51
|
Quantitative analysis of fourteen heterocyclic aromatic amines in bakery products by a modified QuEChERS method coupled to ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Food Chem 2019; 298:125048. [DOI: 10.1016/j.foodchem.2019.125048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 05/05/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
|
52
|
Gao Y, Yang S, Li X, He L, Zhu J, Mu W, Liu F. Residue determination of pyraclostrobin, picoxystrobin and its metabolite in pepper fruit via UPLC-MS/MS under open field conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109445. [PMID: 31330408 DOI: 10.1016/j.ecoenv.2019.109445] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
In this study, a new, high-efficiency and sensitive method was determined to simultaneous analyze the residue of pyraclostrobin, picoxystrobin and its metabolite BF-500-3 in pepper fruit using modified QuEChERS pretreatment combined with ultra performance liquid chromatography-tandem mass spectrometry. The clean-up steps of QuEChERS procedure were optimized using the chemometric tools. Models of stepwise regression and surface response demonstrated that the optimal sorbent mixtures were 40 mg nano-zirconia + 10 mg C18 for pyraclostrobin and picoxystrobin and 30 mg nano-zirconia + 20 mg C18 for BF-500-3. The optimized purification procedures provided satisfactory recoveries for all tested fungicides with rates between 91% and 107% and relative standard deviations between 3.7% and 9.6%. The limits of detection and quantification were in the range of 0.0360-0.272 μg/kg and 0.120-0.910 μg/kg. Based on this method, the dissipation of pyraclostrobin, picoxystrobin and its metabolite in pepper fruit were determined under field conditions. Pyraclostrobin and picoxystrobin degraded rapidly with half-lives of 5.53-7.02 and 5.97-7.82 days and 5.09 and 5.68 days in 2016 and 2017, respectively. The residue levels of BF-500-3 increased first and then decreased. The terminal residues of all fungicides were below the maximum residue limits (MRLs). This research can not only provide guidance for the reasonable usage of pyraclostrobin and picoxystrobin in agriculture but also give a reference for the Chinese government to establish the MRL for pyraclostrobin in pepper.
Collapse
Affiliation(s)
- Yangyang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Song Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiaoxu Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Lifei He
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jiamei Zhu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
53
|
Yang J, Yu H, Tang Q. Simultaneous determination of evobrutinib and its metabolite evobrutinib-diol in dog plasma by liquid chromatography combined with electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2019; 33:e4575. [PMID: 31069837 DOI: 10.1002/bmc.4575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 11/06/2022]
Abstract
A rapid and sensitive liquid chromatography hyphenated with electrospray ionization tandem mass spectrometric method (LC-ESI-MS/MS) was developed and validated for simultaneous determination of evobrutinib and evobrutinib-diol in dog plasma. The plasma sample was processed using acetonitrile and chromatographic separation was carried out on a Waters Acquity BEH C18 column (50 × 2.1 mm, 1.7 μm). The mobile phase was composed of 0.1% formic acid and acetonitrile, with an optimized gradient elution at a flow rate of 0.4 mL/min. Detection was accomplished in selective reaction monitoring mode via electrospray ionization interface operated in positive ion mode. The precursor-to-product transitions for quantification were m/z 430.2 → 98.1 for evobrutinib, m/z 464.2 → 98.1 for evobrutinib-diol and m/z 441.2 → 138.1 for ibrutinib (internal standard). The developed assay was linear over the tested concentration ranges with correlation coefficient >0.995. The LLOQ was 0.1 ng/mL for both analytes. The inter- and intra-day precisions were <9.65% and the accuracy ranged from -3.94 to 6.37%. The extraction recovery was >85.41% and no significant matrix effect was observed. The developed assay was successfully applied to the pharmacokinetic study of evobrutinib and evobrutinib-diol in dogs after oral administration of evobrutinib at a single dose of 5 mg/kg.
Collapse
Affiliation(s)
- Jie Yang
- Department of Pharmacy, Shandong Provincial Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Haiyang Yu
- Department of Pharmacy, Shandong Provincial Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Qingmeng Tang
- Department of Pharmacy, Shandong Provincial Jining No.1 People's Hospital, Jining, Shandong Province, China
| |
Collapse
|
54
|
Determination of mycotoxins in nuts by ultra high-performance liquid chromatography-tandem mass spectrometry: Looking for a representative matrix. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
55
|
Raúl C, Kim UJ, Kannan K. Occurrence and human exposure to bromate via drinking water, fruits and vegetables in Chile. CHEMOSPHERE 2019; 228:444-450. [PMID: 31051346 DOI: 10.1016/j.chemosphere.2019.04.171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Bromate (BrO3-) is an anionic contaminant known possess carcinogenic potential. Although some studies have reported the occurrence of bromate in drinking water, very little is known about its presence in fruits and vegetables, especially in Chile. In this study, we quantified bromate in soils (n = 29), drinking water (n = 43), surface water (n = 6), groundwater (n = 6), fertilizers (n = 7), fruits (n = 12) and vegetables (n = 42) collected across Chile. The highest average concentrations of bromate in soils (11.7 ng g-1) and drinking water (8.8 ng mL-1) were found in northern Chile. Additionally, drinking water collected from four regions of Chile showed higher concentrations of bromate (median:18.5 ng mL-1) than the maximum contaminant level (MCL, 10 ng mL-1). Concentrations of bromate in nitrogenous and non-nitrogenous fertilizers were similar (median: 2.51 μg g-1). Leafy vegetables (median: 9.52 ng g-1) produced in the northern Chile contained higher bromate concentrations than those produced in other regions (median: 0.24 ng g-1). The estimated daily intakes of bromate via drinking water in northern, central and southern were ranged between 58.6 and 447 ng/kg bw/d. Leafy vegetables were an important source of bromate for all age group. The EDI values were below the respective reference dose (RfD) of 4000 ng/kg-day.
Collapse
Affiliation(s)
- Calderon Raúl
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa, 11610, Santiago, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
| | - Un-Jung Kim
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201-0509, United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201-0509, United States
| |
Collapse
|
56
|
Qian M, Zhang X, Zhao H, Ji X, Li X, Wang J, Wu H, Xu J, Li Z. A high‐throughput screening method for determination of multi‐antibiotics in animal feed. J Sep Sci 2019; 42:2968-2976. [DOI: 10.1002/jssc.201900144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/10/2019] [Accepted: 07/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Mingrong Qian
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Xiaoming Zhang
- College of Chemical EngineeringZhejiang University of Technology Hangzhou P. R. China
| | - Huiyu Zhao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Xiaofeng Ji
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Xiaodan Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Jianmei Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Huizhen Wu
- College of Biology and Environmental EngineeringZhejiang Shuren University Hangzhou P. R. China
| | - Jie Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Zuguang Li
- College of Chemical EngineeringZhejiang University of Technology Hangzhou P. R. China
| |
Collapse
|
57
|
Song NE, Seo DH, Choi JY, Yoo M, Koo M, Nam TG. Dispersive Solid-Liquid Extraction Coupled with LC-MS/MS for the Determination of Sulfonylurea Herbicides in Strawberries. Foods 2019; 8:foods8070273. [PMID: 31336601 PMCID: PMC6678714 DOI: 10.3390/foods8070273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 11/16/2022] Open
Abstract
The monitoring of food quality and safety requires a suitable analytical method with simultaneous detection in order to control pesticide and herbicide residues. In this study, a novel analytical method, referred to as “dispersive solid–liquid extraction”, was applied to monitor seven sulfonylurea herbicides in strawberries. This method was optimized in terms of the amount of C18 and the volume of added water, and it was validated through satisfactory linearities (R2 > 0.99), recoveries of 70% to 84% with acceptable precisions, and limits of quantification lower than the maximum residue limits for the seven sulfonylurea herbicides in strawberries. The cleanup efficiency of the dispersive solid–liquid extraction technique was compared to that of the QuEChERS- (“quick, easy, cheap, effective, rugged and safe”) based method with dispersive solid phase extraction. The recoveries of the former were found to be comparable to those involving QuEChERS C18 cleanup (recoveries of 74%–87%). The method was used to determine sulfonylurea herbicide residues in ten strawberry samples. None of the samples had herbicide residues higher than that of limit of quantifications (LOQs) or maximum residue limits (MRLs). The results suggest that the dispersive solid–liquid extraction method combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) is effective for the analysis of sulfonylurea herbicide residues in strawberries.
Collapse
Affiliation(s)
- Nho-Eul Song
- Food Analysis Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Dong-Ho Seo
- Food Analysis Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Ji Yeon Choi
- Food Analysis Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Miyoung Yoo
- Food Analysis Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Minseon Koo
- Food Analysis Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Tae Gyu Nam
- Food Analysis Center, Korea Food Research Institute, Wanju 55365, Korea.
| |
Collapse
|
58
|
Disposable Pipette Extraction (DPX) Coupled with Liquid Chromatography–Tandem Mass Spectrometry for the Simultaneous Determination of Pesticide Residues in Wine Samples. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01569-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
59
|
Amiri A, Tayebee R, Abdar A, Narenji Sani F. Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. J Chromatogr A 2019; 1597:39-45. [DOI: 10.1016/j.chroma.2019.03.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
|
60
|
Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
61
|
Xiao H, Chen C, Li C, Huang Q, Fu X. Physicochemical characterization, antioxidant and hypoglycemic activities of selenized polysaccharides from Sargassum pallidum. Int J Biol Macromol 2019; 132:308-315. [PMID: 30910676 DOI: 10.1016/j.ijbiomac.2019.03.138] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/23/2022]
Abstract
This study was carried out to study the effects of selenylation on physicochemical and biological properties of polysaccharide (SPP) extracted from Sargassum pallidum. The selenized derivative of SPP (Se-SPP) with the selenium content of 2419 μg/g was synthesized by sodium selenite/dilute nitric acid method. Physicochemical characterization indicated that selenylation modification resulted in some changes in chemical composition, monosaccharide composition, molecular weight and surface morphology of polysaccharides. FT-IR spectroscopy showed that a new absorption peak appeared at 675 cm-1 in Se-SPP probably due to the substitution of selenyl groups. Bioactivity assay showed that Se-SPP exhibited higher scavenging radical activities and ferrous ion chelating activities than native SPP. Compared with SPP and acarbose, Se-SPP showed more significantly inhibitory effect on α-glucosidase activity in a noncompetitive inhibition type. The IC50 values of SPP, Se-SPP and acarbose were determined as 1.579, 0.896 and 2.742 mg/mL, respectively. These results suggest that Se-SPP can be used to develop a new selenium-complementary ingredient in functional foods.
Collapse
Affiliation(s)
- Heng Xiao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chun Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
62
|
Senes CER, Nicácio AE, Rodrigues CA, Manin LP, Maldaner L, Visentainer JV. Evaluation of Dispersive Solid-Phase Extraction (d-SPE) as a Clean-up Step for Phenolic Compound Determination of Myrciaria cauliflora Peel. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01566-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
63
|
Investigation of 8 exogenous medicines illegally added into Guangdong herbal teas by solid phase extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
64
|
Jakubus A, Gromelski M, Jagiello K, Puzyn T, Stepnowski P, Paszkiewicz M. Dispersive solid-phase extraction using multi-walled carbon nanotubes combined with liquid chromatography–mass spectrometry for the analysis of β-blockers: Experimental and theoretical studies. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
65
|
Determination of N-nitrosamines in water resources using Al-AC sorbent for stir-bar supported micro-solid-phase extraction coupled with gas chromatography mass-spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
66
|
Boon YH, Mohamad Zain NN, Mohamad S, Osman H, Raoov M. Magnetic poly(β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chem 2019; 278:322-332. [DOI: 10.1016/j.foodchem.2018.10.145] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
|
67
|
Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Câmara JS. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 2019; 1070:1-28. [PMID: 31103162 DOI: 10.1016/j.aca.2019.02.036] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Collapse
Affiliation(s)
- Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
68
|
Ezzeldin E, Iqbal M, Al-Salahi R, El-Nahhas T. Development and validation of a UPLC-MS/MS method for determination of motesanib in plasma: Application to metabolic stability and pharmacokinetic studies in rats. J Pharm Biomed Anal 2019; 166:244-251. [DOI: 10.1016/j.jpba.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 01/12/2019] [Indexed: 01/05/2023]
|
69
|
Multi-Steps Fragmentation-Ion Trap Mass Spectrometry Coupled to Liquid Chromatography Diode Array System for Investigation of Olaparib Related Substances. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24050843. [PMID: 30818845 PMCID: PMC6429096 DOI: 10.3390/molecules24050843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Abstract
A high-performance liquid chromatography-diode array-mass spectrometric (LC-DAD-MS) method was developed and validated to investigate the related substances of olaparib (OLA) in bulk form. OLA was exposed to acid–base hydrolysis, boiling, oxidation with hydrogen peroxide, and UV light followed by LC-DAD-MS analysis. OLA and OLA-related substances were simultaneously and quantitatively monitored by DAD at 278 nm and triple quadrupole mass spectrometry (QQQ-MS). The investigated compounds were auto-scanned by an ion trap MS which applied positive and negative modes separately. The fragmentation pathway was confirmed by applying multi-steps fragmentation to identify the resulted cleaved ions and their parent ion. OLA was found to be sensitive to the alkaline hydrolysis and less sensitive to UV light. Two major hydrolytic degradation products, including the protonated molar ions m/z 299 and m/z 367, were identified. Three potential impurities were also characterized. The LC-MS limit of detection (LOD) and limit of quantification (LOQ) were 0.01 and 0.05 ng/µL, respectively. The quantitative results obtained by LC-DAD was comparable with that of LC-QQQ-MS. The proposed method shows good intra-day and inter-day precision with relative standard deviation (RSD) <2%.
Collapse
|
70
|
Yu Y, You J, Sun Z, Ji Z, Hu N, Zhou W, Zhou X. HPLC determination of γ-aminobutyric acid and its analogs in human serum using precolumn fluorescence labeling with 4-(carbazole-9-yl)-benzyl chloroformate. J Sep Sci 2019; 42:826-833. [PMID: 30593727 DOI: 10.1002/jssc.201801108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 11/08/2022]
Abstract
In this study, a simple analytical method for the determination of γ-aminobutyric acid, gabapentin, and baclofen by using high-performance liquid chromatography with fluorescence detection was developed. An amidogen-reactive fluorescence labeling reagent, 4-(carbazole-9-yl)-benzyl chloroformate was first used to sensitively label these analytes. The completed labeling of these analytes can be finished rapidly only within 5 min at the room temperature (25°C) to form 4-(carbazole-9-yl)-benzyl chloroformate labeled fluorescence derivatives. These labeled derivatives expressed strong fluorescence property with the maximum excitation and emission wavelengths of 280 and 380 nm, respectively. The labeled derivatives were analyzed using a reversed-phase Eclipse SB-C18 column within 10 min with satisfactory shapes. Excellent linearity (R2 > 0.995) for all analytes was achieved with the limits of detection and the limits of quantitation in the range of 0.25-0.35 and 0.70-1.10 μg/L, respectively. The proposed method was used for the simultaneous determination of γ-aminobutyric acid and its analogs in human serum with satisfactory recoveries in the range of 94.5-97.5%.
Collapse
Affiliation(s)
- Yanxin Yu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China.,Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, P. R. China
| | - Jinmao You
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China.,Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, P. R. China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, P. R. China
| | - Zhongyin Ji
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China
| | - Wu Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China
| | - Xuxia Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
71
|
Xian Y, Wu Y, Dong H, Chen L, Zhang C, Hou X, Zeng X, Bai W, Guo X. Modified QuEChERS purification and Fe 3O 4 nanoparticle decoloration for robust analysis of 14 heterocyclic aromatic amines and acrylamide in coffee products using UHPLC-MS/MS. Food Chem 2019; 285:77-85. [PMID: 30797378 DOI: 10.1016/j.foodchem.2019.01.132] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 01/08/2023]
Abstract
Based on QuEChERS dispersed purification, Fe3O4 nanoparticle decoloration and UHPLC-MS/MS, a robust and sensitive method was established for simultaneous analysis of 14 heterocyclic aromatic amines (HAAs) and acrylamide (AA) in coffee products. Sample was extracted by 90% acetonitrile water (v/v), dispersed with primary secondary amine (PSA) and further purified with Fe3O4 nanoparticle. Then, 15 analytes were detected using ESI positive ion under MRM mode. Good linearity was observed for all analytes in the range of 0.2-100 μg/L with the determination coefficients being above 0.996. Limits of detection (S/N ≥ 3) and limits of quantification (S/N ≥ 10) were in the range of 0.02-0.15 µg/L and 0.2-0.7 µg/L, respectively. The intra-day average recoveries were between 81.6% and 100%, and the intra-day precisions ranged from 4.3% to 9.0%. The inter-day average recoveries were in the range of 81.0-101% with precisions ranging from 5.0% to 7.8%. Results indicated that the combination of PSA and Fe3O4 exhibited superior purification and adsorption effects for removing pigments and acid compounds. Real samples analysis indicated that coffee products were widely contaminated with AA, harman and norharman.
Collapse
Affiliation(s)
- Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Liwei Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Chi Zhang
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xindong Guo
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| |
Collapse
|
72
|
Chen J, Deng W, Li X, Wang X, Xiao Y. Hexafluoroisopropanol/Brij-35 based supramolecular solvent for liquid-phase microextraction of parabens in different matrix samples. J Chromatogr A 2019; 1591:33-43. [PMID: 30660441 DOI: 10.1016/j.chroma.2019.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 11/18/2022]
Abstract
A novel supramolecular solvent (SUPRAS) based on hexafluoroisopropanol (HFIP)/Brij-35 was proposed for liquid-phase microextraction (LPME) of parabens in water samples, pharmaceuticals and personal care products. Brij-35 is a cost-effective and non-toxic non-ionic surfactant, but it has a high cloud point (>100 °C). HFIP, with the features of strong hydrogen-bond donor, high density and powerful hydrophobicity, was used as the cloud point-reducing agent and self-assembling and density-regulating solvent of Brij-35. Upon adding HFIP into the Brij-35 aqueous solution, the cloud point of Brij-35 was decreased to below room temperature, and the SUPRAS was formed in the bottom over a wide range of HFIP and Brij-35 concentrations at room temperature. The SUPRAS was composed of Brij-35, HFIP and water, having a density larger than water, and it showed a large spherical structure of positive micellar aggregates (2-8 μm). The HFIP/ Brij-35 SUPRAS-based LPME procedure was non-thermodependent and could be performed at room temperature with centrifugation using normal centrifuge tubes, being very simple. In the extraction of six parabens, the HFIP/ Brij-35 SUPRAS-based LPME method showed short extraction time (3.3 min), low solvent consumption (0.3 mL), and large enrichment factor (26-193). The method of HFIP/ Brij-35 SUPRAS-based LPME with HPLC-DAD gave good linearity for the quantification of parabens with correlation coefficients larger than 0.9990. The limits of detection based on a signal-to-noise ratio of 3 were from 0.042 to 0.167 μg L-1. The recoveries for the spiked real samples were in the range of 90.2-112.4% with relative standard deviation less than 8.9%. Except for tap water, one or several paraben (s) were detected in all the other real samples.
Collapse
Affiliation(s)
- Jia Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenwen Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiao Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuanxuan Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuxiu Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
73
|
Zheng Y, Cai D, Huang B, Han J, Chen Q, Zhang J, Zhang J, Wang X, Shen H. Simultaneous detection of multiple hydroxylated polychlorinated biphenyls from biological samples using ultra-high-performance liquid chromatography with isotope dilution tandem mass spectrometry. J Sep Sci 2018; 42:760-768. [PMID: 30481391 DOI: 10.1002/jssc.201800831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/11/2018] [Accepted: 11/23/2018] [Indexed: 11/06/2022]
Abstract
We established a method for the separation and detection of nine hydroxylated polychlorinated biphenyls in whole blood and urine samples using ultra high performance liquid chromatography coupled with electrospray negative ionization tandem mass spectrometry. Clean-up procedures involved a filtration step, and optimization involved a pretreatment step consisting of a simple liquid-liquid extraction using hydrated silica-gel chromatography (5%). Nine hydroxylated polychlorinated biphenyls were separated on an ultra high performance liquid chromatography HSS T3 column using a gradient elution program of 2 mmol ammonium formate aqueous solution (A) and methanol (B). Recovery ranged from 84.0 to 105.4% for the nine different hydroxylated polychlorinated biphenyls in urine with three spiked levels of 0.1, 1, and 2 ng and from 73.5 to 98.6% for the blood with spiked levels of 0.2, 1, and 2 ng. The relative standard deviations were <8.7% (n = 6), and the limits of detection in urine and whole blood for the nine hydroxylated polychlorinated biphenyls were in the range of 1.5-4 and 20-100 pg/g, respectively. This analytical method may enable the simultaneous detection of various hydroxylated polychlorinated biphenyls from complex tissue matrices.
Collapse
Affiliation(s)
- Yibin Zheng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, P. R. China
| | - Delei Cai
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, P. R. China
| | - Baifen Huang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, P. R. China
| | - Jianlong Han
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, P. R. China
| | - Qing Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, P. R. China
| | - Jingshun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, P. R. China
| | - Jie Zhang
- Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, P. R. China
| | - Haitao Shen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, P. R. China
| |
Collapse
|
74
|
Wu H, Liu Y, Chang J, Zhao B, Huo Y, Wang Z, Shi Y. Extraction of Five Fluoroquinolones in Eggs by Magnetic Solid-Phase Extraction with Fe3O4–MoS2 and Determination by HPLC-UV. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1404-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
75
|
Zhang L, Li C. Simultaneous analysis of 2-methylimidazole, 4-methylimidazole, and 5-hydroxymethylfurfural potentially formed in fermented soy sauce by "quick, easy, cheap, effective, rugged, and safe" purification and UHPLC with tandem mass spectrometry. J Sep Sci 2018; 42:501-508. [PMID: 30370990 DOI: 10.1002/jssc.201800931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 11/07/2022]
Abstract
2-Methylimidazole, 4-methylimidazole and 5-hydroxymethylfurfural are harmful by-products potentially formed via Maillard reaction in fermented soy sauce. The present study proposed a new method based on "quick, easy, cheap, effective, rugged, and safe" purification and ultra high performance liquid chromatography with tandem mass spectrometry for the simultaneous analysis of 2-methylimidazole, 4-methylimidazole and 5-hydroxymethylfurfural in fermented soy sauce. The sample was dissolved in water after addition of internal standard 4-methylimidazole-d6 and extracted with acetonitrile. After dehydration, it was centrifuged and the supernatant was subsequently purified using two sorbents namely primary-secondary amine and multi-walled carbon nanotube. Three target analytes were separated by gradient elution and determined under multiple reactions monitoring mode. The limit of detection, matrix effect, recovery and precision of the developed method were investigated. Results found that three target analytes displayed excellent linearity in concentration range of 1-250 μg/L. Limit of detection was in the range of 0.3-1 μg/kg for three target analytes. The mean recoveries for fermented soy sauce samples at three spiked concentrations were in the range of 91.2-112.5%, and the intra- and interday precision were in the ranges of 3.6-9.2 and 7.1-10.8%, respectively. This validated method was successfully applied to determine 2-methylimidazole, 4-methylimidazole and 5-hydroxymethylfurfural concentrations in fermented soy sauce.
Collapse
Affiliation(s)
- Ling Zhang
- Technology Research Center for Lingnan Characteristic Fruits & Vegetables Processing and Application Engineering of Guangdong Province, Food Science Innovation Team of Guangdong Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, Guangdong, P. R. China.,College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, P. R. China
| | - Chunhai Li
- Technology Research Center for Lingnan Characteristic Fruits & Vegetables Processing and Application Engineering of Guangdong Province, Food Science Innovation Team of Guangdong Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, Guangdong, P. R. China.,College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, P. R. China
| |
Collapse
|
76
|
Bargańska Ż, Konieczka P, Namieśnik J. Comparison of Two Methods for the Determination of Selected Pesticides in Honey and Honeybee Samples. Molecules 2018; 23:molecules23102582. [PMID: 30304845 PMCID: PMC6222677 DOI: 10.3390/molecules23102582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/18/2022] Open
Abstract
Developed and validated analytical methods for the determination of a wide spectrum of pesticide residues in honey and honeybee samples after the modification of QuEChERS extraction in combination with gas chromatography–tandem quadrupole mass spectrometry (GC-MS/MS) and liquid chromatography–tandem quadrupole mass spectrometry (LC-MS/MS) were discussed and compared. The developed methods were evaluated regarding the utilized equipment and reagents using Eco-Scale and compared in terms of extraction time, accuracy, precision, sensitivity and versatility, with similar procedures. The results proved that the QuEChERS protocol in combination with LC and GC techniques fulfills the requirements of green analytical chemistry, so it can be used as a tool in environmental monitoring. The recovery was 85–116% for honey and 85.5–103.5% for honeybee samples. The developed methods were successfully applied in monitoring real samples collected from three districts of Pomerania in Poland. Analysis of real samples revealed the presence of the following pesticides: bifenthrin, fenpyroximate, methidathione, spinosad, thiamethoxam, triazophos, metconazole and cypermethrin at levels higher than the MRLs established by the EU.
Collapse
Affiliation(s)
- Żaneta Bargańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), Narutowicza 11/12 street, 80-233 Gdańsk, Poland.
| | - Piotr Konieczka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), Narutowicza 11/12 street, 80-233 Gdańsk, Poland.
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), Narutowicza 11/12 street, 80-233 Gdańsk, Poland.
| |
Collapse
|
77
|
Hexafluoroisopropanol-based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of pyrethroids in tea beverages and fruit juices. Food Chem 2018; 274:891-899. [PMID: 30373025 DOI: 10.1016/j.foodchem.2018.09.048] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 12/21/2022]
Abstract
A series of new hydrophobic deep eutectic solvents (DESs), which are liquid at room temperature and have high density (>1.4 g mL-1), were synthesized using hexafluoroisopropanol (HFIP) as hydrogen-bond donor and l-carnitine/betaine as hydrogen-bond acceptor. Then these hydrophobic DESs were used as extraction solvents to establish dispersive liquid-liquid microextraction (DLLME) method for extraction of pyrethroids. The DES extraction phase was in the bottom after DLLME, being easy to be collected for analysis. After optimization by one-variable-at-a-time and response surface methodology, the enrichment factors of 265-360 were achieved for five pyrethroids. The proposed DLLME method coupled with HPLC has good performance: linear ranges of 0.25/0.5/1-100/200/400 ng/mL (r ≥ 0.9990), limits of detection of 0.06-0.17 ng mL-1, relative recoveries of 85.1-109.4%, intra-day and inter-day RSDs below 7.5%. The novel DLLME method is simple, rapid, highly efficient and eco-friendly for extraction of pyrethroids in real tea beverages and fruit juices.
Collapse
|
78
|
Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysis of 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS. Food Chem 2018; 274:471-479. [PMID: 30372967 DOI: 10.1016/j.foodchem.2018.09.035] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/16/2023]
Abstract
A robust and sensitive UHPLC-MS/MS method was developed for the analysis of seven mycotoxins in fruits and vegetables. The variations of seven mycotoxins concentrations during storage were also determined for the first time. Solid phase extraction (SPE) and QuEChERS clean-up were compared, and extraction was finally performed with acetonitrile under acidic conditions followed by HLB SPE purification. Seven mycotoxins were separated on a C18 column by gradient elution, scanned by ESI+ and ESI- dynamic switching and detected with MRM mode. LOD and LOQ, matrix effect, accuracy and precision of the developed method were investigated. Results were linear in their concentration ranges for all mycotoxins with R2 being greater than 0.999. LODs and LOQs were ranged from 0.05 to 3.0 μg/kg and 0.2 to 10.0 μg/kg, respectively. Average recoveries were between 81.1% and 116% with intraday- and interday-precision being in the ranges of 3.0-6.2% and 4.2-6.1%, respectively. The validated method provides sufficient selectivity, sensitivity and accuracy to screen for seven mycotoxins at trace levels, without using standard addition or matrix-matched calibration to compensate for matrix effects. The method was successfully applied for mycotoxins analysis in fruits and vegetables. None were detected in fresh samples, but AOH and AME were detected in strawberry, and TeA was detected in tomato fruits during long-term storage. Their concentrations were in the range of 3.6-165.3 μg/kg from 3 days to 60 days and significantly increased along with storage time.
Collapse
|
79
|
Zhang X, Xian Y, Li H, Huang BX, Liang M, Chen J. Rapid determination of hexavalent chromium in textiles by a novel ammonium pyrrolidine dithiocarbamate derivatization combined with UHPLC-MS/MS. J Sep Sci 2018; 41:3583-3589. [PMID: 30048047 DOI: 10.1002/jssc.201800563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/16/2018] [Accepted: 07/21/2018] [Indexed: 11/11/2022]
Abstract
Hexavalent chromium is mainly determined by traditional spectrophotometry, atomic absorption spectrometry, and ion chromatography methods. In the present work, a reliable ultra high performance liquid chromatography with tandem mass spectrometry method was firstly developed for the determination of hexavalent chromium in textiles. The sample was extracted by acetic acid/sodium acetate buffer solution and followed by derivatization with ammonium pyrrolidine dithiocarbamate. The resulting derivative product was extracted by ethyl acetate, separated on a C18 column, and detected through electrospray ionization source in the positive mode with multiple reaction monitoring conditions. The derivatization reaction conditions were investigated and optimized. The developed method was validated in terms of the sensitivity, linearity range, matrix effects, recovery, accuracy, intra- and interday precision. Results showed that the calibration curves of pure solvent and matrix were linear over the selected concentration ranges of 0.1-20.0 μg/L. The achieved instrument and method limit of quantification were 0.1 and 40.0 μg/kg, respectively. Recoveries were calculated at three spiked concentrations and the values were between 92.2 and 103% with relative standard deviation values of 2.7-4.9% for intra-day precision and 6.1% for inter-day precision. Successful analysis of hexavalent chromium in practical textiles indicated that there was hexavalent chromium contamination in textiles.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Guangdong Inspection and Quarantine Technology Center, Guangzhou, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Hui Li
- Guangdong Inspection and Quarantine Technology Center, Guangzhou, China
| | - Bo-Xi Huang
- Guangdong Inspection and Quarantine Technology Center, Guangzhou, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Jiefeng Chen
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| |
Collapse
|