51
|
Inhibitory Effects Induced by Vicia faba, Uncaria rhyncophylla, and Glycyrrhiza glabra Water Extracts on Oxidative Stress Biomarkers and Dopamine Turnover in HypoE22 Cells and Isolated Rat Striatum Challenged with 6-Hydroxydopamine. Antioxidants (Basel) 2019; 8:antiox8120602. [PMID: 31795449 PMCID: PMC6943577 DOI: 10.3390/antiox8120602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the most common and progressive neurodegenerative and oxidative stress-related disorder, characterized by a dramatic loss of dopamine (DA) neurons in the nigrostriatal tissue. The first-line drug for PD treatment is represented by l-dopa, although clinical and preclinical studies pointed out the potential efficacy of medicinal plant- and food-derived antioxidants as brain protective agents. In this regard, the potential application of Vicia faba, Uncaria rhyncophylla, and Glycyrrhiza glabra extracts is of noteworthy interest, despite a lack of information in the scientific literature as regards their effect on striatal DA level. METHODS The protective effects of V. faba, U. rhyncophylla, and G. glabra water extracts were investigated on HypoE22 cells and isolated rat striatum specimens challenged with 6-hydroxydopamine (6-OH-DA). The extract effects against lactate dehydrogenase (LDH), nitrites, and 8-iso-prostaglandin(PG)F2α were evaluated using either single-extract treatments or a treatment with a pharmacological association. Additionally, the turnover of DA was measured. RESULTS The pharmacological association of the extracts was the most effective in contrasting the upregulated LDH and nitrite levels and in reducing striatal DA turnover. CONCLUSION The present findings corroborate the rational for the traditional use of V. faba, G. glabra, and U. rhyncophylla extracts, supporting their pharmacological association in order to improve their protective effects.
Collapse
|
52
|
Ma Z, Huang Y, Huang W, Feng X, Yang F, Li D. Separation, Identification, and Antioxidant Activity of Polyphenols from Lotus Seed Epicarp. Molecules 2019; 24:E4007. [PMID: 31694314 PMCID: PMC6864829 DOI: 10.3390/molecules24214007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Lotus seed epicarp, the main by-product of lotus seed processing, is abundant in polyphenols. In this study, polyphenols in lotus seed epicarp were separated by Sephadex LH-20 gel filtration chromatography to yield Fraction-I (F-I), Fraction-II (F-II), and Fraction-III (F-III). The polyphenol compounds in the three fractions were identified by UPLC-MI-TOF-MS. Six kinds of polyphenol compounds including cyanidin-3-O-glucoside, procyanidin trimer, and phlorizin were identified in F-I, and prodelphinidin dimer B, procyanidin dimer, and quercetin hexoside isomer were found in F-II. However, there was only procyanidin dimer identified in F-III. The in vitro antioxidant activities of the three fractions were also investigated. We found F-I, F-II, and F-III had strong potential antioxidant activities in the order of F-III > F-II > F-I. Our results suggested that polyphenols from lotus seed epicarp might be suitable for use as a potential food additive.
Collapse
Affiliation(s)
- Zhili Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China;
| | - Yi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; (Y.H.); (W.H.)
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; (Y.H.); (W.H.)
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, California State University, San Jose, CA 95192, USA;
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China;
| | - Deyuan Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China;
| |
Collapse
|
53
|
Zengin G, Ferrante C, Gnapi DE, Sinan KI, Orlando G, Recinella L, Diuzheva A, Jekő J, Cziáky Z, Chiavaroli A, Leone S, Brunetti L, Picot-Allain C, Mahomoodally MF, Angelini P, Covino S, Venanzoni R, Tirillini B, Menghini L. Comprehensive approaches on the chemical constituents and pharmacological properties of flowers and leaves of American basil (Ocimum americanum L). Food Res Int 2019; 125:108610. [DOI: 10.1016/j.foodres.2019.108610] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/06/2019] [Accepted: 08/11/2019] [Indexed: 01/06/2023]
|
54
|
Guglielmi P, Secci D, Petzer A, Bagetta D, Chimenti P, Rotondi G, Ferrante C, Recinella L, Leone S, Alcaro S, Zengin G, Petzer JP, Ortuso F, Carradori S. Benzo[ b]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: design, synthesis, and biological activity. J Enzyme Inhib Med Chem 2019; 34:1511-1525. [PMID: 31422706 PMCID: PMC6713090 DOI: 10.1080/14756366.2019.1653864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A series of benzo[b]thiophen-3-ols were synthesised and investigated as potential human monoamine oxidase (hMAO) inhibitors in vitro as well as ex vivo in rat cortex synaptosomes by means of evaluation of 3,4-dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratio and lactate dehydrogenase (LDH) activity. Most of these compounds possessed high selectivity for the MAO-B isoform and a discrete antioxidant and chelating potential. Molecular docking studies of all the compounds underscored potential binding site interactions suitable for MAO inhibition activity, and suggested structural requirements to further improve the activity of this scaffold by chemical modification of the aryl substituents. Starting from this heterocyclic nucleus, novel lead compounds for the treatment of neurodegenerative disease could be developed.
Collapse
Affiliation(s)
- Paolo Guglielmi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Daniela Secci
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Anél Petzer
- b Pharmaceutical Chemistry, School of Pharmacy, Centre of Excellence for Pharmaceutical Sciences, North-West University , Potchefstroom , South Africa
| | - Donatella Bagetta
- c Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto , Catanzaro , Italy.,d Net4Science Academic Spin-Off, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Paola Chimenti
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Giulia Rotondi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Claudio Ferrante
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Lucia Recinella
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Sheila Leone
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Stefano Alcaro
- c Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto , Catanzaro , Italy.,d Net4Science Academic Spin-Off, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Gokhan Zengin
- f Department of Biology, Science Faculty, Selcuk University , Konya , Turkey
| | - Jacobus P Petzer
- b Pharmaceutical Chemistry, School of Pharmacy, Centre of Excellence for Pharmaceutical Sciences, North-West University , Potchefstroom , South Africa
| | - Francesco Ortuso
- c Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto , Catanzaro , Italy.,d Net4Science Academic Spin-Off, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Simone Carradori
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| |
Collapse
|
55
|
Zengin G, Locatelli M, Ferrante C, Menghini L, Orlando G, Brunetti L, Recinella L, Chiavaroli A, Leone S, Leporini L, Aumeeruddy MZ, Mahomoodally MF. New pharmacological targets of three Asphodeline species using in vitro and ex vivo models of inflammation and oxidative stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:520-530. [PMID: 30514101 DOI: 10.1080/09603123.2018.1552930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
This study explored the efficacy of the methanolic extract of three Asphodeline species (A. damascena subsp. rugosa, A. tenuior subsp. tenuiflora var. tenuiflora, and A. cilicica) to protect against hydrogen peroxide (H2O2)-induced lactate dehydrogenase (LDH) activity in HCT116 cells, and also any protective effects against lipopolysaccharides (LPS)-induced nitrite levels, prostaglandin E2 (PGE2) and 8-iso-prostaglandin F2α (8-iso-PGF2α) levels, 5HIAA/5-HT ratio, tumor necrosis factor (TNF)-α and interleukin (IL)-6 gene expression in rat colon specimens. Interestingly, A. tenuior extract was most effective in improving the tested biomarkers, by reducing LDH activity and nitrite level. On the other hand, A. damascena was the only species able to blunt LPS-induced TNF-α gene expression in rat colon specimens. The present findings highlighted the protective effects of Asphodeline extracts via in vitro and ex vivo models of inflammation and oxidative stress, adding new insights to the pharmacological actions of these medicinal plant species. Abbreviations: IBD: inflammatory bowel disease; LPS: lipopolysaccharide; LDH: lactate dehydrogenase; 5HIAA: 5-hydroxyindoleacetic acid; 5-HT: 5-hydroxytryptamine.
Collapse
Affiliation(s)
- Gokhan Zengin
- a Department of Biology, Faculty of Science, Selcuk University , Konya , Turkey
| | - Marcello Locatelli
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Claudio Ferrante
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Luigi Menghini
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Giustino Orlando
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Luigi Brunetti
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Lucia Recinella
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Annalisa Chiavaroli
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Sheila Leone
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Lidia Leporini
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | | | | |
Collapse
|
56
|
Poma A, Vecchiotti G, Colafarina S, Zarivi O, Aloisi M, Arrizza L, Chichiriccò G, Di Carlo P. In Vitro Genotoxicity of Polystyrene Nanoparticles on the Human Fibroblast Hs27 Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1299. [PMID: 31514347 PMCID: PMC6781270 DOI: 10.3390/nano9091299] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/30/2022]
Abstract
Several studies have provided information on environmental nanoplastic particles/debris, but the in vitro cyto-genotoxicity is still insufficiently characterized. The aim of this study is to analyze the effects of polystyrene nanoparticles (PNPs) in the Hs27 cell line. The viability of Hs27 cells was determined following exposure at different time windows and PNP concentrations. The genotoxic effects of the PNPs were evaluated by the cytokinesis-block micronucleus (CBMN) assay after exposure to PNPs. We performed ROS analysis on HS27 cells to detect reactive oxygen species at different times and treatments in the presence of PNPs alone and PNPs added to the Crocus sativus L. extract. The different parameters of the CBMN test showed DNA damage, resulting in the increased formation of micronuclei and nuclear buds. We noted a greater increase in ROS production in the short treatment times, in contrast, PNPs added to Crocus sativus showed the ability to extract, thus reducing ROS production. Finally, the SEM-EDX analysis showed a three-dimensional structure of the PNPs with an elemental composition given by C and O. This work defines PNP toxicity resulting in DNA damage and underlines the emerging problem of polystyrene nanoparticles, which extends transversely from the environment to humans; further studies are needed to clarify the internalization process.
Collapse
Affiliation(s)
- Anna Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| | - Giulia Vecchiotti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Lorenzo Arrizza
- Center for Microscopy, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Giuseppe Chichiriccò
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy
| | - Piero Di Carlo
- Department of Psychological, Health & Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, I-66100 Chieti, Italy
- Center of Excellence on Aging and Translational Medicine-Ce.S.I.-Me.T. University "G. d'Annunzio" of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
57
|
Multiple pharmacological and toxicological investigations on Tanacetum parthenium and Salix alba extracts: Focus on potential application as anti-migraine agents. Food Chem Toxicol 2019; 133:110783. [PMID: 31491430 DOI: 10.1016/j.fct.2019.110783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 01/06/2023]
Abstract
Migraine is one of the most common neurological disorder, which has long been related to brain serotonin (5-HT) depletion and neuro-inflammation. Despite many treatment options are available, the frequent occurrence of unacceptable adverse effects further supports the research toward nutraceuticals and herbal preparations, among which Tanacetum parthenium and Salix alba showed promising anti-inflammatory and neuro-modulatory activities. The impact of extract treatment on astrocyte viability, spontaneous migration and apoptosis was evaluated. Anti-inflammatory/anti-oxidant effects were investigated on isolated rat cortexes exposed to a neurotoxic stimulus. The lactate dehydrogenase (LDH) release, nitrite levels and 5-HT turnover were evaluated, as well. A proteomic analysis was focused on specific neuronal proteins and a fingerprint analysis was carried out on selected phenolic compounds. Both extracts appeared able to exert in vitro anti-oxidant and anti-apoptotic effects. S. alba and T. parthenium extracts reduced LDH release, nitrite levels and 5-HT turnover induced by neurotoxic stimulus. The downregulation of selected proteins suggest a neurotoxicity, which could be ascribed to an elevated content of gallic acid in both S. alba and T. parthenium extracts. Concluding, both extracts exert neuroprotective effects, although the downregulation of key proteins involved in neuron physiology suggest caution in their use as food supplements.
Collapse
|
58
|
Di Sotto A, Locatelli M, Macone A, Toniolo C, Cesa S, Carradori S, Eufemi M, Mazzanti G, Di Giacomo S. Hypoglycemic, Antiglycation, and Cytoprotective Properties of a Phenol-Rich Extract From Waste Peel of Punica granatum L. var. Dente di Cavallo DC2. Molecules 2019; 24:E3103. [PMID: 31461832 PMCID: PMC6749322 DOI: 10.3390/molecules24173103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Pomegranate peel is a natural source of phenolics, claimed to possess healing properties, among which are antioxidant and antidiabetic. In the present study, an ethyl acetate extract, obtained by Soxhlet from the peel of Dente di Cavallo DC2 pomegranate (PGE) and characterized to contain 4% w/w of ellagic acid, has been evaluated for its hypoglycemic, antiglycation, and antioxidative cytoprotective properties, in order to provide possible evidence for future nutraceutical applications. The α-amylase and α-glucosidase enzyme inhibition, interference with advanced glycation end-products (AGE) formation, and metal chelating abilities were studied. Moreover, the possible antioxidant cytoprotective properties of PGE under hyperglycemic conditions were assayed. Phenolic profile of the extract was characterized by integrated chromatographic and spectrophotometric methods. PGE resulted able to strongly inhibit the tested enzymes, especially α-glucosidase, and exerted chelating and antiglycation properties. Also, it counteracted the intracellular oxidative stress under hyperglycemic conditions, by reducing the levels of reactive oxygen species and total glutathione. Among the identified phenolics, rutin was the most abundant flavonoid (about 4 % w/w). Present results suggest PGE to be a possible remedy for hyperglycemia management and encourage further studies to exploit its promising properties.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Marcello Locatelli
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Alberto Macone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, P.le A. Moro 5, 00185 Rome, Italy
| | - Chiara Toniolo
- Department of Environmental Biology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Stefania Cesa
- Department of Chemistry and Technology of Drugs, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, P.le A. Moro 5, 00185 Rome, Italy
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
59
|
Protective Effects Induced by Two Polyphenolic Liquid Complexes from Olive ( Olea europaea, mainly Cultivar Coratina) Pressing Juice in Rat Isolated Tissues Challenged with LPS. Molecules 2019; 24:molecules24163002. [PMID: 31430921 PMCID: PMC6720671 DOI: 10.3390/molecules24163002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
MOMAST(®) HY100 and MOMAST(®) HP30 are polyphenolic liquid complexes from olive pressing juice with a total polyphenolic content of 100 g/kg (at least 50% as hydroxytyrosol) and 36 g/kg (at least 30% as hydroxytyrosol), respectively. We investigated the potential protective role of MOMAST(®) HY100 and MOMAST(®) HP30 on isolated rat colon, liver, heart, and prefrontal cortex specimens treated with Escherichia coli lipopolysaccharide (LPS), a validated ex vivo model of inflammation, by measuring the production of prostaglandin (PG)E2, 8-iso-PGF2α, lactate dehydrogenase (LDH), as well as cyclooxygenase (COX)-2, tumor necrosis factor α (TNFα), and inducible nitric oxide synthase (iNOS) mRNA levels. MOMAST(®) HY100 decreased LPS-stimulated PGE2 and LDH levels in all tested tissues. Following treatment with MOMAST(®) HY100, we found a significant reduction in iNOS levels in prefrontal cortex and heart specimens, COX-2 and TNFα mRNA levels in heart specimens, and 8-iso-PGF2α levels in liver specimens. On the other hand, MOMAST(®) HP30 was found to blunt COX-2, TNFα, and iNOS mRNA levels, as well as 8-iso-PGF2α in cortex, liver, and colon specimens. MOMAST(®) HP30 was also found to decrease PGE2 levels in liver specimens, while it decreased iNOS mRNA, LDH, and 8-iso-PGF2α levels in heart specimens. Both MOMAST(®) HY100 and MOMAST(®) HP30 exhibited protective effects on multiple inflammatory and oxidative stress pathways.
Collapse
|
60
|
Zengin G, Ferrante C, Orlando G, Zheleva-Dimitrova D, Gevrenova R, Recinella L, Chiavaroli A, Leone S, Brunetti L, Aumeeruddy MZ, Aktumsek A, Mahomoodally MF, Angelini P, Covino S, Venanzoni R, Tirillini B, Menghini L. Chemical profiling and pharmaco-toxicological activity of Origanum sipyleum extracts: Exploring for novel sources for potential therapeutic agents. J Food Biochem 2019; 43:e13003. [PMID: 31393014 DOI: 10.1111/jfbc.13003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
The phytochemical, antiradical, and enzyme inhibition profile of three solvent extracts (ethyl acetate, methanol, water) of Origanum sipyleum were assessed. We also performed a pharmacological study in order to explore protective effects induced by extracts in inflamed colon. LC-MS analysis revealed that the extracts contained different classes of phenolics. The aqueous extract showed the highest antioxidant and acetylcholinesterase (AChE) inhibitory effects. Total phenol and flavonoid contents were highest in aqueous and ethyl acetate extract, respectively. All extracts were effective in reducing colon pro-oxidant and pro-inflammatory biomarkers. The extracts revealed also able to inhibit fungal and bacterial species involved in ulcerative colitis, including Candida albicans, Candida tropicalis, Staphylococcus aureus, and Staphylococcus thyphimurium. Finally, we also showed the antiproliferative effects exerted by the EA extracts on human colon cancer HCT116 cell line. Concluding, our results indicated that O. sipyleum extracts displayed promising therapeutic properties which warrants further validation. PRACTICAL APPLICATIONS: The present phytochemical and biological studies, including antioxidant, anti-inflammatory, and antimicrobic assessments, showed significant protective effects exerted by O. sipyleum extracts in an experimental model of ulcerative colitis. The results are intriguing and suggest potential applications O. sipyleum extracts as sources of natural agents for the management of clinical symptoms related to ulcerative colitis, characterized by increased burden of oxidative stress and microbiome dysbiosis.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | | | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Bruno Tirillini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
61
|
Ferrante C, Recinella L, Ronci M, Orlando G, Di Simone S, Brunetti L, Chiavaroli A, Leone S, Politi M, Tirillini B, Angelini P, Covino S, Venanzoni R, Vladimir-Knežević S, Menghini L. Protective effects induced by alcoholic Phlomis fruticosa and Phlomis herba-venti extracts in isolated rat colon: Focus on antioxidant, anti-inflammatory, and antimicrobial activities in vitro. Phytother Res 2019; 33:2387-2400. [PMID: 31322313 DOI: 10.1002/ptr.6429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
Phlomis fruticosa L. and P. herba-venti are species belonging to the Lamiaceae family, which have been traditionally used to prepare tonic and digestive drinks. Multiple studies also demonstrated the inhibitory effects of P. fruticosa extracts and essential oil against oxidative/proinflammatory pathways and bacterial strains deeply involved in ulcerative colitis. Considering these findings, the present study evaluated the effects of alcoholic P. fruticosa and P. herba-venti leaf extracts in isolated rat colon challenged with Escherichia coli lipopolysaccharide (LPS), an ex vivo experimental paradigm of ulcerative colitis. In this context, we assayed colon levels of pro-oxidant and proinflammatory biomarkers, including nitrites, malondialdehyde (MDA), lactate dehydrogenase (LDH), and serotonin (5-HT). Additionally, the extracts have been tested in order to evaluate possible inhibitory effects on specific bacterial and fungal strains involved in ulcerative colitis. Alcoholic P. fruticosa and P. herba-venti extracts were able to blunt LPS-induced nitrite, MDA, 5-HT, and LDH levels in isolated rat colon. The same extracts also inhibited the growth of Pseudomonas aeruginosa, E. coli, Staphylococcus aureus, Candida albicans and Candida tropicalis. In conclusion, our findings show a potential role exerted by alcoholic P. fruticosa and P. herba-venti in managing the clinical symptoms related to ulcerative colitis.
Collapse
Affiliation(s)
- Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Simonetta Di Simone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Matteo Politi
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Bruno Tirillini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20/II, 10000, Zagreb, Croatia
| | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
62
|
Comprehensive Chemical Profiling and Multidirectional Biological Investigation of Two Wild Anthemis Species ( Anthemis tinctoria var. Pallida and A. cretica subsp. tenuiloba): Focus on Neuroprotective Effects. Molecules 2019; 24:molecules24142582. [PMID: 31315236 PMCID: PMC6680454 DOI: 10.3390/molecules24142582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022] Open
Abstract
Ethyl acetate (EA), methanol (MeOH), and aqueous extracts of aerial parts of Anthemis tinctoria var. pallida (ATP) and A. cretica subsp. tenuiloba (ACT) were investigated for their phenol and flavonoid content, antioxidant, and key enzyme inhibitory potentials. All extracts displayed antiradical effects, with MeOH and aqueous extracts being a superior source of antioxidants. On the other hand, EA and MeOH extracts were potent against AChE and BChE. Enzyme inhibitory effects against tyrosinase and α-glucosidase were observed, as well. We also studied Anthemis extracts in an ex vivo experimental neurotoxicity paradigm. We assayed extract influence on oxidative stress and neurotransmission biomarkers, including lactate dehydrogenase (LDH) and serotonin (5-HT), in isolated rat cortex challenged with K+ 60 mM Krebs-Ringer buffer (excitotoxicity stimulus). An untargeted proteomic analysis was finally performed in order to explore the putative mechanism in the brain. The pharmacological study highlighted the capability of ACT water extract to blunt K+ 60 mM increase in LDH level and 5-HT turnover, and restore physiological activity of specific proteins involved in neuron morphology and neurotransmission, including NEFMs, VAMP-2, and PKCγ, thus further supporting the neuroprotective role of ACT water extract.
Collapse
|
63
|
Increased pain and inflammatory sensitivity in growth hormone-releasing hormone (GHRH) knockout mice. Prostaglandins Other Lipid Mediat 2019; 144:106362. [PMID: 31301405 DOI: 10.1016/j.prostaglandins.2019.106362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Growth hormone (GH) and GH-releasing hormone (GHRH), in addition to metabolic and endocrine effects, play a role in the modulation of pain and inflammation. We aimed to elucidate the consequences of GHRH deficiency on acute nociceptive stimulation and on both acute and chronic inflammatory stimuli in a mouse model of GH deficiency. Mice with generalized ablation of the GHRH gene (GHRH knock out, GHRHKO, -/-) were compared to wild type (GHRH +/+) mice. Responsiveness to acute nociceptive stimulation and to acute inflammatory stimulation was evaluated by conventional hot plate apparatus and formalin test, respectively. We also evaluated responsiveness to colonic inflammation induced both in vivo, after dextran sodium sulfate (DSS) treatment, or ex vivo, by incubating colon segments with bacterial lipopolysaccaride (LPS). Macroscopical and histological examinations were performed, prostaglandin (PG) E2 and 8-iso-PGF2α levels and cyclooxigenase (COX)-2 and tumor necrosis factor (TNF)-α gene expression were measured. Compared to controls, -/- mice showed decreased response latency during the hot plate test, and increased licking/biting time in formalin test, particularly in the second phase of inflammation. DSS treated -/- mice showed a significant increase of colonic inflammation compared to controls. Moreover DSS treatment increased PGE2 and 8-iso-PGF2α levels, along with COX-2 and TNF-α gene expression more markedly in colon specimens of -/- mice compared to controls. LPS-induced PGE2 and 8-iso-PGF2α production from colonic segments incubated ex vivo was also increased in -/- mice. Generalized GHRH gene ablation increases sensitivity to thermal pain and both acute and persistent inflammatory stimuli in male mice.
Collapse
|
64
|
Menghini L, Recinella L, Leone S, Chiavaroli A, Cicala C, Brunetti L, Vladimir-Knežević S, Orlando G, Ferrante C. Devil's claw (Harpagophytum procumbens) and chronic inflammatory diseases: A concise overview on preclinical and clinical data. Phytother Res 2019; 33:2152-2162. [PMID: 31273865 DOI: 10.1002/ptr.6395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
Devil's Claw is a traditional medicine that has been long used a wide range of health conditions, including indigestion, fever, allergic reactions, and rheumatism. The main compounds are iridoid glycosides, including harpagoside, harpagide, and procumbide. However, harpagoside is the most responsible for therapeutic activity, and its content is used as reference standard. Here, we analyzed and summarized preclinical and clinical studies focusing on therapeutic efficacy of devil's claw preparations in pathological conditions in which inflammation plays a key causative role.
Collapse
Affiliation(s)
- Luigi Menghini
- Department of Pharmacy, G. D'Annunzio University, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, G. D'Annunzio University, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. D'Annunzio University, Chieti, Italy
| | | | - Carla Cicala
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. D'Annunzio University, Chieti, Italy
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | | |
Collapse
|
65
|
Zhao M, Wang B, Xiang L, Xiong C, Shi Y, Wu L, Meng X, Dong G, Xie Y, Sun W. A novel onsite and visual molecular technique to authenticate saffron (Crocus sativus) and its adulterants based on recombinase polymerase amplification. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
66
|
Arbuscular Mycorrhizal Fungi Modulate the Crop Performance and Metabolic Profile of Saffron in Soilless Cultivation. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Saffron (Crocus sativus L.) is cultivated worldwide. Its stigmas represent the highest-priced spice and contain bioactive compounds beneficial for human health. Saffron cultivation commonly occurs in open field, and spice yield can vary greatly, from 0.15 to 1.5 g m−2, based on several agronomic and climatic factors. In this study, we evaluated saffron cultivation in soilless systems, where plants can benefit from a wealth of nutrients without competition with pathogens or stresses related to nutrient-soil interaction. In addition, as plant nutrient and water uptake can be enhanced by the symbiosis with arbuscular mycorrhizal fungi (AMF), we also tested two inocula: a single species (Rhizophagus intraradices) or a mixture of R. intraradices and Funneliformis mosseae. After one cultivation cycle, we evaluated the spice yield, quality (ISO category), antioxidant activity, and bioactive compound contents of saffron produced in soilless systems and the effect of the applied AMF inocula. Spice yield in soilless systems (0.55 g m−2) was on average with that produced in open field, while presented a superior content of several health-promoting compounds, such as polyphenols, anthocyanins, vitamin C, and elevated antioxidant activity. The AMF symbiosis with saffron roots was verified by light and transmission electron microscopy. Inoculated corms showed larger replacement corms (+50% ca.). Corms inoculated with R. intraradices performed better than those inoculated with the mix in terms of spice quality (+90% ca.) and antioxidant activity (+88% ca.). Conversely, the mixture of R. intraradices and F. mosseae increased the polyphenol content (+343% ca.). Thus, soilless systems appeared as an effective alternative cultivation strategy for the production of high quality saffron. Further benefits can be obtained by the application of targeted AMF-based biostimulants.
Collapse
|
67
|
Zhang Y, Geng J, Hong Y, Jiao L, Li S, Sun R, Xie Y, Yan C, Aa J, Wang G. Orally Administered Crocin Protects Against Cerebral Ischemia/Reperfusion Injury Through the Metabolic Transformation of Crocetin by Gut Microbiota. Front Pharmacol 2019; 10:440. [PMID: 31114499 PMCID: PMC6502977 DOI: 10.3389/fphar.2019.00440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
Abstract
Our pilot study suggested that orally administered crocin was hardly absorbed into circulatory system, but it was effective against cerebral ischemic/reperfusion (I/R) injury. The pharmacologically active component and targeting site of crocin remain elusive. In this study, the cerebral-protective effect of crocin was evaluated on a rat transient middle cerebral artery occlusion (MCAO) model. Our data showed that oral administration of crocin had better effectiveness in cerebral protection than an intravenous injection. Neither crocin nor its metabolite crocetin were determined in the brain of cerebral I/R rats, indicating a target site of periphery. Abundant crocetin was detected in plasma after oral administration instead of intravenous injection of crocin. Meanwhile, orally administered crocetin showed similar cerebral protection to that of crocin, but this exciting effect was not clearly observed by intravenous administration of crocetin, indicating the importance of crocetin in gut. Moreover, orally administered crocin showed less cerebral-protective effect in pseudo germ-free (pGF) MCAO rats. In vitro and in vivo experiments confirmed that crocin could be deglycosylated to crocetin in gut content of normal rats, rather than that of pGF rats, indicating that gut microbiota facilitated the transformation of crocin into crocetin, which played a key role in the activation of the pharmacological effect. Metabolomic study revealed that microbial-host co-metabolic molecules were significantly perturbed after oral administration of crocin, indicating a regulation on intestinal ecosystem. It was further suggested that gut microbiota may be the potential target of the cerebral-protective effect of crocin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | |
Collapse
|
68
|
2-Allylphenol Reduces IL-1 β and TNF- α, Promoting Antinociception through Adenosinergic, Anti-Inflammatory, and Antioxidant Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1346878. [PMID: 31049124 PMCID: PMC6462329 DOI: 10.1155/2019/1346878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/06/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
2-Allylphenol (2-AP) is a synthetic phenylpropanoid, structurally related to cardanol, thymol, and ortho-eugenol. Phenylpropanoids are described in the literature as being capable of promoting biological activity. Due to the similarity between 2-AP and other bioactive phenylpropanoids, the present research aims at evaluating the antioxidant, antinociceptive, and anti-inflammatory potential of 2-AP in silico, in vitro, and in vivo. At 30 min prior to the start of in vivo pharmacological testing, administration of 2-AP (25, 50, 75, and 100 mg/kg i.p.), morphine (6 mg/kg i.p.), dexamethasone (2 mg/kg s.c.), or vehicle alone was performed. In the acetic acid-induced abdominal writhing tests, pretreatment with 2-AP significantly reduced the number of abdominal writhes, as well as decreased licking times in the glutamate and formalin tests. Investigation of the mechanism of action using the formalin model led to the conclusion that the opioid system does not participate in its activity. However, the adenosinergic system is involved. In the peritonitis tests, 2-AP inhibited leukocyte migration and reduced releases of proinflammatory mediators TNF-α and IL-1β. In vitro antioxidant assays demonstrated that 2-AP presents significant ability to sequester superoxide radicals. In silico docking studies confirmed interaction between 2-AP and the adenosine A2a receptor through hydrogen bonds with the critical asparagine 253 residues present in the active site. Investigation of 2-AP demonstrated its nociception inhibition and ability to reduce reactive oxygen species. Its interaction with A2a receptors may well be related to proinflammatory cytokines TNF-α and IL-1β reduction activity, corroborating its antinociceptive effect.
Collapse
|
69
|
Zengin G, Ferrante C, Senkardes I, Gevrenova R, Zheleva-Dimitrova D, Menghini L, Orlando G, Recinella L, Chiavaroli A, Leone S, Brunetti L, Picot-Allain CMN, Rengasamy KR, Mahomoodally MF. Multidirectional biological investigation and phytochemical profile of Rubus sanctus and Rubus ibericus. Food Chem Toxicol 2019; 127:237-250. [PMID: 30914354 DOI: 10.1016/j.fct.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
In the present study, the biological properties, including, the enzyme inhibitory and antioxidant activities, as well as, the phytochemical profile of the ethyl acetate, methanol, and water extracts of Rubus sanctus Schreb. and Rubus ibericus Juz. leaves were determined using in vitro bioassays. Wide range of phytochemicals, including, hydroxybenzoic acids, hydroxycinnamic acids, acylquinic acids, ellagitannins, flavonoids, and triterpenoid saponins were determined using UHPLC-ESI/HRMS technique. The ethyl acetate and methanol extracts of the studied Rubus species effectively inhibited acetyl and butyryl cholinesterase. On the other hand, R. sanctus water extract showed low inhibition against α-amylase and prominent inhibitory action against α-glucosidase. Data collected from this study reported the radical scavenging and reducing potential of the studied Rubus species. Investigation of the protective effects of the different extracts of R. sanctus and R. ibericus in experimental model of ulcerative colitis was performed. The extracts were also tested on spontaneous migration of human colon cancer cells (HCT116) in wound healing experimental paradigm. Only R. sanctus methanol extract inhibited spontaneous HCT116 migration in the wound healing test. Our results suggested that R. sanctus and R. ibericus may be potential candidates as sources of biologically-active compounds for the development of nutraceuticals, pharmaceuticals, and/or cosmetics.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey.
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Ismail Senkardes
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Bulgaria
| | | | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy.
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | | | - Kannan Rr Rengasamy
- Department of Bio-resources and Food Science, Konkuk University, Seoul, South Korea
| | | |
Collapse
|
70
|
Yu M, Yang L, Xue Q, Yin P, Sun L, Liu Y. Comparison of Free, Esterified, and Insoluble-Bound Phenolics and Their Bioactivities in Three Organs of Lonicera japonica and L. macranthoides. Molecules 2019; 24:E970. [PMID: 30857315 PMCID: PMC6429314 DOI: 10.3390/molecules24050970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/02/2022] Open
Abstract
Dried flower buds of Lonicera japonica and L. macranthoides have long been used as herbs in numerous Chinese traditional medicines. Comparisons of three phenolic fractions (i.e., free, esterified, and insoluble-bound phenolics) in three different organs (i.e., flower, leaf, and stem) of the two species revealed that the free phenolics were the highest in terms of total phenol and total flavonoid content, composed of the most numerous phenolics and flavonoids; thus, they exhibited the most excellent antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), and oxygen radical absorbance capacity (ORAC)), as well as protective effects on DNA damage induced by free radicals. In identical free and esterified phenolics of a same organ, higher contents and bioactivities were observed in L. macranthoides than in L. japonica. Phenolics identified by ultra-performance liquid chromatography with a diode array detector, alongside tandem mass spectrometry coupled with a quadrupole time-of-flight mass spectrometer (UPLC-DAD⁻QTOF-MS/MS) mainly included chlorogenic acid and its five derivatives, three flavonoids that were only found in the free phenolic fraction and closely correlated with its bioactivity, and caffeic acid that was the major contributor to antioxidant activity of the esterified and insoluble-bound phenolic fractions. It was, thus, concluded that, like L. japonica, L. macranthoides, which was underestimated since being separately listed by the 2010 edition of the Chinese Pharmacopoeia, is also a good (and better) herbal medicine.
Collapse
Affiliation(s)
- Miao Yu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Lingguang Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Qiang Xue
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Peipei Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Liwei Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Yujun Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| |
Collapse
|
71
|
Chichiriccò G, Ferrante C, Menghini L, Recinella L, Leone S, Chiavaroli A, Brunetti L, Di Simone S, Ronci M, Piccone P, Lanza B, Cesa S, Poma A, Vecchiotti G, Orlando G. Crocus sativus by-products as sources of bioactive extracts: Pharmacological and toxicological focus on anthers. Food Chem Toxicol 2019; 126:7-14. [PMID: 30763684 DOI: 10.1016/j.fct.2019.01.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 11/17/2022]
Abstract
Multiple studies revealed the potential application of high quality saffron byproducts as cheap sources of bioactive compounds endowed with antioxidant activity. In the present study, we analyzed the total fatty acids of the anthers, and explored the pharmacological and toxicological potential of anthers, by evaluating genotoxic and protective effects in multiple cell lines, brine shrimps and isolated rat tissues. The phytochemical analyses showed that anthers are rich in long chain fatty acids most of which are unsaturated (80.51%). Particularly, anther water extract revealed to be well tolerated by multiple cell lines, and able to modulate reactive oxygen species (ROS) levels, without exerting either genotoxic or cytotoxic effects. The same extract was also able to blunt lipopolysaccharide (LPS)-induced nitrite and malondialdehyde (MDA) in isolated rat tissues. On the other hand, considering the concomitant null effect on HCT116 cell migration, in wound healing experimental paradigm, our findings suggest the efficacy of water anther extract as protective agent without any direct reverting effects on lesioned tissues. Concluding, the promising results, deriving from the pharmacological and toxicological evaluations, support the valorization of saffron anthers as a strategy to optimize and develop the productive chain of Abruzzo saffron.
Collapse
Affiliation(s)
- Giuseppe Chichiriccò
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67010, Coppito, L'Aquila, Italy
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy.
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Simonetta Di Simone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Pierpaolo Piccone
- Regional Agency for the Protection of the Environment, Provincial District of L'Aquila, Caselle di, Bazzano, AQ, Italy
| | - Barbara Lanza
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-food Processing (CREA-IT), Via Nazionale 38, 65012, Cepagatti, PE, Italy
| | - Stefania Cesa
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Annamaria Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67010, Coppito, L'Aquila, Italy
| | - Giulia Vecchiotti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67010, Coppito, L'Aquila, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
72
|
Physiological and pathological levels of prostaglandin E 2 in renal parenchyma and neoplastic renal tissue. Prostaglandins Other Lipid Mediat 2019; 141:11-13. [PMID: 30742910 DOI: 10.1016/j.prostaglandins.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
Prostaglandin (PG)E2 seems to promote tumor proliferation by regulating cell growth, inhibiting apoptosis, promoting angiogenesis, and suppressing host immune surveillance of cancer cells. The suppression of prostaglandins biosynthesis is thought to be the main molecular mechanism for non-steroidal anti-inflammatory drugs antineoplastic effect. Yet the relationship between PGE2 and human renal cell carcinoma remains unclear. The aim of our study is to evaluate the PGE2 content in human renal parenchyma and Renal Cell Carcinoma. The study was conducted on 20 consecutive patients undergoing radical nephrectomy for Renal Cell Carcinoma. In the normal renal parenchyma and in the neoplastic renal tissue the PGE2 level was 83.43 ± 5.89 pg/mg and 289.67 ± 22.2 pg/mg, respectively (P < 0.0001). There was no relationship between PGE2 content and Renal Cell Carcinoma dimension, Fuhrman grade, pathological-Tumor-Node and Metastasis (pTNM) stage and histological subtype. The PGE2 over-content in neoplastic renal tissue suggests a role of PGE2 in development and progression of renal carcinoma.
Collapse
|
73
|
Ferrante C, Recinella L, Ronci M, Menghini L, Brunetti L, Chiavaroli A, Leone S, Di Iorio L, Carradori S, Tirillini B, Angelini P, Covino S, Venanzoni R, Orlando G. Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity. Food Chem Toxicol 2019; 125:452-461. [PMID: 30711720 DOI: 10.1016/j.fct.2019.01.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/02/2023]
Abstract
One of the most promising economic perspectives of hemp production chain is female inflorescence valorization, despite there being actually no chemical composition or biological data from water fraction. In this context, the focus of this study is the evaluation of protective effects related to hemp water flower extracts from four commercial cultivars (Futura 75, Kc virtus, Carmagnola Cs and Villanova). We evaluated the phytochemical profile through validated spectrophotometric and HPLC methods. Then, we studied the biological activity on C2C12 and HCT116 cell lines, and in an ex vivo experimental model of ulcerative colitis, constituted by isolated LPS-stimulated colon. Particularly, we assayed the blunting effects induced by hemp water extract treatment on LPS-induced levels of nitrites, malondialdehyde (MDA), prostaglandin (PG)E2 and serotonin (5-HT). All tested cultivars displayed similar total phenolic and flavonoid profile. However, Futura 75 water extract displayed a better antioxidant and anti-inflammatory profile. Considering this, Futura 75 extract activity has been subsequently assayed on bacterial and fungal species involved in ulcerative colitis, finding a significant inhibition on C. albicans and selected Gram positive and negative bacterial strains. Concluding, our results support the potential efficacy of hemp inflorescence water extracts in managing the clinical symptoms related to ulcerative colitis.
Collapse
Affiliation(s)
- Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy.
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Luigi Di Iorio
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Bruno Tirillini
- Department of Biomolecular Sciences, University of Urbino, Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
74
|
Zengin G, Ferrante C, Menghini L, Orlando G, Brunetti L, Recinella L, Chiavaroli A, Leone S, Ronci M, Aumeeruddy MZ, Mahomoodally MF. Protective effects of Cotoneaster integerrimus on in vitro and ex-vivo models of H 2 O 2 -induced lactate dehydrogenase activity in HCT116 cell and on lipopolysaccharide-induced inflammation in rat colon. J Food Biochem 2019; 43:e12766. [PMID: 31353569 DOI: 10.1111/jfbc.12766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022]
Abstract
The present study evaluated the biological potential of methanol and aqueous extracts of the twigs and fruits of Cotoneaster integerrimus Medik. Lethality bioassays performed on Artemia salina showed that aqueous and methanol C. integerrimus extracts were non-toxic in the concentration range (0.1-20 mg/ml), with a LC50 ≥ 2.5 mg/ml, for each single extract. The protective effect of the extracts was assessed in vitro against hydrogen peroxide-induced lactate dehydrogenase (LDH) activity and tumor necrosis factor (TNF)α gene expression in colon cancer HCT116 cell line. All the extracts downregulated (H2 O2 )-induced TNFα gene expression, in HCT116. By contrast, it was observed that the lipopolysaccharide (LPS)-induced increase in colon nitrite, prostaglandin E2 , and 8-iso-PGF2α levels were counteracted mostly by the methanol twig extract. The present study showed protective effects induced by C. integerrimus in vitro and ex vivo, thus supporting potential application in the management of chronic inflammatory diseases. PRACTICAL APPLICATIONS: In the present study, protective effects of C. integerrimus are highlighted using in vitro and ex-vivo models of hydrogen peroxide-induced LDH activity in HCT116 cell and on LPS-induced inflammation in rat colon. Based on our results, this edible and traditionally used species could be considered as a valuable source of natural agents to combat inflammatory diseases, particularly ulcerative colitis. Results amassed herein advocates for further bioprospection of this species that could open new avenues for the development of nutraceuticals and functional foods geared toward the management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Gokhan Zengin
- Faculty of Science, Department of Biology, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | |
Collapse
|
75
|
Abstract
The objectives of the present work were: (a) to characterize bee pollen from the region of Epirus in terms of biofunctional activity parameters as assessed by (i) the determination of specific polyphenols using high performance liquid chromatography electrospray ionization mass spectrometry (HPLC/ESI-MS), (ii) antioxidant capacity (DPPH assay), and (iii) total phenolic content (Folin-Ciocalteu assay), and (b) to prepare yoghurts from cow, goat, and sheep milk supplemented with different concentrations of grounded bee pollen (0.5, 1.0, 2.5 and 3.0%, w/v), and study afterwards the trend in antioxidant capacity and total phenolic content along with product’s sensory properties. Results showed that bee pollen ethanolic extracts are a rich source of phytochemicals based on the high total phenolic content and in vitro antioxidant activity that were monitored. The addition of grounded bee pollen in yoghurts resulted in a food matrix of a higher in vitro antioxidant capacity and total phenolic content, whereas it improved the yoghurt’s taste, odour, appearance, and cohesion; the latter indicates its beneficial use as a general food surface and interface material enhancer due to the possible formation of surface/interface active lipid-linked proteins. Based on the present findings, bee pollen yoghurt is proposed as a novel and costless functional food whereas it may comprise a research basis for food or material science in the scientific society of the future. Results were further supported by implementation of advanced chemometric analyses providing a full characterization of the product’s uniqueness.
Collapse
|
76
|
Mollica A, Stefanucci A, Zengin G, Locatelli M, Macedonio G, Orlando G, Ferrante C, Menghini L, Recinella L, Leone S, Chiavaroli A, Leporini L, Di Nisio C, Brunetti L, Tayrab E, Ali I, Musa TH, Musa HH, Ahmed AA. Polyphenolic composition, enzyme inhibitory effects ex-vivo and in-vivo studies on two Brassicaceae of north-central Italy. Biomed Pharmacother 2018; 107:129-138. [DOI: 10.1016/j.biopha.2018.07.169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023] Open
|
77
|
Fan L, Fan Y, Liu L, Tao W, Shan X, Dong Y, Li L, Zhang S, Wang H. Chelerythrine Attenuates the Inflammation of Lipopolysaccharide-Induced Acute Lung Inflammation Through NF-κB Signaling Pathway Mediated by Nrf2. Front Pharmacol 2018. [PMID: 30319404 DOI: 10.3389/fphar.2018.01047/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Chelerythrine (CH), is a kind of benzo[c] phenanthridine alkaloid isolated from plants such as Chelidonium, with pharmacological activities as antitumor, antibiosis and anti-inflammation. However, few studies have demonstrated whether CH could protect against lipopolysaccharide (LPS)-induced acute lung injury (ALI), and the underlying mechanism is also uncertain. The purpose of the present study was to investigate the anti-inflammatory effects of CH on LPS-induced ALI in mice and in RAW264.7 cells. In this study, we demonstrated that treatment with CH significantly ameliorated LPS-induced pathological changes in the lung. CH also attenuated LPS-induced W/D ratio, inflammatory cell infiltration. Meanwhile, LPS-induced Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β) production and oxidative stress were markedly suppressed by CH. Furthermore, western blot showed that CH suppressed LPS-stimulated inflammation of RAW264.7 cells through activation of nuclear factor kappa-B (NF-κB) pathway. Knocking down of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the reduction of nuclear translocation of the NF-κB p65, which triggered inflammation. These experimental results provided evidence that CH could be a potential therapeutic candidate for the intervention of ALI caused by LPS.
Collapse
Affiliation(s)
- Lu Fan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Fan
- Department of Emergency Medicine, Nanjing General Hospital/Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Shan
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Dong
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hanqing Wang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
78
|
Staurengo-Ferrari L, Ruiz-Miyazawa KW, Pinho-Ribeiro FA, Fattori V, Zaninelli TH, Badaro-Garcia S, Borghi SM, Carvalho TT, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Trans-Chalcone Attenuates Pain and Inflammation in Experimental Acute Gout Arthritis in Mice. Front Pharmacol 2018; 9:1123. [PMID: 30333752 PMCID: PMC6176465 DOI: 10.3389/fphar.2018.01123] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/13/2018] [Indexed: 01/23/2023] Open
Abstract
Gouty arthritis is characterized by an intense inflammatory response to monosodium urate crystals (MSU), which induces severe pain and reduction in the life quality of patients. Trans-Chalcone (1,3-diphenyl-2-propen-1-one) is a flavonoid precursor presenting biological activities such as anti-inflammatory and antioxidant proprieties. Thus, the aim of this work was to evaluate the protective effects of trans-Chalcone in experimental gout arthritis in mice. Mice were treated with trans-Chalcone (3, 10, or 30 mg/kg, per oral) or vehicle (Tween 80 20% plus saline) 30 min before intra-articular injection of MSU (100 μg/knee joint, intra-articular). We observed that trans-Chalcone inhibited MSU-induced mechanical hyperalgesia, edema, and leukocyte recruitment (total leukocytes, neutrophils, and mononuclear cells) in a dose-dependent manner. Trans-Chalcone also decreased inflammatory cell recruitment as observed in Hematoxylin and Eosin (HE) staining and the intensity of fluorescence of LysM-eGFP+ cells in the confocal microscopy. Trans-Chalcone reduced MSU-induced oxidative stress as observed by an increase in the antioxidant defense [Glutathione (GSH), Ferric Reducing (FRAP), and 2,2’-Azinobis-3-ethylbenzothiazoline 6-sulfonic acid (ABTS assays)] and reduction in reactive oxygen and nitrogen species production [superoxide anion (NBT assay) and nitrite (NO assay)]. Furthermore, it reduced in vivo MSU-induced interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), and IL-6 production, and increased Transforming growth factor-β (TGF-β) production. Importantly, trans-Chalcone reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and thereby the mRNA expression of the inflammasome components Nlrp3 (cryopyrin), Asc (apoptosis-associated speck-like protein containing a CARD), Pro-caspase-1 and Pro-IL-1β. In vitro, trans-Chalcone reduced the MSU-induced release of IL-1β in lipopolysaccharide (LPS)-primed macrophages. Therefore, the pharmacological effects of trans-Chalcone indicate its therapeutic potential as an analgesic and anti-inflammatory flavonoid for the treatment of gout.
Collapse
Affiliation(s)
| | - Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Tiago H Zaninelli
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Sergio M Borghi
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
79
|
Fan L, Fan Y, Liu L, Tao W, Shan X, Dong Y, Li L, Zhang S, Wang H. Chelerythrine Attenuates the Inflammation of Lipopolysaccharide-Induced Acute Lung Inflammation Through NF-κB Signaling Pathway Mediated by Nrf2. Front Pharmacol 2018; 9:1047. [PMID: 30319404 PMCID: PMC6169195 DOI: 10.3389/fphar.2018.01047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/30/2018] [Indexed: 02/02/2023] Open
Abstract
Chelerythrine (CH), is a kind of benzo[c] phenanthridine alkaloid isolated from plants such as Chelidonium, with pharmacological activities as antitumor, antibiosis and anti-inflammation. However, few studies have demonstrated whether CH could protect against lipopolysaccharide (LPS)-induced acute lung injury (ALI), and the underlying mechanism is also uncertain. The purpose of the present study was to investigate the anti-inflammatory effects of CH on LPS-induced ALI in mice and in RAW264.7 cells. In this study, we demonstrated that treatment with CH significantly ameliorated LPS-induced pathological changes in the lung. CH also attenuated LPS-induced W/D ratio, inflammatory cell infiltration. Meanwhile, LPS-induced Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β) production and oxidative stress were markedly suppressed by CH. Furthermore, western blot showed that CH suppressed LPS-stimulated inflammation of RAW264.7 cells through activation of nuclear factor kappa-B (NF-κB) pathway. Knocking down of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the reduction of nuclear translocation of the NF-κB p65, which triggered inflammation. These experimental results provided evidence that CH could be a potential therapeutic candidate for the intervention of ALI caused by LPS.
Collapse
Affiliation(s)
- Lu Fan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Fan
- Department of Emergency Medicine, Nanjing General Hospital/Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Shan
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Dong
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hanqing Wang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
80
|
Expression of Bioactive Lunasin Peptide in Transgenic Rice Grains for the Application in Functional Food. Molecules 2018; 23:molecules23092373. [PMID: 30227638 PMCID: PMC6225134 DOI: 10.3390/molecules23092373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
Lunasin, a bioactive peptide initially isolated from soybean, has anticancer, anti-inflammatory, and antioxidant activity. Due its great application value, lunasin seems to be a candidate gene in improving the nutritional value of crops. In this study, lunasin was inserted into the rice genome to evaluate whether it was feasible to express lunasin using the rice expression system and improve the bioactivity of protein in rice for our needs. We generatedlunasin-overexpressing rice lines, and chose three independent transgenic rice lines for further study. The lunasin content in trans-lunasin rice detected by UPLC-MS/MS was 1.01 × 10−3 g·kg−1 dry rice flour with grease removal in the lunasin extracts. The antioxidant efficacy of LET (lunasin-enriched fraction from trans-lunasin rice) and PEW (peptide-enriched fraction from wild type rice) was compared. Due to the presence of lunasin, LET showed higher (p < 0.05) antioxidant activity than PEW. LET exhibited high DPPH radical scavenging activity (IC50 value, 8 g·L−1), strong ABTS+ radical scavenging activity (IC50 value, 1.18 g·L−1), and great oxygen radical scavenging activity (170 μmol·L−1 Trolox equivalents when the concentration reached 4 g·L−1). Moreover, LET presented significantly higher (p < 0.05) anti-inflammatory activity on macrophage cells, and the NO production and the release of pro-inflammatory cytokines (IL-6, MCP1, and TNF-α) were significantly inhibited by LET. However, because of the low purity, LET showed weaker antioxidant and anti-inflammatory activity when compared to the Lunasin standard. These results suggested that it is feasible to use the rice expression system to express the exogenous lunasin in rice, and lunasin-overexpressing rice seems to be a candidate resource for application in functional food. Rice rich in lunasin is beneficial for human health, and could be used as a functional food in the diets of cancer and obese patients in the future.
Collapse
|
81
|
Simvastatin Does Not Affect Nitric Oxide Generation Increased by Sesame Oil in Obese Zucker Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5413423. [PMID: 30245774 PMCID: PMC6136517 DOI: 10.1155/2018/5413423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022]
Abstract
Current treatments for cardiovascular and obesity-associated diseases, such as statin therapy, may be associated with several side effects. Products from food sources with polyphenolic compounds may represent promising agents in the treatment of cardiovascular and metabolic diseases with minimal side effects. Thus, we aimed to study the effect of sesame oil and simvastatin treatment on plasma lipid profile, nitric oxide generation, and oxidative load in obese Zucker rats. 12-week-old male Zucker rats were divided into the control and sesame oil- (1.25 ml/kg/day) treated Zucker lean groups, the control and sesame oil (1.25 ml/kg/day), or simvastatin (15 mg/kg/day) together with sesame oil-treated Zucker fa/fa groups, n = 6 in each group. The treatment lasted for 6 weeks. Sesame oil composition and plasma lipid profile were analyzed. Nitric oxide synthase (NOS) activity, endothelial NOS (eNOS), phosphorylated eNOS, and inducible NOS (iNOS) protein expressions were determined in the left ventricle and aorta. Oxidative load, measured as conjugated diene (CD) and thiobarbituric acid reactive substance (TBARS) concentrations, was detected in the liver. Neither sesame oil nor cotreatment with simvastatin affected plasma lipid profile in Zucker fa/fa rats. Sesame oil and similarly cotreatment with simvastatin markedly increased NOS activity and phosphorylated eNOS protein expressions in the left ventricle and aorta of Zucker fa/fa rats. There were no changes in eNOS and iNOS protein expressions within the groups and tissues investigated. Hepatic CD concentration was higher in Zucker fa/fa comparing Zucker lean rats, and sesame oil treatment decreased it significantly. Interestingly, this decrease was not seen after cotreatment with simvastatin. In conclusion, phosphorylation of eNOS and decreased oxidative load may significantly contribute to increase in total NOS activity with potential beneficial properties. Interestingly, simvastatin did not affect NO generation already increased by sesame oil in obese Zucker rats.
Collapse
|
82
|
Khatua S, Acharya K. Water Soluble Antioxidative Crude Polysaccharide From Russula senecis Elicits TLR Modulated NF-κB Signaling Pathway and Pro-inflammatory Response in Murine Macrophages. Front Pharmacol 2018; 9:985. [PMID: 30210347 PMCID: PMC6122129 DOI: 10.3389/fphar.2018.00985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Russula senecis has recently been reported as a new addition to macrofungal flora of West Bengal. Besides, it also emerged as a seasonal health promoting nutrient to local ethnic people and enlisted for the first time as tribal food in our previous publication. In this context, the present work was designed to establish such usefulness scientifically and to meet the aim, crude polysaccharide, Rusenan, was prepared using conventional heated water reflux. Initially, the polymers were characterized to determine chemical composition and for that spectrophotometry along with Fourier-transform infrared spectroscopy (FT-IR), high-performance thin-layer chromatography (HPTLC), and gas chromatography-mass spectrometry (GC-MS) were performed. Analysis indicated that Rusenan was consisted mainly of carbohydrate conjugated with trace amount of protein. Furthermore, glucose was detected as the major monosaccharide (mainly in β-type glycosidic linkage) while other monomers were presented in the order of galactose > mannose > xylose > rhamnose. Conversely, antioxidant potential was determined following eight in vitro systems where the fraction evidenced strong superoxide, hydroxyl, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, high affinity to Fe2+ as well as instant ability to donate electron with EC50 values ranging from 80 to 3885 μg/ml concentration. In addition, effect on murine macrophages was also investigated where the polysaccharide treatment increased cell proliferation, phagocytic activity, filopodia or lamellipodia formation, nitric oxide (NO) production and reactive oxygen species (ROS) synthesis. Thereafter, through reverse transcriptase polymerase chain reaction (RT-PCR) analysis, significant increase in the expression of Toll like receptor (TLR)-4, TLR-2 and nuclear factor kappa B (NF-κB) was observed; as a result alleviated level of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, IκB-α, and interferon (IFN)-γ were also noticed explaining definite immune-stimulatory activity of the fraction. Thus, overall finding suggests that R. senecis can be considered as a functional food and may be used in preparation of dietary supplement to enhance general health.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, India
| |
Collapse
|
83
|
Ding Y, Liu P, Chen ZL, Zhang SJ, Wang YQ, Cai X, Luo L, Zhou X, Zhao L. Emodin Attenuates Lipopolysaccharide-Induced Acute Liver Injury via Inhibiting the TLR4 Signaling Pathway in vitro and in vivo. Front Pharmacol 2018; 9:962. [PMID: 30186181 PMCID: PMC6113398 DOI: 10.3389/fphar.2018.00962] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Aims: Emodin is an anthraquinone with potential anti-inflammatory properties. However, the possible molecular mechanisms and protective effects of emodin are not clear. The objective of this study was to investigate the possible molecular mechanisms and protective effects of emodin on lipopolysaccharide (LPS)-induced acute liver injury (ALI) via the Toll-like receptor 4 (TLR4) signaling pathway in the Raw264.7 cell line and in Balb/c mice. Methods: This study established an inflammatory cellular model and induced an ALI animal model. TLR4 was overexpressed by lentivirus and downregulated by small interfering RNA (siRNA) technology. The mRNA and protein levels of TLR4 and downstream molecules were detected in cells and liver tissue. The tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 levels in supernatant and serum were determined by ELISA. The distribution and expression of mannose receptor C type 1 (CD206) and arginase 1 (ARG1) in the liver were tested by immunofluorescence. Mouse liver function and histopathological observations were assessed. Results: Administration of emodin reduced the protein and/or mRNA levels of TLR4 and its downstream molecules following LPS challenge in Raw264.7 cells and in an animal model. Additionally, emodin suppressed the expression of TNF-α and IL-6 in cell culture supernatant and serum. The inhibitory effect of emodin was also confirmed in RAW264.7 cells, in which TLR4 was overexpressed or knocked down. Additionally, ARG1 and CD206 were elevated in the emodin groups. Emodin also decreased serum ALT and AST levels and alleviated the liver histopathological damage induced by LPS. Conclusion: Emodin showed excellent hepatoprotective effects against LPS-induced ALI, possibly by inhibiting TLR4 signaling pathways.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Liu
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jun Zhang
- National and Local Joint Engineering Research Center for High-throughput Drug Screening Technology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei University, Wuhan, China
| | - You-Qin Wang
- Graduate School of Jinzhou Medical University, Department of Pediatrics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xin Cai
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
84
|
Leone S, Recinella L, Chiavaroli A, Orlando G, Ferrante C, Leporini L, Brunetti L, Menghini L. Phytotherapic use of theCrocus sativusL. (Saffron) and its potential applications: A brief overview. Phytother Res 2018; 32:2364-2375. [DOI: 10.1002/ptr.6181] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/03/2018] [Accepted: 07/22/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Sheila Leone
- Department of Pharmacy; G. d'Annunzio University; Chieti Italy
| | - Lucia Recinella
- Department of Pharmacy; G. d'Annunzio University; Chieti Italy
| | | | | | | | - Lidia Leporini
- Department of Pharmacy; G. d'Annunzio University; Chieti Italy
| | - Luigi Brunetti
- Department of Pharmacy; G. d'Annunzio University; Chieti Italy
| | - Luigi Menghini
- Department of Pharmacy; G. d'Annunzio University; Chieti Italy
| |
Collapse
|
85
|
Li S, Yang C, Fang X, Zhan G, Huang N, Gao J, Xu H, Hashimoto K, Luo A. Role of Keap1-Nrf2 Signaling in Anhedonia Symptoms in a Rat Model of Chronic Neuropathic Pain: Improvement With Sulforaphane. Front Pharmacol 2018; 9:887. [PMID: 30135655 PMCID: PMC6092692 DOI: 10.3389/fphar.2018.00887] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
Patients with chronic neuropathic pain frequently suffer from symptoms of anhedonia (loss of pleasure), which is a core clinical manifestation of depression. Accumulating studies have shown the beneficial effects of the natural compound sulforaphane (SFN), an activator of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), on depression-like phenotype through a potent anti-inflammatory effect. However, it is unknown whether SFN confers beneficial effects in neuropathic pain-associated anhedonia. Spared nerve injury (SNI) is classical rodent model of chronic neuropathic pain. We here used a rat model of SNI. Hierarchical cluster analysis of sucrose preference test (SPT) results was used to classify the SNI rats with or without an anhedonia phenotype. Nrf2 protein expression was significantly decreased in the medial prefrontal cortex (mPFC), hippocampus, spinal cord, and skeletal muscle, but not in the nucleus accumbens, in anhedonia-susceptible rats compared with sham or anhedonia-resistant rats. The expression of Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1), a partner of Nrf2, in mPFC, hippocampus, and muscle of anhedonia-susceptible rats was also significantly lower than that in sham or anhedonia-resilient rats. Subsequent SFN administration after SNI surgery exerted therapeutic effects on reduced mechanical withdrawal threshold (MWT) scores, but not on sucrose preference, through the normalization of Keap1-Nrf2 signaling in the spinal cords of anhedonia-susceptible rats. Interestingly, treatment with SFN 30 min prior to SNI surgery significantly attenuated reduced MWT scores and sucrose preference, and restored tissue Keap1 and Nrf2 levels. In conclusion, this study suggests that decreased Keap1-Nrf2 signaling in mPFC, hippocampus, and muscle may contribute to anhedonia susceptibility post-SNI surgery, and that SFN exerts beneficial effects in SNI rats by normalization of decreased Keap1-Nrf2 signaling.
Collapse
Affiliation(s)
- Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Niannian Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
86
|
Locatelli M, Macchione N, Ferrante C, Chiavaroli A, Recinella L, Carradori S, Zengin G, Cesa S, Leporini L, Leone S, Brunetti L, Menghini L, Orlando G. Graminex Pollen: Phenolic Pattern, Colorimetric Analysis and Protective Effects in Immortalized Prostate Cells (PC3) and Rat Prostate Challenged with LPS. Molecules 2018; 23:molecules23051145. [PMID: 29751604 PMCID: PMC6100541 DOI: 10.3390/molecules23051145] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/16/2022] Open
Abstract
Prostatitis, a general term describing prostate inflammation, is a common disease that could be sustained by bacterial or non-bacterial infectious agents. The efficacy of herbal extracts with antioxidant and anti-inflammatory effects for blunting the burden of inflammation and oxidative stress, with possible improvements in clinical symptoms, is under investigation. Pollen extracts have been previously reported as promising agents in managing clinical symptoms related to prostatitis. The aim of the present work was to evaluate the protective effects of Graminex pollen (GraminexTM, Deshler, OH, USA), a commercially available product based on standardized pollen extracts, in rat prostate specimens, ex vivo. In this context, we studied the putative mechanism of action of pollen on multiple inflammatory pathways, including the reduction of prostaglandin E₂ (PGE₂), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and malondialdehyde (MDA), whose activities were significantly increased by inflammatory stimuli. We characterized by means of chromatographic and colorimetric studies the composition of Graminex pollen to better correlate the activity of pollen on immortalized prostate cells (PC3), and in rat prostate specimens challenged with Escherichia coli lipopolysaccharide (LPS). We found that Graminex pollen was able to reduce radical oxygen species (ROS) production by PC3 cells and MDA, NFκB mRNA, and PGE₂ levels, in rat prostate specimens. According to our experimental evidence, Graminex pollen appears to be a promising natural product for the management of the inflammatory components in the prostate.
Collapse
Affiliation(s)
- Marcello Locatelli
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Nicola Macchione
- Department of Urology, University of Milan, ASST Santi Paolo e Carlo, 20142 Milan, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Lucia Recinella
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Simone Carradori
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42075, Turkey.
| | - Stefania Cesa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, 00185 Rome, Italy.
| | - Lidia Leporini
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Luigi Brunetti
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Luigi Menghini
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Giustino Orlando
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|