51
|
Xue JC, Yuan S, Hou XT, Meng H, Liu BH, Cheng WW, Zhao M, Li HB, Guo XF, Di C, Li MJ, Zhang QG. Natural products modulate NLRP3 in ulcerative colitis. Front Pharmacol 2023; 14:1265825. [PMID: 37849728 PMCID: PMC10577194 DOI: 10.3389/fphar.2023.1265825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Ulcerative colitis (UC) is a clinically common, progressive, devastating, chronic inflammatory disease of the intestine that is recurrent and difficult to treat. Nod-like receptor protein 3 (NLRP3) is a protein complex composed of multiple proteins whose formation activates cysteine aspartate protease-1 (caspase-1) to induce the maturation and secretion of inflammatory mediators such as interleukin (IL)-1β and IL-18, promoting the development of inflammatory responses. Recent studies have shown that NLRP3 is associated with UC susceptibility, and that it maintains a stable intestinal environment by responding to a wide range of pathogenic microorganisms. The mainstay of treatment for UC is to control inflammation and relieve symptoms. Despite a certain curative effect, there are problems such as easy recurrence after drug withdrawal and many side effects associated with long-term medication. NLRP3 serves as a core link in the inflammatory response. If the relationship between NLRP3 and gut microbes and inflammation-associated factors can be analyzed concerning its related inflammatory signaling pathways, its expression status as well as specific mechanism in the course of IBD can be elucidated and further considered for clinical diagnosis and treatment of IBD, it is expected that the development of lead compounds targeting the NLRP3 inflammasome can be developed for the treatment of IBD. Research into the prevention and treatment of UC, which has become a hotbed of research in recent years, has shown that natural products are rich in therapeutic means, and multi-targets, with fewer adverse effects. Natural products have shown promise in treating UC in numerous basic and clinical trials over the past few years. This paper describes the regulatory role of the NLRP3 inflammasome in UC and the mechanism of recent natural products targeting NLRP3 against UC, which provides a reference for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Bao-Hong Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Wen-Wen Cheng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ming Zhao
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Hong-Ben Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xue-Fen Guo
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chang Di
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Min-Jie Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| |
Collapse
|
52
|
Yang C, Liu H, Li X, Peng X, Rao G, Xie Z, Yang Q, Du L, Xie C. Modular characteristics and mechanism of action of herbs for type 2 diabetes treatment in Chinese medicine. Heliyon 2023; 9:e20106. [PMID: 37809579 PMCID: PMC10559873 DOI: 10.1016/j.heliyon.2023.e20106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Type 2 diabetes (T2D) has emerged as a global epidemic, and conventional treatment approaches often face limitations in achieving long-term glycemic control and preventing complications. Traditional Chinese Medicine (TCM) offers a valuable alternative for managing T2D, with a long history of effectively using herbal formulations in clinical practice. However, the modular characteristics of these herbs and their specific mechanisms of action remain poorly understood. To comprehensively investigate the modular characteristics and mechanisms of Chinese herbs in treating T2D, as well as explore the synergistic interactions among different herbs and their modular components, we employed data mining, systematic pharmacology, and molecular docking. Our aim was to gain a comprehensive understanding of the potential therapeutic targets and pathways involved in herbal T2D treatment. In this study, a total of 1114 studies investigating the effects of TCM interventions in the treatment of T2D in adults were included. The analysis revealed 170 distinct types of Chinese herbs, 118 active components, and 238 common targets shared between the medicine and T2D. Additionally, this study identified six hub proteins (TNF, MMP2, PTGS, CASP3, CASP8, and CASP9) and two key chemicals (Diosgenin and Formononetin) found in TCM-mediated T2D suppression. It was observed that these proteins could bind with the ingredients. The MMP2-Diosgenin interaction exhibited the lowest binding free energy (-13.05 kJ/mol) and was primarily driven by hydrogen bonds with ALA-165. TNF-Diosgenin (-10.5 kcal/mol) showed three hydrogen bonds with LEU-37, ARG-82, and ASN-30. PTGS2 and Diosgenin (-8.71 kJ/mol) demonstrated a hydrogen bond with HIS-214. Furthermore, CASP9-Formononetin (-6.53 kcal/mol) exhibited the lowest binding free energy and hydrogen bonds with GLU-261 and SER-339 as the primary forces involved. CASP3-Formononetin (-6.07 kcal/mol) displayed three hydrogen bonds with ASN-342, TRP-348, and GLU-379. Lastly, CASP8 and Formononetin (-6.06 kJ/mol) formed a hydrogen bond with THR-390, TYR-392, and TYR-334. Moreover, critical therapeutic pathways, such as the immune inflammatory response, AGE-RAGE, and IL-17 signaling pathway, were found to be associated with T2D Chinese herb therapy. In conclusion, this study sheded light on the modular characteristics and mechanism of action of herbs used in Chinese Medicine for the treatment of T2D, which provided valuable insights for both researchers and practitioners in the field of Chinese Medicine, offering potential avenues for improved treatment strategies and personalized approaches to address the complex nature of T2D.
Collapse
Affiliation(s)
- Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan province, 610075, Sichuan, Chengdu, China
| | - Xinqiong Li
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Xi Peng
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Guocheng Rao
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Ziyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan province, 610075, Sichuan, Chengdu, China
| | - Qiangfei Yang
- Jianyang City People's Hospital, 610040,Sichuan, China
| | - Lian Du
- Chengdu University of Traditional Chinese Medicine, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan province, 610075, Sichuan, Chengdu, China
| |
Collapse
|
53
|
Hao Y, Fu J, Zhang J, Du N, Ta H, Zhu TT, Wang H, Lou HX, Cheng AX. Identification and Functional Characterization of UDP-Glycosyltransferases Involved in Isoflavone Biosynthesis in Astragalus membranaceus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12775-12784. [PMID: 37604680 DOI: 10.1021/acs.jafc.3c03563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Isoflavones are rich natural compounds present in legumes and are essential for plant growth and development. Moreover, they are beneficial for animals and humans. Isoflavones are primarily found as glycoconjugates, including calycosin-7-O-β-d-glucoside (CG) in Astragalus membranaceus, a legume. However, the glycosylation mechanism of isoflavones in A. membranaceus remains unclear. In the present study, three uridine diphosphate (UDP)-glycosyltransferases (UGTs) that may be involved in the biosynthesis of isoflavone were identified in the transcriptome of A. membranaceus. Enzymatic analysis revealed that AmUGT88E29 and AmUGT88E30 had high catalytic activity toward isoflavones in vitro. In addition, AmUGT88E29 and AmUGT88E30 could accept various flavones, flavanones, flavonols, dihydroflavonols, and dihydrochalcones as substrates. AmUGT71G10 was only active against phloretin and dihydroresveratrol. Overexpression of AmUGT88E29 significantly increased the contents of CG, an isoflavone glucoside, in the hairy roots of A. membranaceus. This study provided candidate AmUGT genes for the potential metabolic engineering of flavonoid compounds in plants and a valuable resource for studying the calycosin glycosides biosynthesis pathway.
Collapse
Affiliation(s)
- Yue Hao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Jiaozhen Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Nihong Du
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - He Ta
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, People's Republic of China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
54
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
55
|
Ni KN, Ye L, Zhang YJ, Fang JW, Yang T, Pan WZ, Hu XY, Lai HH, Pan B, Lou C, He DW. Formononetin improves the inflammatory response and bone destruction in knee joint lesions by regulating the NF-kB and MAPK signaling pathways. Phytother Res 2023; 37:3363-3379. [PMID: 37002905 DOI: 10.1002/ptr.7810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 08/12/2023]
Abstract
Formononetin (FMN) is a phytoestrogen that belongs to the isoflavone family. It has antioxidant and anti-inflammatory effects, as well as, many other biological activities. Existing evidence has aroused interest in its ability to protect against osteoarthritis (OA) and promote bone remodeling. To date, research on this topic has not been thorough and many issues remain controversial. Therefore, the purpose of our study was to explore the protective effect of FMN against knee injury and clarify the possible molecular mechanisms. We found that FMN inhibited osteoclast formation induced by receptor activator of NF-κB ligand (RANKL). Inhibition of the phosphorylation and nuclear translocation of p65 in the NF-κB signaling pathway plays a role in this effect. Similarly, during the inflammatory response of primary knee cartilage cells activated by IL-1β, FMN inhibited the NF-κB signaling pathway and the phosphorylation of the ERK and JNK proteins in the MAPK signaling pathway to suppress the inflammatory response. In addition, in vivo experiments showed that both low- and high-dose FMN had a clear protective effect against knee injury in the DMM (destabilization of the medial meniscus) model, and the therapeutic effect of high-dose FMN was stronger. In conclusion, these studies provide evidence of the protective effect of FMN against knee injury.
Collapse
Affiliation(s)
- Kai-Nan Ni
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, 323000, China
| | - Lin Ye
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Ye-Jin Zhang
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, 323000, China
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Jia-Wei Fang
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, 323000, China
| | - Tao Yang
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, 323000, China
| | - Wen-Zheng Pan
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, 323000, China
| | - Xing-Yu Hu
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, 323000, China
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - He-Huan Lai
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, 323000, China
| | - Bin Pan
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, 323000, China
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Chao Lou
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, 323000, China
| | - Deng-Wei He
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, 323000, China
| |
Collapse
|
56
|
Zhou ZW, Zhu XY, Li SY, Lin SE, Zhu YH, Ji K, Chen JJ. Formononetin Inhibits Mast Cell Degranulation to Ameliorate Compound 48/80-Induced Pseudoallergic Reactions. Molecules 2023; 28:5271. [PMID: 37446928 DOI: 10.3390/molecules28135271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Formononetin (FNT) is a plant-derived isoflavone natural product with anti-inflammatory, antioxidant, and anti-allergic properties. We showed previously that FNT inhibits immunoglobulin E (IgE)-dependent mast cell (MC) activation, but the effect of FNT on IgE-independent MC activation is yet unknown. Our aim was to investigate the effects and possible mechanisms of action of FNT on IgE-independent MC activation and pseudoallergic inflammation. We studied the effects of FNT on MC degranulation in vitro with a cell culture model using compound C48/80 to stimulate either mouse bone marrow-derived mast cells (BMMCs) or RBL-2H3 cells. We subsequently measured β-hexosaminase and histamine release, the expression of inflammatory factors, cell morphological changes, and changes in NF-κB signaling. We also studied the effects of FNT in several in vivo murine models of allergic reaction: C48/80-mediated passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA), and 2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD). The results showed that FNT inhibited IgE-independent degranulation of MCs, evaluated by a decrease in the release of β-hexosaminase and histamine and a decreased expression of inflammatory factors. Additionally, FNT reduced cytomorphological elongation and F-actin reorganization and attenuated NF-κB p65 phosphorylation and NF-κB-dependent promoter activity. Moreover, the administration of FNT alleviated pseudoallergic responses in vivo in mouse models of C48/80-stimulated PCA and ASA, and DNCB-induced AD. In conclusion, we suggest that FNT may be a novel anti-allergic drug with great potential to alleviate pseudoallergic responses via the inhibition of IgE-independent MC degranulation and NF-κB signaling.
Collapse
Affiliation(s)
- Zi-Wen Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Xue-Yan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Shu-Ying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Si-En Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Yu-Han Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
57
|
Mahmoudvand H, Khalaf AK, Rajabi PZ, Karbasian N, Ghasemian Yadegari J. Leishmanicidal and immunomodulatory activities of the formononetin (a natural isoflavone) against Leishmania tropica. BMC Res Notes 2023; 16:120. [PMID: 37365655 DOI: 10.1186/s13104-023-06403-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE This work aimed to examine the leishmanicidal, cellular mechanisms and cytotoxicity effects of formononetin (FMN), a natural isoflavone, against Leishmania tropica. We used the MTT assay to determine the leishmanicidal effects of FMN against promastigotes and its cytotoxicity effects on J774-A1 macrophage cells. The Griess reaction assay and quantitative real-time PCR were used to determine the nitric oxide (NO) and the mRNA expression levels of IFN-γ and iNOS in infected J774-A1 macrophage cells. RESULTS FMN significantly (P < 0.001) decreased the viability and number of promastigotes and amastigotes forms. The 50% inhibitory concentrations value for FMN and glucantime was 9.3 and 14.3 µM for promastigote and amastigote, respectively. We found that the macrophages exposed with FMN especially at concentrations of 1/2 IC50 and IC50 significantly activated the NO release and the mRNA expression levels of IFN-γ, iNOS. The findings of the current research showed the favorable antileishmanial effects formononetin, a natural isoflavone, against various stages of L. tropica through inhibition of infectivity rate of macrophage cells and triggering the NO production and cellular immunity. However, supplementary works are essential to evaluate the ability and safety of FMN in animal model before use in the clinical phase.
Collapse
Affiliation(s)
- Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amal Khudair Khalaf
- Department of Microbiology, College of Medicine, University of Thiqar, Thiqar, Iraq
| | - Pouya Zareh Rajabi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nooshin Karbasian
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Javad Ghasemian Yadegari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
58
|
Han NR, Park HJ, Ko SG, Moon PD. The Mixture of Natural Products SH003 Exerts Anti-Melanoma Effects through the Modulation of PD-L1 in B16F10 Cells. Nutrients 2023; 15:2790. [PMID: 37375695 DOI: 10.3390/nu15122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma is the most invasive and lethal skin cancer. Recently, PD-1/PD-L1 pathway modulation has been applied to cancer therapy due to its remarkable clinical efficacy. SH003, a mixture of natural products derived from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii, and formononetin (FMN), an active constituent of SH003, exhibit anti-cancer and anti-oxidant properties. However, few studies have reported on the anti-melanoma activities of SH003 and FMN. This work aimed to elucidate the anti-melanoma effects of SH003 and FMN through the PD-1/PD-L1 pathway, using B16F10 cells and CTLL-2 cells. Results showed that SH003 and FMN reduced melanin content and tyrosinase activity induced by α-MSH. Moreover, SH003 and FMN suppressed B16F10 growth and arrested cells at the G2/M phase. SH003 and FMN also led to cell apoptosis with increases in PARP and caspase-3 activation. The pro-apoptotic effects were further enhanced when combined with cisplatin. In addition, SH003 and FMN reversed the increased PD-L1 and STAT1 phosphorylation levels induced by cisplatin in the presence of IFN-γ. SH003 and FMN also enhanced the cytotoxicity of CTLL-2 cells against B16F10 cells. Therefore, the mixture of natural products SH003 demonstrates therapeutic potential in cancer treatment by exerting anti-melanoma effects through the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
59
|
Bhardwaj VK, Purohit R. A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations. Carbohydr Polym 2023; 310:120729. [PMID: 36925262 DOI: 10.1016/j.carbpol.2023.120729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Formononetin, a naturally occurring isoflavone exhibits a wide range of therapeutic applications including antioxidant, anti-tumor, antiviral, anti-diabetic and neuroprotective activities. However, the low hydro-solubility of formononetin has limited its prospective use in cosmetic, neutraceutical and pharmaceutical industries. Cyclodextrins (CDs), especially β-CD and its derivatives have emerged as promising agents to improve the water solubility of poorly hydrosoluble compounds by the formation of inclusion complexes. We employed multiscale (1000 ns) explicit solvent and umbrella sampling molecular dynamics (MD) simulations to study the interactions and thermodynamic parameters of inclusion complex formation between formononetin and five most commonly used β-CD derivatives. Classical MD simulations revealed two possible binding conformations of formononetin inside the central cavity of hydroxypropyl-β-CD (HP-β-CD), randomly methylated-β-CD (ME-β-CD), and sulfobutylether-β-CD (SBE-β-CD). The binding conformation with the benzopyrone ring of formononetin inside the central cavity of β-CD derivatives was more frequent than the phenyl group occupying the hydrophobic cavity. These interactions were supported by a variety of non-bonded contacts including hydrogen bonds, pi-lone pair, pi-sigma, and pi-alkyl interactions. Formononetin showed favorable end-state MD-driven thermodynamic binding free energies with all the selected β-CD derivatives, except succinyl-β-CD (S-β-CD). Furthermore, umbrella sampling simulations were used to investigate the interactions and thermodynamic parameters of the host-guest inclusion complexes. The SBE-β-CD/formononetin inclusion complex showed the lowest binding energy signifying the highest affinity among all the selected host-guest inclusion complexes. Our study could be used as a standard for analyzing and comparing the ability of different β-CD derivatives to enhance the hydro-solubility of poorly soluble molecules.
Collapse
Affiliation(s)
- Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
60
|
Almuhanna Y, Alqasmi MH, AlSudais H, Alrouji M, Kuriri FA, Alissa M, Alsuwat MA, Asad M, Joseph B. Effect of Achillea fragrantissima Extract on Excision Wound Biofilms of MRSA and Pseudomonas aeruginosa in Diabetic Mice. Int J Mol Sci 2023; 24:ijms24119774. [PMID: 37298725 DOI: 10.3390/ijms24119774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Achillea fragrantissima, a desert plant commonly known as yarrow, is traditionally used as an antimicrobial agent in folklore medicine in Saudi Arabia. The current study was undertaken to determine its antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA) and multi-drug-resistant Pseudomonas aeruginosa (MDR-P. aeruginosa) using in vitro and in vivo studies. A biofilm model induced through an excision wound in diabetic mice was used to evaluate its effect in vivo. The skin irritation and cytotoxic effects of the extract were determined using mice and HaCaT cell lines, respectively. The Achillea fragrantissima methanolic extract was analyzed with LC-MS to detect different phytoconstituents, which revealed the presence of 47 different phytoconstituents. The extract inhibited the growth of both tested pathogens in vitro. It also increased the healing of biofilm-formed excision wounds, demonstrating its antibiofilm, antimicrobial, and wound-healing action in vivo. The effect of the extract was concentration-dependent, and its activity was stronger against MRSA than MDR-P. aeruginosa. The extract formulation was devoid of a skin irritation effect in vivo and cytotoxic effect on HaCaT cell lines in vitro.
Collapse
Affiliation(s)
- Yasir Almuhanna
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammed Hussein Alqasmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Hamood AlSudais
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Fahd A Kuriri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meshari A Alsuwat
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Al-Taif 21974, Saudi Arabia
| | - Mohammed Asad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
61
|
Luo W, Deng J, He J, Yin L, You R, Zhang L, Shen J, Han Z, Xie F, He J, Guan Y. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. J Cell Mol Med 2023. [PMID: 37257051 DOI: 10.1111/jcmm.17787] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/15/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023] Open
Abstract
Fenugreek is an ancient herb that has been used for centuries to treat diabetes. However, how the fenugreek-derived chemical compounds work in treating diabetes remains unclarified. Herein, we integrate molecular docking and network pharmacology to elucidate the active constituents and potential mechanisms of fenugreek against diabetes. First, 19 active compounds from fenugreek and 71 key diabetes-related targets were identified through network pharmacology analysis. Then, molecular docking and simulations results suggest diosgenin, luteolin and quercetin against diabetes via regulation of the genes ESR1, CAV1, VEGFA, TP53, CAT, AKT1, IL6 and IL1. These compounds and genes may be key factors of fenugreek in treating diabetes. Cells results demonstrate that fenugreek has good biological safety and can effectively improve the glucose consumption of IR-HepG2 cells. Pathway enrichment analysis revealed that the anti-diabetic effect of fenugreek was regulated by the AGE-RAGE and NF-κB signalling pathways. It is mainly associated with anti-oxidative stress, anti-inflammatory response and β-cell protection. Our study identified the active constituents and potential signalling pathways involved in the anti-diabetic effect of fenugreek. These findings provide a theoretical basis for understanding the mechanism of the anti-diabetic effect of fenugreek. Finally, this study may help for developing anti-diabetic dietary supplements or drugs based on fenugreek.
Collapse
Affiliation(s)
- Wenfeng Luo
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Jie Deng
- Shunde Polytecnic, Foshan, China
| | - Jiecheng He
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou, China
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou, China
| | - Lingkun Zhang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jian Shen
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Zeping Han
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Yanqing Guan
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
62
|
Dastyar Haghighi S, Khudair Khalaf A, Mahmoudvand H, Adineh A, Maleki AM, Ghasemian Yadegari J. Antiparasitic Effects and Cellular Mechanisms of Formononetin (a Natural Isoflavone) Against Hydatid Cyst Protoscoleces. Jundishapur J Nat Pharm Prod 2023. [DOI: 10.5812/jjnpp-129302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background: The chemical agents applied to reduce the complications of hydatid cyst surgery are not free of side effects. Formononetin (FMN), as a natural isoflavone, has been shown to have various therapeutic benefits. Objectives: We studied the in vitro and ex vivo protoscolicidal activity and cellular mechanisms of FMN against hydatid cyst protoscoleces. Methods: Formononetin at 75, 150, and 300 μg/mL was mixed with hydatid cyst protoscoleces (103/mL), and the viability was determined in 5 to 60 min through eosin staining assay. The effect of FMN on caspase-3 activity was tested through a commercial colorimetric protease kit. In addition, the penetrability of the plasma membrane of protoscoleces after exposure to FMN was also determined by the SYTOX assay. Results: Formononetin at 300 μg/mL completely destroyed hydatid cyst protoscoleces after 30 minutes. While at 150 μg/mL, after 60 minutes of contact, 100% of protoscoleces were eliminated. By ex vivo assay, FMN showed its antiparasitic effect for longer periods. Based on these results, FMN at 300 μg/mL concentration completely eliminated hydatid cyst protoscoleces after 60 minutes of exposure. While at a concentration of 150 μg/mL after 60 minutes, 89.6% of protoscoleces were destroyed. Formononetin noticeably increased (P < 0.001) the activity of caspase-3 and the permeability of protoscoleces dose-dependently. Conclusions: Formononetin as a natural product showed promising effects on the protoscoleces of hydatid cysts, indicating that it can be considered a valuable scolicidal agent. However, additional investigations are necessary to evaluate its efficacy in animal models and human subjects.
Collapse
|
63
|
Zhou ZW, Ji K, Zhu XY, Wu XY, Lin RT, Xie CC, Cai ZL, Chen JJ. Natural isoflavone formononetin inhibits IgE-mediated mast cell activation and allergic inflammation by increasing IgE receptor degradation. Food Funct 2023; 14:2857-2869. [PMID: 36880662 DOI: 10.1039/d2fo03997d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Immunoglobulin (Ig)E-associated mast cell (MC) activation triggers pro-inflammatory signals that underlie type I allergic diseases. Here, we examined the effects of the natural isoflavone formononetin (FNT) on IgE-mediated MC activation and associated mechanisms of high-affinity IgE receptor (FcεRI) signal inhibition. The effects of FNT on the mRNA expression of inflammatory factors, release of histamine and β-hexosaminidase (β-hex), and expression of signaling proteins and ubiquitin (Ub)-specific proteases (USPs) were analyzed in two sensitized/stimulated MC lines. FcεRIγ-USP interactions were detected by co-immunoprecipitation (IP). FNT dose-dependently inhibited β-hex activity, histamine release, and inflammatory cytokine expression in FcεRI-activated MCs. FNT suppressed IgE-induced NF-κB and MAPK activity in MCs. The oral administration of FNT attenuated passive cutaneous anaphylaxis (PCA) reactions and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) reactions in mice. FNT reduced the FcεRIγ chain expression, via increased proteasome-mediated degradation, and induced FcεRIγ ubiquitination by inhibiting USP5 and/or USP13. FNT and USP inhibition may be useful for suppressing IgE-mediated allergic diseases.
Collapse
Affiliation(s)
- Zi-Wen Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Xue-Yan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Xin-Ying Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Ruo-Tong Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Chu-Chu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
64
|
Yu X, Yang B, Chen B, Wu Q, Ren Z, Wang D, Yuan T, Ding H, Ding C, Liu Y, Zhang L, Sun Z, Zhao J. Inhibitory effects of Formononetin on CoCrMo particle-induced osteoclast activation and bone loss through downregulating NF-κB and MAPK signaling. Cell Signal 2023; 106:110651. [PMID: 36894124 DOI: 10.1016/j.cellsig.2023.110651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Wear particle-induced osteoclast over-activation is a major contributor to periprosthetic osteolysis and aseptic loosening, which can cause pathological bone loss and destruction. Hence, inhibiting excessive osteoclast-resorbing activity is an important strategy for preventing periprosthetic osteolysis. Formononetin (FMN) has been shown to have protective effects against osteoporosis, but no previous study has evaluated the effects of FMN on wear particle-induced osteolysis. In this study, we found that FMN alleviated CoCrMo alloy particles (CoPs)-induced bone loss in vivo and inhibited the formation and bone-resorptive function of osteoclasts in vitro. Moreover, we revealed that FMN exerted inhibitory effects on the expression of osteoclast-specific genes via the classical NF-κB and MAPK signaling pathways in vitro. Collectively, FMN is a potential therapeutic agent for the prevention and treatment of periprosthetic osteolysis and other osteolytic bone diseases.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Binkui Yang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Bin Chen
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Qi Wu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Dongsheng Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Tao Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Hao Ding
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Chao Ding
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710068, China.
| | - Lei Zhang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing 210002, China.
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
65
|
Yu S, Caruso F, Belli S, Rossi M. Scavenging of Superoxide in Aprotic Solvents of Four Isoflavones That Mimic Superoxide Dismutase. Int J Mol Sci 2023; 24:ijms24043815. [PMID: 36835226 PMCID: PMC9965188 DOI: 10.3390/ijms24043815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Isoflavones are plant-derived natural products commonly found in legumes that show a large spectrum of biomedical activities. A common antidiabetic remedy in traditional Chinese medicine, Astragalus trimestris L. contains the isoflavone formononetin (FMNT). Literature reports show that FMNT can increase insulin sensitivity and potentially target the peroxisome proliferator-activated receptor gamma, PPARγ, as a partial agonist. PPARγ is highly relevant for diabetes control and plays a major role in Type 2 diabetes mellitus development. In this study, we evaluate the biological role of FMNT, and three related isoflavones, genistein, daidzein and biochanin A, using several computational and experimental procedures. Our results reveal the FMNT X-ray crystal structure has strong intermolecular hydrogen bonding and stacking interactions which are useful for antioxidant action. Cyclovoltammetry rotating ring disk electrode (RRDE) measurements show that all four isoflavones behave in a similar manner when scavenging the superoxide radical. DFT calculations conclude that antioxidant activity is based on the familiar superoxide σ-scavenging mode involving hydrogen capture of ring-A H7(hydroxyl) as well as the π-π (polyphenol-superoxide) scavenging activity. These results suggest the possibility of their mimicking superoxide dismutase (SOD) action and help explain the ability of natural polyphenols to assist in lowering superoxide concentrations. The SOD metalloenzymes all dismutate O2•- to H2O2 plus O2 through metal ion redox chemistry whereas these polyphenolic compounds do so through suitable hydrogen bonding and stacking intermolecular interactions. Additionally, docking calculations suggest FMNT can be a partial agonist of the PPARγ domain. Overall, our work confirms the efficacy in combining multidisciplinary approaches to provide insight into the mechanism of action of small molecule polyphenol antioxidants. Our findings promote the further exploration of other natural products, including those known to be effective in traditional Chinese medicine for potential drug design in diabetes research.
Collapse
|
66
|
Kwesiga G, Greese J, Kelling A, Sperlich E, Schmidt B. The Suzuki-Miyaura Cross-Coupling-Claisen Rearrangement-Cross-Metathesis Approach to Prenylated Isoflavones. J Org Chem 2023; 88:1649-1664. [PMID: 36633349 DOI: 10.1021/acs.joc.2c02698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Isoflavones were synthesized via Suzuki-Miyaura coupling of 3-iodochromones and para-methoxybenzene- and para-phenolboronic acid. In our hands, conditions commonly used for similar cross couplings turned out to be unsuccessful or difficult to reproduce, for example, due to the unplanned partial cleavage of MOM-protecting groups. Using Pd(dba)2 as a precatalyst and tricyclohexylphosphine as an activating ligand, reliable cross-coupling conditions were identified. In all cases, notably higher yields of isoflavones were obtained with para-phenolboronic acid than with para-methoxybenzene boronic acid. This observation and the commercial availability of para-phenolboronic acid suggest that for the synthesis of the important 3'-prenyl- or 3',5'-diprenylisoflavone substitution pattern a synthetic route that introduces the prenyl substituents after the Pd-catalyzed cross-coupling step, thereby avoiding laborious and protecting-group-intensive multistep syntheses of C-prenylated arene boronic acids, is advantageous.
Collapse
Affiliation(s)
- George Kwesiga
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany.,Department of Chemistry, Kabale University, P.O. Box 317, Kabale, Uganda
| | - Julia Greese
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Alexandra Kelling
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Eric Sperlich
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Bernd Schmidt
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
67
|
Zhou P, Ma YY, Zhao XN, Hua F. Phytochemicals as potential target on thioredoxin-interacting protein (TXNIP) for the treatment of cardiovascular diseases. Inflammopharmacology 2023; 31:207-220. [PMID: 36609715 DOI: 10.1007/s10787-022-01130-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
Cardiovascular diseases (CVDs) are currently the major cause of death and morbidity on a global scale. Thioredoxin-interacting protein (TXNIP) is a marker related to metabolism, oxidation, and inflammation induced in CVDs. The overexpression of TXNIP is closely related to the occurrence and development of CVDs. Hence, TXNIP inhibition is critical for reducing the overactivation of its downstream signaling pathway and, as a result, myocardial cell damage. Due to the chemical variety of dietary phytochemicals, they have garnered increased interest for CVDs prevention and therapy. Phytochemicals are a source of medicinal compounds for a variety of conditions, which aids in the development of effective and safe TXNIP-targeting medications. The objective of this article is to find and virtual screen novel safe, effective, and economically viable TXNIP inhibitors from flavonoids, phenols, and alkaloids derived from foods and plants. The results of the docking study revealed that silibinin, rutin, luteolin, baicalin, procyanidin B2, hesperetin, icariin, and tilianin in flavonoids, polydatin, resveratrol, and salidroside in phenols, and neferine in alkaloids had the highest Vina scores, indicating that these compounds are the active chemicals on TXNIP. In particular, silibinin can be utilized as a lead chemical in the process of structural alteration. These dietary phytochemicals may aid in the discovery of lead compounds for the development of innovative TXNIP agents for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Yao-Yao Ma
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Xiao-Ni Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Fang Hua
- School of Pharmacy, Anhui Xinhua University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
68
|
Zhao H, Wang Y, Xu C, Li G, Song Y, Qiu J, Cui L, Song X, Yang Y, Sun Y. Potential molecular mechanisms of Erlongjiaonang action in idiopathic sudden hearing loss: A network pharmacology and molecular docking analyses. Front Neurol 2023; 14:1121738. [PMID: 37064204 PMCID: PMC10098218 DOI: 10.3389/fneur.2023.1121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/01/2023] [Indexed: 04/18/2023] Open
Abstract
Background Idiopathic sudden hearing loss (ISHL) is characterized by sudden unexplainable and unilateral hearing loss as a clinically emergent symptom. The use of the herb Erlongjiaonang (ELJN) in traditional Chinese medicine is known to effectively control and cure ISHL. This study explored the underlying molecular mechanisms using network pharmacology and molecular docking analyses. Method The Traditional Chinese Medicine System Pharmacological database and the Swiss Target Prediction database were searched for the identification of ELJN constituents and potential gene targets, respectively, while ISHL-related gene abnormality was assessed using the Online Mendelian Inheritance in Man and Gene Card databases. The interaction of ELJN gene targets with ISHL genes was obtained after these databases were cross-screened, and a drug component-intersecting target network was constructed, and the gene ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction networks were analyzed. Cytoscape software tools were used to map the active components-crossover target-signaling pathway network and screened targets were then validated by establishing molecular docking with the corresponding components. Result Erlongjiaonang contains 85 components and 250 corresponding gene targets, while ISHL has 714 disease-related targets, resulting in 66 cross-targets. The bioinformatical analyses revealed these 66 cross-targets, including isorhamnetin and formononetin on NOS3 expression, baicalein on AKT1 activity, and kaempferol and quercetin on NOS3 and AKT1 activity, as potential ELJN-induced anti-ISHL targets. Conclusion This study uncovered potential ELJN gene targets and molecular signaling pathways in the control of ISHL, providing a molecular basis for further investigation of the anti-ISHL activity of ELJN.
Collapse
Affiliation(s)
- He Zhao
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yan Wang
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Cong Xu
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Guangjin Li
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yuwan Song
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jingjing Qiu
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Limei Cui
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- *Correspondence: Xicheng Song,
| | - Yujuan Yang
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yujuan Yang,
| | - Yan Sun
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yan Sun,
| |
Collapse
|
69
|
Szabo K, Ranga F, Elemer S, Varvara RA, Diaconeasa Z, Dulf FV, Vodnar DC. Evaluation of the Astragalus exscapus L. subsp. transsilvanicus Roots' Chemical Profile, Phenolic Composition and Biological Activities. Int J Mol Sci 2022; 23:ijms232315161. [PMID: 36499484 PMCID: PMC9739471 DOI: 10.3390/ijms232315161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Novel and natural molecules for pharmaceutical applications are a contemporary preoccupation in science which prompts research in underexplored environments. Astragalus exscapus ssp. transsilvanicus (Schur) Nyár. (ASTRA) is a plant species endemic to Transylvania, having a very similar root system with that of A. membranaceus (Fisch.) Bunge, known for its health promoting properties. The present study endeavored to perform basic characterization of the ASTRA roots by proximate analysis, to investigate the fatty acid profile of the lipids extracted from the ASTRA roots, to examine the phenolic composition of the root extracts by liquid chromatography, and to evaluate the biological activities through determination of the antioxidant, antimicrobial and cytotoxic capacities of the extracts. The primary compounds found in the ASTRA roots were carbohydrates and lipids, and the fatty acid composition determined by GC-MS showed linoleic acid as preponderant compound with 31.10%, followed by palmitic, oleic and α-linolenic acids with 17.30%, 15.61% and 14.21%, respectively. The methanol extract of the ASTRA roots presented highest phenolic content, Astragaloside IV being the predominant compound with 425.32 ± 0.06 µg/g DW. The antimicrobial assay showed remarkable antimicrobial potential of the extract at a concentration of 0.356 and 0.703 mg ASTRA root powder (DW)/mL, highlighting its efficacy to inhibit S. aureus and S. epidermidis bacterial strains. Furthermore, the cell proliferation assessment showed the noteworthy proficiency of the treatment in inhibiting the proliferation of B16F10 melanoma cells.
Collapse
Affiliation(s)
- Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Technological Transfer Center COMPAC, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Floricuta Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Simon Elemer
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica Anita Varvara
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Francisc Vasile Dulf
- Faculty of Agriculture, Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
70
|
Formononetin Inhibits Hepatic I/R-Induced Injury through Regulating PHB2/PINK1/Parkin Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6481192. [PMID: 36506934 PMCID: PMC9734001 DOI: 10.1155/2022/6481192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Formononetin (FN), an isoflavone compound mainly isolated from soy and red clover, had showed its anti-inflammation, antioxidative effects in some degenerative diseases and cholestasis. However, the role of FN in protecting ischemia/reperfusion- (I/R-) induced liver injury and the possible mechanism were unclear. In this study, effects of FN on liver injury were investigated in a rat hepatic I/R model; further, mitophagy-related proteins were measured by immunoblotting or immunofluorescence. The possible roles of PHB2 and PINK1 in regulating mitophagy by FN were verified using adeno-associated virus knockdown. The results showed that FN had protective effects against hepatic I/R injury through regulating PINK1/Parkin-regulated mitophagy. Further, we found that FN inhibited PARL expression and prevented PGAM5 cropped by increasing the expression of PHB2. The knockdown of PINK1 or PHB2 both abolished the protective effects of FN. Taken together, our findings indicated that the isoflavone compound FN promoted PHB2/PINK1/Parkin-mediated mitophagy pathway to protect liver from I/R-induced injury. These results provided novel insights into the potential prevention strategies of FN and its underlying mechanisms.
Collapse
|
71
|
Zhao Q, Bai J, Chen Y, Liu X, Zhao S, Ling G, Jia S, Zhai F, Xiang R. An optimized herbal combination for the treatment of liver fibrosis: Hub genes, bioactive ingredients, and molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115567. [PMID: 35870684 DOI: 10.1016/j.jep.2022.115567] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a chronic liver disease that can lead to cirrhosis, liver failure, and hepatocellular carcinoma, and it is associated with long-term adverse outcomes and mortality. As a primary resource for complementary and alternative medicine, traditional Chinese medicine (TCM) has accumulated a large number of effective formulas for the treatment of liver fibrosis in clinical practice. However, studies on how to systematically optimize TCM formulas are still lacking. AIM OF THE REVIEW To provide a methodological reference for the systematic optimization of TCM formulae against liver fibrosis and explored the underlying molecular mechanisms; To provide an efficient method for searching for lead compounds from natural sources and developing from herbal medicines; To enable clinicians and patients to make more reasonable choices and promote the effective treatment toward those patients with liver fibrosis. MATERIALS AND METHODS TCM formulas related to treating liver fibrosis were collected from the Web of Science, PubMed, the China National Knowledge Infrastructure (CNKI), Wan Fang, and the Chinese Scientific Journals Database (VIP). Furthermore, the TCM compatibility patterns were mined using association analysis. The core TCM combinations were found by designing an optimized formulas algorithm. Finally, the hub target proteins, potential molecular mechanisms, and active compounds were explored through integrative pharmacology and docking-based inverse virtual screening (IVS) approaches. RESULTS We found that the herbs for reinforcing deficiency, activating blood, removing blood stasis, and clearing heat were the basis of TCM formulae patterns. Furthermore, the combination of Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge; Chinese salvia/Danshen), Astragali Radix (Astragalus membranaceus (Fisch.) Bunge; Astragalus/Huangqi), and Radix Bupleuri (Bupleurum chinense DC.; Bupleurum/Chaihu) was identified as core groups. A total of six targets (TNF, STAT3, EGFR, IL2, ICAM1, PTGS2) play a pivotal role in TCM-mediated liver fibrosis inhibition. (-)-Cryptotanshinone, Tanshinaldehyde, Ononin, Thymol, Daidzein, and Formononetin were identified as active compounds in TCM. And mechanistically, TCM could affect the development of liver fibrosis by regulating inflammation, immunity, angiogenesis, antioxidants, and involvement in TNF, MicroRNAs, Jak-STAT, NF-kappa B, and C-type lectin receptors (CLRs) signaling pathways. Molecular docking results showed that key components had good potential to bind to the target genes. CONCLUSION In summary, this study provides a methodological reference for the systematic optimization of TCM formulae and exploration of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Qianqian Zhao
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinwei Bai
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yiwei Chen
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xin Liu
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shangfeng Zhao
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Guixia Ling
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shubing Jia
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Fei Zhai
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Rongwu Xiang
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China; Liaoning Professional Technology Innovation Center on Medical Big Data and Artificial Intelligence, Shenyang, 110016, China.
| |
Collapse
|
72
|
Zhang Z, Chong W, Xie X, Liu Y, Shang L, Li L. Hedysarum multijugum Maxim treats ulcerative colitis through the PI3K-AKT and TNF signaling pathway according to network pharmacology and molecular docking. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1132. [PMID: 36388782 PMCID: PMC9652569 DOI: 10.21037/atm-22-4815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 08/23/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that prevails mainly in western countries. Due to the unknown etiology of UC, the purpose of treatments has predominantly comprised symptomatic and pain relief. With extensive research focusing on the pathogenesis of UC, various novel treatments have emerged, although their efficiency has remained unsatisfactory. Hedysarum multijugum Maxim (HMM), a crucial constituent of traditional Chinese medicine, has a broad application in many diseases and has been found beneficial for UC patients. METHODS In this study, network pharmacology and molecular docking analyses were applied to explore the potential mechanism of HMM treating UC. Active ingredients of HMM and target genes were acquired from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). UC-related genes were obtained from three disease databases. Common genes were selected from these two gene sets, and a compound-genes network was drawn by Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) enrichment, and protein-protein interaction (PPI) analyses were performed to identify the essential pathways and proteins in UC. RESULTS A total of 121 genes were found related to UC and targeted by HMM. The GO and KEGG analyses showed that these genes were associated with inflammation and immune signaling pathways and inflammation-related biological processes (BP) such as the tumor necrosis factor (TNF) and PI3K-AKT signaling pathways. Four active ingredients (quercetin, kaempferol, formononetin, and isorhamnetin) and five genes (RELA, MAPK14, MAPK1, JUN, AKT1) were reserved after screening. Molecular docking further showed that the receptor had a high binding affinity with HMM active ingredients. CONCLUSIONS This study revealed that HMM treats UC through four active ingredients (quercetin, kaempferol, formononetin, and isorhamnetin) targeting five hub genes (RELA, MAPK14, MAPK1, JUN, AKT1) by regulating the PI3K-AKT1 and TNF signaling pathways.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
73
|
Liu H, Zhu L, Chen L, Li L. Therapeutic potential of traditional Chinese medicine in atherosclerosis: A review. Phytother Res 2022; 36:4080-4100. [PMID: 36029188 DOI: 10.1002/ptr.7590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Atherosclerosis is the onset of endothelial cell damage and is characterized by abnormal accumulation of fibrinogen and lipid in large and middle arteries. Recent researches indicate that traditional Chinese medicine including Notoginseng Radix et Rhizoma, Astragali Radix, Salviae Miltiorrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Fructus Crataegi, Glycyrrhizae Radix et Rhizoma, Polygoni Multiflori Radix, Fructus Lycii, and Coptidis Rhizoma have therapeutic effects on atherosclerosis. Furthermore, the pharmacological roles of these kinds of traditional Chinese medicine in atherosclerosis refer to endothelial function influences, cell proliferation and migration, platelet aggregation, thrombus formation, oxidative stress, inflammation, angiogenesis, apoptosis, autophagy, lipid metabolism, and the gut microbiome. Traditional Chinese medicine may serve as potential and effective anti-atherosclerosis drugs. However, a critical study has shown that Notoginseng Radix et Rhizoma may also have toxic effects including pustules, fever, and elevate circulating neutrophil count. Further high-quality studies are still required to determine the clinical safety and efficacy of traditional Chinese medicine and its active ingredients.
Collapse
Affiliation(s)
- Huimei Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
74
|
Shi L, Zhao Y, Feng C, Miao F, Dong L, Wang T, Stalin A, Zhang J, Tu J, Liu K, Sun W, Wu J. Therapeutic effects of shaogan fuzi decoction in rheumatoid arthritis: Network pharmacology and experimental validation. Front Pharmacol 2022; 13:967164. [PMID: 36059943 PMCID: PMC9428562 DOI: 10.3389/fphar.2022.967164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Shaogan Fuzi Decoction (SGFD), one of the classical prescriptions of Chinese Medicine, has a long history in the treatment of rheumatoid arthritis (RA), but definitive studies on its efficacy and mechanism of action are lacking. This study aims to elucidate the pharmacodynamic role of SGFD against RA and the potential mechanisms based on a combination of network pharmacology and experimental verification. The RA model in rats was induced by intradermal injection of bovine type Ⅱ collagen and incomplete Freund’s adjuvant at the tail root. SGFD was administered once a day by oral gavage for 4 weeks. After SGFD administration, rat’s arthritis index (AI) score and paw swelling decreased to some extent, and synovial inflammation, vascular hyperplasia, and cartilage destruction of the ankle joint were improved. Simultaneously, thymus and spleen index and serum levels of C-reactive protein (CRP) were lowered. Network pharmacology revealed that quercetin, kaempferol, naringenin, formononetin isorhamnetin and licochalcone A were the potentialiy active components, and IL6, TP53, TNF, PTGS2, MAPK3 and IL-1β were potential key targets for SGFD in the treatment of RA. Ingredients-targets molecular docking showed that the components had the high binding activity to these target proteins. The mechanism of SGFD for RA involves various biological functions and is closely correlated with TNF signaling pathway, Osteoclast differentiation, T cell receptor signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, NF-κB signaling pathway, toll-like receptor signaling pathway, and so on. Western blot and ELISA showed that the expression of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB) p65, phosphorylated c-Jun N-terminal kinase (p-JNK), p-p38, phosphorylated extracellular regulated kinase (p-ERK) and TNF-α was significantly upregulated in the synovium of RA rats, and the levels of serum inflammatory factors were significantly increased. SGFD inhibits the activation of the TLR4/NF-κB/MAPK pathway and the expression/production of pro-inflammatory cytokines. In summary, SGFD could improve the symptoms and inflammatory response in collagen-induced arthritis (CIA) rat model. The mechanism might be related to the regulation of TLR4/MAPKs/NF-κB signaling pathway and the reduction of inflammatory factor release, which partially confirms the results predicted by network pharmacology.
Collapse
Affiliation(s)
- Lu Shi
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yiying Zhao
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenran Feng
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Miao
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Dong
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tianquan Wang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingru Tu
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kexin Liu
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenyan Sun
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Wenyan Sun, ; Jiarui Wu,
| | - Jiarui Wu
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
75
|
Ai Y, Zhao Z, Wang H, Zhang X, Qin W, Guo Y, Zhao M, Tang J, Ma X, Zeng J. Pull the plug: Anti‐angiogenesis potential of natural products in gastrointestinal cancer therapy. Phytother Res 2022; 36:3371-3393. [PMID: 35871532 DOI: 10.1002/ptr.7492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yanling Ai
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Hengyi Wang
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Weihan Qin
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Yanlei Guo
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Maoyuan Zhao
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
- Department of Geriatrics Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
76
|
Ma X, Wang J. Formononetin: A Pathway to Protect Neurons. Front Integr Neurosci 2022; 16:908378. [PMID: 35910340 PMCID: PMC9326316 DOI: 10.3389/fnint.2022.908378] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
Formononetin (FMN) is a phytoestrogen member of the flavonoid family, which has the pharmacological effects of antioxidative, antihypertensive, antitumor, and anti-infective. FMN demonstrates potential in the prevention and treatment of diseases, specifically neurological diseases, such as traumatic brain injury (TBI), spinal cord injury (SCI), ischemic stroke, cerebral ischemia-reperfusion, Alzheimer’s disease, and nerve tumor. Herein, a literature search is conducted to provide information on the signaling pathways of neuroprotection of formononetin based on the neuroprotective study. The significant neuroprotective function of FMN makes it a novel candidate for the development of drugs targeting the central nervous system.
Collapse
Affiliation(s)
- Xiaoyu Ma
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, China
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
- *Correspondence: Juejin Wang,
| |
Collapse
|
77
|
Essono Mintsa M, Otogo N’nang E, Choque É, Siah A, Jacquin J, Muchembled J, Molinié R, Roulard R, Cailleu D, Beniddir MA, Sima Obiang C, Ondo JP, Kumulungui B, Mesnard F. Combined LC-MS/MS and Molecular Networking Approach Reveals Antioxidant and Antimicrobial Compounds from Erismadelphus exsul Bark. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111505. [PMID: 35684277 PMCID: PMC9182967 DOI: 10.3390/plants11111505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 05/19/2023]
Abstract
Erismadelphus exsul Mildbr bark is widely used in Gabonese folk medicine. However, little is known about the active compounds associated with its biological activities. In the present study, phytochemical profiling of the ethanolic extract of Erismadelphus exsul was performed using a de-replication strategy by coupling HPLC-ESI-Q/TOF with a molecular network approach. Eight families of natural compounds were putatively identified, including cyclopeptide alkaloids, esterified amino acids, isoflavonoid- and flavonoid-type polyphenols, glycerophospholipids, steroids and their derivatives, and quinoline alkaloids. All these compounds were identified for the first time in this plant. The use of molecular networking obtained a detailed phytochemical overview of this species. Furthermore, antioxidant (2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and ferric reducing capacity (FRAP)) and in vitro antimicrobial activities were assessed. The crude extract, as well as fractions obtained from Erismadelphus exsul, showed a better reactivity to FRAP than DPPH. The fractions were two to four times more antioxidant than ascorbic acid while reacting to FRAP, and there was two to nine times less antioxidant than this reference while reacting to DPPH. In addition, several fractions and the crude extract exhibited a significant anti-oomycete activity towards the Solanaceae phytopathogen Phytophthora infestans in vitro, and, at a lower extent, the antifungal activity against the wheat pathogen Zymoseptoria tritici had growth inhibition rates ranging from 0 to 100%, depending on the tested concentration. This study provides new insights into the phytochemical characterization and the bioactivities of ethanolic extract from Erismadelphus exsul bark.
Collapse
Affiliation(s)
- Morel Essono Mintsa
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Elvis Otogo N’nang
- Laboratoire de Substances Naturelles, Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon
- Correspondence: (E.O.N.); (F.M.); Tel.: +241-062801523 (E.O.N.); +33-684189115 (F.M.)
| | - Élodie Choque
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Ali Siah
- UMRt BioEcoAgro 1158-INRAE, JUNIA, Équipe Métabolites Spécialisés D’origine Végétale, Institut Charles Viollette, F-59000 Lille, France; (A.S.); (J.J.); (J.M.)
| | - Justine Jacquin
- UMRt BioEcoAgro 1158-INRAE, JUNIA, Équipe Métabolites Spécialisés D’origine Végétale, Institut Charles Viollette, F-59000 Lille, France; (A.S.); (J.J.); (J.M.)
| | - Jerome Muchembled
- UMRt BioEcoAgro 1158-INRAE, JUNIA, Équipe Métabolites Spécialisés D’origine Végétale, Institut Charles Viollette, F-59000 Lille, France; (A.S.); (J.J.); (J.M.)
| | - Roland Molinié
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Romain Roulard
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Dominique Cailleu
- Plateforme Analytique, Université de Picardie Jules Verne, 33 Rue Saint Leu, F-80039 Amiens, France;
| | - Mehdi A. Beniddir
- Équipe Chimie des Substances Naturelles BioCIS, CNRS, Université Paris Saclay, 5 Rue J.-B. Clément, F-92290 Châtenay-Malabry, France;
| | - Cédric Sima Obiang
- Laboratoire de Recherches en Biochimie, Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon; (C.S.O.); (J.-P.O.)
| | - Joseph-Privat Ondo
- Laboratoire de Recherches en Biochimie, Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon; (C.S.O.); (J.-P.O.)
| | - Brice Kumulungui
- Centre International de Recherches Médicales de Franceville P.O. Box 943, Gabon;
| | - François Mesnard
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
- Correspondence: (E.O.N.); (F.M.); Tel.: +241-062801523 (E.O.N.); +33-684189115 (F.M.)
| |
Collapse
|
78
|
Althunibat OY, Abukhalil MH, Aladaileh SH, Qaralleh H, Al-Amarat W, Alfwuaires MA, Algefare AI, Namazi NI, Melebary SJ, Babalghith AO, Conte-Junior CA. Formononetin Ameliorates Renal Dysfunction, Oxidative Stress, Inflammation, and Apoptosis and Upregulates Nrf2/HO-1 Signaling in a Rat Model of Gentamicin-Induced Nephrotoxicity. Front Pharmacol 2022; 13:916732. [PMID: 35712704 PMCID: PMC9197219 DOI: 10.3389/fphar.2022.916732] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
Gentamicin (GEN) is a bactericidal aminoglycoside known to cause nephrotoxicity. Formononetin (FN) is a potent flavonoid that exhibits numerous promising pharmacological activities. In this study, we have assessed the nephroprotective efficacy of FN against GEN-induced renal injury in rats. Rats were orally administered with FN (60 mg/kg/day, for 2 weeks) and were co-treated with intraperitoneal (i.p.) injection of GEN (100 mg/kg/day) during the days 8–14. GEN-treated rats demonstrated increased urea and creatinine levels in serum associated with marked histopathological changes in the kidney. Malondialdehyde (MDA) and protein carbonyl contents were elevated, whereas glutathione concentration and catalase and superoxide dismutase activities were lowered in GEN-administered rats. The FN largely prevented tissue damage, attenuated renal function, reduced MDA and protein carbonyl, and enhanced antioxidant capacity in the kidney of GEN-administrated animals. The kidney of GEN-treated rats demonstrated elevated Bax and caspase-3 protein expression, accompanied by lowered Bcl-2 protein expression, an effect that FN attenuated. Moreover, FN treatment caused upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression in renal tissue of GEN-intoxicated animals. Collectively, FN protects against GEN-caused renal damage via exhibiting antioxidant, anti-inflammatory, and antiapoptotic activities and augmenting Nrf2 signaling, suggesting FN as a promising agent for preventing drug-induced organ damage.
Collapse
Affiliation(s)
- Osama Y. Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
- *Correspondence: Osama Y. Althunibat, ; Mohammad H. Abukhalil,
| | - Mohammad H. Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
- Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma’an, Jordan
- *Correspondence: Osama Y. Althunibat, ; Mohammad H. Abukhalil,
| | - Saleem H. Aladaileh
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Haitham Qaralleh
- Department of Medical Laboratory Sciences, Mutah University, Karak, Jordan
| | - Wesam Al-Amarat
- Department of Medical Support, Al-karak University College, Al-Balqa’ Applied University, As-Salt, Jordan
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulmohsen I. Algefare
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nader Ibrahim Namazi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madinah Al Munawarah, Saudi Arabia
| | - Sahar J. Melebary
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm al-qura University, Makkah, Saudi Arabia
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
79
|
Li H, Jiang R, Lou L, Jia C, Zou L, Chen M. Formononetin Improves the Survival of Random Skin Flaps Through PI3K/Akt-Mediated Nrf2 Antioxidant Defense System. Front Pharmacol 2022; 13:901498. [PMID: 35662691 PMCID: PMC9160463 DOI: 10.3389/fphar.2022.901498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Random-pattern skin flap is widely used in plastic and reconstructive surgery. However, its clinical effect is limited by ischemia necrosis occurs at the distal part of flap. Previous studies have proved that the protective effect of formononetin was associated with its antioxidant, anti-inflammatory ability. However, further research is still needed on the effect of formononetin on flap viability. The purpose of our study was to investigate the effect of formononetin on flap survival and the underlying mechanisms. Two doses (25 mg/kg, 50 mg/kg)of formononetin were administered for seven consecutive days on flap model. Flap tissues were collected on postoperative day 7. Our results revealed that formononetin promoted skin flap viability in a dose-dependent manner. Using immunohistochemical staining and western blot, we found that formononetin significantly reduced oxidative stress and inflammation. Hematoxylin and eosin (H and E) staining, laser Doppler images and immunofluorescence staining showed the enhancement of angiogenesis after formononetin treatment. Mechanistically, we demonstrated that the antioxidation of formononetin was mediated by activation and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2), while down-regulating cytoplasmic Kelch-like ECH-associated protein 1 (Keap1) expression. Co-treatment with formononetin and LY294002 (15 mg/kg), a potent Phosphatidylinositol-3-kinase (PI3K) inhibitor, which aborted nuclear Nrf2 expression and phosphorylated Akt, indicating that formononetin-mediated Nrf2 activation was related to PI3K/Akt pathway. Overall, our findings revealed that formononetin increased angiogenesis, reduced oxidative stress and inflammation, thus promoting flap survival. We highlighted the antioxidant effects of formononetin since the Nrf2 system was activated. Therefore, formononetin might be a promising candidate drug that can enhance survival of skin flaps.
Collapse
Affiliation(s)
- Haoliang Li
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Renhao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Lejing Lou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chao Jia
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Linfang Zou
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Mochuan Chen
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Mochuan Chen,
| |
Collapse
|
80
|
Suvarna V, Bore B, Bhawar C, Mallya R. Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomed Pharmacother 2022; 149:112862. [PMID: 35339826 DOI: 10.1016/j.biopha.2022.112862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022] Open
Abstract
Bioactive phytochemicals from natural source have gained tremendous interest over several decades due to their wide and diverse therapeutic activities playing key role as functional food supplements, pharmaceutical and nutraceutical products. Nevertheless, their application as therapeutically active moieties and formulation into novel drug delivery systems are hindered due to major drawbacks such as poor solubility, bioavailability and dissolution rate and instability contributing to reduction in bioactivity. These drawbacks can be effectively overcome by their complexation with different cyclodextrins. Present article discusses complexation of phytochemicals varying from flavonoids, phenolics, triterpenes, and tropolone with different natural and synthetic cyclodextrins. Moreover, the article summarizes complexation methods, complexation efficiency, stability, stability constants and enhancement in rate and extent of dissolution, bioavailability, solubility, in vivo and in vitro activities of reported complexed phytochemicals. Additionally, the article presents update of published patent details comprising of complexed phytochemicals of therapeutic significance. Thus, phytochemical cyclodextrin complexes have tremendous potential for transformation into drug delivery systems as substantiated by significant outcome of research findings.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India.
| | - Bhunesh Bore
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Chaitanya Bhawar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
81
|
Mechanism of Xinfeng Capsule in the Treatment of Hypercoagulable State of Ankylosing Spondylitis Based on Data Mining and Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8796980. [PMID: 35342751 PMCID: PMC8947881 DOI: 10.1155/2022/8796980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022]
Abstract
Background Ankylosing spondylitis (AS) is a rheumatism that mainly affects the axial bones and joints. Xinfeng capsule (XFC) is a preparation with a remarkable clinical effect that is used in our hospital. And it has definite curative effect and less side effects in the treatment of AS. Objective Data mining and network pharmacology were used to analyze the efficacy of Chinese medicine Xinfeng capsule on treating the hypercoagulable state of ankylosing spondylitis and the underlying mechanism behind it. Methods Clinical data were collected and compiled from the Department of Rheumatology and Immunology of the First Affiliated Hospital of Anhui University of Chinese Medicine. Cluster analysis was used to investigate herbs that frequently used to treat AS, Apriori module was used to analyze the association rules between herbs and laboratory indexes, and the random walk model was used to reveal the therapeutic efficacy of XFC against AS. The TCMSP database was used to acquire the active components and targets of XFC, and the GeneCards and OMIM database were used to obtain the targets of AS. Afterward, an active ingredient-target network was established and core targets were screened for; overlapping targets were screened for the protein-protein interaction (PPI) network analysis, the Gene Ontology (GO) enrichment analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Molecular docking was adopted to investigate the interactions between main active components and core targets. Results Frequently used herbs could be divided into three groups, and according to the analysis of Apriori module, there is a strong correlation between XFC and the improvement of ESR and hs-CRP, and the results of the random walk model demonstrated that the effect of XFC on improving PLT, ESR, and hs-CRP was superior to the use of traditional Chinese medicine alone. In total, 103 active compounds of XFC and 59 overlapping targets were obtained. The PPI relationships were obtained through the STRING database, and 13 core targets were identified. 1786 GO enrichment results and 205 KEGG enrichment results were obtained, including NF-kappa B signaling pathway, TNF signaling pathway, and IL17 signaling pathway. The outcomes of molecular docking revealed a close relationship between the active compounds of XFC and core targets. Conclusion This study demonstrated that XFC can effectively improve the hypercoagulable state and the inflammatory indices of AS patients through data mining, and it has a strong correlation with the clinical improvement of inflammation. The active compounds of formononetin, triptolide, quercetin, and kaempferol may be the key active components of XFC in regulating AS, possibly through inhibiting the activation of NF-kappa B signaling pathway to improve hypercoagulable state.
Collapse
|
82
|
Zhao L, Han J, Liu J, Fan K, Yuan T, Han J, Chen L, Zhang S, Zhao M, Duan J. A Novel Formononetin Derivative Promotes Anti-ischemic Effects on Acute Ischemic Injury in Mice. Front Microbiol 2022; 12:786464. [PMID: 34970243 PMCID: PMC8712702 DOI: 10.3389/fmicb.2021.786464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Natural flavonoids, formononetin and ononin, possess antioxidant, antibacterial, anti-inflammatory and neuroprotective effects. Many complications caused by SARS-CoV-2 make patients difficult to recover. Flavonoids, especially formononetin and ononin, have the potential to treat SARS-CoV-2 and improve myocardial injury. However, their poor water solubility, poor oral absorption, high toxicity, and high-cost purification limit industrial practical application. Succinylation modification provides a solution for the above problems. Formononetin-7-O-β-(6″-O-succinyl)-D-glucoside (FMP), a new compound, was succinyl glycosylated from formononetin by the organic solvent tolerant bacteria Bacillus amyloliquefaciens FJ18 in a 10.0% DMSO (v/v) system. The water solubility of the new compound was improved by over 106 times compared with formononetin, which perfectly promoted the application of formononetin and ononin. The conversion rate of formononetin (0.5 g/L) was almost 94.2% at 24 h, while the yield of formononetin-7-O-β-(6″-O-succinyl)-D-glucoside could achieve 97.2%. In the isoproterenol (ISO)-induced acute ischemia mice model, the myocardial injury was significantly improved with a high dose (40 mg/kg) of formononetin-7-O-β-(6″-O-succinyl)-D-glucoside. The lactate dehydrogenase level was decreased, and the catalase and superoxide dismutase levels were increased after formononetin-7-O-β-(6″-O-succinyl)-D-glucoside treatment. Thus, formononetin-7-O-β-(6″-O-succinyl)-D-glucoside has high water solubility, low toxicity, and shows significant antimyocardial ischemia effects.
Collapse
Affiliation(s)
- Lin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Han
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kechen Fan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianjie Yuan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ju Han
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liangliang Chen
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
83
|
Becerril-Sánchez AL, Quintero-Salazar B, Dublán-García O, Escalona-Buendía HB. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants (Basel) 2021; 10:1700. [PMID: 34829570 PMCID: PMC8614671 DOI: 10.3390/antiox10111700] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 02/02/2023] Open
Abstract
Honey has been employed since antiquity due to its sensory, nutritional, and therapeutic properties. These characteristics are related to its physical and chemical composition. For example, phenolic compounds are substances that can determine antioxidant activity, as well as sensory characteristics, and can be employed as biomarkers of floral and geographical origin. This has generated a growing interest in the study of phenolic compounds and their influence in the intrinsic properties of this beekeeping product. This review aims to summarize, analyze, and update the status of the research that demonstrates the role of phenolic compounds in antioxidant activity, botanical-geographical origin, and the sensory characteristics of honey. These phenolic compounds, according to various results reported, have great relevance in honey's biological and functional activity. This leads to research that will link phenolic compounds to their floral, geographical, productive, and territorial origin, as well as some sensory and functional characteristics.
Collapse
Affiliation(s)
- Ana L. Becerril-Sánchez
- Food and Environmental Toxicology Laboratory, Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Mexico;
| | | | - Octavio Dublán-García
- Food and Environmental Toxicology Laboratory, Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Mexico;
| | - Héctor B. Escalona-Buendía
- Sensory Evaluation and Consumer Studies Laboratory, Biotechnology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| |
Collapse
|
84
|
Zhang B, Hao Z, Zhou W, Zhang S, Sun M, Li H, Hou N, Jing C, Zhao M. Formononetin protects against ox-LDL-induced endothelial dysfunction by activating PPAR-γ signaling based on network pharmacology and experimental validation. Bioengineered 2021; 12:4887-4898. [PMID: 34369277 PMCID: PMC8806800 DOI: 10.1080/21655979.2021.1959493] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formononetin (FMNT), a flavonoid identified from the Chinese herb Astragalus membranaceus, possesses anti-inflammatory or anti-oxidative properties in different human diseases. This study aims to comprehensively elucidate the function of FMNT in atherosclerosis and its underlying mechanisms. Online public databases were used to identify the drug-disease targets. Protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were applied to explore the potential targets and signaling pathways involved in FMNT against atherosclerosis. Human umbilical vein endothelial cells (HUVECs) were exposed to oxidized low-density lipoprotein (ox-LDL) to construct an atherosclerosis cell model in vitro. Endothelial cell function was assessed via examining cell proliferation, inflammatory factors, oxidative markers, reactive oxygen species (ROS), and apoptosis. Western blot was performed to detect the expression of cyclooxygenase-2 (COX-2), endothelial nitric oxide synthase (eNOS), cleaved caspase-3, and peroxisome proliferator-activated receptor-γ (PPAR-γ). A total of 39 overlapping target genes of FMNT and atherosclerosis were identified. Through the PPI network analysis, 14 hub genes were screened and found to be closely relevant to inflammation, oxidative stress, and apoptosis. Results of KEGG pathway assays indicated that lots of targets were enriched in PPAR signaling. Functionally, FMNT could protect against ox-LDL-induced inflammatory reaction, oxidative stress, and apoptosis in HUVECs. Moreover, FMNT attenuated ox-LDL-mediated inactivation of PPAR-γ signaling. GW9662, a PPAR-γ antagonist, reversed the inhibitory effect of FMNT on ox-LDL-induced endothelial injury. In conclusion, FMNT alleviates ox-LDL-induced endothelial injury in HUVECs by stimulating PPAR-γ signaling, providing a theoretical basis for employing FMNT as a potential drug to combat atherosclerosis. Abbreviations: FMNT: formononetin; PPI: protein–protein interaction; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; HUVECs: human umbilical vein endothelial cells; ox-LDL: oxidized low-density lipoprotein; COX-2: cyclooxygenase-2; eNOS: endothelial nitric oxide synthase; PPAR-γ: peroxisome proliferator-activated receptor-γ; CVD: cardiovascular disease; TCM: traditional Chinese medicines; OGDR: oxygen-glucose deprivation/reoxygenation; ROS: reactive oxygen species; FBS: fetal bovine serum; CCK-8: cell counting kit-8; EdU: 5-Ethynyl-2ʹ-deoxyuridine; SOD: antioxidant enzymes superoxide dismutase; MDA: malondialdehyde; DCFH-DA: 2ʹ,7ʹ-dichlorofluorescein-diacetate; PVDF: polyvinylidene fluoride; ANOVA: one-way analysis of variance; PPARs: peroxisome proliferation-activated receptors
Collapse
Affiliation(s)
- Baohua Zhang
- Department of Health Care, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhongwei Hao
- Department of Cardiovascular Medicine, No. 906 Hospital of PLA, Ningbo, China
| | - Wenli Zhou
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shan Zhang
- Department of Fuxing Road Outpatient, Jingnan Medical District, Chinese PLA General Hospital Beijing, Beijing, China
| | - Mingyan Sun
- Department of Health Care, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Honglei Li
- Department of Fuxing Road Outpatient, Jingnan Medical District, Chinese PLA General Hospital Beijing, Beijing, China
| | - Naijing Hou
- Department of Health Care, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Cui Jing
- Department of Health Care, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Mingxing Zhao
- Department of Health Care, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
85
|
Kwesiga G, Sperlich E, Schmidt B. Scope and Applications of 2,3-Oxidative Aryl Rearrangements for the Synthesis of Isoflavone Natural Products. J Org Chem 2021; 86:10699-10712. [PMID: 34313125 DOI: 10.1021/acs.joc.1c01375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of flavanones with hypervalent iodine reagents was investigated with a view to the synthesis of naturally occurring isoflavones. In contrast to several previous reports in the literature, we did not observe the formation of any benzofurans via a ring contraction pathway, but could isolate only isoflavones, resulting from an oxidative 2,3-aryl rearrangement, and flavones, resulting from an oxidation of the flavanones. Although the 2,3-oxidative rearrangement allows a synthetically useful approach toward some isoflavone natural products due to the convenient accessibility of the required starting materials, the overall synthetic utility and generality of the reaction appear to be more limited than previous literature reports suggest.
Collapse
Affiliation(s)
- George Kwesiga
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Eric Sperlich
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Bernd Schmidt
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
86
|
Zhang M, Hu G, Shao N, Qin Y, Chen Q, Wang Y, Zhou P, Cai B. Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer's disease: flavonoids and phenols. Inflammopharmacology 2021; 29:1317-1329. [PMID: 34350508 DOI: 10.1007/s10787-021-00861-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid plaques and tangles that have become the fifth leading cause of death worldwide. Previous studies have found that thioredoxin interacting protein (TXNIP) expression was increased during the development of AD neurons. TXNIP separates from the TXNIP-thioredoxin complex, and the TXNIP-NLRP3 complex assembles ASC and pro-caspase-1 to form the NLRP3 inflammasome, which triggers AD inflammation and apoptosis. CB-dock was used to explore whether 21 natural flavonoids and phenols target TXNIP based on references. Docking results showed that rutin, puerarin, baicalin, luteolin and quercetin are the most potent TXNIP inhibitors, and among them, rutin as the most effective flavonoid. And rosmarinic acid is the most potent TXNIP inhibitor of phenols. These phytochemicals could be helpful to find the lead compounds in designing and developing novel agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guanhua Hu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Nan Shao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yunpeng Qin
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qian Chen
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| | - Biao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| |
Collapse
|