51
|
Han H, Wang M, Zhong R, Yi B, Schroyen M, Zhang H. Depletion of Gut Microbiota Inhibits Hepatic Lipid Accumulation in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms23169350. [PMID: 36012616 PMCID: PMC9408850 DOI: 10.3390/ijms23169350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulated lipid metabolism is a key pathology in metabolic diseases and the liver is a critical organ for lipid metabolism. The gut microbiota has been shown to regulate hepatic lipid metabolism in the host. However, the underlying mechanism by which the gut microbiota influences hepatic lipid metabolism has not been elucidated. Here, a gut microbiota depletion mouse model was constructed with an antibiotics cocktail (Abx) to study the mechanism through which intestinal microbiota regulates hepatic lipid metabolism in high-fat diet (HFD)-fed mice. Our results showed that the Abx treatment effectively eradicated the gut microbiota in these mice. Microbiota depletion reduced the body weight and fat deposition both in white adipose tissue and liver. In addition, microbiota depletion reduced serum levels of glucose, total cholesterol (TC), low-density lipoproteins (LDL), insulin, and leptin in HFD-fed mice. Importantly, the depletion of gut microbiota in HFD-fed mice inhibited excessive hepatic lipid accumulation. Mechanistically, RNA-seq results revealed that gut microbiota depletion changed the expression of hepatic genes involved in cholesterol and fatty acid metabolism, such as Cd36, Mogat1, Cyp39a1, Abcc3, and Gpat3. Moreover, gut microbiota depletion reduced the abundance of bacteria associated with abnormal metabolism and inflammation, including Lachnospiraceae, Coriobacteriaceae_UCG-002, Enterorhabdus, Faecalibaculum, and Desulfovibrio. Correlation analysis showed that there was strong association between the altered gut microbiota abundance and the serum cholesterol level. This study indicates that gut microbiota ameliorates HFD-induced hepatic lipid metabolic dysfunction, which might be associated with genes participating in cholesterol and fatty acid metabolism in the liver.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
52
|
Li XY, Wang Z, Jiang JG, Shen CY. Role of polyphenols from Polygonum multiflorum Caulis in obesity-related disorders. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115378. [PMID: 35562092 DOI: 10.1016/j.jep.2022.115378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygoni Multiflori Caulis (PMC) has been widely consumed as folk medicine in China for anti-obesity, sleep-enhancing and many other pharmacological effects. However, the material basis and underlying mechanism of PMC on obesity-related disorders were still not clear. AIM OF THE STUDY To screen active constituents from PMC and explore their multitarget mechanisms in the treatment of obesity and its associated disorders. MATERIALS AND METHODS Several major constituents were extracted from PMC and LC-MS assay were used to identify the compounds. The lipase inhibitory activity and lipid accumulation in 3T3-L1 preadipocytes were determined. Furthermore, Caenorhabditis elegans (C. elegans) and high-fat diet (HFD)-induced mice were established to explore the potential pharmacological functions and related mechanisms using kits, RT-qPCR and biochemical analysis. RESULTS Regarding the lipase inhibitory activity, the inhibition rate of EA and n-Bu extracts at 4 mg/mL reached over 80%. Effects on 3T3-L1 preadipocytes proliferation and differentiation were also obvious, indicating that EA and n-Bu extracts might exert potential anti-obesity functions. LC-MS assay further showed that polyphenols including emodin and physcion comprised majority of EA and n-Bu extracts. EA and n-Bu extracts treatment could significantly modulate the antioxidant response and lipid accumulation in C. elegans, as evidenced by increased SOD and CAT contents, reduced MDA levels, higher TG contents and changes of related mRNA expression levels. In HFD-induced mice, the inhibition ratio of body weight as well as the histological and biochemical indexes of liver, plasma and epididymal adipose tissues were also reversed by EA and n-Bu extracts treatment. Moreover, EA and n-Bu extracts administration increased the microbial diversity, reshaped the microbiota structure and enhanced the relative abundance of Bifidobacterium. CONCLUSIONS This study demonstrated the multicomponent and multitarget characteristics of PMC in preventing obesity related disorders. The results provided novel insights for the development and utilization of PMC.
Collapse
Affiliation(s)
- Xiao-Yi Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, PR China
| | - Zheng Wang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, PR China.
| |
Collapse
|
53
|
Yu Z, Yu XF, Kerem G, Ren PG. Perturbation on gut microbiota impedes the onset of obesity in high fat diet-induced mice. Front Endocrinol (Lausanne) 2022; 13:795371. [PMID: 36017311 PMCID: PMC9395671 DOI: 10.3389/fendo.2022.795371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
High-calorie intake has become one of the most common causes of dietary obesity, which eventually develops into type 2 diabetes mellitus (T2DM). Microbiota, along with the length of the gastrointestinal tract, is related to metabolic disorders, but its shifts and following impact on metabolic disorders due to external perturbation are still unclear. To evaluate shifts of microbiota from the proximal to the distal intestine and their impact on metabolic disorders, we profiled jejunal and colonic microbiota with the perturbation using high salt (HS) and antibiotic-induced microbiota depletion (AIMD) in diet-induced obesity (DIO) mice and analyzed the association with parameters of both obesity and blood glucose. After ten weeks of feeding DIO mice with HS intake and AIMD, they failed to develop obesity. The DIO mice with HS intake had T2DM symptoms, whereas the AIMD DIO mice showed no significant difference in blood glucose parameters. We observed that the jejunal and colonic microbiota had shifted due to settled perturbation, and jejunal microbiota within a group were more dispersed than colonic microbiota. After further analyzing jejunal microbiota using quantified amplicon sequencing, we found that the absolute abundance of Colidextribacter (R = 0.695, p = 0.001) and Faecalibaculum (R = 0.631, p = 0.005) in the jejunum was positively correlated with the changes in BW and FBG levels. The predicted pathway of glucose and metabolism of other substances significantly changed between groups (p <0.05). We demonstrated that the onset of obesity and T2DM in DIO mice is impeded when the gut microbiota is perturbed; thus, this pathogenesis depends on the gut microbiota.
Collapse
Affiliation(s)
- Zhongjia Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiang-Fang Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Goher Kerem
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
54
|
Cui Y, Zhang L, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Roles of intestinal Parabacteroides in human health and diseases. FEMS Microbiol Lett 2022; 369:6659190. [PMID: 35945336 DOI: 10.1093/femsle/fnac072] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
The stability of gut microbiota is essential for the host health. Parabacteroides spp., core members of the human gut microbiota, have average abundance of 1.27% in the human of 12 populations. Parabacteroides has been recently reported to have a close relationship with host health (E.g., metabolic syndrome, inflammatory bowel disease and obesity). Parabacteroides have the physiological characteristics of carbohydrate metabolism and secreting SCFAs. However, antimicrobial resistance of Parabacteroides to antibiotic (such as clindamycin, moxifloxacin and cefoxitin) should not be ignored. In this review, we primarily focused on Parabacteroides distasoniss, Parabacteroides goldsteinii, Parabacteroides johnsonii and Parabacteroides merdae and discussed their relationships with host disease, diet and the prevention or induction of diseases. P. distasonis and P. goldsteinii may be viewed as the potential next generation probiotics (NGP) candidate due to their protective effects on inflammation and obesity in mice. We also discussed the potential therapeutic application of Parabacteroides spp. in maintaining host-intestine homeostasis.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Leshan Zhang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
55
|
Liu MM, Zhou N, Jiang N, Lu KM, Wu CF, Bao JK. Neuroprotective Effects of Oligosaccharides From Periplaneta Americana on Parkinson’s Disease Models In Vitro and In Vivo. Front Pharmacol 2022; 13:936818. [PMID: 35924055 PMCID: PMC9340460 DOI: 10.3389/fphar.2022.936818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson’s disease (PD) is one of the neurodegenerative diseases that is characterized by obvious motor and some nonmotor symptoms. Various therapeutics failed in the effective treatment of PD because of impaired neurological function in the brain and various complications. Periplaneta Americana oligosaccharides (OPA), the main active ingredients extracted from the medicine residues of Periplaneta Americana (P. Americana), have been reported to exert anti-inflammatory effects. The purpose of this study was to evaluate the possible mechanisms of OPA against 1-methyl-4-phenylpyridinium (MPP+)-induced apotosis in SH-SY5Y cells and its potential neuroprotective effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD subacute model mice. The data demonstrated that OPA significantly reversed the MPP+-induced decrease in SH-SY5Y cell viability, reduced the proportion of apoptotic cells, and protected SH-SY5Y cells from apoptosis in a dose-dependent manner by regulating the expression of apoptosis-related genes. Furthermore, OPA also alleviated the motor dysfunction of PD model mice, prevented the loss of tyrosine hydroxylase positive cells, suppressed the apoptosis of substantia nigra cells, and improved the dysbiosis of gut microbiota in vivo, suggesting that OPA demonstrated a significantly neuroprotective effect on PD model mice. These results indicated that OPA might be the possibility of PD therapeutics with economic utility and high safety.
Collapse
Affiliation(s)
- Miao-Miao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Nan Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Na Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kai-Min Lu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Chuan-Fang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Chuan-Fang Wu, ; Jin-Ku Bao,
| | - Jin-Ku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Chuan-Fang Wu, ; Jin-Ku Bao,
| |
Collapse
|
56
|
Restoration of cefixime-induced gut microbiota changes by a prebiotic blend in a mouse model. Appl Microbiol Biotechnol 2022; 106:5197-5209. [PMID: 35779098 DOI: 10.1007/s00253-022-12044-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/09/2023]
Abstract
Recent studies have provided compelling evidence linking the composition of the gut microbiota, host diet, and host physiology. Prebiotics are substrates that are selectively utilized by host microorganisms, conferring health benefits. Prebiotics, such as prebiotic blends (PB), are commonly used worldwide in food processing. Here, microbiome-metabolomics was used to evaluate how PB affect gut microbes and metabolic functions in C57BL/6 J mice administered cefixime. We found favorable effects of PB on obesity outcomes. PB supplementation significantly increased the abundance of Bifidobacterium, Parabacteroides, Alloprevotella, Alistipes, and Dubosiella, and decreased that of Robinsoniella, Blautia, Lachnoclostridium, Coprobacillus, Hungatella, Erysipelatoclostridium, Helicobacter, Clostridium sensu stricto 1, Enterococcus, and Akkermansia compared to that in the cefixime administration (CEF) group. In particular, PB increased the abundance of Parabacteroides goldsteinii and suppressed that of Robinsoniella peoriensis and Akkermansia muciniphila. In addition, it regulated the levels of microbial metabolites such as unsaturated fatty acids and bile acids. Thus, PB can alleviate metabolic disorders induced by antibiotic intervention, indicating a potential dietary strategy for populations with antibiotic-associated diarrhea. KEY POINTS: • Prebiotic blends significantly increased the Parabacteroides goldsteinii colony. • Prebiotic blends selectivity reversed this increase of Akkermansia muciniphila by antibiotic intervention. • Prebiotic blends relieve cefixime-induced alteration of intestinal flora by regulating metabolites, such as fatty acids and bile acids.
Collapse
|
57
|
Liang D, Zhang X, Liu Z, Zheng R, Zhang L, Yu D, Shen X. The Genus Parabacteroides Is a Potential Contributor to the Beneficial Effects of Truncal Vagotomy-Related Bariatric Surgery. Obes Surg 2022; 32:1-11. [PMID: 35546385 PMCID: PMC9276728 DOI: 10.1007/s11695-022-06017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Evidences about the gut microbiota role in weight loss after bariatric surgery (BS) are growing. The objective of this study was to observe the changes of gut microbiota after sleeve gastrectomy (SG) and SG plus truncal vagotomy (SG-TV) and identify specific microbes that may contribute to the improvement of obesity after surgeries. MATERIALS AND METHODS Forty high-fat diet-induced obesity (DIO) mice were randomized to SG, SG-TV, or sham operation (SH) groups. Body weight (BW) and fast blood glucose (FBG) were measured before and 1, 2, 4, 8, and 12 weeks post-operatively. Fecal samples were collected before and at post-operative week 12 and profiled using 16S rRNA relative and absolute quantitative sequencing. RESULTS After the surgery, the SG and SG-TV surgeries significantly reduce BW and FBG levels compared with SH, and the SG-TV achieved better effects than SG. A decreasing trend in alpha diversity of gut microbiota and significant changes in taxonomic composition were observed after surgeries. Then, we identified a set of microbes and pathways significantly different in abundance after BS. The genus Parabacteroides and one pathway (polyketide sugar unit biosynthesis) increased in SG-TV group specially, which was also negatively correlated with BW and FBG. CONCLUSION SG and SG-TV indeed achieve effects of weight loss, but TV could enhance the efficacy of SG. The identified different microbes and pathways, like Parabacteroides, polyketide sugar unit biosynthesis, may partly mediate the beneficial effects of BS, and thus possibly contribute to the development of novel bacteria-based therapeutic approaches.
Collapse
Affiliation(s)
- Dong Liang
- Translational Medicine Research Center, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xin Zhang
- Department of General Surgery, Chang Hai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Zhaorui Liu
- Department of General Surgery, Chang Hai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Rui Zheng
- Department of General Surgery, Chang Hai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Longjiang Zhang
- Department of General Surgery, Chang Hai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Dong Yu
- Translational Medicine Research Center, Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Xiaojun Shen
- Department of General Surgery, Chang Hai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
58
|
Li Y, Lan Y, Zhang S, Wang X. Comparative Analysis of Gut Microbiota Between Healthy and Diarrheic Horses. Front Vet Sci 2022; 9:882423. [PMID: 35585860 PMCID: PMC9108932 DOI: 10.3389/fvets.2022.882423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence reveals the importance of gut microbiota in animals for regulating intestinal homeostasis, metabolism, and host health. The gut microbial community has been reported to be closely related to many diseases, but information regarding diarrheic influence on gut microbiota in horses remains scarce. This study investigated and compared gut microbial changes in horses during diarrhea. The results showed that the alpha diversity of gut microbiota in diarrheic horses decreased observably, accompanied by obvious shifts in taxonomic compositions. The dominant bacterial phyla (Firmicutes, Bacteroidetes, Spirochaetes, and Kiritimatiellaeota) and genera (uncultured_bacterium_f_Lachnospiraceae, uncultured_bacterium_f_p-251-o5, Lachnospiraceae_AC2044_group, and Treponema_2) in the healthy and diarrheic horses were same regardless of health status but different in abundances. Compared with the healthy horses, the relative abundances of Planctomycetes, Tenericutes, Firmicutes, Patescibacteria, and Proteobacteria in the diarrheic horses were observably decreased, whereas Bacteroidetes, Verrucomicrobia, and Fibrobacteres were dramatically increased. Moreover, diarrhea also resulted in a significant reduction in the proportions of 31 genera and a significant increase in the proportions of 14 genera. Taken together, this study demonstrated that the gut bacterial diversity and abundance of horses changed significantly during diarrhea. Additionally, these findings also demonstrated that the dysbiosis of gut microbiota may be an important driving factor of diarrhea in horses.
Collapse
|
59
|
Cui S, Guo W, Chen C, Tang X, Zhao J, Mao B, Zhang H. Metagenomic Analysis of the Effects of Lactiplantibacillus plantarum and Fructooligosaccharides (FOS) on the Fecal Microbiota Structure in Mice. Foods 2022; 11:foods11091187. [PMID: 35563910 PMCID: PMC9102988 DOI: 10.3390/foods11091187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Understanding the association between food composition and intestinal microbiota in the context of individual health is a critical problem in personalized nutrition. The objective of the present research was to elucidate the influence of Lactiplantibacillus plantarum ST-III and fructooligosaccharides (FOS) on the intestinal microbiota structure. We found that L. plantarum ST-III and FOS interventions remarkably enhanced the levels of cecal short-chain fatty acids (SCFAs), especially acetic, butyric, and valeric acids. Moreover, L. plantarum ST-III and/or FOS intervention obviously altered the intestinal microbiota structure. At the genus level, L. plantarum ST-III and/or FOS intervention remarkably elevated the proportion of Sutterella, Pediococcus, Proteus, Parabacteroides, Prevotella and Desulfovibrio. Correlation analysis further uncovered that the specific compositional features of intestinal microbiota were strongly related to the concentration of cecal SCFAs. Our results offered scientific evidence to understanding the association between food composition and intestinal microbiota.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cailing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
60
|
Garzarella EU, Navajas-Porras B, Pérez-Burillo S, Ullah H, Esposito C, Santarcangelo C, Hinojosa-Nogueira D, Pastoriza S, Zaccaria V, Xiao J, Rufián-Henares JÁ, Daglia M. Evaluating the effects of a standardized polyphenol mixture extracted from poplar-type propolis on healthy and diseased human gut microbiota. Biomed Pharmacother 2022; 148:112759. [PMID: 35248845 DOI: 10.1016/j.biopha.2022.112759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION A large body of evidence suggests that propolis exerts antioxidant, anti-inflammatory, and antimicrobial activities, mostly ascribed to its polyphenol content. Growing evidence suggests that propolis could modulate gut microbiota exerting a positive impact on several pathological conditions. The aim of this study was to determine the in vitro impact of a poplar-type propolis extract with a standardized polyphenol content, on the composition and functionality of gut microbiota obtained from fecal material of five different donors (healthy adults, and healthy, obese, celiac, and food allergic children). METHODS The standardized polyphenol mixture was submitted to a simulated in vitro digestion-fermentation process, designed to mimic natural digestion in the human oral, gastric, and intestinal chambers. The antioxidant profile of propolis before and after the digestion-fermentation process was determined. 16 S rRNA amplicon next-generation sequencing (NGS) was used to test the effects on the gut microbiota of propolis extract. The profile of the short-chain fatty acids (SCFA) produced by the microbiota was also investigated through a chromatographic method coupled with UV detection. RESULTS In vitro digestion and fermentation induced a decrease in the antioxidant profile of propolis (i.e., decrease of total polyphenol content, antiradical and reducing activities). Propolis fermentation exhibited a modulatory effect on gut microbiota composition and functionality of healthy and diseased subjects increasing the concentration of SCFA. CONCLUSIONS Overall, these data suggest that propolis might contribute to gut health and could be a candidate for further studies in view of its use as a prebiotic ingredient.
Collapse
Affiliation(s)
- Emanuele Ugo Garzarella
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Naples 80131,Italy
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Naples 80131,Italy
| | - Cristina Esposito
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Naples 80131,Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Naples 80131,Italy
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | | | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, Granada 18140, Spain.
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Naples 80131,Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
61
|
Miao J, Guo L, Cui H, Wang L, Zhu B, Lei J, Li P, Jia J, Zhang Z. Er-Chen Decoction Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Rats through Remodeling Gut Microbiota and Regulating the Serum Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6221340. [PMID: 35399623 PMCID: PMC8991405 DOI: 10.1155/2022/6221340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Many studies have found that the dysfunction in gut microbiota and the metabolic dysfunction can promote nonalcoholic fatty liver disease (NAFLD) development. Er-Chen decoction (EC) can be used in the treatment of NAFLD. However, the mechanism of this hepatoprotection is still unknown. In this study, we constructed a rat model with NAFLD fed with high-fat chow and administered EC treatment. The therapeutic effects of EC on NAFLD were evaluated by measuring transaminases, blood lipid levels, and pathological changes in the liver. In addition, we measured the effects of EC on liver inflammatory response and oxidative stress. The changes in gut microbiota after EC treatment were studied using 16S rRNA sequencing. Serum untargeted metabolomics analysis was also used to study the metabolic regulatory mechanisms of EC on NAFLD. The results showed that EC decreased the serum transaminases and lipid levels and improved the pathological changes in NAFLD rats. Furthermore, EC enhanced the activities of SOD and GSH-Px and decreased MDA level in the liver. EC treatment also decreased the gene and protein levels of IL-6, IL-1β, and TNF-α in the liver and serum. The 16S rRNA sequencing and untargeted metabolomics indicated that EC treatment affected the gut microbiota and regulated serum metabolism. Correlation analysis showed that the effects of EC on taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways were associated with affecting in the abundance of Lactobacillus, Dubosiella, Lachnospiraceae, Desulfovibri, Romboutsia, Akkermansia, Intestinimonas, and Candidatus_saccharimonas in the gut. In conclusion, our study confirmed the protective effect of EC on NAFLD. EC could treat NAFLD by inhibiting oxidative stress, reducing inflammatory responses, and improving the dysbiosis of gut microbiota and the modulation of the taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways in serum.
Collapse
Affiliation(s)
- Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Liying Guo
- Tianjin Second People's Hospital, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Li Wang
- Tianjin Second People's Hospital, Tianjin, China
| | - Bo Zhu
- Tianjin Second People's Hospital, Tianjin, China
| | - Jinyan Lei
- Tianjin Second People's Hospital, Tianjin, China
| | - Peng Li
- Tianjin Second People's Hospital, Tianjin, China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Tianjin, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
62
|
Zhao Y, Li M, Wang Y, Geng R, Fang J, Liu Q, Kang SG, Zeng WC, Huang K, Tong T. Understanding the mechanism underlying the anti-diabetic effect of dietary component: a focus on gut microbiota. Crit Rev Food Sci Nutr 2022; 63:7378-7398. [PMID: 35243943 DOI: 10.1080/10408398.2022.2045895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes has become one of the biggest non-communicable diseases and threatens human health worldwide. The management of diabetes is a complex and multifaceted process including drug therapy and lifestyle interventions. Dietary components are essential for both diabetes management and health and survival of trillions of the gut microbiota (GM). Herein, we will discuss the relationship between diets and GM, the mechanism linking diabetes and gut dysbiosis, and the effects of dietary components (nutrients, phytochemicals, probiotics, food additives, etc.) on diabetes from the perspective of modulating GM. The GM of diabetic patients differs from that of health individuals and GM disorder contributes to the onset and maintenance of diabetes. Studies in humans and animal models consolidate that dietary component is a key regulator of diabetes and increasing evidence suggests that the alteration of GM plays a salient role in dietary interventions for diabetes. Given that diabetes is a major public health issue, especially that diabetes is linked with a high risk of mortality from COVID-19, this review provides compelling evidence for that targeting GM by dietary components is a promising strategy, and offers new insights into potential preventive or therapeutic approaches (dietary and pharmacological intervention) for the clinical management of diabetes.
Collapse
Affiliation(s)
- Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qing Liu
- Jilin Green Food Engineering Research Institute, Changchun, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Chungkyemyon, Muangun, Jeonnam, Korea
| | - Wei Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
63
|
Wang QS, Li M, Li X, Zhang NW, Hu HY, Zhang LL, Ren JN, Fan G, Pan SY. Protective effect of orange essential oil on the formation of non-alcoholic fatty liver disease caused by high-fat diet. Food Funct 2022; 13:933-943. [PMID: 35005749 DOI: 10.1039/d1fo03793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the protective effect of sniffing orange essential oil (OEO) on the formation of non-alcoholic fatty liver disease (NAFLD) caused by a high-fat diet. The results confirmed that sniffing OEO could reduce obesity caused by a high-fat diet (HFD) by reducing the levels of triglycerides (TGs), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In addition, the observation of liver tissue sections showed that sniffing OEO could reduce lipid accumulation in liver cells. Further analysis by western blot analysis showed that OEO treatment made the expression levels of acetyl-CoA carboxylase (ACC) and Cytochrome P450 2E1 (CYP2E1) down-regulated and the expression levels of peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) up-regulated. These results indicate that the treatment of sniffing OEO could enhance the antioxidant capacity of mice and reduce liver damage caused by a high-fat diet. Furthermore, sniffing OEO could inhibit lipid synthesis and oxidative stress stimulated by a high-fat diet. Overall, OEO treatment had a certain protective effect on NAFLD-related diseases caused by a high-fat diet. Therefore, aromatherapy may be introduced as a treatment of long-term chronic diseases.
Collapse
Affiliation(s)
- Qing-Shan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Na-Wei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui-Yan Hu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
64
|
Anvarifard P, Anbari M, Ostadrahimi A, Ardalan M, Ghoreishi Z. A comprehensive insight into the molecular and cellular mechanisms of the effects of Propolis on preserving renal function: a systematic review. Nutr Metab (Lond) 2022; 19:6. [PMID: 35057819 PMCID: PMC8772196 DOI: 10.1186/s12986-021-00639-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The present systematic review is conducted, focusing on the existing evidence of Propolis's effects due to its various health benefits, mainly antioxidant and anti-inflammatory properties on preserving renal function. METHODS A systematic search of PubMed, Scopus, Embase, ProQuest, and Google Scholar was undertaken for relevant papers published from the start until January 2021. RESULTS This review revealed that Propolis affects fasting blood sugar (FBS), postprandial blood glucose, advanced glycation end products (AGEs) concentrations, malondialdehyde (MDA) levels, urinary concentrations of reactive oxygen metabolites (Tbars), total oxidant status (TOS), oxidative stress index (OSI), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation favorably. The findings on hemoglobin A1C (HbA1C), insulin, homeostasis model assessment of insulin resistance (HOMA-IR), β-cell function (HOMA-β), quantitative insulin sensitivity check index (QUICKI), and lipid profile were controversial. Moreover, a significant reduction in renal nuclear factor kappa B (NF-κB), serum immunoglobulins, renal ED-1+ cells, and urinary monocyte chemoattractant protein-1 (MCP-1) following Propolis supplementation has been reported, while the results on interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), nitric oxide (NO), nitric oxide synthetase (NOS), and high sensitivity C-reactive protein (hs-CRP) were controversial. Furthermore, included studies showed its anti- proteinuria and kidney restoring effects. CONCLUSION In this review, both human and animal studies provide us evidences that Propolis could potentially improve the glycemic status, oxidative stress, renal tissue damage, and renal function. Further studies are needed to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Paniz Anvarifard
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Anbari
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Attar-Neishaburi St., Golgasht Alley, Azadi Blvd., Tabriz, Iran
| | | | - Zohreh Ghoreishi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Attar-Neishaburi St., Golgasht Alley, Azadi Blvd., Tabriz, Iran.
| |
Collapse
|
65
|
Effects of Bacillus subtilis BS-Z15 on Intestinal Microbiota Structure and Body Weight Gain in Mice. Probiotics Antimicrob Proteins 2022; 15:706-715. [PMID: 35029788 DOI: 10.1007/s12602-021-09897-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
In our previous study, we identified a metabolite of Bacillus subtilis BS-Z15 (a strain with probiotic characteristics) that could improve immunity in mice. In the present study, we examined the effects of B. subtilis BS-Z15 and its metabolites on body weight gain and the intestinal microbiota of mice. Sixty 25-day-old male Kunming white mice were selected and randomly divided into four groups: control group (A), daily saline gavage; B. subtilis-treated group (B), single gavage (1 × 109 CFU/time/animal/day); group D, 14 consecutive gavages (1 × 109 CFU/time/animal/day); and B. subtilis metabolite-treated group (E), 30 consecutive gavages (90 mg kg-1/time/animal/day). High-throughput sequencing technology was used to analyze intergroup differences in the mouse intestinal microbiota. The results showed that the three treated groups had significantly slower body weight gain compared with the control group, which lasted until the 45 days (P < 0.05), and the daily food intake of the treated mice was higher (P < 0.05). The intestinal microbiota structure of the mice in the treated groups was significantly altered compared with that in the control group, suggesting that B. subtilis BS-Z15 may regulate the weight gain of animals by affecting their intestinal bacterial composition. After stopping the gavage of B. subtilis BS-Z15, the abundance of this strain in the small intestine of the mice gradually decreased and its presence was undetectable at 45 days, indicating that B. subtilis BS-Z15 could not colonize the intestine of these mice. These findings suggest that B. subtilis BS-Z15 may regulate intestinal microbiota through its metabolites to reduce weight gain.
Collapse
|
66
|
Liu Z, Yin B. Alterations in the Gut Microbial Composition and Diversity of Tibetan Sheep Infected With Echinococcus granulosus. Front Vet Sci 2022; 8:778789. [PMID: 35097041 PMCID: PMC8792969 DOI: 10.3389/fvets.2021.778789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Hydatidosis/cystic echinococcosis (CE) caused by Echinococcus granulosus is a parasitic zoonotic disease worldwide, threatening animal health and production and public health safety. However, it is still unclear that whether E. granulosus infection can result in the alteration of gut microbiota in Tibetan sheep. Therefore, a study was designed to investigate the influences of E. granulosus infection on gut microbiota of Tibetan sheep. A total of 10 ovine small intestinal contents (five from healthy and five from infected) were obtained and subjected to high-throughput sequencing by MiSeq platform. A total of 2,395,641 sequences and 585 operational taxonomic units (OTUs) were identified. Firmicutes and Proteobacteria were the most dominant phyla in all samples. Moreover, the proportions of Armatimonadetes and Firmicutes in the infected Tibetan sheep were significantly decreased, whereas Actinobacteria, Chloroflexi, and Acidobacteria had significantly increased. At the genus level, the Christensenellaceae_R-7_group and Ruminococcaceae_NK4A214_group were the predominant bacterial genera in all the samples. Furthermore, the healthy Tibetan sheep exhibited higher abundances of Intestinimonas, Butyrivibrio, Pseudobutyrivibrio, Ruminococcaceae, Eubacterium_coprostanoligenes_group, Oxobacter, Prevotella_1, Ruminiclostridium_6, Coprococcus_1, Ruminococcus, Lachnospiraceae_UCG-002, Olsenella, and Acetitomaculum, whereas Kocuria, Clostridium_sensu_stricto_1, Slackia, Achromobacter, and Stenotrophomonas levels were lower. In conclusion, our results conveyed an information that E. granulosus infection may cause an increase in pathogenic bacteria and a decrease in beneficial bacteria. Additionally, a significant dynamical change in gut microbiota could be associated with E. granulosus infection.
Collapse
Affiliation(s)
- Zhigang Liu
- College of Life Science, Anqing Normal University, Anqing, China
- Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, Anqing Normal University, Anqing, China
- *Correspondence: Zhigang Liu
| | - Baishuang Yin
- Jilin Agricultural Science and Technology University, Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin, China
- Baishuang Yin
| |
Collapse
|
67
|
Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Martinez SP, Cominelli F, Kuwahara T, Dichosa AEK, Good CE, Jacobs MR, Khoretonenko M, Veloo A, Rodriguez-Palacios A. Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 2022; 13:1922241. [PMID: 34196581 PMCID: PMC8253142 DOI: 10.1080/19490976.2021.1922241] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Parabacteroides distasonis is the type strain for the genus Parabacteroides, a group of gram-negative anaerobic bacteria that commonly colonize the gastrointestinal tract of numerous species. First isolated in the 1930s from a clinical specimen as Bacteroides distasonis, the strain was re-classified to form the new genus Parabacteroides in 2006. Currently, the genus consists of 15 species, 10 of which are listed as 'validly named' (P. acidifaciens, P. chartae, P. chinchillae, P. chongii, P. distasonis, P. faecis, P. goldsteinii, P. gordonii, P. johnsonii, and P. merdae) and 5 'not validly named' (P. bouchesdurhonensis, P. massiliensis, P. pacaensis, P. provencensis, and P. timonensis) by the List of Prokaryotic names with Standing in Nomenclature. The Parabacteroides genus has been associated with reports of both beneficial and pathogenic effects in human health. Herein, we review the literature on the history, ecology, diseases, antimicrobial resistance, and genetics of this bacterium, illustrating the effects of P. distasonis on human and animal health.
Collapse
Affiliation(s)
- Jessica C. Ezeji
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daven K. Sarikonda
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Austin Hopperton
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Hailey L. Erkkila
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel E. Cohen
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Fabio Cominelli
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA,Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, United States
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Armand E. K. Dichosa
- B-10 Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Caryn E. Good
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Michael R. Jacobs
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Alida Veloo
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Rodriguez-Palacios
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, United States,University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA,CONTACT Alexander Rodriguez-Palacios Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
68
|
Li X, Chu L, Liu S, Zhang W, Lin L, Zheng G. Smilax china L. flavonoid alleviates HFHS-induced inflammation by regulating the gut-liver axis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153728. [PMID: 34561124 DOI: 10.1016/j.phymed.2021.153728] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Smilax china L., a traditional Chinese herb, has been used to treat various inflammatory disorders, particularly pelvic inflammation. The anti-inflammatory activity of the plant extract has been reported in several in vivo experimental models. However, the underlying anti-inflammatory mechanisms and the role of gut microbiota in mice on Smilax china L. flavonoid (SCF) treatment are poorly understand. PURPOSE To investigate the role of SCF in providing the anti-inflammatory response and the role of gut microbiota in high-fat/high-sucrose (HFHS)-induced obese mice for 12 weeks. STUDY DESIGN AND METHODS C57BL/6J mice were randomly divided into seven groups, normal chow (NC), HFHS, Orlistat, SCE, and low-, medium-, high- doses of SCF for 12 weeks. The body weight, liver weight, serum concentrations of lipopolysaccharide (LPS), and inflammatory cytokines in mice were assessed. The gene and protein expression levels of inflammation-related markers were measured by qRT-PCR and Western blot. Finally, the composition of gut microbiota was detected by analyzing 16S rDNA gene sequences. RESULTS SCF supplement reduced body weight gain, adipose tissue and liver indexes, attenuated serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, LPS, and increased IL-10, and adiponectin. SCF significantly reduced the mRNA expression levels of TNF-α, IL-6, and increased the expression of AMPK, PPAR-γ, and IL-10 in mice's liver and adipose tissues. In addition, the TLR4, p-IκBα, NF-κB, and p65 protein expression levels were reduced after the SCF supplement. Moreover, SCF treatment ameliorated HFHS-induced gut dysbiosis, as revealed by an increased intestinal barrier protective species (Akkermansia spp). The relative abundance of Streptococcaceae, Faecalibaculum, and endotoxin-producing Desulfovibrionaceae were significantly decreased on SCF supplements. CONCLUSION The results showed that SCF effectively inhibits HFHS-induced inflammation by suppressing the LPS-producing bacteria and pro-inflammatory bacteria group. Furthermore, the abundance of gut barrier protective species Akkermansia spp was increased to alleviate inflammatory response, inhibiting the LPS-TLR4/NF-κB signaling pathway. Thus, SCF may be a promising prophylactic for diet-induced inflammatory diseases through the gut-liver axis in mice.
Collapse
Affiliation(s)
- Xin Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lulu Chu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shanshan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lezhen Lin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
69
|
Zeng F, Zhao C, Li N, Gao X, Pan YY, Liu B, Pang J. Effects of Alkaloid-Rich Extracts Obtained from Grifola frondosa on Gut Microbiota and Glucose Homeostasis in Rats. Food Funct 2022; 13:2729-2742. [DOI: 10.1039/d1fo04062f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grifola frondosa (GF), also known as maitake (a type of mushroom), has been widely used as a food item and it exhibits various health-beneficial hypoglycemic activities. Rats fed with a...
Collapse
|
70
|
Kang Y, Kang X, Yang H, Liu H, Yang X, Liu Q, Tian H, Xue Y, Ren P, Kuang X, Cai Y, Tong M, Li L, Fan W. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacol Res 2022; 175:106020. [PMID: 34896249 DOI: 10.1016/j.phrs.2021.106020] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
Abstract
Obesity associated with low-grade chronic inflammation and intestinal dysbiosis is considered as a worldwide public health crisis. In the meanwhile, different probiotics have demonstrated beneficial effects on this condition, thus increasing the interest in the development of probiotic treatments. In this context, the aim of this study is to investigate the anti-obesity effects of potential probiotic Lactobacillus acidophilus isolated from the porcine gut. Then, it is found that L. acidophilus reduces body weight, fat mass, inflammation and insulin resistance in mice fed with a high-fat diet (HFD), accompanied by activation in brown adipose tissue (BAT) as well as improvements of energy, glucose and lipid metabolism. Besides, our data indicate that L. acidophilus not only reverses HFD-induced gut dysbiosis, as indicated by the decreased Firmicutes-to-Bacteroidetes ratios and endotoxin bearing Gram-negative bacteria levels, but also maintains intestinal barrier integrity, reduces metabolic endotoxemia, and inhibits the TLR4 / NF- κB signaling pathway. In addition, the results of microbiome phenotype prediction by BugBase and bacterial functional potential prediction using PICRUSt show that L. acidophilus treatment improves the gut microbiota functions involving metabolism, immune response, and pathopoiesia. Furthermore, the anti-obesity effect is transmissible via horizontal faeces transfer from L. acidophilus-treated mice to HFD-fed mice. According to our data, it is seen that L. acidophilus could be a good candidate for probiotic of ameliorating obesity and associated diseases such as hyperlipidemia, nonalcoholic fatty liver diseases, and insulin resistance through its anti-inflammatory properties and alleviation of endothelial dysfunction and gut dysbiosis.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xing Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Yang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haixia Liu
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodan Yang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingqing Liu
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haixia Tian
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Xue
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Ren
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyu Kuang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingwei Tong
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin Li
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
71
|
Salleh SNAS, Hanapiah NAM, Johari WLW, Ahmad H, Osman NH. Analysis of bioactive compounds and chemical composition of Malaysian stingless bee propolis water extracts. Saudi J Biol Sci 2021; 28:6705-6710. [PMID: 34866969 PMCID: PMC8626211 DOI: 10.1016/j.sjbs.2021.07.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Propolis is a resinous substance collected by stingless bees containing bioactive compounds which exert various biological properties. The present study focused on the evaluation of chemical profiles produced by three Indo-Malayan stingless bee propolis extracted using water. Fresh propolis was collected from the same area and ecosystem conditions in Selangor, Malaysia, namely Tetrigona apicalis, Tetrigona binghami, and Heterotrigona fimbriata. The bioactive compounds and chemical composition of propolis extracts were then analyzed using gas chromatography–mass spectrometry (GC–MS). Results showed that propolis from the three different stingless bee species consisted of major groups such as sugar (31.4%), carboxylic acid (17.1%), terpenoid (14.3%), sugar alcohol (11.4%), hydrocarbon (5.7%), aldehyde (5.7%) amino acid (2.9%) and other constituents (11.4%). Heterotrigona fimbriata displayed the highest amount for both total phenolics (13.21 mg/mL) and flavonoids (34.53 mg/mL) compared to other propolis extracts. There is also no significant difference detected between all samples since p ≤ 0.05. In conclusion, this study shows that Malaysian stingless bee propolis contain bioactive components that have great potential to be used for their therapeutic and medicinal benefits. However, more investigations and analysis of stingless bee propolis need to be carried out in order to enhance the understanding and applications of propolis in the future.
Collapse
Affiliation(s)
- Sharifah Nur Amalina Syed Salleh
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nur Ayuni Mohd Hanapiah
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Wan Lutfi Wan Johari
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Corresponding author.
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nurul Huda Osman
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
72
|
Sost MM, Ahles S, Verhoeven J, Verbruggen S, Stevens Y, Venema K. A Citrus Fruit Extract High in Polyphenols Beneficially Modulates the Gut Microbiota of Healthy Human Volunteers in a Validated In Vitro Model of the Colon. Nutrients 2021; 13:nu13113915. [PMID: 34836169 PMCID: PMC8619629 DOI: 10.3390/nu13113915] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The effect of a Citrus Fruit Extract high in the polyphenols hesperidin and naringin (CFE) on modulation of the composition and activity of the gut microbiota was tested in a validated, dynamic in vitro model of the colon (TIM-2). CFE was provided at two doses (250 and 350 mg/day) for 3 days. CFE led to a dose-dependent increase in Roseburia, Eubacterium ramulus, and Bacteroides eggerthii. There was a shift in production of short-chain fatty acids, where acetate production increased on CFE, while butyrate decreased. In overweight and obesity, acetate has been shown to increase fat oxidation when produced in the distal gut, and stimulate secretion of appetite-suppressive neuropeptides. Thus, the data in the in vitro model point towards mechanisms underlying the effects of the polyphenols in CFE with respect to modulation of the gut microbiota, both in composition and activity. These results should be confirmed in a clinical trial.
Collapse
Affiliation(s)
- Mônica Maurer Sost
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
| | - Sanne Ahles
- BioActor B.V., 6229 GS Maastricht, The Netherlands; (S.A.); (Y.S.)
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
| | - Yala Stevens
- BioActor B.V., 6229 GS Maastricht, The Netherlands; (S.A.); (Y.S.)
- Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
- Correspondence: ; Tel.: +31-622-435-111
| |
Collapse
|
73
|
Sheng Z, Yu L, Li X, Zhao Y, Dai W, Chang SK, Liu J. The anti-obesity effect of fermented tremella/blueberry and its potential mechanisms in metabolically healthy obese rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
74
|
Wang Y, Liu S, Tang D, Dong R, Feng Q. Chitosan Oligosaccharide Ameliorates Metabolic Syndrome Induced by Overnutrition via Altering Intestinal Microbiota. Front Nutr 2021; 8:743492. [PMID: 34660667 PMCID: PMC8517441 DOI: 10.3389/fnut.2021.743492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Chitosan oligosaccharides (COS) play a prebiotic role in many ways, whereas its function on microbiota is not fully understood. In this study, the effects of COS on metabolic syndrome were initially investigated by testing changes in the physiological indicators after adding COS to the diet of mice with high fat (group H) and low fat (group L). The results showed that COS markedly inhibited the accumulation of body weight and liver fat induced by high-fat diet, as well as restored the elevated concentration of blood glucose and fasting insulin to normal levels. Next, changes of the murine intestinal microbiota were examined. The results exhibited that COS reduced with-in-sample diversity, while the between-sample microbial diversity enhanced. Specifically, COS enriched Clostridium paraputrificum and Clostridium ramosum in the mice on a high-fat diet, while the abundance of Clostridium cocleatum was reduced. As a comparison, Parabacteroides goldsteinii and Bacteroides uniformis increased their abundance in response to COS in the low-fat diet group. Noticeably, a large amount of Akkermansia muciniphila was enriched in both high-fat or low-fat diet groups. Among the differential fecal bacteria, Clostridium ramosume was found to be positively interacted with Faecalibacterim prausnitzii and Clostridium paraputrificum; Clostridium paraputrificum had a positive interactions with Lactococcus chungangensis and Bifidobacterium mongoliense, suggesting that COS probably ameliorate metabolic syndrome through the microbiota in view of the lipid-lowering effects of these interacted bacteria. Furthermore, the gene expression data revealed that COS improved the functions related to intestinal barrier and glucose transport, which could be the trigger and consequence of the variations in gut microbiota induced by COS. Additionally, correlation analysis found that intestinal bacteria are related to physiological parameters, which further supports the mediating role of gut microbiota in the beneficial effect of COS. In summary, our research results provide new evidence for the prebiotic effects of COS.
Collapse
Affiliation(s)
- Yihua Wang
- School and Hospital of Stomatology and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Mathematics, Shandong University, Jinan, China
| | - Shili Liu
- School and Hospital of Stomatology and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Di Tang
- School and Hospital of Stomatology and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Dong
- School and Hospital of Stomatology and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Feng
- School and Hospital of Stomatology and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
75
|
Wu S, Zuo J, Cheng Y, Zhang Y, Zhang Z, Wu M, Yang Y, Tong H. Ethanol extract of Sargarsum fusiforme alleviates HFD/STZ-induced hyperglycemia in association with modulation of gut microbiota and intestinal metabolites in type 2 diabetic mice. Food Res Int 2021; 147:110550. [PMID: 34399527 DOI: 10.1016/j.foodres.2021.110550] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 01/16/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is considered a rapidly growing chronic disease that threatens human health worldwide. Extracts of various seaweeds have been shown to have anti-diabetic activity. Sargarsum fusiforme, an edible brown seaweed, has been shown to possess anti-inflammatory, anti-diabetic and anti-obesity activities. In this study, we investigated the beneficial effect of an ethanol extract of S. fusiforme (EE) on type 2 diabetes in mice induced with high-fat diet (HFD) and streptozotocin (STZ). Administering EE to the diabetic mice significantly reduced food intake, water intake and fasting blood glucose (FBG), while improving glucose tolerance, lipid profile and ameliorating hepatic oxidative stress. Furthermore, these animals also exhibited significantly diminished epididymal fat deposition, as well as less pathological changes in the heart and liver tissues, while displaying some highly enriched benign gut bacteria (e.g., Intestinimonas, Oscillibacter, Lachnoclostridium, unidentified_Lachnospiraceae, Roseburia and Anaerotruncus) and a lower abundance of bacteria associated with diabetes or other metabolic diseases (e.g., Enterorhabdus and Romboutsia). Metabolomic analysis revealed reduced levels of branched-chain amino acids (BCAA), such as l-valine and l-isoleucine, aromatic amino acids (AAA), such as l-tyrosine and l-phenylalanine, and increased levels of 4-hydroxyphenylacetic acid (4-HPA) in the gut content, suggesting that EE may impact T2DM through modulation of these compounds in the gut of the animals. Taken together, the results implied that S. fusiforme may contain valuable active components other than polysaccharides that have potential benefit in alleviating T2DM.
Collapse
Affiliation(s)
- Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jihui Zuo
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Cent Hosp, Huzhou 313000, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yue Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
76
|
Liu Y, Xie C, Zhai Z, Deng ZY, De Jonge HR, Wu X, Ruan Z. Uridine attenuates obesity, ameliorates hepatic lipid accumulation and modifies the gut microbiota composition in mice fed with a high-fat diet. Food Funct 2021; 12:1829-1840. [PMID: 33527946 DOI: 10.1039/d0fo02533j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uridine (UR) is a pyrimidine nucleoside that plays an important role in regulating glucose and lipid metabolism. The aim of this study was to investigate the effect of UR on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet (HFD)-fed mice. ICR mice were, respectively, divided into 3 groups for 8 weeks, that is, control (CON, n = 12), high fat diet (HFD, n = 16), and HFD + UR groups (0.4 mg mL-1 in drinking water, n = 16). UR supplementation significantly reduced the body weight and suppressed the accumulation of subcutaneous, epididymal, and mesenteric WAT in HFD-fed mice (P < 0.05). Meanwhile, UR also decreased the lipid droplet accumulation in the liver and liver organoids (P < 0.05). In addition, UR supplementation increased bacterial diversity and Bacteroidetes abundance, and decreased the Firmicutes-to-Bacteroidetes ratio in HFD-fed mice significantly (P < 0.05). UR promoted the growth of butyrate-producing bacteria of Odoribacter, unidentified-Ruminococcaceae, Intestinimonas, Ruminiclostridium, and unidentified-Lachnospiraceae. A close correlation between several specific bacterial phyla or genera and the levels of WAT weight, hepatic TC, or hepatic TG genera was revealed through Spearman's correlation analysis. These results demonstrated that UR supplementation could be beneficial by attenuating HFD-induced obesity and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yilin Liu
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China. and Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China.
| | - Chunyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China and Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Zhenya Zhai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China.
| | - Ze-Yuan Deng
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Hugo R De Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Xin Wu
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China. and Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China. and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zheng Ruan
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
77
|
Yuan X, Chen R, McCormick KL, Zhang Y, Lin X, Yang X. The role of the gut microbiota on the metabolic status of obese children. Microb Cell Fact 2021; 20:53. [PMID: 33639944 PMCID: PMC7916301 DOI: 10.1186/s12934-021-01548-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background The term “metabolically healthy obese (MHO)” denotes a hale and salutary status, yet this connotation has not been validated in children, and may, in fact, be a misnomer. As pertains to obesity, the gut microbiota has garnered attention as conceivably a nosogenic or, on the other hand, protective participator. Objective This study explored the characteristics of the fecal microbiota of obese Chinese children and adolescents of disparate metabolic statuses, and the associations between their gut microbiota and circulating proinflammatory factors, such as IL-6, TNF-α, lipopolysaccharide-binding protein (LBP), and a cytokine up-regulator and mediator, leptin. Results Based on weight and metabolic status, the 86 Chinese children (ages 5–15 years) were divided into three groups: metabolically healthy obese (MHO, n = 42), metabolic unhealthy obese (MUO, n = 23), and healthy normal weight controls (Con, n = 21). In the MUO subjects, the phylum Tenericutes, as well as the alpha and beta diversity, were significantly reduced compared with the controls. Furthermore, Phylum Synergistetes and genus Bacteroides were more prevalent in the MHO population compared with controls. For the MHO group, Spearman’s correlation analysis revealed that serum IL-6 positively correlated with genus Paraprevotella, LBP was positively correlated with genus Roseburia and Faecalibacterium, and negatively correlated with genus Lactobacillus, and leptin correlated positively with genus Phascolarctobacterium and negatively with genus Dialister (all p < 0.05). Conclusion Although there are distinct differences in the characteristic gut microbiota of the MUO population versus MHO, dysbiosis of gut microsystem is already extant in the MHO cohort. The abundance of some metabolism-related bacteria associates with the degree of circulating inflammatory compounds, suggesting that dysbiosis of gut microbiota, present in the MHO children, conceivably serves as a compensatory or remedial response to a surfeit of nutrients. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01548-9.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Ruimin Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China.
| | - Kenneth L McCormick
- Division of Pediatric Endocrinology and Diabetes, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ying Zhang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiangquan Lin
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiaohong Yang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| |
Collapse
|
78
|
Yang S, Hu T, Liu H, Lv YL, Zhang W, Li H, Xuan L, Gong LL, Liu LH. Akebia saponin D ameliorates metabolic syndrome (MetS) via remodeling gut microbiota and attenuating intestinal barrier injury. Biomed Pharmacother 2021; 138:111441. [PMID: 33652261 DOI: 10.1016/j.biopha.2021.111441] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex, multifactorial disease which lead to an increased risk of cardiovascular disease, type 2 diabetes, and stroke. However, selective, and potent drugs for the treatment of MetS are still lacking. Previous studies have found that Akebia saponin D (ASD) has beneficial effects on metabolic diseases such as obesity, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). Therefore, our study was designed to determine the effect and mechanism of action of ASD against MetS in a high-fat diet (HFD) induced mouse model. ASD significantly decreased plasma lipid and insulin resistance in these mice, and a targeted approach using metabolomic analyses of plasma and feces indicated that glucose and lipids in these mice crossed the damaged intestinal barrier into circulation. Furthermore, ASD was able to increase lipid excretion and inhibit intestinal epithelial lipid absorption. Results for gut microbiota composition showed that ASD significantly reduced HFD-associated Alistipes, Prevotella, and enhanced the proportions of Butyricimonas, Ruminococcus, and Bifidobacterium. After 14 weeks of ASD/fecal microbiota transplantation (FMT) interventions the developed gut barrier dysfunction was restored. Additionally, RNA-seq revealed that ASD reduced the lipid-induced tight junction (TJ) damage in intestinal epithelial cells via down-regulation of the PPAR-γ-FABP4 pathway in vitro and that use of the PPAR-γ inhibitor (T0070907) was able to partially block the effects of ASD, indicating that the PPAR-γ/FABP4 pathway is a critical mediator involved in the improvement of MetS. Our results demonstrated that ASD not only modifies the gut microbiome but also ameliorates the HFD-induced gut barrier disruption via down-regulation of the PPAR-γ-FABP4 pathway. These findings suggest a promising, and novel therapeutic strategy for gut protection against MetS.
Collapse
Affiliation(s)
- Song Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ting Hu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - He Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ya-Li Lv
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Han Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lingling Xuan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Li-Li Gong
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| | - Li-Hong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
79
|
Mu HN, Zhou Q, Yang RY, Tang WQ, Li HX, Wang SM, Li J, Chen WX, Dong J. Caffeic acid prevents non-alcoholic fatty liver disease induced by a high-fat diet through gut microbiota modulation in mice. Food Res Int 2021; 143:110240. [PMID: 33992352 DOI: 10.1016/j.foodres.2021.110240] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Caffeic acid (CA) is derived from many plants and may have the ability to reduce hepatic lipid accumulation. The gut microbiota produces lipopolysaccharides and further influences hepatic lipid metabolism, and thus plays an important role in the development of nonalcoholic fatty liver disease (NAFLD). However, whether the beneficial effects of CA are associated with the gut microbiota remains unclear. The present study aimed to investigate the benefits of experimental treatment with CA on the gut microbiota and metabolic functions in a mouse model of NAFLD. In this study, C57BL/6J mice received a high-fat diet (HFD) for 8 weeks and were then fed a HFD supplemented with or without CA for another 8 weeks. HFD induced obesity and increased accumulation of intrahepatic lipids, serum biochemical parameters and gene expression related to lipid metabolism. Microbiota composition was determined via 16S rRNA sequencing, and analysis revealed that HFD led to dysbiosis, accompanied by endotoxemia and low-grade inflammation. CA reverted the imbalance in the gut microbiota and related lipopolysaccharide-mediated inflammation, thus inhibiting deregulation of lipid metabolism-related gene expression. Our results support the possibility that CA can be used as a therapeutic approach for obesity-associated NAFLD via its anti-inflammatory and prebiotic integrative response.
Collapse
Affiliation(s)
- Hong-Na Mu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Rui-Yue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Wei-Qing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Hong-Xia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Si-Ming Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Wen-Xiang Chen
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
80
|
Du G, Dong W, Yang Q, Yu X, Ma J, Gu W, Huang Y. Altered Gut Microbiota Related to Inflammatory Responses in Patients With Huntington's Disease. Front Immunol 2021; 11:603594. [PMID: 33679692 PMCID: PMC7933529 DOI: 10.3389/fimmu.2020.603594] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence indicates that gut dysbiosis may play a regulatory role in the onset and progression of Huntington’s disease (HD). However, any alterations in the fecal microbiome of HD patients and its relation to the host cytokine response remain unknown. The present study investigated alterations and host cytokine responses in patients with HD. We enrolled 33 HD patients and 33 sex- and age- matched healthy controls. Fecal microbiota communities were determined through 16S ribosomal DNA gene sequencing, from which we analyzed fecal microbial richness, evenness, structure, and differential abundance of individual taxa between HD patients and healthy controls. HD patients were evaluated for their clinical characteristics, and the relationships of fecal microbiota with these clinical characteristics were analyzed. Plasma concentrations of interferon gamma (IFN-γ), interleukin 1 beta (IL-1β), IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and tumor necrosis factor alpha were measured by Meso Scale Discovery (MSD) assays, and relationships between microbiota and cytokine levels were analyzed in the HD group. HD patients showed increased α-diversity (richness), β-diversity (structure), and altered relative abundances of several taxa compared to those in healthy controls. HD-associated clinical characteristics correlated with the abundances of components of fecal microbiota at the genus level. Genus Intestinimonas was correlated with total functional capacity scores and IL-4 levels. Our present study also revealed that genus Bilophila were negatively correlated with proinflammatory IL-6 levels. Taken together, our present study represents the first to demonstrate alterations in fecal microbiota and inflammatory cytokine responses in HD patients. Further elucidation of interactions between microbial and host immune responses may help to better understand the pathogenesis of HD.
Collapse
Affiliation(s)
- Gang Du
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qing Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueying Yu
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghong Ma
- Neurology Department, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Weihong Gu
- Neurology Department, China-Japan Friendship Hospital, Beijing, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
81
|
Acquah C, Dzuvor CKO, Tosh S, Agyei D. Anti-diabetic effects of bioactive peptides: recent advances and clinical implications. Crit Rev Food Sci Nutr 2020; 62:2158-2171. [PMID: 33317324 DOI: 10.1080/10408398.2020.1851168] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus, particularly type 2 diabetes, is a major global health issue, the prevalence of which seems to be on the rise worldwide. Interventions such as healthy diet, physical activity, maintaining a healthy weight, and medication (for those with a diagnosis of diabetes) are among the most effective strategies to prevent and control diabetes. Three-quarters of patients diagnosed with diabetes are in countries with poor financial infrastructure, nutritional awareness and health care systems. Concomitantly, the cost involved in managing diabetes through the intake of antidiabetic drugs makes it prohibitive for majority of patients. Food protein-derived bioactive peptides have the potential of being formulated as nutraceuticals and drugs in combating the pathogenesis and pathophysiology of metabolic disorders with little or "no known" complications in humans. Coupled with lifestyle modifications, the potential of bioactive peptides to maintain normoglycemic range is actualized by influencing the activities of incretins, DPP-IV, α-amylase, and α-glucosidase enzymes. This article discusses the biofunctionality and clinical implications of anti-diabetic bioactive peptides in controlling the global burden of diabetes.
Collapse
Affiliation(s)
- Caleb Acquah
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Christian K O Dzuvor
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Susan Tosh
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
82
|
Long-term treatment of polysaccharides-based hydrogel microparticles as oral insulin delivery in streptozotocin-induced type 2 diabetic mice. Biomed Pharmacother 2020; 133:110941. [PMID: 33232923 DOI: 10.1016/j.biopha.2020.110941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/28/2022] Open
Abstract
To develop a more effective and safer drug for the treatment of type 2 diabetes mellitus (T2DM), polysaccharides-based hydrogel microparticles as oral insulin delivery was prepared and explored. This study was aimed to evaluate the antidiabetic effects and hypoglycemic mechanism with long-term administration(four weeks) of oral insulin hydrogel microparticles in type 2 diabetic mice on a model of diabetes using a high fat diet combined with streptozotocin. The results revealed that the long-term treatment of oral insulin polysaccharides-based hydrogel microparticles could significantly alleviate the symptoms of polyphagia, polydipsia, polyuria and weight loss in diabetic mice. Also, oral administration of insulin hydrogel microparticles could significantly reduce fasting blood glucose levels, ameliorate insulin resistance and increase insulin sensitivity in the mice with T2DM. The concentration of plasma TG, TC, LDL-C, FFA, BUN, CRE significantly decreased and the levels of HDL-C increased showed that insulin polysaccharides-based hydrogel microparticles were effective in regulating lipid metabolism and prevent diabetic nephropathy complication in diabetic mice. In addition, the supplementation of insulin hydrogel microparticles could significant improve the antioxidant capacity by increasing the level of SOD, CAT and decreasing the level of MDA, GPT, NO, TNF-α, and reverse histological deterioration of kidney and pancreas in diabetic mice. The above outcome concluded that insulin polysaccharides-based hydrogel microparticles may exhibit promising anti-diabetic activity and the potential to be a drug candidate for T2DM.
Collapse
|
83
|
Alvarenga L, Cardozo LFMF, Borges NA, Chermut TR, Ribeiro M, Leite M, Shiels PG, Stenvinkel P, Mafra D. To bee or not to bee? The bee extract propolis as a bioactive compound in the burden of lifestyle diseases. Nutrition 2020; 83:111094. [PMID: 33418489 DOI: 10.1016/j.nut.2020.111094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Propolis is a polyphenolic plant resin collected by bees to protect hives against pathogens and temperature drop. It exhibits antibacterial, antioxidant, and antiinflammatory properties. Propolis has been reported to possess antidiabetic properties and display beneficial effects against cardiovascular disease, gut dysbiosis, and chronic kidney disease. It has an excellent clinical safety profile, with no known toxic effects described so far. In this review, we discuss the salutogenic effects of propolis, with particular reference to modulating notable features of chronic kidney disease, notably those involving cardiovascular risks.
Collapse
Affiliation(s)
- Livia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil.
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil
| | - Natália A Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil; Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Tuany R Chermut
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| | - Maurilo Leite
- Division of Nephrology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, ICS, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institute, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil; Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
84
|
Mu H, Zhou Q, Yang R, Zeng J, Li X, Zhang R, Tang W, Li H, Wang S, Shen T, Huang X, Dou L, Dong J. Naringin Attenuates High Fat Diet Induced Non-alcoholic Fatty Liver Disease and Gut Bacterial Dysbiosis in Mice. Front Microbiol 2020; 11:585066. [PMID: 33281780 PMCID: PMC7691324 DOI: 10.3389/fmicb.2020.585066] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is rising annually, and emerging evidence suggests that the gut bacteria plays a causal role in NAFLD. Naringin, a natural flavanone enriched in citrus fruits, is reported to reduce hepatic lipid accumulation, but to date, no investigations have examined whether the benefits of naringin are associated with the gut bacteria. Thus, we investigated whether the antilipidemic effects of naringin are related to modulating the gut bacteria and metabolic functions. In this study, C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks, then fed an HFD with or without naringin administration for another 8 weeks. Naringin intervention reduced the body weight gain, liver lipid accumulation, and lipogenesis and attenuated plasma biochemical parameters in HFD-fed mice. Gut bacteria analysis showed that naringin altered the community compositional structure of the gut bacteria characterized by increased benefits and fewer harmful bacteria. Additionally, Spearman’s correlation analysis showed that at the genus level, Allobaculum, Alloprevotella, Butyricicoccus, Lachnospiraceae_NK4A136_group, Parasutterella and uncultured_bacterium_f_Muribaculaceae were negatively correlated and Campylobacter, Coriobacteriaceae_UCG-002, Faecalibaculum and Fusobacterium were positively correlated with serum lipid levels. These results strongly suggest that naringin may be used as a potential agent to prevent gut dysbiosis and alleviate NAFLD.
Collapse
Affiliation(s)
- Hongna Mu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Zeng
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianghui Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ranran Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongxia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Siming Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
85
|
Lacerda Leocádio PC, Dias RP, Pinto DV, Reis JM, Rodrigues Nascimento JC, Anne de Castro Brito G, Valença JT, Foureaux G, Ferreira AJ, Windmöller CC, Crespo-Lopez ME, Santos FA, Oriá RB, Alvarez-Leite JI. Pollutants and nutrition: Are methylmercury effects on blood pressure and lipoprotein profile comparable to high-fat diet in mice? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111036. [PMID: 32784013 DOI: 10.1016/j.ecoenv.2020.111036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to methylmercury (MeHg) due to contaminated fish intake as part of a high-fat (HFD), high-carbohydrate diets is a reality today for many populations. HFD is associated with hypertension and hyperlipidemia, primary cardiovascular disease (CVD) risk factors. Some studies suggest that MeHg induces those risk factors. We evaluated the effect of MeHg exposure in mice fed with HFD or control diet for eight weeks. In the last experimental 15 days, the half group received a MeHg solution (20 mg/L) replacing water. Blood pressure (BP), heart rate, lipoprotein concentrations, and paraoxonase activity were evaluated. Liver cholesterol, triacylglycerol, and IBA-1+ cells, as well as transcriptional levels of genes related to lipid metabolism and inflammatory response, were also assessed. HFD and both MeHg groups presented increased BP and total cholesterol (TC). In the liver, HFD but not MeHg was related to an increase in TC. Also, MeHg intoxication reduced paraoxonase activity regardless of diet. MeHg intoxication and HFD increased steatosis and the number of IBA-1+ cells and modified some gene transcripts associated with lipid metabolism. In conclusion, we demonstrated that MeHg effects on CVD risk factors resemble those caused by HFD.
Collapse
|