respectively. CONCLUSION The interaction of allicin with SPI is beneficial for the functional properties of SPI. These adducts can be used in different food formulations as emulsifiers, foamers, and transport carriers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunliang Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Shifang Jia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yubin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
81
|
Fei X, Yan Y, Wang L, Huang Z, Gong D, Zhang G. Protocatechuic acid and gallic acid improve the emulsion and thermal stability of whey protein by covalent binding. Food Res Int 2023; 170:113000. [PMID: 37316070 DOI: 10.1016/j.foodres.2023.113000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
This study aimed to explore the impacts of gallic acid (GA)/protocatechuic acid (PA) on the structural and functional characteristics of whey proteins (WP) through covalent binding. To this purpose, the covalent complexes of WP-PA and WP-GA at different concentration gradients were prepared by the alkaline method. SDS-PAGE indicated that PA/GA was cross-linked by covalent bonds. The decreased contents of free amino and sulfhydryl groups suggested that WP formed covalent bonds with PA/GA by amino and sulfhydryl groups, and the structure of WP became slightly looser after covalent modification by PA/GA. When the concentration of GA was added up to 10 mM, the structure of WP was slightly loosened with a reduction of α-helix content by 2.3% and an increase in random coil content by 3.0%. The emulsion stability index of WP increased by 14.9 min after interaction with GA. Moreover, the binding of WP and 2-10 mM PA/GA increased the denaturation temperature by 1.95 to 19.87 °C, indicating the improved thermal stability of the PA/GA-WP covalent complex. Additionally, the antioxidant capacity of WP was increased with increasing GA/PA concentration. This work may offer worthful information for enhancing the functional properties of WP and the application of the PA/GA-WP covalent complexes in food emulsifiers.
Collapse
Affiliation(s)
- Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuzhong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Langhong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China.
| | - Zhaohua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
82
|
Pu P, Deng Z, Chen L, Yang H, Liang G. Reducing Antigenicity and Improving Antioxidant Capacity of β-Lactoglobulin through Covalent Interaction with Six Flavonoids. Foods 2023; 12:2913. [PMID: 37569182 PMCID: PMC10418627 DOI: 10.3390/foods12152913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
β-lactoglobulin (β-LG) is a pivotal nutritional and functional protein. However, its application is limited by its antigenicity and susceptibility to oxidation. Here, we explore the impact of covalent modification by six natural compounds on the antigenicity and antioxidant characteristics of β-LG to explore the underlying interaction mechanism. Our findings reveal that the covalent interaction of β-LG and flavonoids reduces the antigenicity of β-LG, with the following inhibition rates: epigallocatechin-3-gallate (EGCG) (57.0%), kaempferol (42.4%), myricetin (33.7%), phloretin (28.6%), naringenin (26.7%), and quercetin (24.3%). Additionally, the β-LG-flavonoid conjugates exhibited superior antioxidant capacity compared to natural β-LG. Our results demonstrate that the significant structural modifications from α-helix to β-sheet induced by flavonoid conjugation elicited distinct variations in the antigenicity and antioxidant activity of β-LG. Therefore, the conjugation of β-LG with flavonoids presents a prospective method to reduce the antigenicity and enhance the antioxidant capacity of β-LG.
Collapse
Affiliation(s)
| | | | | | | | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
83
|
Wu Z, Xu J, Ruan J, Chen J, Li X, Yu Y, Xie X, Tang J, Zhang D, Li H. Probing the mechanism of interaction between capsaicin and myofibrillar proteins through multispectral, molecular docking, and molecular dynamics simulation methods. Food Chem X 2023; 18:100734. [PMID: 37397215 PMCID: PMC10314199 DOI: 10.1016/j.fochx.2023.100734] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
The interaction between myofibrillar proteins (MPs) and capsaicin (CAP) was investigated using multispectral, molecular docking, and molecular dynamics simulation methods. The resulting complex increased the hydrophobicity of the tryptophan and tyrosine microenvironment as revealed by fluorescence spectral analysis. The fluorescence burst mechanism study indicated that the fluorescence burst of CAP on the MPs was a static one (Kq = 1.386 × 1012 m-1s-1) and that CAP could bind with MPs well (Ka = 3.31 × 104 L/mol, n = 1.09). The analysis of circular dichroism demonstrated that the interaction between CAP and MPs caused a decrease in the α-helical structure of MPs. The complexes formed exhibited lower particle size and higher absolute ζ potential. Furthermore, hydrogen bonding, van der Waals forces, and hydrophobic interactions were found to be the primary factors facilitating the interaction between CAP and MPs, as suggested by molecular docking models and molecular dynamics simulations.
Collapse
Affiliation(s)
- Zhicheng Wu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jingbing Xu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Jinggang Ruan
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiaxin Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Xue Li
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Yiru Yu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xinrui Xie
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
84
|
Zhang S, Li ZM, Feng YC, Wang CY, Zhang DJ. Processing Enhances Coix Seed Prolamins Structure and Releases Functional Peptides after Digestion: In Silico and In Vitro Studies. Foods 2023; 12:2500. [PMID: 37444238 PMCID: PMC10340764 DOI: 10.3390/foods12132500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Dipeptidyl peptidase-IV (DPP-IV) is a key target for the treatment of type 2 diabetes mellitus. It is possible that peptides that precisely regulate DPP-IV could be released from coix seed prolamins (CSP), but whether this happens has not yet been investigated. We performed the in silico digestion of CSP and predicted the bioactivity, absorption, transport, toxicity, and allergenicity of the resulting peptides. The simulation predicted that 47 non-toxic bioactive peptides would be released. After screening these, we found that 64.58% of them could possess DPP-IV inhibitory activity. The effect of thermal processing on the amino acid composition and structural properties of CSP was determined, and the DPP-IV inhibitory activity of its digestion-derived peptides was also assessed. The results showed that processing could change the flavour of coix seed and the supply of amino acids. After processing, the spatial conformation of CSP changed from ordered to disordered, and the peptide content and the DPP-IV inhibitory activity of its digestion products significantly increased by 19.89-30.91% and 36.84-42.02%, respectively. These results support the hypothesis that processing can change the protein structure and increase the probability that bioactive peptides will be released. They also have important implications for the development of bioactive peptides and the intensive processing of coix seeds.
Collapse
Affiliation(s)
- Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (S.Z.); (Z.-M.L.); (C.-Y.W.)
| | - Zhi-Ming Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (S.Z.); (Z.-M.L.); (C.-Y.W.)
| | - Yu-Chao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (S.Z.); (Z.-M.L.); (C.-Y.W.)
| | - Chang-Yuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (S.Z.); (Z.-M.L.); (C.-Y.W.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Dong-Jie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (S.Z.); (Z.-M.L.); (C.-Y.W.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
| |
Collapse
|
85
|
Zhang T, Zhang X, Jin M, Zhang Y, Jiang L, Sui X. Parameter control, characterization and stability of soy protein emulsion prepared by microfluidic technology. Food Chem 2023; 427:136689. [PMID: 37385055 DOI: 10.1016/j.foodchem.2023.136689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
A flow-focusing microfluidic device driven by pressure was employed in soy protein emulsions with uniform droplet size and good morphology. The results suggested that pressure was an essential factor for droplet formation. The optimum parameter was at a continuous phase pressure of 140 mbar and dispersed phase pressure of 80 mbar. Under this condition, the droplet formation time was shortened to 0.20 s, with average sizes of 39-43 μm and coefficient of variation of about 2 %. Emulsion stability was improved with increasing soy protein isolate (SPI) concentrations. At SPI concentrations higher than 20 mg/mL, the emulsions exhibited improved stability against changes in temperature, pH and salt concentration. Emulsions prepared in this manner exhibited superior oxidative stability than those prepared by conventional methods utilizing homogenizers. This study showed that microfluidic technology can be applied to soy protein emulsions as an effective tool for preparing droplets with uniform size and enhanced stability.
Collapse
Affiliation(s)
- Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Manzhe Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150030, China.
| |
Collapse
|
86
|
Gao Q, Chen J, Zhou G, Xu X. Different protein-anthocyanin complexes engineered by ultrasound and alkali treatment: Structural characterization and color stability. Food Chem 2023; 427:136693. [PMID: 37390735 DOI: 10.1016/j.foodchem.2023.136693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
Through alkali treatment (AT) and ultrasound (UT)-assisted processing producing covalent protein-anthocyanin complexes, we investigated the impact of treatment methods and protein types on conjugation efficiency, protein structure, and color stability. Our findings revealed the effective grafting of anthocyanins (ACNs) onto proteins, with myofibrillar protein (MP) exhibiting the highest conjugation efficiency of 88.33% after UT (p <.05). UT accelerated the structure unfolding of distinct protein samples, leading to the exposure of sulfhydryl, and hydrophobic groups in proteins, and enhanced the oxidation stability of ACNs. Notably, the modified ACNs maintained a favorable pH-color relationship, while U-MP showed a significantly higher absorbance (0.4998) than the other groups (p <.05) at pH 9.0, demonstrating an outstanding color improvement. UT-assisted processing also accelerated the NH3 reaction. Thus, the combination of UT and MP holds the potential for pH-color-responsive intelligent packaging and increases the efficiency of UT processing.
Collapse
Affiliation(s)
- Qianni Gao
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
87
|
Hu W, Chen C, Wang Y, He W, He Z, Chen J, Li Z, Li J, Li W. Development of high internal phase emulsions with noncovalent crosslink of soy protein isolate and tannic acid: Mechanism and application for 3D printing. Food Chem 2023; 427:136651. [PMID: 37392629 DOI: 10.1016/j.foodchem.2023.136651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
In this study, we propose a design strategy using soy protein isolate (SPI)-tannic acid (TA) complexes crosslinked through noncovalent interactions to develop high internal phase emulsions (HIPEs) for 3D printing materials. The results of Fourier transform infrared spectroscopy, intrinsic fluorescence, and molecular docking analyses indicated that the dominant interactions occurring between the SPI and TA were mediated by hydrogen bonds and hydrophobic interactions. The secondary structure, particle size, ζ-potential, hydrophobicity and wettability of SPI was significantly altered by the addition of TA. The microstructure of HIPEs stabilized by SPI-TA complexes exhibited more regular and even polygonal shapes, thereby allowing the protein to form a dense self-supporting network structure. When the concentration of TA exceeded 50 μmol/g protein, the formed HIPEs remained stable after 45 days of storage. Rheological tests revealed that the HIPEs exhibited a typical gel-like (G' > G'') and shear-thinning behavior, which contributed to preferable 3D printing behavior.
Collapse
Affiliation(s)
- Wenyi Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chunli Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ying Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei He
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
88
|
Khalifa I, Nilsuwan K, Prodpran T, Benjakul S. Covalently phenolated-β-lactoglobulin-pullulan as a green halochromic biosensor efficiency monitored Barramundi fish's spoilage. Int J Biol Macromol 2023:125189. [PMID: 37285883 DOI: 10.1016/j.ijbiomac.2023.125189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The effect of the covalent binding between anthocyanins extracted from purple potato peels and beta-lactoglobulin (β-Lg) on its ability to fabricate a green/smart halochromic biosensor combined with pullulan (Pul) was studied. The physical, mechanical, colorimetry, optical, morphological, stability, functionality, biodegradability, and applicability of β-Lg/Pul/Anthocyanin biosensors to monitor the Barramundi fish's freshness during storage were entirely evaluated. The docking and multispectral results proved that β-Lg could be successfully phenolated with anthocyanins and subsequently interacted with Pul via H-bonding and other forces which mainly subsequently form the smart biosensors. Phenolation with anthocyanins significantly heightened the mechanical, moisture resistance, and thermal steadiness of β-Lg/Pul biosensors. Anthocyanins also nearly duplicated the bacteriostatic and antioxidant activities of β-Lg/Pul biosensors. The biosensors changed the color associated with the loss in freshness of the Barramundi fish, mostly due to the ammonia production and pH-alteration throughout fish deterioration. Most importantly, β-Lg/Pul/Anthocyanin biosensors are biodegradable and decomposed within ∼30 d of simulated environmental circumstances. Overall, β-Lg/Pul/Anthocyanin smart biosensors could minimize the usage of plastic packaging materials and employ to monitor the freshness of stored fish and fish-stuffs.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- Department of Food Technology, Faculty of Agriculture, Benha University, 13736 Moshtohor, Egypt; International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
89
|
Chen ZL, Li Y, Wang JH, Wang R, Teng YX, Lin JW, Zeng XA, Woo MW, Wang L, Han Z. Pulsed electric field improves the EGCG binding ability of pea protein isolate unraveled by multi-spectroscopy and computer simulation. Int J Biol Macromol 2023:125082. [PMID: 37257538 DOI: 10.1016/j.ijbiomac.2023.125082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Understanding molecular mechanisms during protein modification is critical for expanding the application of plant proteins. This study investigated the conformational change and molecular mechanism of pea protein isolate (PPI) under pulsed electric field (PEF)-assisted (-)-Epigallocatechin-Gallate (EGCG) modification. The flexibility of PPI was significantly enhanced after PEF treatment (10 kV/cm) with decrease (23.25 %) in α-helix and increase (117.25 %) in random coil. The binding constant and sites of PEF-treated PPI with EGCG were increased by 2.35 times and 10.00 % (308 K), respectively. Molecular docking verified that PEF-treated PPI had more binding sites with EGCG (from 4 to 10). The number of amino acid residues involved in hydrophobic interactions in PEF-treated PPI-EGCG increased from 5 to 13. PEF-treated PPI-EGCG showed a significantly increased antioxidant activity compared to non-PEF-treated group. This work revealed the molecular level of PEF-assisted EGCG modification of PPI, which will be significant for the application of PPI in food industry.
Collapse
Affiliation(s)
- Ze-Ling Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Jin-Hua Wang
- Foshan Shunde Midea Washing Appliances MFG. CO., LTD, Foshan 528300, China
| | - Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yong-Xin Teng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jia-Wei Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China; Research Institute of Yangjiang, South China University of Technology, Yangjiang 529500, China
| | - Meng-Wai Woo
- Department of chemical and materials engineering, University of Auckland, Auckland 1010, New Zealand
| | - Ling Wang
- Macau University of Science and Technology, Macao, 999078, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
90
|
Kopjar M, Buljeta I, Ćorković I, Kelemen V, Pichler A, Ivić I, Šimunović J. Dairy-Protein-Based Aggregates as Additives Enriched with Tart Cherry Polyphenols and Flavor Compounds. Foods 2023; 12:foods12112104. [PMID: 37297349 DOI: 10.3390/foods12112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Nowadays, the development of innovative food products with positive health effects is on the rise. Consequently, the aim of this study was a formulation of aggregates based on tart cherry juice and dairy protein matrix to investigate whether different amounts (2% and 6%) of protein matrix have an impact on the adsorption of polyphenols as well as on the adsorption of flavor compounds. Formulated aggregates were investigated through high-performance liquid chromatography, spectrophotometric methods, gas chromatography and Fourier transform infrared spectrometry. The obtained results revealed that with an increase in the amount of protein matrix used for the formulation of aggregates, a decrease in the adsorption of polyphenols occurred, and, consequently, the antioxidant activity of the formulated aggregates was lower. The amount of protein matrix additionally affected the adsorption of flavor compounds; thus the formulated aggregates differed in their flavor profiles in comparison with tart cherry juice. Adsorption of both phenolic and flavor compounds caused changes in the protein structure, as proven by recording IR spectra. Formulated dairy-protein-based aggregates could be used as additives which are enriched with tart cherry polyphenols and flavor compounds.
Collapse
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Ivana Buljeta
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Ina Ćorković
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Vanja Kelemen
- Teaching Institute of Public Health Osijek-Baranja County, Franje Krežme 1, 31000 Osijek, Croatia
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Ivana Ivić
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA
| |
Collapse
|
91
|
Cui R, Ji S, Xia M, Fu X, Huang X. Mechanistic studies of polyphenols reducing the trypsin inhibitory activity of ovomucoid: Structure, conformation, and interactions. Food Chem 2023; 408:135063. [PMID: 36535182 DOI: 10.1016/j.foodchem.2022.135063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Ovomucoid (OVM) is a critical anti-nutritional factor in egg, which may reduce nutrient utilization. In this study, the effects of polyphenols on the trypsin inhibitory activity (TIA) of OVM were investigated by exploring the structural changes and interaction mechanisms. The results found that TIA decreased to 62.34% and 90.41% as epigallocatechin gallate (EGCG) and gallic acid (GA) were added individually. EGCG and GA interacted with OVM via static quenching and hydrophobic interaction. They induced a transition of OVM conformation from disorder to order. Infrared and fluorescence quenching analysis showed that the interaction between EGCG or GA and OVM was spontaneous, and hydrophobic interaction was the predominant force. The mechanism suggested that polyphenols affect the protein conformation by spontaneously binding to OVM in hydrophobic interactions, and lowering the TIA through reduced hydrophobicity. In summary, EGCG may be a promising OVM trypsin activity inactivator, which could also guarantee safety of egg products.
Collapse
Affiliation(s)
- Rui Cui
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, PR China
| | - Shengnan Ji
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, PR China
| | - Minquan Xia
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, PR China.
| | - Xi Huang
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
92
|
Zhang B, Wang Y, Lu R. Pickering emulsion stabilized by casein-caffeic acid covalent nanoparticles to enhance the bioavailability of curcumin in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3579-3591. [PMID: 36637046 DOI: 10.1002/jsfa.12447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In recent years, the design of food-grade Pickering emulsion delivery systems has become an effective strategy for improving the low bioavailability of bioactive substances. Protein-based Pickering emulsions have received extensive attention because of a high biocompatibility and loading capacity. The bioavailability of active substances is mainly evaluated by simulating in vitro gastrointestinal digestion. As a model organism for antioxidation and anti-aging, Caenorhabditis elegans can provide additional biological information for the in vivo utilization of active substances. RESULTS After the introduction of caffeic acid, the average particle size and Zeta potential of the casein-caffeic acid covalent complex nanoparticles (CCP) were 171.11 nm and - 37.73 mV, respectively. The three-phase contact angle was also increased to 89.8°. By using CCP to stabilize Pickering emulsion (CCE), the retention quantity of the embedded curcumin increased by 2.19-fold after 28 days. In the simulated gastric digestion, curcumin degradation in CCE was reduced by 61.84%, released slowly in the intestinal environment, and the final bioaccessibility was increased by 1.90-fold. In C. elegans, CCE significantly reduced ROS accumulation, increased SOD activity by 2.01-fold and CAT activity by 2.30-fold, decreased MDA content by 36.76%, prolonging the lifespan of nematodes by 13.33% under H2 O2 stimulation and improving bioavailability in vivo. CONCLUSION The results indictae that CCP-stabilized Pickering emulsion can efficiently implement the physiological activities of bioactive compounds in vitro digestion and C. elegans, and thus it can be regarded as a reliable delivery system for food and medicine. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingyan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rongrong Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
93
|
pH and ultrasound driven structure-function relationships of soy protein hydrolysate. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
94
|
Zhou E, Xue X, Xu H, Zhao L, Wu L, Li Q. Effects of covalent conjugation with quercetin and its glycosides on the structure and allergenicity of Bra c p from bee pollen. Food Chem 2023; 406:135075. [PMID: 36462363 DOI: 10.1016/j.foodchem.2022.135075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Profilin family members are potential pan-allergens in foods, presenting public health hazards. However, studies on the allergenicity modification of profilin allergens are limited. Herein, quercetin and its glycosides (isoquercitrin and rutin) were applied to modify the allergenicity of a profilin allergen (Bra c p) from Brassica campestris bee pollen. Results showed that only quercetin can be closely covalently bound to Bra c p among the three, and the binding site was located at the Cys98 residue. After covalently conjunction, the relative content of α-helix structure in Bra c p was reduced by 40.05%, while random coil was increased by 42.89%; moreover, the Tyr and Phe residues in Bra c p were masked. These structural changes could alter the conformational antigenic epitopes of Bra c p, resulting in its allergenicity reduction. Our findings might provide a technical foundation for reducing the allergenicity of bee pollen and foods containing profilin family allergens.
Collapse
Affiliation(s)
- Enning Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Haoxie Xu
- Institute of Advanced Study, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| |
Collapse
|
95
|
Chao Song Z, Zhang H, Fei Niu P, Shi LS, Yan Yang X, Hong Meng Y, Yu Wang X, Gong T, Rong Guo Y. Fabrication of a novel antioxidant emulsifier through tuning the molecular interaction between soy protein isolates and young apple polyphenols. Food Chem 2023; 420:136110. [PMID: 37105086 DOI: 10.1016/j.foodchem.2023.136110] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Soy protein isolates (SPI) exhibit weaker emulsifying properties than those of animal proteins, thereby limiting their wide applicability. In this study, a novel plant-based antioxidant emulsifier was developed using SPI and young apple polyphenols (YAP), and its underlying interaction mechanisms were discovered using multispectral technology and molecular docking. YAP physically bound to SPI through hydrogen bonds and hydrophobic interactions, which significantly enhanced the free radicals scavenging, reducing, and metal ion chelating abilities of SPI by introducing free hydroxyl groups. Moreover, SPI modified by YAP exerted better emulsifying performance owing to a looser protein structure, reflected by a higher random coil and a lower α-helix content. In addition, YAP may bridge adjacent SPI molecules, promoting the adsorption and anchoring of SPI at the oil-water interface. SPI-YAP complexes are promising antioxidant emulsifiers that can be used to nano-deliver functional oils and nutrients, thereby broadening SPI and YAP applications in the food industry.
Collapse
Affiliation(s)
- Zhi Chao Song
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Huan Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Peng Fei Niu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Lin Shan Shi
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Xue Yan Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Yong Hong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Xiao Yu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| | - Yu Rong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| |
Collapse
|
96
|
Wen J, Jin H, Wang L, Zhang Y, Jiang L, Sui X. Fabrication and characterization of high internal phase Pickering emulsions based on pH-mediated soy protein-epigallocatechin-3-gallate hydrophobic and hydrophilic nano-stabilizer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
97
|
Hemp seed protein and chlorogenic acid complex: Effect of ultrasound modification on its structure and functional properties. Int J Biol Macromol 2023; 233:123521. [PMID: 36739056 DOI: 10.1016/j.ijbiomac.2023.123521] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
In this study, the effects of ultrasound and chlorogenic acid (CA) on the structural and functional properties of hemp seed protein (HSP) was investigated. Compared with natural HSP, the UV-vis spectra intensity of ultrasound-treated HSP (UHSP) and UHSP-CA increased, the fluorescence spectra intensity decreased with a red shift in the maximum intensity peak. The results showed that ultrasound modification and complexation with CA unfolded the structure of HSP exposing its internal groups. Fluorescence quenching analysis showed that the best binding between UHSP and CA (binding constant 2.94 × 102 L/mol) was achieved at 450 W for 15 min of ultrasound treatment. In addition, the same ultrasound conditions minimized the particle size and surface roughness of UHSP and UHSP-CA. The solubility of UHSP and UHSP-CA increased by 23.3 and 38.7 %, the emulsifying activity index increased by 16.9 and 16.2 %, and the emulsion stability index increased by 20.9 and 20.8 %, respectively. These results indicated that appropriate ultrasound treatment and complexation with CA can significantly modify the structural and functional properties of HSP, improving its application value in the food field.
Collapse
|
98
|
Liu J, Song G, Zhou L, Wang D, Yuan T, Li L, He G, Xiao G, Gong J. Comparison of non-covalent binding interactions of six caffeoylquinic acids with β-lactoglobulin: Spectroscopic analysis, molecular docking and embedding of curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
99
|
Lin Y, Li C, Shi L, Wang L. Anthocyanins: Modified New Technologies and Challenges. Foods 2023; 12:foods12071368. [PMID: 37048188 PMCID: PMC10093405 DOI: 10.3390/foods12071368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Anthocyanins are bioactive compounds belonging to the flavonoid class which are commonly applied in foods due to their attractive color and health-promoting benefits. However, the instability of anthocyanins leads to their easy degradation, reduction in bioactivity, and color fading in food processing, which limits their application and causes economic losses. Therefore, the objective of this review is to provide a systematic evaluation of the published research on modified methods of anthocyanin use. Modification technology of anthocyanins mainly includes chemical modification (chemical acylation, enzymatic acylation, and formation of pyran anthocyanidin), co-pigmentation, and physical modification (microencapsulation and preparation of pickering emulsion). Modification technology of anthocyanins can not only increase bioavailability and stability of anthocyanin but also can improve effects of anthocyanin on disease prevention and treatment. We also propose potential challenges and perspectives for diversification of anthocyanin-rich products for food application. Overall, integrated strategies are warranted for improving anthocyanin stabilization and promoting their further application in the food industry, medicine, and other fields.
Collapse
Affiliation(s)
- Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312000, China
- Changshan Agriculture Development Center, Changshan 324200, China
| | - Cong Li
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lejuan Shi
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixia Wang
- Changshan Agriculture Development Center, Changshan 324200, China
| |
Collapse
|
100
|
Gao HH, Hou NC, Gao X, Yuan JY, Kong WQ, Zhang CX, Qin Z, Liu HM, Wang XD. Interaction between Chinese quince fruit proanthocyanidins and bovine serum albumin: Antioxidant activity, thermal stability and heterocyclic amine inhibition. Int J Biol Macromol 2023; 238:124046. [PMID: 36933591 DOI: 10.1016/j.ijbiomac.2023.124046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Heterocyclic amines (HCAs) are carcinogenic and mutagenic substances produced in fried meat. Adding natural antioxidants (e.g., proanthocyanidins (PAs)) is a common method to reduce HCAs; however, the interaction between the PAs and protein can affect the inhibitory efficacy of PAs on the formation of HCAs. In this study, two PAs (F1 and F2) with different degrees of polymerization (DP) were extracted from Chinese quince fruits. These were combined with bovine serum albumin (BSA). The thermal stability, antioxidant capacity and HCAs inhibition of all four (F1, F2, F1-BSA, F2-BSA) were compared. The results showed that F1 and F2 interact with BSA to form complexes. Circular dichroism spectra indicate that complexes had fewer α-helices and more β-sheets, β-turns and random coils than BSA. Molecular docking studies indicated that hydrogen bonds and hydrophobic interactions are the forces holding the complexes together. The thermal stabilities of F1 and, particularly, F2 were stronger than those of F1-BSA and F2-BSA. Interestingly, F1-BSA and F2-BSA showed increased antioxidant activity with increasing temperature. F1-BSA's and F2-BSA's HCAs inhibition was stronger than F1 and F2, reaching 72.06 % and 76.3 %, respectively, for norharman. This suggests that PAs can be used as natural antioxidants for reducing the HCAs in fried foods.
Collapse
Affiliation(s)
- Hui-Hui Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Nai-Chang Hou
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Yang Yuan
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wan-Qing Kong
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|