51
|
Yang Y, Li W, Xian W, Huang W, Yang R. Free and Bound Phenolic Profiles of Rosa roxburghii Tratt Leaves and Their Antioxidant and Inhibitory Effects on α-Glucosidase. Front Nutr 2022; 9:922496. [PMID: 35836591 PMCID: PMC9274239 DOI: 10.3389/fnut.2022.922496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Rosa roxburghii Tratt (R. roxburghii) tea is a traditional Chinese beverage. This study aims to investigate and compare the phenolics in free and bound forms of two cultivars of R. roxburghii leaves, and their bioactivities. The total phenolic content of free and bound fractions was 72.71 and 17.75 mg GAE/g DW in Gui Nong No. 5 (GNN5) and 94.28 and 11.19 mg GAE/g DW in Seedless Cili (SC). A total of 37 phenolic compounds were characterized and quantified by UPLC-Q-Exactive Orbitrap/MS with ellagic acid, quercitrin, isoquercitrin, and quininic acid in free fraction, while gallic acid, ellagic acid, and hyperoside were main compounds in bound fraction. The free fraction with higher phenolic contents also showed excellent performances on antioxidant activities and α-glucosidase inhibitory potency than bound phenolics. Therefore, the results highlight that R. roxburghii leaves are a promising source enriched in phenolic constituents for functional beverages and nutritional foods.
Collapse
Affiliation(s)
- Yuzhe Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wu Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Wenyan Xian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ruili Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Ruili Yang,
| |
Collapse
|
52
|
Yang J, Wang C, Li N, Wu L, Huang Z, Hu Z, Li X, Qu Z. Phytochemicals and anti-tyrosinase activities of Paeonia ostii leaves and roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 181:50-60. [PMID: 35429804 DOI: 10.1016/j.plaphy.2022.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Tree peony (sect. Moutan) is a kind of Traditional Chinese Medicine and ornamental plant, which has been widely cultivated and utilized for thousands of years. To further study the active components of Paeonia ostii (Moutan, Fengdan), six fractions (soluble free (F), soluble esterification, soluble glycosylation, insoluble bound, insoluble esterification and insoluble glycosylation) were extracted from the leaves and roots by alkaline and acid treatment for the first time. Twenty-one typical compounds were identified and quantified by HPLC-MS. The results showed that total phenolic content (TPC) in peony roots (PR) and peony leaves (PL) were as high as 125.48 and 280.38 mg GAE·g-1 dw, which maximizes the extraction efficiency of phenolic compounds, especially leaves, compared with the conventional method. PR-F and PL-F had the highest TPC, antioxidant and anti-tyrosinase activities. Paeoniflorin was the main compounds in PL and PR. It and pentagalloylglucose (PGG) almost reached the anti-tyrosinase level of kojic acid, but they showed different inhibitory mechanisms by molecular docking. On the whole, PR-F, PL-F, PGG and paeoniflorin might be potential for skin whitening products.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China; Shanxi Jingxi Biotechnology Co., Ltd, Taiyuan, Shanxi, 030051, China.
| | - Chunyu Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Nana Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Liyang Wu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Ziang Huang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Zhiyong Hu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Xiaojun Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Zhican Qu
- Nanolattix Biotech Corporation, Shanxi, Taiyuan, 030006, China.
| |
Collapse
|
53
|
Wan F, Feng C, Luo K, Cui W, Xia Z, Cheng A. Effect of steam explosion on phenolics and antioxidant activity in plants: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
54
|
Urango ACM, Neves MIL, Meireles MAA, Silva EK. Whey Beverage Emulsified System as Carrying Matrix of Fennel Seed Extract Obtained by Supercritical CO2 Extraction: Impact of Thermosonication Processing and Addition of Prebiotic Fibers. Foods 2022; 11:foods11091332. [PMID: 35564055 PMCID: PMC9101487 DOI: 10.3390/foods11091332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Whey beverages that were enriched with fructooligosaccharides (FOS) and xylooligosaccharides (XOS) were used for carrying Foeniculum vulgare extract that was obtained by the supercritical CO2 extraction technique to produce novel functional products. Fennel-based whey beverages were subjected to thermosonication processing (100, 200, and 300 W at 60 °C for 15 min) to verify the performance of the dairy colloidal system for protecting the bioactive fennel compounds. The impacts of thermosonication processing on the quality attributes of the functional whey beverages were examined according to their droplet size distribution, microstructure, kinetic stability, color parameters, browning index, total phenolic content (TPC), and antioxidant capacity by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2-Azino-bis-(3-ethylbenzothiazoline)-6-sulphonic acid) assays. The enrichment of the whey beverages with FOS and XOS did not affect their kinetic stability. However, the addition of prebiotic dietary fibers contributed to reducing the mean droplet size due to the formation of whey protein–FOS/XOS conjugates. The thermosonication treatments did not promote color changes that were discernible to the human eye. On the other hand, the thermosonication processing reduced the kinetic stability of the beverages. Overall, the colloidal dairy systems preserved the antioxidant capacity of the fennel seed extract, regardless of thermosonication treatment intensity. The whey beverages enriched with FOS and XOS proved to be effective carrying matrices for protecting the lipophilic bioactive fennel compounds.
Collapse
|
55
|
Phenolic Compound Profile by UPLC-MS/MS and Encapsulation with Chitosan of Spondias mombin L. Fruit Peel Extract from Cerrado Hotspot-Brazil. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082382. [PMID: 35458580 PMCID: PMC9028924 DOI: 10.3390/molecules27082382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022]
Abstract
Taperebá (Spondias mombin L.) is a native species of the Brazilian Cerrado that has shown important characteristics such as a significant phenolic compound content and biological activities. The present study aimed to characterize the phenolic compound profile and antioxidant activity in taperebá peel extract, as well as microencapsulating the extract with chitosan and evaluating the stability of the microparticles. The evaluation of the profile of phenolic compounds was carried out by UPLC-MS/MS. The in vitro antioxidant activity was evaluated by DPPH and ABTS methods. The microparticles were obtained by spray drying and were submitted to a stability study under different temperatures. In general, the results showed a significant content of polyphenols and antioxidant activity. The results of UPLC-MS/MS demonstrated a significant content of polyphenols in taperebá peel, highlighting the high content of ellagic acid and quercetin compounds. There was significant retention of phenolic compounds when microencapsulated, demonstrating high retention at all evaluated temperatures. This study is the first to microencapsulate the extract of taperebá peel, in addition to identifying and quantifying some compounds in this fruit.
Collapse
|
56
|
de Souza FG, de Araújo FF, Orlando EA, Rodrigues FM, Chávez DWH, Pallone JAL, Neri-Numa IA, Sawaya ACHF, Pastore GM. Characterization of Buritirana ( Mauritiella armata) Fruits from the Brazilian Cerrado: Biometric and Physicochemical Attributes, Chemical Composition and Antioxidant and Antibacterial Potential. Foods 2022; 11:786. [PMID: 35327209 PMCID: PMC8949527 DOI: 10.3390/foods11060786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
The buritirana is a little-explored species of the Arecaceae family. The biometric and physicochemical characteristics, nutritional and chemical composition and antioxidant and antibacterial potential of the buritirana fruit fractions were evaluated here for the first time. The fruits presented an oblong shape. The pulp represented 16.58% of the whole-fruit weight (10.07 g). The moisture, ash and soluble fiber contents were similar for the whole fraction without seed (WS) and pulp. Although the total carbohydrate content was the same for seed and peel (23.24 g·100 g-1), the seed showed higher protein and insoluble fiber contents. Except for glucose (1256.63 mg·100 g-1), the seed showed the highest concentrations of mono-, di- and oligosaccharides. Mineral content ranged from 0.43 to 800 mg·100 g-1 in all fractions. The peel fraction showed the highest content of vitamin C. The physicochemical results indicate the pulp and WS fraction have potential for the production of fruit-derived food products. Protocatechuic and quinic acids and epicatechin/catechin were found in all fractions. The assay antioxidant capacity DPPH, phenolic content and total flavonoids were higher in the pulp; TEAC and ORACHF values were lower in the seed. Volatile organic compounds were not identified, and the fractions did not show antibacterial activity.
Collapse
Affiliation(s)
- Florisvaldo Gama de Souza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Fábio Fernandes de Araújo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Eduardo Adilson Orlando
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Fernando Morais Rodrigues
- Department of Food Science and Technology, Federal Institute of Education, Science and Technology of Tocantins, Paraíso of Tocantins 77600-000, TO, Brazil;
| | - Davy William Hidalgo Chávez
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Juliana Azevedo Lima Pallone
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Iramaia Angélica Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| |
Collapse
|
57
|
Distribution and natural variation of free, esterified, glycosylated, and insoluble-bound phenolic compounds in brocade orange (Citrus sinensis L. Osbeck) peel. Food Res Int 2022; 153:110958. [DOI: 10.1016/j.foodres.2022.110958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/18/2023]
|
58
|
Šeremet D, Jokić S, Aladić K, Butorac A, Lovrić M, Tušek AJ, Obranović M, Mandura Jarić A, Vojvodić Cebin A, Carović-Stanko K, Komes D. Comprehensive Study of Traditional Plant Ground Ivy ( Glechoma hederacea L.) Grown in Croatia in Terms of Nutritional and Bioactive Composition. Foods 2022; 11:658. [PMID: 35267291 PMCID: PMC8909519 DOI: 10.3390/foods11050658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
In the present study, ground ivy was harvested from different natural habitats in Croatia and subjected to screening analysis for nutritional and bioactive composition. To achieve maximum recovery of phenolic compounds, different extraction techniques were investigated-heat-assisted (HAE), microwave-assisted (MAE) and subcritical water (SWE) extraction. Prepared extracts were analysed by spectrophotometric methods, LC-MS/MS and HPLC-PAD methodologies. Results regarding nutritive analyses, conducted using standard AOAC methods, showed the abundance of samples in terms of insoluble dietary fibre, protein, calcium and potassium, while rutin, chlorogenic, cryptochlorogenic, caffeic and rosmarinic acid were the most dominant phenolic compounds. In addition, LC-MS/MS analysis revealed the presence of apigenin and luteolin in glycosylated form. Maximum recovery of target phenolic compounds was achieved with MAE, while SWE led to the formation of new antioxidants, which is commonly known as neoformation. Moreover, efficient prediction of phenolic composition of prepared extracts was achieved using NIR spectroscopy combined with ANN modelling.
Collapse
Affiliation(s)
- Danijela Šeremet
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10000 Zagreb, Croatia; (D.Š.); (A.J.T.); (M.O.); (A.M.J.); (A.V.C.)
| | - Stela Jokić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (S.J.); (K.A.)
| | - Krunoslav Aladić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (S.J.); (K.A.)
| | - Ana Butorac
- BICRO BIOCentre, Ltd., Borongajska Cesta 83h, 10000 Zagreb, Croatia; (A.B.); (M.L.)
| | - Marija Lovrić
- BICRO BIOCentre, Ltd., Borongajska Cesta 83h, 10000 Zagreb, Croatia; (A.B.); (M.L.)
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10000 Zagreb, Croatia; (D.Š.); (A.J.T.); (M.O.); (A.M.J.); (A.V.C.)
| | - Marko Obranović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10000 Zagreb, Croatia; (D.Š.); (A.J.T.); (M.O.); (A.M.J.); (A.V.C.)
| | - Ana Mandura Jarić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10000 Zagreb, Croatia; (D.Š.); (A.J.T.); (M.O.); (A.M.J.); (A.V.C.)
| | - Aleksandra Vojvodić Cebin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10000 Zagreb, Croatia; (D.Š.); (A.J.T.); (M.O.); (A.M.J.); (A.V.C.)
| | - Klaudija Carović-Stanko
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Draženka Komes
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10000 Zagreb, Croatia; (D.Š.); (A.J.T.); (M.O.); (A.M.J.); (A.V.C.)
| |
Collapse
|
59
|
Optimization of Extraction Conditions and Characterization of Volatile Organic Compounds of Eugenia klotzschiana O. Berg Fruit Pulp. Molecules 2022; 27:molecules27030935. [PMID: 35164199 PMCID: PMC8838651 DOI: 10.3390/molecules27030935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/10/2023] Open
Abstract
Eugenia klotzschiana O. Berg is a native species to the Cerrado biome with significant nutritional value. However, its volatile organic compounds (VOCs) chemical profile is not reported in the scientific literature. VOCs are low molecular weight chemical compounds capable of conferring aroma to fruit, constituting quality markers, and participating in the maintenance and preservation of fruit species. This work studied and determined the best conditions for extraction and analysis of VOCs from the pulp of Eugenia klotzschiana O. Berg fruit and identified and characterized its aroma. Headspace solid-phase microextraction (HS-SPME) was employed using different fiber sorbents: DVB/CAR/PDMS, PDMS/DVB, and PA. Gas chromatography and mass spectrometry (GC-MS) were employed to separate, detect, and identify VOCs. Variables of time and temperature of extraction and sample weight distinctly influenced the extraction of volatiles for each fiber. PDMS/DVB was the most efficient, followed by PA and CAR/PDMS/DVB. Thirty-eight compounds that comprise the aroma were identified among sesquiterpenes (56.4%) and monoterpenes (30.8%), such as α-fenchene, guaiol, globulol, α-muurolene, γ-himachalene, α-pinene, γ-elemene, and patchoulene.
Collapse
|
60
|
In Vitro Investigation of the Antioxidant and Cytotoxic Potential of Tabernaemontana ventricosa Hochst. ex A. DC. Leaf, Stem, and Latex Extracts. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tabernaemontana ventricosa (Apocynaceae) a latex-bearing plant is used in traditional medicine for its therapeutic benefits in reducing fever and hypertension and wound healing. Due to limited information on the plant’s pharmacological activities, this study aimed to investigate the antioxidant potential of the leaf, stem, and latex extracts of T. ventricosa, using the Folin-Ciocalteu (total phenolics), aluminum chloride colorimetric (total flavonoids), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. The cytotoxic activity was evaluated in the human HEK293 (embryonic kidney), HeLa (cervical carcinoma), and MCF-7 (breast adenocarcinoma) cell lines using the MTT assay. The latex extracts possessed the highest total phenolic content (115.36 ± 2.89 mg GAE/g), followed by the stem hexane extracts (21.33 ± 0.42 mg GAE/g), the chloroform leaf (7.89 ± 0.87 mg GAE/g), and the chloroform stem (4.69 ± 0.21 mg GAE/g) extracts. The flavonoid content was substantially high ranging from 946.92 ± 6.29 mg QE/g in the stem hexane, 768.96 ± 5.43 mg QE/g in the latex, 693.24 ± 4.12 mg QE/g in the stem chloroform, and 662.20 ± 1.00 mg QE/g in the leaf hexane extracts. The DPPH assays showed the highest percentage of inhibition at 240 µg/mL, for the stem hexane (70.10%), stem methanol (65.24%), and stem chloroform (60.26%) extracts, with their respective IC50 values of 19.26 µg/mL (stem hexane), 6.19 µg/mL (stem methanol), and 22.56 µg/mL (stem chloroform). The FRAP assays displayed minimal inhibition ranging from 4.73% to 14.40%, except for the latex extracts which displayed moderate inhibition at 15 µg/mL (21.82%) and substantial inhibition at 240 µg/mL (98.48%). The HeLa and MCF-7 cell lines were the most sensitive to the extracts, with the hexane, chloroform, and methanol leaf and stem, and latex extracts significantly affecting the percentage cell survival. Overall, the various parts of T. ventricosa exhibited strong antioxidant activity correlating to its cytotoxicity. Further studies should focus on the isolation of specific antioxidant compounds that could be investigated for their anticancer potential.
Collapse
|
61
|
Thermosonication Process Design for Recovering Bioactive Compounds from Fennel: A Comparative Study with Conventional Extraction Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aimed to examine the impact of the combination of acoustic energy at the nominal powers of 100, 200, 300, and 400 W with moderate heat processing at 40, 50, and 60 °C on the extraction of phytochemical compounds from Foeniculum vulgare. Thermosonication processing, based on high-intensity ultrasound combined with an external heat source, can potentialize the extraction of soluble solids from plant material. However, the excessive temperature increase generated by the two energy sources during thermosonication treatment may degrade the thermolabile bioactive compounds. Regardless of the temperature condition, fennel extracts obtained at 400 W presented lower total phenolic content (TPC) than those obtained at 300 W. The cavitation heat and mechanical stress provided at 400 W may have degraded the phenolic compounds. Thereby, the best extraction condition was 300 W and 60 °C. The fennel extract presented the highest content of TPC (3670 ± 67 µg GAE/g) and antioxidant activity determined by DPPH and ABTS methods (1195 ± 16 µg TE/g and 2543.12 ± 0.00 µg TE/g, respectively) using this treatment. Thermosonication can be an innovative technique for extracting phytochemicals because it provides good results in shorter processing times, with 73% and 88% less energy consumption than Percolation and Soxhlet techniques, respectively.
Collapse
|
62
|
Tian W, Cheng D, Yan X, Zhang G, Zeng G, Bao X, Zeng Z, Yu P, Gong D. Effect of in vitro digestion of Cudrania cochinchinensis root extracts on phenolic compounds, bioactivity, bioaccessibility and cytotoxicity on HepG2 cells. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03849-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
63
|
Deng J, Xiang Z, Lin C, Zhu Y, Yang K, Liu T, Xia C, Chen J, Zhang W, Zhang Y, Zhu B. Identification and quantification of free, esterified, and insoluble-bound phenolics in grains of hulless barley varieties and their antioxidant activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
64
|
|
65
|
Yang M, Sun P, Fan Z, Khan A, Xue Q, Wang Y, Cao J, Cheng G. Safety evaluation and hypolipidemic effect of aqueous-ethanol and hot-water extracts from E Se tea in rats. Food Chem Toxicol 2021; 156:112506. [PMID: 34389369 DOI: 10.1016/j.fct.2021.112506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 01/18/2023]
Abstract
E Se tea, processed by the fresh leaves of Malus toringoides (Rehd.) Hughes, is a traditional herbal tea with various human benefits. The present study was aimed to evaluate the toxicity and hypolipidemic effect of aqueous-ethanol extract (EE) and hot-water extract (WE) from E Se tea. Eight main chemical constituents in EE and WE were respectively identified and quantified by UHPLC-HRMS/MS. EE is rich in TPC and TFC, while WE had higher TPS content. Both EE and WE exhibited strong antioxidant activity with no significant difference. The acute toxicity study revealed that the LD50 values were higher than 5000 mg/kg, while both WE and EE had no significant adverse effect in rats by subacute toxicity assay. However, the triglyceride (TG) content in experiment groups (male) and highest doses groups (female) significantly decreased. Furthermore, the hypolipidemic effect of WE and EE were performed on high fat diet induced hyperlipidemic rats. The result exhibited that either WE or EE could effectively regulate lipid droplet accumulation in liver, and reduce the adipocyte size. These results demonstrated that these two extracts from E Se tea could be regarded as a potential functional dietary supplement in preventing and treating diet induced metabolic diseases.
Collapse
Affiliation(s)
- Meilian Yang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Pengzhen Sun
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhifeng Fan
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Yifen Wang
- Department of Science, Kunming Institute of Zoology, Kunming, 650223, China
| | - Jianxin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guiguang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
66
|
Li N, Jiang H, Yang J, Wang C, Wu L, Hao Y, Liu Y. Characterization of phenolic compounds and anti-acetylcholinase activity of coconut shells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
67
|
Variation of Phenolics (Bound and Free), Minerals, and Antioxidant Activity of Twenty-Eight Wild Edible Fruits of Twenty-Three Species from Far North Region of Cameroon. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4154381. [PMID: 34337009 PMCID: PMC8289581 DOI: 10.1155/2021/4154381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
The present study is aimed at investigating the variation of phenolics (bound and free), minerals, and antioxidant potentials of the wild edible fruits (fresh and dry) native from Far North Region of Cameroon. The results showed significant (p < 0.01) differences among fruits and species for all parameters. Bound phenolic content (mgGAE/100 g) of dry fruits (DF) ranged from 95.58 to 407.72; however, the contents were varied from 28.97 to 306.04 in fresh fruits (FF). Free phenolic content varied from 46.43 to 344.73 in DF and fold from 119.54 to 315.79 for those FF. Flavonoids (4.27-256.87 mg QE/100 g), tannins (3.24-63.42 mg CE/100 g), and anthocyanin content (8.65-168.10 mg C3GE/100 g) in fruits varied also significantly in respect with DF and FF. The mineral content analysis indicates that the wild fruits are rich in valuable macro- and trace elements. For antioxidant activities, except high 2.2-diphenyl-1-picyhydrazyl (DPPH) scavenging activity obtained with free phenolics, the bound phenolics of FF and DF had significantly high ferric reducing antioxidant power (FRAP) and 2,2-azino-bis(3-ethylbenzylthiozoline-6-sulphonic acid) (ABTS) scavenging activity. Furthermore, free and bound phenolic content was highly and positively correlated with ABTS, DPPH, and FRAP activities confirmed by the principal component analysis (F1×F2: 60.17%). The present study revealed that the wild edible fruits of twenty-three species investigated are important sources of bioactive compounds, natural antioxidants, and nutraceutical potential to prevent/to treat chronic diseases which could be benefits for the consumers.
Collapse
|
68
|
Cheng Y, Quan W, He Y, Qu T, Wang Z, Zeng M, Qin F, Chen J, He Z. Effects of postharvest irradiation and superfine grinding wall disruption treatment on the bioactive compounds, endogenous enzyme activities, and antioxidant properties of pine (Pinus yunnanensis) pollen during accelerated storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
69
|
|
70
|
Tang W, Li W, Yang Y, Lin X, Wang L, Li C, Yang R. Phenolic Compounds Profile and Antioxidant Capacity of Pitahaya Fruit Peel from Two Red-Skinned Species ( Hylocereus polyrhizus and Hylocereus undatus). Foods 2021; 10:foods10061183. [PMID: 34070235 PMCID: PMC8225021 DOI: 10.3390/foods10061183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
Pitahaya peel is a good source of bioactive polyphenols. However, the bound phenolics and their antioxidant activity remain unclear. The bound phenolics of pitahaya peel from two red-skinned species with red pulp (RP) and white pulp (WP) were released with different methods (acid, base, and composite enzymes hydrolysis). The results revealed that base hydrolysis was the most efficient method for releasing the bound phenolics from RP (11.6 mg GAE/g DW) and WP (10.5 mg GAE/g DW), which was 13.04-fold and 8.18-fold for RP and 75.07-fold and 10.94-fold for WP compared with acid hydrolysis and enzymatic hydrolysis, respectively. A total of 37 phenolic compounds were identified by UPLC-TOF/MS with most chlorogenic acid, caffeic acid, ferulic acid and p-coumaric acid in RP, whereas chlorogenic acid, caffeic acid, ferulic acid, rutin and isoquercitrin were the main compounds in WP. Regardless of the hydrolysis method, the extracts having the highest phenolic content showed the strongest antioxidant activities. The work shows that hydrolysis methods have a significant effect on the release of phenolics, and the contents of major characteristic bound phenolic compounds are related to the ecological type of pitahaya.
Collapse
Affiliation(s)
- Wanpei Tang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Wu Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Yuzhe Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Xue Lin
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
- Correspondence: (X.L.); (R.Y.); Tel.: +86-898-6619-8861 (X.L.); +86-20-8528-3448 (R.Y.)
| | - Lu Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Congfa Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Ruili Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (X.L.); (R.Y.); Tel.: +86-898-6619-8861 (X.L.); +86-20-8528-3448 (R.Y.)
| |
Collapse
|
71
|
LC-ESI-QTOF-MS/MS Profiling and Antioxidant Activity of Phenolics from Custard Apple Fruit and By-Products. SEPARATIONS 2021. [DOI: 10.3390/separations8050062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Custard apple is an edible fruit grown in tropical and subtropical regions. Due to its abundant nutrient content and perceived health benefits, it is a popular food for consumption and is utilized as a medicinal aid. Although some published research had provided the phenolic compound of custard apple, the comprehensive phenolic profiling of Australian grown custard apple is limited. Hence, this research aimed to evaluate the phenolic content and antioxidant potential by various phenolic content and antioxidant assays, followed by characterization and quantification of the phenolic profile using LC-ESI-QTOF-MS/MS and HPLC-PDA. African Pride peel had the highest value in TPC (61.69 ± 1.48 mg GAE/g), TFC (0.42 ± 0.01 mg QE/g) and TTC (43.25 ± 6.70 mg CE/g), followed by Pink’s Mammoth peel (19.37 ± 1.48 mg GAE/g for TPC, 0.27 ± 0.03 mg QE/g for TFC and 10.25 ± 1.13 mg CE/g for TTC). African Pride peel also exhibited the highest antioxidant potential for TAC (43.41 ± 1.66 mg AAE/g), FRAP (3.60 ± 0.14 mg AAE/g) and ABTS (127.67 ± 4.60 mg AAE/g), whereas Pink’s Mammoth peel had the highest DPPH (16.09 ± 0.34 mg AAE/g), RPA (5.32 ± 0.14 mg AAE/g), •OH-RSA (1.23 ± 0.25 mg AAE/g) and FICA (3.17 ± 0.18 mg EDTA/g). LC-ESI-QTOF-MS/MS experiment successfully characterized 85 phenolic compounds in total, encompassing phenolic acids (20), flavonoids (42), stilbenes (4), lignans (6) and other polyphenols (13) in all three parts (pulp, peel and seeds) of custard apple. The phenolic compounds in different portions of custard apples were quantified by HPLC-PDA, and it was shown that African Pride peel had higher concentrations of the most abundant phenolics. This is the first study to provide the comprehensive phenolic profile of Australian grown custard apples, and the results highlight that each part of custard apple can be a rich source of phenolics for the utilization of custard apple fruit and waste in the food, animal feeding and nutraceutical industries.
Collapse
|
72
|
Rosan Fortunato Seixas F, Kempfer Bassoli B, Borghi Virgolin L, Chancare Garcia L, Soares Janzantti N. Physicochemical Properties and Effects of Fruit Pulps from the Amazon Biome on Physiological Parameters in Rats. Nutrients 2021; 13:nu13051484. [PMID: 33924791 PMCID: PMC8146226 DOI: 10.3390/nu13051484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to analyze the physicochemical characteristics and the effects of Amazonian pulp fruits consumption, such as araçá-boi (Eugenia stipitata), abiu grande (Pouteria caimito), araticum (Annona crassiflora), biri-biri (Averrhoa bilimbi L.), and yellow mangosteen (Garcinia xanthochymus), on hematologic, metabolic, renal, and hepatic function parameters in Wistar rats (n = 10 rats/group). The pulp of abiu had the highest levels of soluble solids, sugars, and pH. Biri-biri pulp had the highest levels of ascorbic acid and total titratable acidity, and a low pH. The araticum pulp had higher (p ≤ 0.05) ash content, total phenolic compounds, and antioxidant activity than the pulp of other analyzed fruits. No significant increase in hematocrit, nor reduction of blood glucose, plasma cholesterol, and serum levels of glutamic-pyruvic transaminase (TGP), creatinine, and urea was observed in experimental groups relative to the control group of rats after the consumption of fruits pulp. The intake of abiu and araticum pulps promoted a significant reduction (p ≤ 0.05) in total leukocytes of the experimental groups as compared to the control group and only the intake of araticum significantly increased (p ≤ 0.05) triglyceride blood levels in rats (99.50 mg/dL). The regular consumption of biri-biri pulp for 30 days significantly (p ≤ 0.05) increased serum glutamic-oxaloacetic transaminase (TGO) levels in rats (116.83 U/L) compared to the control group (98.00 U/L). More researches are needed to generate knowledge about these promising Amazonian fruits, supporting the native fruit production, in addition to promoting health in the population and sustainability in the Amazon region.
Collapse
Affiliation(s)
- Fernanda Rosan Fortunato Seixas
- Department of Health Science, Federal University of Grande Dourados, Highway Dourados/Itahum, Km 12—Unit II, 79804-970 Dourados, Brazil;
- Department of Engineering and Food Technology, São Paulo State University, R. Cristóvão Colombo, 2265—Jardim Nazareth, 15054-000 São José do Rio Preto, Brazil; (L.B.V.); (N.S.J.)
- Correspondence: ; Tel.: +55-(69)-981351440
| | - Bruna Kempfer Bassoli
- Medical School, Federal University of Roraima, Avenida Capitão Ene Garcês, n° 2413—Aeroporto, 69310-000 Boa Vista, Brazil;
| | - Lara Borghi Virgolin
- Department of Engineering and Food Technology, São Paulo State University, R. Cristóvão Colombo, 2265—Jardim Nazareth, 15054-000 São José do Rio Preto, Brazil; (L.B.V.); (N.S.J.)
| | - Laís Chancare Garcia
- Department of Health Science, Federal University of Grande Dourados, Highway Dourados/Itahum, Km 12—Unit II, 79804-970 Dourados, Brazil;
| | - Natália Soares Janzantti
- Department of Engineering and Food Technology, São Paulo State University, R. Cristóvão Colombo, 2265—Jardim Nazareth, 15054-000 São José do Rio Preto, Brazil; (L.B.V.); (N.S.J.)
| |
Collapse
|
73
|
Anti-browning effect of Rosa roxburghii on apple juice and identification of polyphenol oxidase inhibitors. Food Chem 2021; 359:129855. [PMID: 33940475 DOI: 10.1016/j.foodchem.2021.129855] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Enzymatic browning control of cloudy fruit juice with natural substances has received much attention for improving its nutritional and commercial value. This study explored the anti-browning potential of Rosa roxburghii in apple juice. The anti-browning effects and mechanisms were evaluated by serial measurements of appearance, browning index, polyphenol oxidase (PPO) activity, UPLC-QE-Orbitrap-MS identification, inhibition kinetics and molecular docking. The results showed that Rosa roxburghii juice (0.25%-1.25% w/w) could effectively inhibit browning and PPO activity of apple juice. Ascorbic acid (1.67 g/100 g) as a reducing agent was a main anti-browning factor. Furthermore, seven phenolic compounds in Rosa roxburghii were screened as PPO inhibitors. Representative phenolic inhibitors induced mixed or competitive inhibition of PPO, mainly driven by hydrophobic forces and hydrogen bonds. This work demonstrates that Rosa roxburghii is a promising natural anti-browning ingredient to control the browning of cloudy apple juice due to abundant ascorbic acid and PPO inhibitors.
Collapse
|
74
|
Phenolic profiles, bioaccessibility and antioxidant activity of plum (Prunus Salicina Lindl). Food Res Int 2021; 143:110300. [PMID: 33992320 DOI: 10.1016/j.foodres.2021.110300] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Plum (Prunus Salicina Lindl) is a rich source of phenolic compounds. However, the bound phenolics and its bioaccessibility and antioxidant activity remain unclear. Hence, the purpose of this study was to determine: 1) phenolic profiles of plum, including both free and bound phenolic fractions, 2) bioaccessibility of phenolic compounds in plum during simulated gastrointestinal digestions, 3) their antioxidant properties. A total of 17 phenolic compounds were identified by UPLC-Q-Exactive Orbitrap/MS with most epicatechin, neochlorogenic acid and procyanidin B2 in the free phenolics fraction, while catechin and epicatechin was the main compounds in the bound phenolics fraction. After the gastrointestinal digestion phase, the most bioaccessible phenolics were quercetin-pentoside (61.64%), cyanidin-3-O-glucoside (43.26%), and naringenin-7-O-β-D-glucoside (42.04%). The antioxidant capacity of both undigested plum and its digested fractions showed a positive correlation with the total phenolics, and with specific individual phenolic compounds such as neochlorogenic acid, epicatechin and procyanidin B2 in undigested plum whereas catechin, neochlorogenic acid, and epicatechin in digested one. The results confirm that bound fraction of plum contribution to the total phenolic content must be taken into account in the assessment of the improving human health effects of plum.
Collapse
|
75
|
Marinho TA, Oliveira MG, Menezes-Filho ACP, Castro CFS, Oliveira IMM, Borges LL, Melo-Reis PR, Silva-Jr NJ. Phytochemical characterization, and antioxidant and antibacterial activities of the hydroethanolic extract of Anadenanthera peregrina stem bark. BRAZ J BIOL 2021; 82:e234476. [PMID: 33681898 DOI: 10.1590/1519-6984.234476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/03/2020] [Indexed: 02/05/2023] Open
Abstract
The Brazilian Cerrado biome consists of a great variety of endemic species with several bioactive compounds, and Anadenanthera peregrina (L.) Speg is a promising species. In this study, we aimed to perform phytochemical characterization and evaluate the antioxidant and antibacterial activities against Staphylococcus aureus and Escherichia coli of the hydroethanolic extract of A. peregrina stem bark. The barks were collected in the Botanical Garden of Goiânia, Brazil. The hydroethanolic extract was obtained by percolation and subjected to physicochemical screening, total phenolic content estimation, high-performance liquid chromatography (HPLC) fingerprinting, and antioxidant (IC50 values were calculated for the 2,2-diphenyl-1-picrylhydrazyl assay - DPPH) and antibacterial activity determination. The pH of the extract was 5.21 and density was 0.956 g/cm3. The phytochemical screening indicated the presence of cardiac glycosides, organic acids, reducing sugars, hemolytic saponins, phenols, coumarins, condensed tannins, flavonoids, catechins, depsides, and depsidones derived from benzoquinones. The extract showed intense hemolytic activity. The total phenolic content was 6.40 g GAE 100 g-1. The HPLC fingerprinting analysis revealed the presence of gallic acid, catechin, and epicatechin. We confirmed the antioxidant activity of the extract. Furthermore, the extract did not inhibit the growth of E. coli colonies at any volume tested, but there were halos around S. aureus colonies at all three volumes tested. These results contribute to a better understanding of the chemical composition of A. peregrina stem bark and further support the medicinal applications of this species.
Collapse
Affiliation(s)
- T A Marinho
- Universidade Federal de Goiás - UFG, Rede Pró Centro-Oeste, Programa de Pós-graduação em Biotenologia e Biodiversidade - PGBB, Goiânia, GO, Brasil.,Instituto Federal de Educação, Ciência e Tecnologia de Goiás - IFG, Núcleo de Estudos e Pesquisas em Promoção da Saúde - NUPPS, Goiânia, GO, Brasil
| | - M G Oliveira
- Universidade Federal de Goiás - UFG, Programa de Pós-graduação em Ciências Farmacêticas, Goiânia, GO, Brasil
| | - A C P Menezes-Filho
- Instituto Federal de Ciência e Tecnologia Goiano - IFGoiano, Programa de Pós-graduação em Agroquímica - PPGAq, Rio Verde, GO, Brasil
| | - C F S Castro
- Instituto Federal de Ciência e Tecnologia Goiano - IFGoiano, Programa de Pós-graduação em Agroquímica - PPGAq, Rio Verde, GO, Brasil
| | - I M M Oliveira
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Genética, Goiânia, GO, Brasil
| | - L L Borges
- Universidade Estadual de Goiás - UEG, Programa de Pós-graduação em Recursos Naturais do Cerrado - RENAC, Anápolis, GO, Brasil
| | - P R Melo-Reis
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Ciências Ambientas e Saúde, Goiânia, GO, Brasil
| | - N J Silva-Jr
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Ciências Ambientas e Saúde, Goiânia, GO, Brasil
| |
Collapse
|
76
|
Phenolic profiles and antioxidant activities of free, esterified and bound phenolic compounds in walnut kernel. Food Chem 2021; 350:129217. [PMID: 33607410 DOI: 10.1016/j.foodchem.2021.129217] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 11/23/2022]
Abstract
The free, esterified and bound forms of 37 phenolic compounds (including hydroxybenzoic acid, hydroxycinnamic acids, flavanols, flavonols and flavones) from walnut kernel (Juglans regia L.) were investigated in this study. Results showed that the majority of walnut phenolics were presented in the free form (51.1%-68.1%), followed by bound (21.0%-38.0%) and esterified forms (9.7%-18.7%). Ellagic acid, gallic acid, ferulic acid, sinapic acid and caffeic acid were widely distributed in three forms. Differently, jeuglone, kaempferol, quercetin-7-o-β-d-glucoside and dihydroquercetin were only found in free phenolics. Among the three forms, free phenolics had the highest radical scavenging activity (IC50: DPPH, 15.5 µg/ml; ABTS, 13.6 µg/ml). The correlation coefficients between the antioxidant activities of phenolics and their corresponding contents were 0.82-0.92. More soluble phenolics (free and esterified forms) could be extracted by acetone, while methanol was better at extracting insoluble bound phenolics.
Collapse
|
77
|
Free, soluble-bound and insoluble-bound phenolics and their bioactivity in raspberry pomace. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.109995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
78
|
Cheng Y, Quan W, Qu T, He Y, Wang Z, Zeng M, Qin F, Chen J, He Z. Effects of 60Co-irradiation and superfine grinding wall disruption pretreatment on phenolic compounds in pine (Pinus yunnanensis) pollen and its antioxidant and α-glucosidase-inhibiting activities. Food Chem 2020; 345:128808. [PMID: 33316712 DOI: 10.1016/j.foodchem.2020.128808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Effects of 60Co-irradiation and superfine grinding wall disruption on the phenolic, antioxidant activity, and α-glucosidase-inhibiting potential of pine pollen were investigated. Eight soluble phenolics (SP) and insoluble-bound phenolic (IBP) compounds were characterized for the first time. After 60Co-irradiation, total phenolic content (TPC) and total flavonoid content (TFC) in SP increased by 16.90% and 14.66%, respectively; in IBP, they decreased by 53.26% and 21.57%, respectively; whereas they were unchanged in pine pollen, but antioxidant activity decreased by 29.18%-40.90%. After superfine grinding wall disruption, the TPC and TFC in IBP increased by 80.24% and 27.24%, respectively; in pine pollen, they increased by 22.66% and 10.61%, respectively; whereas they were unchanged in SP; and their antioxidant activity increased by 46.68%-58.06%. Both pretreatments had a little effect on the α-glucosidase-inhibiting activities of pine pollen. These results would be helpful in promoting the application of pine pollen in functional food.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Qu
- Yantai New Era Health Industry Co., Ltd., Yantai, Shandong 264000, China
| | - Yujie He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
79
|
Ngoua Meye Misso RL, Nsole Biteghe FA, Obiang CS, Ondo JP, Gao N, Cervantes-Cervantes M, Vignaux G, Vergeade A, Engohang-Ndong J, Mendene HE, Mabika B, Abessolo FO, Obame Engonga LC, De La Croix Ndong J. Effect of aqueous extracts of Ficus vogeliana Miq and Tieghemella africana Pierre in 7,12-Dimethylbenz(a)anthracene -induced skin cancer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113244. [PMID: 32800931 DOI: 10.1016/j.jep.2020.113244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Skin cancer is the most common form of cancer responsible for considerable morbidity and mortality. Tieghemella africana and Ficus vogeliana are used in traditional medicine to treat cancers. AIM OF THE STUDY Therefore, the aim of this study was to investigate the antioxidant, antiangiogenic and anti-tumor activities of these plant extracts. MATERIALS AND METHODS To achieve it, phytochemical screening, antioxidant activity and antiangiogenic activity were assessed. Thereafter, the anti-tumor activity was determined using skin tumorigenesis induced by 7,12-dimethylbenz[a]anthracene. RESULTS The phytochemical result analysis showed that both plant extracts were rich in polyphenols, alkaloids and terpene compounds and possessed good antioxidant activity based on DPPH radical scavenging (IC50 = 9.70 μg/mL and 4.60 μg/mL and AAI values of 5.20 and 10.88) and strong total antioxidant capacity (115.44 VtCE (mg)/g of dry plant extract and 87.37 VtCE (mg)/g of dry plant extract, respectively). Additionally, both plant extracts possessed antiangiogenic activities (IC50 = 53.43 μg/mL and 92.68 μg/mL, respectively), which correlated with significant antitumor activities when using 35 mg/kg (65.02% and 77.54%) and 70 mg/kg of extracts (81.07% and 88.18%). CONCLUSIONS In summary, this study illustrates the promising usage of Tieghemella africana and Ficus vogeliana plant extracts in treating skin cancer. However, further characterization of the extracts must be performed to isolate the most active anticancer compound.
Collapse
Affiliation(s)
| | - Fleury Augustin Nsole Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, 8700, Beverly Blvd, Los Angeles, USA
| | - Cédric Sima Obiang
- Universite des Sciences et Techniques de Masuku (USTM), Department of Chemistry, Franceville, Gabon
| | - Joseph-Privat Ondo
- Universite des Sciences et Techniques de Masuku (USTM), Department of Chemistry, Franceville, Gabon
| | - Nan Gao
- Rutgers University School of Arts & Sciences, Federated Departments of Biological Sciences, Newark, NJ, USA
| | - Miguel Cervantes-Cervantes
- Rutgers University School of Arts & Sciences, Federated Departments of Biological Sciences, Newark, NJ, USA
| | | | | | | | - Hugue Ella Mendene
- Université des Sciences de La Santé, Département de Chimie et Biochimie, Libreville, Gabon
| | - Barthelemy Mabika
- Université des Sciences de La Santé, Département D'Anatomie Pathologie, Libreville, Gabon
| | - Félix Ovono Abessolo
- Université des Sciences de La Santé, Département de Chimie et Biochimie, Libreville, Gabon
| | | | - Jean De La Croix Ndong
- Arctic Slope Regional Corporation Federal, Arlington, VA, USA; New York University, School of Medicine, Department of Orthopedic Surgery, New York, USA
| |
Collapse
|
80
|
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes (Basel) 2020. [DOI: 10.3390/pr8121566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules extracted from plant waste are presented here.
Collapse
|
81
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Dias-Audibert FL, Delafiori J, de Souza FG, Catharino RR, do Sacramento CK, Pastore GM. Chemical characterization of Eugenia stipitata: A native fruit from the Amazon rich in nutrients and source of bioactive compounds. Food Res Int 2020; 139:109904. [PMID: 33509473 DOI: 10.1016/j.foodres.2020.109904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
Eugenia stipitata is a fruit native to the Brazilian Amazonian region, belonging to the Myrtaceae family whose chemical composition has been little evidenced. In this study, we evaluated for the first time the nutritional composition, bioactive compounds and antioxidant properties of two fractions of this fruit. It was observed that the edible fraction had a higher content of minerals such as K, Ca and Mg (827.66 ± 14.51; 107.16 ± 1.54; and 75.65 ± 1.28 mg 100 g-1 dw, respectively), sucrose (38.01 ± 2.94 mg g-1 dw), fructose (17.58 ± 0.80 mg g-1 dw), and maltotetraose (1.63 ± 0.09 mg g-1 dw). In this same fraction, about 30 volatile compounds were found, mainly biciclo(3.2.1)octan-3-one, 6 (2-hydroxyethyl)-, endo-; butanoic acid, 2-methyl-, hexyl ester and p-ocimene. In turn, the seed had the highest number of compounds identified by ESI-LTQ-MS/MS (including vanillic acid, gallic acid hexoside, catechin hexoside, luteolin hexoside, among others), higher content of phenolics (142.43 ± 0.82 mg GAE g-1 dw), flavonoids (43.73 ± 0.23 mg CE g-1 dw), and antioxidant capacity (139.59 ± 2.47; 447.94 ± 2.70; and 100.07 ± 10.50 µM TE g-1 dw for DPPH, ABTS, and ORAC, respectively). These results suggest that Eugenia stipitata has excellent nutritional value and great functional potential, and may contribute to a greater commercial exploitation of this fruit, not only in food, but also in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil.
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil.
| | - Iramaia Angélica Neri-Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil
| | - Flávia Luísa Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Florisvaldo Gama de Souza
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil
| |
Collapse
|
82
|
Identification and in vitro anti-inflammatory activity of different forms of phenolic compounds in Camellia oleifera oil. Food Chem 2020; 344:128660. [PMID: 33229148 DOI: 10.1016/j.foodchem.2020.128660] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 02/01/2023]
Abstract
Camellia oleifera (C. oleifera) oil is known as "oriental olive oil". We previously reported the anti-inflammatory activity of C. oleifera oil was mainly attributed to the phenolic compounds, but the specific compounds remain uncovered. In this study, phenolic compounds in the form of free (11.92 μg GAE/g), esterified (37.57 μg GAE/g), glycosylated (128.71 μg GAE/g), and insoluble (47.53 μg GAE/g) were prepared from C. oleifera oil. Their anti-inflammatory activities were evaluated by lipopolysaccharide induced RAW 264.7 macrophage. Glycosylated fraction showed the highest anti-inflammatory activity as indicated by the low production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Subsequently, 13 different glycosylated polyphenols were identified by UPLC-Q-TOF/MS, and the major compounds were purified for anti-inflammatory re-evaluation. Lower anti-inflammatory activities of compound 3 and compound 6 were observed when compared to kaempferol. Overall, these results would promote the utilization of phenolic compounds in C. oleifera oil.
Collapse
|
83
|
Zhang B, Zhang Y, Li H, Deng Z, Tsao R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
84
|
Distribution of nutrients and functional potential in fractions of Eugenia pyriformis: An underutilized native Brazilian fruit. Food Res Int 2020; 137:109522. [DOI: 10.1016/j.foodres.2020.109522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 01/26/2023]
|
85
|
Peixoto Araujo NM, Arruda HS, dos Santos FN, de Morais DR, Pereira GA, Pastore GM. LC-MS/MS screening and identification of bioactive compounds in leaves, pulp and seed from Eugenia calycina Cambess. Food Res Int 2020; 137:109556. [DOI: 10.1016/j.foodres.2020.109556] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/17/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
|
86
|
Ethanol extracts from Cinnamomum camphora seed kernel: Potential bioactivities as affected by alkaline hydrolysis and simulated gastrointestinal digestion. Food Res Int 2020; 137:109363. [DOI: 10.1016/j.foodres.2020.109363] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/17/2023]
|
87
|
Aguiar LM, Bicas JL, Fuentes E, Alarcón M, Gonzalez IP, Pastore GM, Maróstica MR, Cazarin CBB. Non-nutrients and nutrients from Latin American fruits for the prevention of cardiovascular diseases. Food Res Int 2020; 139:109844. [PMID: 33509467 DOI: 10.1016/j.foodres.2020.109844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Non-communicable diseases (NCDs) have been rapidly increasing; among them, cardiovascular diseases (CVDs) are responsible for around 1/3 of deaths in the world. Environmental factors play a central role in their development. Diet is a very important factor in this scenario, and the intake of fruits and vegetables has been considered as one of the critical strategies for reducing the risk of CVDs. Fruits are a source of micronutrients and bioactive compounds that could have cardioprotective effects through several distinct mechanisms, such as antioxidant, antithrombotic and antiplatelet activities, vasodilatation, improvement of plasma lipid profiles, and modulation of inflammatory signaling. Brazil has a very rich and unexplored biodiversity in its different biomes, with several types of fruit, which are a source of bioactive compounds and micronutrients with therapeutic properties. In this sense, this review shows the current knowledge regarding the cardioprotective properties of selected Latin American and Brazilian fruits, including their effects on the activation of platelets and on the inflammation processes involved in atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Lais Marinho Aguiar
- University of Campinas, School of Food Engineering, Rua Monteiro Lobato, 80, Zip Code 13083-862, Campinas/SP, Brazil
| | - Juliano Lemos Bicas
- University of Campinas, School of Food Engineering, Rua Monteiro Lobato, 80, Zip Code 13083-862, Campinas/SP, Brazil
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 2 norte 685, Talca, Chile.
| | - Marcelo Alarcón
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 2 norte 685, Talca, Chile.
| | - Ivan Palomo Gonzalez
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 2 norte 685, Talca, Chile.
| | - Gláucia Maria Pastore
- University of Campinas, School of Food Engineering, Rua Monteiro Lobato, 80, Zip Code 13083-862, Campinas/SP, Brazil.
| | - Mário Roberto Maróstica
- University of Campinas, School of Food Engineering, Rua Monteiro Lobato, 80, Zip Code 13083-862, Campinas/SP, Brazil.
| | - Cinthia Baú Betim Cazarin
- University of Campinas, School of Food Engineering, Rua Monteiro Lobato, 80, Zip Code 13083-862, Campinas/SP, Brazil.
| |
Collapse
|
88
|
Yüksekkaya Ş, Başyiğit B, Sağlam H, Pekmez H, Cansu Ü, Karaaslan A, Karaaslan M. Valorization of fruit processing by-products: free, esterified, and insoluble bound phytochemical extraction from cherry (Prunus avium) tissues and their biological activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00698-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
89
|
Leite DOD, de F. A. Nonato C, Camilo CJ, de Carvalho NKG, da Nobrega MGLA, Pereira RC, da Costa JGM. Annona Genus: Traditional Uses, Phytochemistry and Biological Activities. Curr Pharm Des 2020; 26:4056-4091. [DOI: 10.2174/1381612826666200325094422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/08/2020] [Indexed: 12/16/2022]
Abstract
Species from the Annona (Anonaceae) genus are used in traditional medicine for the treatment of various
diseases. Ethnobotanical studies provide information regarding the plant part and the preparation method
being used, while scientific studies such as in vitro, in vivo, and clinical tests can provide evidence supporting
ethnopharmacological reports, directing studies towards the isolation of compounds which may be active for
specific pathologies. Annona muricata and Annona squamosa were the most commonly reported species from
those studied, with Annona cherimola and Annona classiflora also standing out. Acetogenins were the most
commonly isolated metabolite class due to their cytotoxic properties, with flavonoids, alkaloids, steroids, and
peptides also being reported. Many species from the Annona genus have proven biological activities, such as
antitumor, antioxidant, antimicrobial and antifungal. The present review had as its objective to facilitate access to
ethnobotanical, chemical and biological information in order to direct future researches.
Collapse
Affiliation(s)
- Débora O. D. Leite
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Carla de F. A. Nonato
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Cicera J. Camilo
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Natália K. G. de Carvalho
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Mário G. L. A. da Nobrega
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Rafael C. Pereira
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - José G. M. da Costa
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| |
Collapse
|
90
|
Adeleke BS, Babalola OO. Oilseed crop sunflower ( Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci Nutr 2020; 8:4666-4684. [PMID: 32994929 PMCID: PMC7500752 DOI: 10.1002/fsn3.1783] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
The use of biofertilizers in developing environmentally friendly agriculture as an alternative to chemical-based fertilizers in enhancing food production is promising in sustainable agriculture for the improvement in the yield of some commercial crops such as sunflowers and other oilseed crops in terms of quality and quantity. Sunflower is an important oilseed crop native to South America and currently cultivated throughout the world. Generally, the sunflower is considered important based on its nutritional and medicinal value. Due to its beneficial health effects, sunflower has been recognized as functional foods or nutraceutical, although not yet fully harnessed. Sunflower contains mineral elements and phytochemicals such as dietary fiber, manganese, vitamins, tocopherols, phytosterols, triterpene glycosides, α-tocopherol, glutathione reductase, flavonoids, phenolic acids, carotenoids, peptides, chlorogenic acid, caffeic acid, alkaloids, tannins, and saponins; and these compounds contribute to their functional and nutraceutical development. The extract from sunflower is known to be a potential source of antimicrobial, anti-inflammatory, antitumor, and antioxidants agents that protect human cells against harmful reactive oxygen molecules and pathogenic microorganisms. Also, the pharmacological survey on sunflower had revealed its curative power to different kinds of diseases. The health benefits of sunflower include blood pressure and diabetic control, skin protection, and lowering cholesterol and other functions. This review is written with appropriate referencing to previously published work and provides updated information regarding the new method of organic farming for sunflower production, nutritional and health benefits, and its by-products as human diet and livestock feed. Also, the constraints of sunflower production are elucidated.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area Faculty of Natural and Agricultural Sciences North-West University Mmabatho South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area Faculty of Natural and Agricultural Sciences North-West University Mmabatho South Africa
| |
Collapse
|
91
|
Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109643] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
92
|
Neri-Numa IA, Pessôa MG, Arruda HS, Pereira GA, Paulino BN, Angolini CFF, Ruiz ALTG, Pastore GM. Genipap (Genipa americana L.) fruit extract as a source of antioxidant and antiproliferative iridoids. Food Res Int 2020; 134:109252. [DOI: 10.1016/j.foodres.2020.109252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022]
|
93
|
New Advances in the Determination of Free and Bound Phenolic Compounds of Banana Passion Fruit Pulp ( Passiflora tripartita, var. Mollissima (Kunth) L.H. Bailey) and Their In Vitro Antioxidant and Hypoglycemic Capacities. Antioxidants (Basel) 2020; 9:antiox9070628. [PMID: 32708874 PMCID: PMC7402170 DOI: 10.3390/antiox9070628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Banana passion fruit (Passiflora tripartite L.H. Bailey) is a lesser known species of the genus Passiflora. This fruit typically grows in the Andean region of Ecuador and it is locally known as tumbo, taxo or curuba. The juice of this fruit is highly appreciated in South America. Extracts of banana passion fruit were characterized for their content levels of free and bound phenolic compounds by high performance liquid chromatography coupled to high resolution mass spectrometry detector (HPLC-ESI-TOF-MS). A total of 82 polar compounds classified as phenolic acid derivatives, organic acids, benzophenones, flavan-3-ols, flavonols and flavones were detected in the extracts. The total phenolic content was 2356 mg 100 g-1 dry matter, with the bound phenolic fraction representing 37.7% of total amounts. Flavan-3-ols, such as (epi)catechin, (epi)azfelechin and their derivatives, were the main phenolic compounds in the free phenolic fraction; however, phenolic acids represented the most abundant class of bound phenolic extracts. The antioxidant and hypoglycemic capacities reported for banana passion fruit were higher than for other fruits. To our knowledge, this is the first time that bound phenolic compounds have been described in banana passion fruit pulp.
Collapse
|
94
|
Wang X, Contreras MDM, Xu D, Xing C, Wang L, Yang D. Different distribution of free and bound phenolic compounds affects the oxidative stability of tea seed oil: A novel perspective on lipid antioxidation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
95
|
High-intensity ultrasound-assisted recovery of cinnamyl alcohol glycosides from Rhodiola rosea roots: Effect of probe diameter on the ultrasound energy performance for the extraction of bioactive compounds. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
96
|
Valanciene E, Jonuskiene I, Syrpas M, Augustiniene E, Matulis P, Simonavicius A, Malys N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020; 10:E874. [PMID: 32517243 PMCID: PMC7356249 DOI: 10.3390/biom10060874] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biotechnological production of phenolic acids is attracting increased interest due to their superior antioxidant activity, as well as other antimicrobial, dietary, and health benefits. As secondary metabolites, primarily found in plants and fungi, they are effective free radical scavengers due to the phenolic group available in their structure. Therefore, phenolic acids are widely utilised by pharmaceutical, food, cosmetic, and chemical industries. A demand for phenolic acids is mostly satisfied by utilising chemically synthesised compounds, with only a low quantity obtained from natural sources. As an alternative to chemical synthesis, environmentally friendly bio-based technologies are necessary for development in large-scale production. One of the most promising sustainable technologies is the utilisation of microbial cell factories for biosynthesis of phenolic acids. In this paper, we perform a systematic comparison of the best known natural sources of phenolic acids. The advances and prospects in the development of microbial cell factories for biosynthesis of these bioactive compounds are discussed in more detail. A special consideration is given to the modern production methods and analytics of phenolic acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (E.V.); (I.J.); (M.S.); (E.A.); (P.M.); (A.S.)
| |
Collapse
|
97
|
Silva EK, Arruda HS, Pastore GM, Meireles MAA, Saldaña MDA. Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. ULTRASONICS SONOCHEMISTRY 2020; 63:104942. [PMID: 31945564 DOI: 10.1016/j.ultsonch.2019.104942] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/05/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The effects of the high-intensity ultrasound (HIUS) technology at the nominal powers of 300, 600, 900, and 1200 W were evaluated on the chemical stability of xylooligosaccharides (XOS) used to enrich orange juice. The ultrasound energy performance for each nominal power applied to the XOS-enriched orange juice was determined by calculating acoustic powers (W), HIUS intensity (W/cm2), and energy density (kJ/mL). Physicochemical properties (pH and soluble solid content), organic acid content (ascorbic, malic, and citric acids), total phenolic content (TPC), antioxidant activity by the FRAP (Ferric reducing ability of plasma) method, sugar (glucose, fructose, and sucrose), and XOS (xylobiose, xylotriose, xylotetraose, xylopentaose, and xylohexaose) content were determined. The pH and soluble solid content did not change after all HIUS treatments. The HIUS process severity was monitored by quantifying ascorbic acid content after the treatments. A significant linear decrease in the ascorbic acid content was observed in prebiotic orange juice with the HIUS process intensification by increasing nominal power. The malic acid and citric acid contents had similar behavior according to the HIUS process intensification. The nominal power increase from 300 to 600 W increased the concentration of both organic acids, however, the intensification up to 1200 W reduced their concentration in the functional beverage. The TPC and FRAP data corroborated with the results observed for the ascorbic acid content. However, the HIUS processing did not alter sugar and XOS contents. The XOS chromatographic profiles were not modified by the HIUS treatment and presented the same amount of all prebiotic compounds before and after the HIUS treatment. Overall, HIUS technology has been evaluated as a promising stabilization technique for prebiotic beverages enriched with XOS due to their high chemical stability to this emerging technology under severe process conditions.
Collapse
Affiliation(s)
- Eric Keven Silva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; LASEFI/DEA/FEA (School of Food Engineering)/University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP CEP 13083-862, Brazil
| | - Henrique S Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP CEP 13083-862, Brazil
| | - Glaucia M Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP CEP 13083-862, Brazil
| | - M Angela A Meireles
- LASEFI/DEA/FEA (School of Food Engineering)/University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP CEP 13083-862, Brazil
| | - Marleny D A Saldaña
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
98
|
Alkaline conditions better extract anti-inflammatory polysaccharides from winemaking by-products. Food Res Int 2020; 131:108532. [DOI: 10.1016/j.foodres.2019.108532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
|
99
|
Guimarães JT, Silva EK, Arruda HS, Freitas MQ, Pastore GM, Meireles MAA, Cruz AG. How does the degree of inulin polymerization affect the bioaccessibility of bioactive compounds from soursop whey beverage during in vitro gastrointestinal digestion? Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
100
|
Mutamba (Guazuma ulmifolia Lam.) fruit as a novel source of dietary fibre and phenolic compounds. Food Chem 2020; 310:125857. [DOI: 10.1016/j.foodchem.2019.125857] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/09/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
|