51
|
Ren G, He Y, Liu C, Ni F, Luo X, Shi J, Song Y, Li T, Huang M, Shen Q, Xie H. Encapsulation of curcumin in ZEIN-HTCC complexes: Physicochemical characterization, in vitro sustained release behavior and encapsulation mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
52
|
AKMAN PK, BOZKURT F, TORNUK F. Fabrication and characterization of curcumin loaded ovalbumin nanocarriers and bioactive properties. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.38421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Fatih BOZKURT
- Yildiz Technical University, Turkey; Mus Alparslan University, Turkey
| | | |
Collapse
|
53
|
Wan M, Huang Z, Yang X, Chen Q, Chen L, Liang S, Zeng Q, Zhang R, Dong L, Su D. Fabrication and interaction mechanism of ovalbumin‐based nanocarriers for metallic ion encapsulation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mengxi Wan
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Zhenzhen Huang
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Xinxi Yang
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Qiqi Chen
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Leqi Chen
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Siyue Liang
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Ruifen Zhang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing Guangzhou Guangdong 510006 China
| | - Lihong Dong
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing Guangzhou Guangdong 510006 China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| |
Collapse
|
54
|
Xu YY, Huo YF, Xu L, Zhu YZ, Wu YT, Wei XY, Zhou T. Resveratrol-loaded ovalbumin/Porphyra haitanensis polysaccharide composite nanoparticles: Fabrication, characterization and antitumor activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
55
|
Vellido-Perez JA, Ochando-Pulido JM, Brito-de la Fuente E, Martinez-Ferez A. Effect of operating parameters on the physical and chemical stability of an oil gelled-in-water emulsified curcumin delivery system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6395-6406. [PMID: 33969886 DOI: 10.1002/jsfa.11310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Curcumin is a natural antioxidant with important beneficial properties for health, although its low bioavailability and sensitivity to many environmental agents limits its use in the food industry. Furthermore, some studies mention a potential synergistic effect with omega-3 polyunsaturated fatty acids, comprising other bioactive compounds extremely unstable and susceptible to oxidation. A relatively novel strategy to avoid oxidation processes is to transform liquid oils into three-dimensional structures by adding a gelling agent and forming a self-assembled network that can later be vectorized by incorporating it into other systems. The present study aimed to design and optimize an oil gelled-in-water curcumin-loaded emulsion to maximize curcumin stability and minimize lipid oxidation in terms of some critical operating parameters, such as dispersed phase, emulsifier and stabilizer concentrations, and homogenization rate. RESULTS The operating conditions that had a significant effect on the formulation were the dispersed phase weight fraction affecting droplet size and total lipid oxidation, homogenization conditions affecting droplet size and primary lipid oxidation, and emulsifier concentration affecting droplet size (significance level = 95%). The optimal formulation for maximizing curcumin load and minimizing lipid oxidation in the oleogelified matrix was 140.4 g kg-1 dispersed phase, 50.0 g kg-1 emulsifier, 4.9 g kg-1 stabilizer and homogenization speed 1016 × g. CONCLUSION The results obtained in the present study provide a valuable tool for the rational design and development of oil gelled-in-water emulsions that stabilize and transport bioactive compounds such as curcumin. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Edmundo Brito-de la Fuente
- Innovation & Development Centers China & Germany Business Unit Parenteral Nutrition, Ketoanalogues & IV Fluids Pharmaceuticals & Devices Division, Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | - Antonio Martinez-Ferez
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
56
|
Liu L, Huang X, Geng F, Huang Q. Optimization of preparation process of egg white protein/
κ
‐carrageenan composite film. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lan Liu
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- School of Public Health Guizhou Medical University Guiyang China
| | - Xiang Huang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- School of Public Health Guizhou Medical University Guiyang China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs) School of Food and Biological Engineering Chengdu University Chengdu China
| | - Qun Huang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- School of Public Health Guizhou Medical University Guiyang China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs) School of Food and Biological Engineering Chengdu University Chengdu China
| |
Collapse
|
57
|
Razzak MA, Li J, Choi SS. Egg-Curry: Insights into the Interaction Between Curcumin and Ovalbumin Using Spectroscopic Analyses and Protein-Ligand Docking Simulations. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09704-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
58
|
Ren G, Shi J, Huang S, Liu C, Ni F, He Y, Luo X, Li T, Song Y, Huang M, Xie H. The fabrication of novel zein and resveratrol covalent conjugates: Enhanced thermal stability, emulsifying and antioxidant properties. Food Chem 2021; 374:131612. [PMID: 34823943 DOI: 10.1016/j.foodchem.2021.131612] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022]
Abstract
Novel zein and resveratrol conjugates were fabricated by alkaline and free radical grafting reactions. The grafting efficiency and total phenolic content of alkaline treated conjugates were slightly higher than those of free radical grafting. Compared to native and alkaline treated zein, the sulfhydryl contents of conjugates were obviously decreased, confirming that nucleophilic addition of resveratrol to sulfhydryl group of zein formed stable CS covalent bonds. The conformation changes of zein modified by resveratrol were revealed by fourier transform infrared spectroscopy and fluorescence spectroscopy. Moreover, covalent modification changed isoelectric point of zein from 6.5 to 5.4 (alkaline) or 5.6 (free radical grafting), and broadening the pH application range of zein. It was worth mentioning that the conjugates showed much higher thermal stability, antioxidant activity, and emulsify activity than those of native zein. This study provides an effective way for the design of novel delivery systems to encapsulate bioactive substances.
Collapse
Affiliation(s)
- Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jieyu Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Sijie Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Chengzhi Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Fangfang Ni
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xin Luo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ting Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yuling Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
59
|
Li F, Zhe T, Ma K, Li R, Li M, Liu Y, Cao Y, Wang L. A Naturally Derived Nanocomposite Film with Photodynamic Antibacterial Activity: New Prospect for Sustainable Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52998-53008. [PMID: 34723456 DOI: 10.1021/acsami.1c12243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food packaging with efficient antibacterial ability is highly desirable and challenging in facing the crisis of microbial contamination. However, most present packaging is based on metal-based antibacterial agents and requires a time-consuming antibacterial process. Here, the unique packaging (CC/BB films) featuring aggregation-induced emission behavior and photodynamic inactivation activity is prepared by dispersing self-assembled berberine-baicalin nanoparticles (BB NPs) into a mixed matrix of sodium carboxymethylcellulose-carrageenan (CC). The superiority of this design is that this packaging film can utilize sunlight to generate reactive oxygen species, thus eradicating more than 99% of E. coli and S. aureus within 60 min. Also, this film can release BB NPs to inactivate bacteria under all weather conditions. Surprisingly, the CC/BB nanocomposite film presented excellent mechanical performances (29.80 MPa and 38.65%), hydrophobicity (117.8°), and thermostability. The nanocomposite film is validated to be biocompatible and effective in protecting chicken samples, so this work will provide novel insights to explore safe and efficient antibacterial food packaging.
Collapse
Affiliation(s)
- Fan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Taotao Zhe
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaixuan Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruixia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
60
|
Abd El-Hack ME, El-Saadony MT, Swelum AA, Arif M, Abo Ghanima MM, Shukry M, Noreldin A, Taha AE, El-Tarabily KA. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5747-5762. [PMID: 34143894 DOI: 10.1002/jsfa.11372] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
Turmeric (Curcuma longa L.) is a spice utilized widely in India, China, and Southeast Asia as an aromatic stimulant, a food preservative, and coloring material. The commonly used names of turmeric are castor saffron, turmeric, and saffron root. Turmeric is a yellow-orange polyphenolic natural substance derived from C. longa rhizomes. It has been used to treat common inflammatory diseases, tumors, biliary diseases, anorexia, cough, topical wounds, diabetic injuries, liver disorders, rheumatism, and sinusitis. Extensive studies on the biological properties and pharmacological consequences of turmeric extracts have been conducted in recent years. Curcumin, the primary yellow biocomponent of turmeric, has anti-inflammatory, antioxidant, anticarcinogenic, antidiabetic, antibacterial, antiprotozoal, antiviral, antifibrotic, immunomodulatory, and antifungal properties. Defense assessment tests showed that curcumin is tolerated well at high doses, without adverse effects. Thus, curcumin is a highly active biological material with the potential to treat different diseases in modern medicine. This review article focuses on curcumin's biological characteristics. The most popular methods for curcumin encapsulation are also discussed. Several effective techniques and approaches have been proposed for curcuminoid capsulation, including nanocomplexing, gelation, complex coacervation, electrospraying, and solvent-free pH-driven encapsulation. This review also highlights curcumin's chemical properties, allowing the readers to expand their perspectives on its use in the development of functional products with health-promoting properties. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Mahmoud M Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| |
Collapse
|
61
|
Li X, Feng R, Zhou P, Wang L, Luo Z, An S. Construction and characterization of Juglans regia L. polyphenols nanoparticles based on bovine serum albumin and Hohenbuehelia serotina polysaccharides, and their gastrointestinal digestion and colonic fermentation in vitro. Food Funct 2021; 12:10397-10410. [PMID: 34554172 DOI: 10.1039/d1fo01993g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report the construction and characterization of nanoparticles based on bovine serum albumin and Hohenbuehelia serotina polysaccharides for the delivery of polyphenols isolated from the shells of Juglans regia L. (BSA-JRP-HSP NPs). We also systematically investigated their gastrointestinal digestion and colonic fermentation characteristics in vitro. BSA-JRP-HSP NPs, with amorphous properties and regular spherical morphological features, have a high encapsulation efficiency of 88.47 ± 0.04%, average particle size of 285.7 ± 3.1 nm, and zeta potential of -12.20 ± 0.61 mV, and they exhibit excellent photothermal stabilities and strong mucin adhesion capacity. Through measurements of gastrointestinal digestion and colonic fermentation in vitro, the results suggest that BSA-JRP-HSP NPs presented well-sustained release characteristics for preventing the biodegradation of JRP during gastrointestinal digestion. After gastrointestinal digestion, BSA-JRP-HSP NPs could modulate the composition and structure of gut microbiota, promoting the growth of beneficial bacterial (e.g. Prevotella, Dialister, Akkermansia, etc.) and inhibiting the growth of pathogenic bacteria (e.g. Bacteroides, Phascolarctobacterium, Lachnospiracea incertae sedis, etc.). The production of short-chain fatty acids (SCFAs) including acetic acid, propionic acid, and butyric acid was remarkably enhanced by treatment with BSA-JRP-HSP NPs. This study has proved that BSA-JRP-HSP NPs can serve as a novel candidate for improving the bioavailability of JRP.
Collapse
Affiliation(s)
- Xiaoyu Li
- Skate Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.,Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siying An
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| |
Collapse
|
62
|
Li J, Wang C, Chang C, Jiao H, Su Y, Gu L, Yang Y, Yu H. Changes in stability and in vitro digestion of egg-protein stabilized emulsions and β-carotene gels in the presence of sodium tripolyphosphate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5591-5598. [PMID: 33709411 DOI: 10.1002/jsfa.11210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Egg proteins are effective emulsifiers and gelators in food systems. However, the physicochemical stability and control release properties of egg-protein stabilized emulsions and gels need to be further improved. The potential of sodium tripolyphosphate (St) to improve the functionality of egg proteins was evaluated. RESULTS The emulsions with St had smaller particle sizes and higher zeta potential, leading to better physical stability. Furthermore, the oxidation stability increased with increasing St contents, possibly due to its metal chelating capacity and the improved emulsifying activity of whole-egg dispersions. Phosphate had a positive impact on the chemical stability of β-carotene in whole-egg liquids and gels, decreasing the degradation during thermal treatment. The gel made with St was firm and broke down slowly, leading to a low rate of digestion and β-carotene release in simulated gastric fluid. CONCLUSION This study shows that St is useful to improve the egg proteins stabilized emulsions and gels, which is applicable in the development of emulsion-based food grade gel products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Han Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haitao Yu
- School of Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| |
Collapse
|
63
|
Exploration of the Microstructure and Rheological Properties of Sodium Alginate-Pectin-Whey Protein Isolate Stabilized Β-Carotene Emulsions: To Improve Stability and Achieve Gastrointestinal Sustained Release. Foods 2021; 10:foods10091991. [PMID: 34574098 PMCID: PMC8465917 DOI: 10.3390/foods10091991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sodium alginate (SA)-pectin (PEC)-whey protein isolate (WPI) complexes were used as an emulsifier to prepare β-carotene emulsions, and the encapsulation efficiency for β-carotene was up to 93.08%. The confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) images showed that the SA-PEC-WPI emulsion had a compact network structure. The SA-PEC-WPI emulsion exhibited shear-thinning behavior and was in a semi-dilute or weak network state. The SA-PEC-WPI stabilized β-carotene emulsion had better thermal, physical and chemical stability. A small amount of β-carotene (19.46 ± 1.33%) was released from SA-PEC-WPI stabilized β-carotene emulsion in simulated gastric digestion, while a large amount of β-carotene (90.33 ± 1.58%) was released in simulated intestinal digestion. Fourier transform infrared (FTIR) experiments indicated that the formation of SA-PEC-WPI stabilized β-carotene emulsion was attributed to the electrostatic and hydrogen bonding interactions between WPI and SA or PEC, and the hydrophobic interactions between β-carotene and WPI. These results can facilitate the design of polysaccharide-protein stabilized emulsions with high encapsulation efficiency and stability for nutraceutical delivery in food and supplement products.
Collapse
|
64
|
Ghobadi M, Koocheki A, Varidi MJ, Varidi M. Encapsulation of curcumin using Grass pea (Lathyrus sativus) protein isolate/Alyssum homolocarpum seed gum complex nanoparticles. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
65
|
Liu C, Ye H, Kuang J, Ren G, Shen Q, Xie H, Lei Q, Fang W. Investigation of interfacial composition and thermodynamic stability of 14-n-14/alcohol/oil/water microemulsions by dilution method. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
66
|
Zeng Q, Zeng W, Jin Y, Sheng L. Construction and evaluation of ovalbumin-pullulan nanogels as a potential delivery carrier for curcumin. Food Chem 2021; 367:130716. [PMID: 34384981 DOI: 10.1016/j.foodchem.2021.130716] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022]
Abstract
Preparation of protein/polysaccharide nanocomplexes for delivering environment-sensitive bioactive compounds is significant in the fields of functional foods and pharmaceuticals. In this work, ovalbumin-pullulan (OVA-Pul) nanogels were fabricated through Maillard reaction combined with heat treatment. The results of SDS-PAGE, circular dichroism and conjugation yield (84.96%) confirmed the covalent crosslinking of ovalbumin to pullulan. Dynamic light scattering measurements indicated that nanogels and curcumin-loaded nanogels exhibited small particle diameter at around 190 nm and 160 nm, and excellent polydispersity index at 0.227 and 0.146, respectively. OVA-Pul nanogels showed good encapsulation efficiency (88.38%) and loading capacity (8.78%) for curcumin. Transmission electron microscope observations and in vitro gastrointestinal digestion suggested that OVA-Pul nanogels facilitated the controlled release of curcumin and the spherical structure of curcumin-loaded nanogels was damaged during digestion. Notably, both nanogels and curcumin-loaded nanogels showed desirable storage stability during 30 d. Hence, OVA-Pul nanogels have the potential for effectively delivering nutrients and drugs.
Collapse
Affiliation(s)
- Qi Zeng
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, China
| | - Wenhao Zeng
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, China
| | - Yongguo Jin
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, China.
| | - Long Sheng
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, China.
| |
Collapse
|
67
|
Low Molecular Weight Kappa-Carrageenan Based Microspheres for Enhancing Stability and Bioavailability of Tea Polyphenols. Processes (Basel) 2021. [DOI: 10.3390/pr9071240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tea polyphenols (TP) are a widely acknowledged bioactive natural product, however, low stability and bioavailability have restricted their application in many fields. To enhance the stability and bioavailability of TP under certain moderate conditions, encapsulation technique was applied. Kappa–Carrageenan (KCG) was initially degraded to a lower molecular weight KCG (LKCG) by H2O2, and was selected as wall material to coat TP. The obtained LKCG (Mn = 13,009.5) revealed narrow dispersed fragments (DPI = 1.14). FTIR and NMR results demonstrated that the main chemical structure of KCG remained unchanged after degradation. Subsequently, LK-CG and TP were mixed and homogenized to form LK-CG-TP microspheres. SEM images of the microspheres revealed a regular spherical shape and smooth surface with a mean diameter of 5–10 μM. TG and DSC analysis indicated that LK-CG-TP microspheres exhibited better thermal stability as compared to free TP. The release profile of LK-CG-TP in simulated gastric fluid (SGF) showed a slowly release capacity during the tested 180 min with the final release rate of 88.1% after digestion. Furthermore, in vitro DPPH radical scavenging experiments revealed that LK-CG-TP had an enhanced DPPH scavenging rate as compared to equal concentration of free TP. These results indicated that LK-CG-TP microspheres were feasible for protection and delivery of TP and might have extensive potential applications in other bioactive components.
Collapse
|
68
|
Xie H, Liu C, Gao J, Shi J, Ni F, Luo X, He Y, Ren G, Luo Z. Fabrication of Zein-Lecithin-EGCG complex nanoparticles: Characterization, controlled release in simulated gastrointestinal digestion. Food Chem 2021; 365:130542. [PMID: 34265644 DOI: 10.1016/j.foodchem.2021.130542] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023]
Abstract
The Zein-Lecithin-Epigallocatechin gallate (EGCG) complex nanoparticles were fabricated by anti-solvent coprecipitation method. The Zein-Lecithin (Z-L) nanocomplexes exhibited great encapsulation efficiency of 68.5% for EGCG, and the encapsulated EGCG still had good antioxidative capacity. The cumulative release of EGCG in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) were 19% and 92%, respectively, and the release was closest to Fick release in SGF and First release in SIF. Fluorescence spectroscopy (FL), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) experiments revealed that the EGCG was successfully encapsulated by Z-L nanocomplexes through electrostatic, hydrophobic and hydrogen bonding interactions. The Zein-Lecithin-EGCG complex nanoparticles exhibited excellent stability and great sustained-release performance, which will be the alternative for potential application in the food industry.
Collapse
Affiliation(s)
- Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Chengzhi Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jian Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jieyu Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Fangfang Ni
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xin Luo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
69
|
Dong Y, Wei Z, Xue C. Recent advances in carrageenan-based delivery systems for bioactive ingredients: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
70
|
Nagaraju PG, P S, Dubey T, Chinnathambi S, C G PP, Rao PJ. Influence of sodium caseinate, maltodextrin, pectin and their Maillard conjugate on the stability, in vitro release, anti-oxidant property and cell viability of eugenol-olive oil nanoemulsions. Int J Biol Macromol 2021; 183:158-170. [PMID: 33901559 DOI: 10.1016/j.ijbiomac.2021.04.122] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 01/22/2023]
Abstract
The influence of protein (sodium caseinate-SC), polysaccharide (maltodextrin-MD; pectin-PC) and their Maillard conjugates (sodium caseinate maltodextrin conjugate-SCMDC; sodium caseinate pectin conjugate-SCPCC) were studied on the physico-chemical and biological properties of eugenol nanoemulsions/powder. The chemical composition was optimized using Taguchi design. The particles size of eugenol nanoemulsions with SC, MD, PC, SCMDC and SCPCC were 104.6, 323.5, 1872, 181.7, and 454.4 nm, respectively while their zeta potentials were -31.2, -28.5, -21.4, -40.1 and -25.1 mV, respectively. Turbidity studies revealed higher stability of nanoemulsion prepared with Maillard conjugate (SCMDC) compared to protein or polysaccharides alone. The dispersion of SCMDC eugenol nanoparticles in buffer was prepared to study its stability at different pH (3.0, 5.0, and 7.0) and temperature (4°, 37°, 60 °C) range. In-vitro enzymatic release study showed 31 and 74% release of eugenol after 6 h at pH 2.4 and 7.4, respectively. In vitro antioxidant capacity of SCMDC encapsulated eugenol was higher than native eugenol, as demonstrated by free radical scavenging assays. In comparison to native eugenol, E:SCMDC eugenol showed reduced toxicity. These findings suggested that nanoencapsulated eugenol (E:SCMDC) have a huge potential in nutraceutical and therapeutic applications.
Collapse
Affiliation(s)
- Pramod G Nagaraju
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru 570009, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sindhu P
- Spice & Flavour Science, CSIR-Central Food Technological Research Institute, Mysuru 570009, India
| | - Tushar Dubey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Subashchandrabose Chinnathambi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Poornima Priyadarshini C G
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru 570009, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Pooja J Rao
- Spice & Flavour Science, CSIR-Central Food Technological Research Institute, Mysuru 570009, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
71
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
72
|
Sethiya A, Agarwal DK, Agarwal S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev Med Chem 2021; 20:1190-1232. [PMID: 32348221 DOI: 10.2174/1389557520666200429103647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| | | | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| |
Collapse
|
73
|
Pérez MJ, Moreno MA, Martínez-Abad A, Cattaneo F, Zampini C, Isla MI, López-Rubio A, Fabra MJ. Interest of black carob extract for the development of active biopolymer films for cheese preservation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
74
|
Mo X, Peng X, Liang X, Fang S, Xie H, Chen J, Meng Y. Development of antifungal gelatin-based nanocomposite films functionalized with natamycin-loaded zein/casein nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106506] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
75
|
Gao J, Mao Y, Xiang C, Cao M, Ren G, Wang K, Ma X, Wu D, Xie H. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model. Food Chem 2021; 354:129516. [PMID: 33744663 DOI: 10.1016/j.foodchem.2021.129516] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
In this work, the β-lactoglobulin/gum arabic (β-Lg-GA) complexes were prepared to encapsulate epigallocatechin gallate (EGCG), forming β-Lg-GA-EGCG complex nanoparticles with an average particle size of 133 nm. The β-Lg-GA complexes exhibited excellent encapsulation efficiency (84.5%), and the antioxidant performance of EGCG in vitro was improved after encapsulation. It was recorded that 86% of EGCG could be released in simulated intestinal fluid after 3 h of digestion, much faster than that in simulated gastric fluid, indicating that the β-Lg-GA complexes were effective in enhancing EGCG stability, which was confirmed using SDS-PAGE and SEM. Further spectrum results demonstrated that various intramolecular interactions including electrostatic, hydrophobic and hydrogen bonding interactions contribute to the formation of β-Lg-GA-EGCG complex nanoparticles. Also, XRDexperiments indicated that EGCG was successfully encapsulated by β-Lg-GA complexes. Therefore, the β-Lg-GA complexes hold great potentials in the protective delivery of sensitive bioactives.
Collapse
Affiliation(s)
- Jian Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yuezhong Mao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Chuyue Xiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Mengna Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xiangjuan Ma
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Di Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
76
|
Beaumont M, Tran R, Vera G, Niedrist D, Rousset A, Pierre R, Shastri VP, Forget A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021; 22:1027-1052. [PMID: 33577286 PMCID: PMC7944484 DOI: 10.1021/acs.biomac.0c01406] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/29/2021] [Indexed: 12/22/2022]
Abstract
With the increasing growth of the algae industry and the development of algae biorefinery, there is a growing need for high-value applications of algae-extracted biopolymers. The utilization of such biopolymers in the biomedical field can be considered as one of the most attractive applications but is challenging to implement. Historically, polysaccharides extracted from seaweed have been used for a long time in biomedical research, for example, agarose gels for electrophoresis and bacterial culture. To overcome the current challenges in polysaccharides and help further the development of high-added-value applications, an overview of the entire polysaccharide journey from seaweed to biomedical applications is needed. This encompasses algae culture, extraction, chemistry, characterization, processing, and an understanding of the interactions of soft matter with living organisms. In this review, we present algae polysaccharides that intrinsically form hydrogels: alginate, carrageenan, ulvan, starch, agarose, porphyran, and (nano)cellulose and classify these by their gelation mechanisms. The focus of this review further lays on the culture and extraction strategies to obtain pure polysaccharides, their structure-properties relationships, the current advances in chemical backbone modifications, and how these modifications can be used to tune the polysaccharide properties. The available techniques to characterize each organization scale of a polysaccharide hydrogel are presented, and the impact on their interactions with biological systems is discussed. Finally, a perspective of the anticipated development of the whole field and how the further utilization of hydrogel-forming polysaccharides extracted from algae can revolutionize the current algae industry are suggested.
Collapse
Affiliation(s)
- Marco Beaumont
- Queensland
University of Technology, Brisbane, Australia
| | - Remy Tran
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Grace Vera
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Dennis Niedrist
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Aurelie Rousset
- Centre
d’Étude et de Valorisation des Algues, Pleubian, France
| | - Ronan Pierre
- Centre
d’Étude et de Valorisation des Algues, Pleubian, France
| | - V. Prasad Shastri
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
- Centre
for Biological Signalling Studies, University
of Freiburg, Frieburg, Germany
| | - Aurelien Forget
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
77
|
A novel complex coacervate formed by gliadin and sodium alginate: Relationship to encapsulation and controlled release properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
78
|
Fabrication of PGFE/CN-stabilized β-carotene-loaded peppermint oil nanoemulsions: Storage stability, rheological behavior and intelligent sensory analyses. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
79
|
Zhang Q, Zhou Y, Yue W, Qin W, Dong H, Vasanthan T. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
80
|
Cao M, Gao J, Li Y, Liu C, Shi J, Ni F, Ren G, Xie H. Complexation of β-lactoglobulin with gum arabic: Effect of heat treatment and enhanced encapsulation efficiency. Food Sci Nutr 2021; 9:1399-1409. [PMID: 33747454 PMCID: PMC7958567 DOI: 10.1002/fsn3.2103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Heat treatment is widely used in food industry. Proteins and polysaccharides as important natural polymers in food, under heat treatment, the interactions between them could mediate the conformation and functional properties of proteins. Thermally induced β-lactoglobulin-gum arabic complexes (β-Lg-GA) were fabricated, and the effect of heat treatment on physicochemical properties of the complexes was systematically investigated. The average particle size of β-Lg-GA complexes decreased with temperature increased, at 85°C, a smaller size of 273 nm was obtained. A saturated adsorption of GA was found when mass ratio of β-Lg/GA was <1:2. At pH = 4.2-7.0, electrostatic attraction between β-Lg and GA was low and a fairly constant turbidity was observed, the formed composite particles had good stability to the pH value. Through UV, fluorescence, and FTIR spectroscopy, it was found that formation of the nanoparticles relied on thermal denaturation and aggregation of protein, the electrostatic, hydrophobic, and hydrogen bonding interactions between β-Lg and GA were also important. Scanning electron microscope further indicated β-Lg and GA had good compatibility, and the complexes had a spherical core-shell structure at molecular level. In addition, these prepared natural nanoparticles by heat treatment show significantly higher encapsulation efficiency for (-)-epigallocatechin-3-gallate (EGCG) than that of unheated, thus could be used as a promising carrier for biologically active substances.
Collapse
Affiliation(s)
- Mengna Cao
- School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Jian Gao
- School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Yang Li
- School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Chengzhi Liu
- School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Jieyu Shi
- School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Fangfang Ni
- School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Gerui Ren
- School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Hujun Xie
- School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| |
Collapse
|
81
|
Wang Z, Han L, Liu J, Yao M. Refrigeration temperature enhanced synergistic interaction of curcumin and 460 nm light-emitting diode against Staphylococcus saprophyticus at neutral pH. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Objectives
As considered highly resistant to antibiotics like mecillinam, the rise of Staphylococcus saprophyticus (S. saprophyticus) contamination of fresh foods and food processing environments necessitates the development of a new antimicrobial approach for food safety control. This study aimed to investigate the synergistic effect of food-grade curcumin (CUR) and blue light-emitting diode (LED) on S. saprophyticus.
Materials and Methods
S. saprophyticus was subjected to the synergistic treatment at 4 and 25 °C. The influence of parameters, including CUR concentration, light dose, and pH incubation time on the inactivation of S. saprophyticus was characterized through plate counting method.
Results:
The combined treatment of CUR and blue light irradiation significantly (P < 0.05) reduced bacterial counts and the antimicrobial effect was in a CUR concentration and light dose-dependent manner. Moreover, refrigeration temperature (4 °C) significantly (P < 0.05) enhanced the antibacterial effect at neutral pH condition (6.2–7.2), resulting in approximately 6.0 log reductions. Under acidic condition (pH 2.2–5.2), there was no significant difference in bacterial population reduction between treatments at both temperatures.
Conclusions
These findings proposed that synergistic interaction of CUR and 460 nm LED under refrigerated temperature could enhance the inactivation of S. saprophyticus at neutral pH condition.
Collapse
|
82
|
Guo Q, Shu X, Hu Y, Su J, Chen S, Decker EA, Gao Y. Formulated protein-polysaccharide-surfactant ternary complexes for co-encapsulation of curcumin and resveratrol: Characterization, stability and in vitro digestibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
83
|
Luo L, Wu Y, Liu C, Zou Y, Huang L, Liang Y, Ren J, Liu Y, Lin Q. Elaboration and characterization of curcumin-loaded soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin. Food Chem 2021; 336:127669. [PMID: 32758804 DOI: 10.1016/j.foodchem.2020.127669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
Curcumin was recently attracted great interest owing to its multiple bioactivities; however, the use of curcumin was hindered by its poor solubility and stability. In this study, curcumin-nisin-soy soluble polysaccharide nanoparticles (Cur-Nisin-SSPS-NPs, size = 118.76 nm) have been successfully elaborated to improve the application of curcumin. The formation of Cur-Nisin-SSPS-NPs was mediated by amphiphilic and positively charged nisin: SSPS encapsulated nisin, which was mainly driven by electrostatic attraction. And nisin-SSPS complex encapsulated curcumin mainly through hydrophobic interactions between nisin and curcumin. The encapsulation efficiency of curcumin (91.66%) in this novel nanocarriers was significantly higher than that in nanoparticles prepared by a single SSPS (31.82%) or nisin (41.69%), most likely because more hydrophobic regions of nisin were exposed after interacting with SSPS through electrostatic interaction. Consequently, this facile and green nanocarriers improved the solubility/dispersibility and stability of curcumin and nisin, as well as endowed SSPS-based nanoparticles with antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Lijuan Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chun Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yuan Zou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liang Huang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Liang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Ren
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yingli Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
84
|
Chen X, Liu B, Tong R, Ding S, Wu J, Lei Q, Fang W. Improved Stability and Targeted Cytotoxicity of Epigallocatechin-3-Gallate Palmitate for Anticancer Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:969-977. [PMID: 33393784 DOI: 10.1021/acs.langmuir.0c03449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although with high antioxidant activity, epigallocatechin-3-gallate (EGCG) was restricted by its poor chemical stability in practical applications. One of EGCG derivatives, EGCG palmitate, was synthesized with EGCG and palmitoyl chloride to overcome instability of EGCG. However, uncertainties still exist in chemical stability and cytotoxicity of EGCG palmitate, which are essential for further exploration in anticancer therapy. Our work aims to analyze the resistance of EGCG palmitate to oxidation and summarize its targeted inhibition efficiency on cancerous cells and normal cells. High-performance liquid chromatography analysis confirmed that EGCG palmitate remained stable in air and Dulbecco's modified eagle medium (DMEM) for a longer time than EGCG. Antioxidative and pro-oxidative effects of EGCG palmitate on treated cells are proposed through reactive oxygen species (ROS) detection, respectively. It reveals that pro-oxidants by H2O2 production can exert antiproliferative and proapoptotic effects on cancerous cells and stimulate autophagy, while an antioxidant relieves oxidative stress caused by superoxide as compared to normal cells. Consequently, targeted cytotoxicity is adopted by EGCG palmitate-treated cancerous cells. Results above manifest that EGCG palmitate possesses potential to serve as a promising prodrug in anticancer treatment.
Collapse
Affiliation(s)
- Xuerui Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bingbing Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shiping Ding
- The National Education Base for Basic Medical Sciences, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
85
|
de Lima Barizão C, Crepaldi MI, Junior ODOS, de Oliveira AC, Martins AF, Garcia PS, Bonafé EG. Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. Int J Biol Macromol 2020; 165:582-590. [DOI: 10.1016/j.ijbiomac.2020.09.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
|
86
|
Hasankhan S, Tabibiazar M, Hosseini SM, Ehsani A, Ghorbani M. Fabrication of curcumin-zein-ethyl cellulose composite nanoparticles using antisolvent co-precipitation method. Int J Biol Macromol 2020; 163:1538-1545. [PMID: 32784024 DOI: 10.1016/j.ijbiomac.2020.08.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
The stable colloidal nano-dispersion of curcumin (CU) loaded zein-ethyl cellulose (ZN-EC) as three hydrophobic agent in water was prepared using two step antisolvent co-precipitation method. The EC coated NPs were prepared by adding EC in ethyl acetate to the ZN-CU NPs at a concentration ratio of 1: 3.5 w/v. The prepared colloidal suspension of ZN-EC showed high physical stability during storage time. The particle diameters and zeta potential values of ZN-CU and ZN-CU-EC colloidal suspensions were 140 ± 12 nm, 38 ± 2 mV and 179 ± 12 nm, 12 ± 2 mV, respectively. Based on Scanning electron microscopy (SEM) images, participation of EC on the surface of ZN-CU particles could reduce the sticky appearance of particles. Encapsulation efficiency of CU in NPs did not improve after precipitation of EC, but the stability of NPs against pH changes, increased and release rate of CU from NPs at different pH values (3-8) were significantly reduced in comparison of ZN-CU NPs. The EC coated NPs showed the excessive protection for CU antioxidant activity during storage. In conclusion, the prepared NPs, with high physical stability, have good potential for encapsulation and delivery of CU to colon region.
Collapse
Affiliation(s)
- Sadaf Hasankhan
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Nutrition Research Center and Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran..
| | - Seyede Marzieh Hosseini
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ehsani
- Nutrition Research Center and Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
87
|
Cortez-Trejo MC, Mendoza S, Loarca-Piña G, Figueroa-Cárdenas JD. Physicochemical characterization of protein isolates of amaranth and common bean and a study of their compatibility with xanthan gum. Int J Biol Macromol 2020; 166:861-868. [PMID: 33157134 DOI: 10.1016/j.ijbiomac.2020.10.242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 11/27/2022]
Abstract
Vegetables are considered to be a sustainable source of promising biomaterials such as proteins and polysaccharides. In this study, four protein isolates (amaranth protein isolate API, amaranth globulin-rich protein isolate AGR, bean protein isolate BPI, and bean phaseolin-rich protein isolate BPR) were structurally characterized under different pH conditions (2-12) and their compatibility behavior with xanthan gum (XG) in aqueous medium was described. All protein isolates showed β turn and β sheet (78.24-81.11%), as the major secondary structures without statistically significant difference under the pH conditions surveyed. Protein isolates show solubility at pH ≤ 3 (40.4-85.1%) and pH ≥ 8 (57.6-99.9%) and surface hydrophobicity results suggest protein denaturation at pH ≤ 3. In the compatibility study, API/XG ratios between 1:1 and 5:1 at pH from 7 to 9 and the BPI/XG ratios from 1:1 to 20:1 at pH 7 form gels that do not require heating nor crosslinking agent addition. Zeta potential results, on the other hand, evidenced that formation of gels is driven by attractive electrostatic interaction of the charged regions of both biopolymers and intermolecular interactions such as hydrogen bonds.
Collapse
Affiliation(s)
- M C Cortez-Trejo
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Santiago de Querétaro, Querétaro, Mexico
| | - S Mendoza
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Santiago de Querétaro, Querétaro, Mexico.
| | - G Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Santiago de Querétaro, Querétaro, Mexico
| | - J D Figueroa-Cárdenas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, 76230 Querétaro, Querétaro, Mexico
| |
Collapse
|
88
|
Lu X, Xie S, Wang L, Xie H, Lei Q, Fang W. Electrostatic-driven structural transformation in the complexation of lysozyme and κ-carrageenan. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
89
|
Kuang J, Gao J, Xie S, Lei Q, Fang W, Xie H, Lu X. Phase behaviors and curcumin encapsulation performance of Gemini surfactant microemulsion. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
90
|
Xiang C, Gao J, Ye H, Ren G, Ma X, Xie H, Fang S, Lei Q, Fang W. Development of ovalbumin-pectin nanocomplexes for vitamin D3 encapsulation: Enhanced storage stability and sustained release in simulated gastrointestinal digestion. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105926] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
91
|
Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Food Chem 2020; 340:127893. [PMID: 32889202 DOI: 10.1016/j.foodchem.2020.127893] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
In this work, zein/carboxymethyl dextrin nanoparticles were successfully fabricated at different zein to carboxymethyl dextrin (CMD) mass ratios. Zein/CMD nanoparticles with the negative charge and the smallest size (212 nm) were formed when the mass ratio of zein to CMD was 2:1, exhibiting improved encapsulation efficiency of curcumin (85.5%). Electrostatic interactions, hydrogen bonding and hydrophobic interactions were main driven forces for nanoparticles formulation and curcumin encapsulation. Fourier transform infrared spectroscopy determined curcumin might be partially embedded in CMD during encapsulation. The spherical structures of zein/CMD nanoparticles and curcumin-loaded zein/CMD nanoparticles were observed by transmission electron microscopy. The photothermal stability and antioxidant activity of curcumin were significantly enhanced after be loaded in zein/CMD nanoparticles. Furthermore, encapsulation of curcumin in zein/CMD nanoparticles significantly delayed the release of curcumin in simulated gastrointestinal fluids. These results indicated that zein/CMD nanoparticles could be effective encapsulating materials for bioactive compounds in food industry.
Collapse
|
92
|
Formation and Characterization of β-Lactoglobulin and Gum Arabic Complexes: the Role of pH. Molecules 2020; 25:molecules25173871. [PMID: 32854454 PMCID: PMC7504125 DOI: 10.3390/molecules25173871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/20/2022] Open
Abstract
Protein–polysaccharide complexes have received increasing attention as delivery systems to improve the stability and bioavailability of multiple bioactive compounds. However, deep and comprehensive understanding of the interactions between proteins and polysaccharides is still required for enhancing their loading efficiency and facilitating targeted delivery. In this study, we fabricated a type of protein–polysaccharide complexes using food-grade materials of β-lactoglobulin (β-Lg) and gum arabic (GA). The formation and characteristics of β-Lg–GA complexes were investigated by determining the influence of pH and other factors on their turbidity, zeta-potential, particle size and rheology. Results demonstrated that the β-Lg and GA suspension experienced four regimes including co-soluble polymers, soluble complexes, insoluble complexes and co-soluble polymers when the pH ranged from 1.2 to 7 and that β-Lg–GA complexes formed in large quantities at pH 4.2. An increased ratio of β-Lg in the mixtures was found to promote the formation of β-Lg and GA complexes, and the optimal β-Lg/GA ratio was found to be 2:1. The electrostatic interactions between the NH3+ group in β-Lg and the COO− group in GA were confirmed to be the main driving forces for the formation of β-Lg/GA complexes. The formed structure also resulted in enhanced thermal stability and viscosity. These findings provide critical implications for the application of β-lactoglobulin and gum arabic complexes in food research and industry.
Collapse
|
93
|
Liu Q, Cui H, Muhoza B, Duhoranimana E, Xia S, Hayat K, Hussain S, Tahir MU, Zhang X. Fabrication of low environment-sensitive nanoparticles for cinnamaldehyde encapsulation by heat-induced gelation method. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105789] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
94
|
Huang X, Luo X, Liu L, Dong K, Yang R, Lin C, Song H, Li S, Huang Q. Formation mechanism of egg white protein/κ-Carrageenan composite film and its application to oil packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105780] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
95
|
Sun Y, Sun-Waterhouse D, Cui C, Feng Y, Wang W. Utilization of undesirable heat-induced precipitates/sediments in soy sauce production to fabricate nanoparticles for curcumin delivery. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
96
|
Guo Q, Su J, Shu X, Yuan F, Mao L, Liu J, Gao Y. Production and characterization of pea protein isolate-pectin complexes for delivery of curcumin: Effect of esterified degree of pectin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105777] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
97
|
Verma ML, Dhanya B, Sukriti, Rani V, Thakur M, Jeslin J, Kushwaha R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int J Biol Macromol 2020; 154:390-412. [DOI: 10.1016/j.ijbiomac.2020.03.105] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
|
98
|
Li J, Yang X, Li X, Zhang Z, Wei Z, Xing Z, Deng S, Duan F. Okra polysaccharides/gelatin complex coacervate as pH-responsive and intestine-targeting delivery protects isoquercitin bioactivity. Int J Biol Macromol 2020; 159:487-496. [PMID: 32422271 DOI: 10.1016/j.ijbiomac.2020.05.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 02/08/2023]
Abstract
Okra polysaccharides (OPs) belong to RG I pectin branched with neutral saccharide side chains, which possesses distinctive structure and physicochemical properties from the commonly used HG pectin. Until now, the application of RG I pectin as wall material of microcapsule remains unclear. Here, we obtained OPs/gelatin complex coacervate at the maximum yield of 86.8% (pH 3.5, gelatin/OPs ratio 9:1 and 2% (w/v) total polymer concentration) by response surface methodology. Isoquercitin (IQ)-loaded OPs/gelatin complex coacervate (OGIQ) showed porous spongy-like surface structure with average particle size, encapsulation efficiency and surface porosity at 334 nm, 81.6% and 31.9%, respectively. OGIQ was found to be pH-responsive and intestine-targeting. The IQ-release rate of OGIQ was assayed to be 89.4% in intestine fluid and below 2% in acidic and simulated gastric digestion, respectively. Accordingly, embedding in OGIQ protected IQ in digestion and improved its postdigestive α-glucosidase inhibitory rate by 88.7%. The differential scanning calorimetry curves showed that OGIQ effectively prevented IQ from thermal decomposition. The XRD, FT-IR and CD spectra indicated that IQ was embedded in OGIQ in amorphous state by hydrogen bonds and electrostatic interaction. Compared with HG, the neutral saccharide side chains of OPs could induce different secondary conformation change of gelatin during complex coacervation.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China
| | - Xiaoran Yang
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China
| | - Xiao Li
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China
| | - Zihan Zhang
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Sha Deng
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China
| | - Feixia Duan
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
99
|
Lu Z, Wang L, Xie H, Lei Q, Fang W, Lu X. Structural transitions of ovalbumin/κ-carrageenan complexes under the effects of pH and composition. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
100
|
Guo Q, Su J, Shu X, Yuan F, Mao L, Gao Y. Development of high methoxyl pectin-surfactant-pea protein isolate ternary complexes: Fabrication, characterization and delivery of resveratrol. Food Chem 2020; 321:126706. [PMID: 32234636 DOI: 10.1016/j.foodchem.2020.126706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to fabricate ternary complexes composed of pea protein isolate (PPI), high methoxyl pectin (HMP) and individual surfactants including rhamnolipid (Rha), tea saponin (TS) and Ethyl lauroyl arginate (LAE), for the delivery of resveratrol (Res). A combination of electrostatic attraction and hydrophobic interaction was dominantly responsible for the formation of HMP-surfactant-PPI complexes. The physicochemical properties of the ternary complexes were affected by surfactant types as well as mass ratios of individual surfactant to PPI. HMP-Rha-PPI1:1, HMP-TS-PPI1:1 and HMP-LAE-PPI1:25 complexes had higher denaturation temperatures of 82.78 ± 0.31, 80.21 ± 0.02 and 79.98 ± 0.86 ℃, respectively. The HMP-Rha-PPI1:1 ternary complex could be an effective delivery system, which were effective to retard photo- and thermal- degradation of Res as well as delayed the release of Res in in vitro digestion.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiaqi Su
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Shu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Yuan
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|