51
|
Li Z, Qin B, Qi X, Mao J, Wu D. Isoalantolactone induces apoptosis in human breast cancer cells via ROS-mediated mitochondrial pathway and downregulation of SIRT1. Arch Pharm Res 2016; 39:1441-1453. [DOI: 10.1007/s12272-016-0815-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
|
52
|
Radak Z, Suzuki K, Higuchi M, Balogh L, Boldogh I, Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic Biol Med 2016; 98:187-196. [PMID: 26828019 DOI: 10.1016/j.freeradbiomed.2016.01.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
Abstract
Regular exercise has systemic beneficial effects, including the promotion of brain function. The adaptive response to regular exercise involves the up-regulation of the enzymatic antioxidant system and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling. Exercise, via intensity-dependent modulation of metabolism and/or directly activated ROS generating enzymes, regulates the cellular redox state of the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and the exercise-mediated neurogenesis could be partly associated with ROS production. Exercise has strong effects on the immune system and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-α, IL-18 and IFN gamma, are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS-mediated alteration of lipids, protein, and DNA could directly affect brain function, while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules can activate signaling processes, membrane remodeling, and gene transcription. The well known neuroprotective effects of exercise are partly due to redox-associated adaptation.
Collapse
Affiliation(s)
- Zsolt Radak
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary; Graduate School of Sport Sciences, Waseda University, Saitama, Japan.
| | - Katsuhiko Suzuki
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Mitsuru Higuchi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Laszlo Balogh
- Institute of Physical Education and Sport Science, University of Szeged, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erika Koltai
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary
| |
Collapse
|
53
|
Asseburg H, Schäfer C, Müller M, Hagl S, Pohland M, Berressem D, Borchiellini M, Plank C, Eckert GP. Effects of Grape Skin Extract on Age-Related Mitochondrial Dysfunction, Memory and Life Span in C57BL/6J Mice. Neuromolecular Med 2016; 18:378-95. [DOI: 10.1007/s12017-016-8428-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023]
|
54
|
Ravikiran T, Sowbhagya R, Anupama SK, Anand S, Bhagyalakshmi D. Age-related changes in the brain antioxidant status: modulation by dietary supplementation of Decalepis hamiltonii and physical exercise. Mol Cell Biochem 2016; 419:103-13. [PMID: 27379504 DOI: 10.1007/s11010-016-2754-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
The synergistic effects of physical exercise and diet have profound benefits on brain function. The present study was aimed to determine the effects of exercise and Decalepis hamiltonii (Dh) on age-related responses on the antioxidant status in discrete regions of rat brain. Male Wistar albino rats of 4 and 18 months old were orally supplemented with Dh extract and swim trained at 3 % intensity for 30 min/day, 5 days/week, for a period of 30 days. Supplementation of 100 mg Dh aqueous extract/kg body weight and its combination with exercise significantly elevated the antioxidant enzyme activities irrespective of age. Age-related and region-specific changes were observed in superoxide levels, and protein carbonyl and malondialdehyde contents, and were found to be decreased in both trained and supplemented groups. Levels of total thiols, protein, and nonprotein thiols decreased with age and significantly increased in the SW-T(+100 mg) groups. Our results demonstrated that the interactive effects of two treatments enhanced the antioxidant status and decreased the risk of protein and lipid oxidation in the rat brain.
Collapse
Affiliation(s)
- Tekupalli Ravikiran
- Department of Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India.
| | | | | | - Santosh Anand
- Department of Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| | - Dundaiah Bhagyalakshmi
- Department of Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| |
Collapse
|
55
|
Curjuric I, Imboden M, Bridevaux PO, Gerbase MW, Haun M, Keidel D, Kumar A, Pons M, Rochat T, Schikowski T, Schindler C, von Eckardstein A, Kronenberg F, Probst-Hensch NM. Common SIRT1 variants modify the effect of abdominal adipose tissue on aging-related lung function decline. AGE (DORDRECHT, NETHERLANDS) 2016; 38:52. [PMID: 27125385 PMCID: PMC5005914 DOI: 10.1007/s11357-016-9917-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Lung function is an independent predictor of mortality and serves as an aging marker in never smokers. The protein sirtuin-1 of gene SIRT1 has profound anti-inflammatory effects and regulates metabolic pathways. Its suggested longevity effects on lower organisms remain poorly studied in humans. In 1132 never smokers of the population-based SAPALDIA cohort, we investigated associations between single nucleotide polymorphisms (SNPs; rs730821, rs10997868, rs10823116) of SIRT1 and aging-related lung function decline over 11 years in terms of change in forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC ratio, and forced expiratory flow between 25 and 75 % of FVC (FEF25-75) using multiple linear regression models. Interactions between the SIRT1 SNPs and adiposity parameters (body mass index (BMI), its change and weight gain) were tested by including multiplicative interaction terms into the models. SIRT1 polymorphisms exhibited no main effects, but modified the association between obesity measures and FEV1/FVC and FEF25-75 decline (p = 0.009-0.046). Per risk allele, FEV1/FVC decline was accelerated up to -0.5 % (95 % CI -1.0 to 0 %) and -0.7 % (-1.3 to -0.2 %) over interquartile range increases in BMI (2.4 kg/m(2)) or weight (6.5 kg), respectively. For FEF25-75 decline, corresponding estimates were -57 mL/s (-117 to 4 mL/s) and -76 mL/s (-1429 to -9 mL/s). Interactions were not present in participants with genetically lowered C-reactive protein concentrations. Genetic variation in SIRT1 might therefore affect lung function and human longevity by modifying subclinical inflammation arising from abdominal adipose tissue.
Collapse
Grants
- Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
- Bundesamt für Umwelt
- Bundesamt für Gesundheit
- Bundesamt für Strassen
- Canton’s government of Aargau, Basel-Stadt, Basel-Land, Geneva, Luzern, Ticino, Valais, and Zürich
- Swiss Lung League
- Canton’s Lung League of Basel Stadt/ Basel Landschaft, Geneva, Ticino, Valais, Graubünden and Zurich
- Stiftung ehemals Bündner Heilstätten
- SUVA
- Freiwillige Akademische Gesellschaft
- UBS Wealth Foundation
- Talecris Biotherapeutics GmbH
- Abbott Diagnostics
- European Commission
- Wellcome Trust
Collapse
Affiliation(s)
- Ivan Curjuric
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Medea Imboden
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Margaret W Gerbase
- Division of Pulmonary Medicine, University Hospitals, Geneva, Switzerland
| | - Margot Haun
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dirk Keidel
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ashish Kumar
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Pons
- Division of Pulmonary Medicine, Regional Hospital of Lugano, Lugano, Switzerland
| | - Thierry Rochat
- Division of Pulmonary Medicine, University Hospitals, Geneva, Switzerland
| | - Tamara Schikowski
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Christian Schindler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicole M Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
56
|
Sánchez-Hidalgo AC, Muñoz MF, Herrera AJ, Espinosa-Oliva AM, Stowell R, Ayala A, Machado A, Venero JL, de Pablos RM. Chronic stress alters the expression levels of longevity-related genes in the rat hippocampus. Neurochem Int 2016; 97:181-92. [PMID: 27120255 DOI: 10.1016/j.neuint.2016.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 02/02/2023]
Abstract
The molecular mechanisms underlying the negative effects of psychological stress on cellular stress during aging and neurodegenerative diseases are poorly understood. The main objective of this study was to test the effect of chronic psychological stress, and the consequent increase of circulating glucocorticoids, on several hippocampal genes involved in longevity. Sirtuin-1, p53, thioredoxin-interacting protein, and heat shock protein 70 were studied at the mRNA and protein levels in stressed and non-stressed animals. Stress treatment for 10 days decreased sirtuin-1 and heat shock protein 70 levels, but increased levels of p53, thioredoxin-interacting protein and the NADPH oxidase enzyme. Examination of protein expression following two months of stress treatment indicated that sirtuin-1 remained depressed. In contrast, an increase was observed for thioredoxin-interacting protein, heat shock protein 70, p53 and the NADPH oxidase enzyme. The effect of stress was reversed by mifepristone, a glucocorticoid receptor antagonist. These data suggest that chronic stress could contribute to aging in the hippocampus.
Collapse
Affiliation(s)
- Ana C Sánchez-Hidalgo
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Mario F Muñoz
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Antonio J Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Ana M Espinosa-Oliva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Rianne Stowell
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | - Antonio Ayala
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Alberto Machado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - José L Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Rocío M de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain.
| |
Collapse
|
57
|
Surai P, Fisinin V. 25. Antioxidant system regulation: from vitamins to vitagenes. HANDBOOK OF CHOLESTEROL 2016. [DOI: 10.3920/978-90-8686-821-6_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- P.F. Surai
- Feed-Food Ltd., 53 Dongola Road, KA7 3BN Ayr, UK
- Trakia University, Studentski Grad, Stara Zagora 6000, Bulgaria
- Szent Istvan University, Godollo 2103, Hungary
- Sumy National Agrarian University, Kirova Street 160, Sumy 40021, Ukraine
- Odessa National Academy of Food Technologies, Kanatna Street 112, Odessa 65000, Ukraine
| | - V.I. Fisinin
- All Russian Institute of Poultry Husbandry, Ptitzegradskaya Street 10, Sergiev Posad, Moscow region 141311, Russia
| |
Collapse
|
58
|
Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, Pellegrini L, Sansone L, Villanova L, Runci A, Pucci B, Morgante E, Fini M, Mai A, Russo MA, Tafani M. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 2016; 11:253-70. [PMID: 25700560 PMCID: PMC4502726 DOI: 10.1080/15548627.2015.1009778] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism.
Collapse
Key Words
- ACTB, actin, β
- ATG, autophagy-related
- BNIP3, BCL2/adenovirus E1B 19kDa interacting protein 3
- BPTES, bis-2-(5-phenylacetamido-1, 3, 4-thiadiazol-2-yl)ethyl sulfide
- COX4I1, cytochrome c oxidase subunit IV isoform 1
- CPS1, carbamoyl-phosphate synthase 1, mitochondrial
- GABARAP, GABA(A) receptor-associated protein
- GABARAPL2, GABA(A) receptor-associated protein-like 2
- GLS, glutaminase
- GLUD1, glutamate dehydrogenase 1
- GLUL, glutamate-ammonia ligase
- MAP1LC3B, microtubule-associated protein 1 light chain 3 β
- MFN2, mitofusin 2
- OPA1, optic atrophy 1 (autosomal dominant)
- PARK2, parkin RBR E3 ubiquitin protein ligase
- PEG, polyethylene glycol
- PINK1, PTEN induced putative kinase 1
- SIRT5, sirtuin 5
- SQSTM1, sequestosome 1
- TCA, tricarboxylic acid cycle
- TEM, transmission electron microscopy
- ammonia
- autophagy
- glutaminase
- glutamine
- hexachlorophene, 2, 2′-methylenebis(3, 4, 6-trichlorophenol)
- mitochondrial dynamics
- mitophagy
- molecular rehabilitation
- sirtuin 5
- succinylation
Collapse
Affiliation(s)
- Lucia Polletta
- a Department of Experimental Medicine ; University of Rome ; Sapienza ; Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Stenvinkel P, Kooman JP, Shiels PG. Nutrients and ageing: what can we learn about ageing interactions from animal biology? Curr Opin Clin Nutr Metab Care 2016; 19:19-25. [PMID: 26485336 DOI: 10.1097/mco.0000000000000234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Many prevalent clinical conditions, such as chronic kidney disease, diabetes mellitus, chronic obstructive pulmonary, and cardiovascular disease associate with features of premature ageing, such as muscle wasting, hypogonadism, osteoporosis, and arteriosclerosis. Studies on various animal models have shown that caloric restriction prolongs lifespan. Studies of animals with unusual long or short life for their body size may also contribute to better understanding of ageing processes. The aim of the present article is to review what we can learn about nutritional modulations and ageing interactions from animal biology. RECENT FINDINGS Caloric restriction is a powerful intervention that increases longevity in animals ranging from short-lived species, such as worms and flies, to primates. As long-term studies on caloric restriction are not feasible to conduct in humans, much interest has focused on the impact of caloric restriction mimetics, such as resveratrol, on ageing processes. Recent data from studies on the long-lived naked mole rat have provided important novel information on metabolic alterations and antioxidative defense mechanisms that characterize longevity. SUMMARY Better understanding of the biology of exceptionally long-lived animals will contribute to better understanding of ageing processes and novel interventions to extend lifespan also in humans.
Collapse
Affiliation(s)
- Peter Stenvinkel
- aDivision of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinska Institutet Stockholm, Sweden bDivision of Nephrology, Department of Internal Medicine, University Hospital Maastricht, the Netherlands cInstitute of Cancer Sciences, Wolfson Wohl Translational Research Center, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
60
|
Orozco Ríos AM, López Velarde Peña T, Martínez Gallardo Prieto L. [Strategies for successful ageing]. Rev Esp Geriatr Gerontol 2015; 51:284-9. [PMID: 26656211 DOI: 10.1016/j.regg.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022]
Abstract
There has been an increase in the interest of anti-ageing medicine in the last few years, with a growth in the industry of products that promise to prolong life and restore all the suffering or "defects" produced by age. The understanding of ageing has changed over the years, giving rise to the possibility of intervening in different metabolic and cellular pathways, and thus, delaying the appearance of the degenerative chronic diseases that appear with age, and that are finally the causing factors of the vulnerability that leads to our death. It is hoped that we can help the clinician to orientate their patients, who, due to the overwhelming amount of information they receive by the Internet, arrive at the clinic full of questions, waiting to receive absolute answer from their physician in order to increase their longevity and quality of life. This article presents an analysis of the physical activity, diets, supplements and drugs that are being investigated as anti-ageing measures and of the many clinical studies that have produced encouraging, measurable and reproducible results.
Collapse
|
61
|
The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis. Int J Mol Sci 2015; 16:21486-519. [PMID: 26370974 PMCID: PMC4613264 DOI: 10.3390/ijms160921486] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/29/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022] Open
Abstract
Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.
Collapse
|
62
|
Mikhed Y, Görlach A, Knaus UG, Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 2015; 5:275-289. [PMID: 26079210 PMCID: PMC4475862 DOI: 10.1016/j.redox.2015.05.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.
Collapse
Affiliation(s)
- Yuliya Mikhed
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Agnes Görlach
- German Heart Center Munich at the Technical University Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Andreas Daiber
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
63
|
Kim HS, Moon S, Paik JH, Shin DW, Kim LS, Park CS, Ha J, Kang JH. Activation of the 5′-AMP-Activated Protein Kinase in the Cerebral Cortex of Young Senescence-Accelerated P8 Mice and Association with GSK3β- and PP2A-Dependent Inhibition of p-tau396 Expression. J Alzheimers Dis 2015; 46:249-59. [DOI: 10.3233/jad-150035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hak-Su Kim
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Jin-Hwe Paik
- Department of Emergency Medicine, Inha University Hospital, Incheon, Republic of Korea
| | - Dong Wun Shin
- Department of Emergency Medicine, Inje University Ilsan Paik Hospital, Gyeonggi-Do, Republic of Korea
| | - Lindsay S. Kim
- College of Arts and Science, Boston College, Boston, MA, USA
| | - Chang-Shin Park
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
64
|
Cheng YY, Kao CL, Ma HI, Hung CH, Wang CT, Liu DH, Chen PY, Tsai KL. SIRT1-related inhibition of pro-inflammatory responses and oxidative stress are involved in the mechanism of nonspecific low back pain relief after exercise through modulation of Toll-like receptor 4. J Biochem 2015; 158:299-308. [PMID: 25922201 DOI: 10.1093/jb/mvv041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
Low back pain is a common clinical problem that causes disability and impaired quality of life. While the reason behind low back pain was largely considered to be of musculoskeletal origin, the contribution of inflammatory cytokines and oxidative stress could never be overlooked. Exercise has been proven to be an effective approach to treat low back pain. However, the mechanism of the exercise effect on the inflammatory cytokines and oxidative stress is still largely unknown. In this study, we revealed that exercise intervention reduces Toll-like receptor 4 (TLR-4) pathway and enhances Sirtuin 1 (SIRT1) expression in low back pain patients. We also confirmed that exercise up-regulates the expression of peroxisome proliferator-activated receptor-gamma, PPAR-γ coactivator-1 and FoxOs family proteins and also increases the activity of catalase and superoxide dismutase in patients with low back pain. Furthermore, we found that exercise intervention attenuates the oxidative stress, pro-inflammatory cytokine concentrations and p53 expression in patients with low back pain. This study demonstrates that exercise intervention improves low back pain symptoms through regulation of the SIRT1 axis with repression of oxidative stress and TLR-4 inhibition.
Collapse
Affiliation(s)
- Yuan-Yang Cheng
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; and
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Tien Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Yin Chen
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
65
|
Ziaaldini MM, Koltai E, Csende Z, Goto S, Boldogh I, Taylor AW, Radak Z. Exercise training increases anabolic and attenuates catabolic and apoptotic processes in aged skeletal muscle of male rats. Exp Gerontol 2015; 67:9-14. [PMID: 25910622 DOI: 10.1016/j.exger.2015.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/18/2015] [Accepted: 04/18/2015] [Indexed: 12/20/2022]
Abstract
Aging results in significant loss of mass and function of the skeletal muscle, which negatively impacts the quality of life. In this study we investigated whether aerobic exercise training has the potential to alter anabolic and catabolic pathways in the skeletal muscle. Five and twenty eight month old rats were used in the study. Aging resulted in decreased levels of follistatin/mTOR/Akt/Erk activation and increased myostatin/Murf1/2, proteasome subunits, and protein ubiquitination levels. In addition, TNF-α, reactive oxygen species (ROS), p53, and Bax levels were increased while Bcl-2 levels were decreased in the skeletal muscle of aged rats. Six weeks of exercise training at 60% of VO2max reversed the age-associated activation of catabolic and apoptotic pathways and increased anabolic signaling. The results suggest that the age-associated loss of muscle mass and cachexia could be due to the orchestrated down-regulation of anabolic and up-regulation of catabolic and pro-apoptotic processes. These metabolic changes can be attenuated by exercise training.
Collapse
Affiliation(s)
| | - Erika Koltai
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Zsolt Csende
- Department of Biomechanics, Semmelweis University, Budapest, Hungary
| | - Sataro Goto
- Department of Exercise Physiology, School of Health and Sport Science, Juntendo University, Chiba, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Albert W Taylor
- Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Zsolt Radak
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
66
|
Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel) 2015; 4:204-47. [PMID: 26785346 PMCID: PMC4665566 DOI: 10.3390/antiox4010204] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 12/16/2022] Open
Abstract
Silymarin (SM), an extract from the Silybum marianum (milk thistle) plant containing various flavonolignans (with silybin being the major one), has received a tremendous amount of attention over the last decade as a herbal remedy for liver treatment. In many cases, the antioxidant properties of SM are considered to be responsible for its protective actions. Possible antioxidant mechanisms of SM are evaluated in this review. (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut. (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance. (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation is probably the main driving force of antioxidant (AO) action of SM. (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases. (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins and providing additional protection in stress conditions deserves more attention. (6) Affecting the microenvironment of the gut, including SM-bacteria interactions, awaits future investigations. (7) In animal nutrition and disease prevention strategy, SM alone, or in combination with other hepatho-active compounds (carnitine, betaine, vitamin B12, etc.), might have similar hepatoprotective effects as described in human nutrition.
Collapse
|
67
|
Prozorovski T, Schneider R, Berndt C, Hartung HP, Aktas O. Redox-regulated fate of neural stem progenitor cells. Biochim Biophys Acta Gen Subj 2015; 1850:1543-54. [PMID: 25662818 DOI: 10.1016/j.bbagen.2015.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/29/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Accumulated data indicate that self-renewal, multipotency, and differentiation of neural stem cells are under an intrinsic control mediated by alterations in the redox homeostasis. These dynamic redox changes not only reflect and support the ongoing metabolic and energetic processes, but also serve to coordinate redox-signaling cascades. Controlling particular redox couples seems to have a relevant impact on cell fate decision during development, adult neurogenesis and regeneration. SCOPE OF REVIEW Our own research provided initial evidence for the importance of NAD+-dependent enzymes in neural stem cell fate decision. In this review, we summarize recent knowledge on the active role of reactive oxygen species, redox couples and redox-signaling mechanisms on plasticity and function of neural stem and progenitor cells focusing on NAD(P)+/NAD(P)H-mediated processes. MAJOR CONCLUSIONS The compartmentalized subcellular sources and availability of oxidizing/reducing molecules in particular microenvironment define the specificity of redox regulation in modulating the delicate balance between stemness and differentiation of neural progenitors. The generalization of "reactive oxygen species" as well as the ambiguity of their origin might explain the diametrically-opposed findings in the field of redox-dependent cell fate reflected by the literature. GENERAL SIGNIFICANCE Increasing knowledge of temporary and spatially defined redox regulation is of high relevance for the development of novel approaches in the field of cell-based regeneration of nervous tissue in various pathological states. This article is part of a special issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Tim Prozorovski
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Reiner Schneider
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
68
|
Huang K, Chen C, Hao J, Huang J, Wang S, Liu P, Huang H. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1 to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1 in rat glomerular messangial cells. Mol Cell Endocrinol 2015; 399:178-89. [PMID: 25192797 DOI: 10.1016/j.mce.2014.08.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/10/2014] [Accepted: 08/29/2014] [Indexed: 12/11/2022]
Abstract
Sirt1 and nuclear factor-E2 related factor 2 (Nrf2)-anti-oxidant response element (ARE) anti-oxidative pathway play important regulatory roles in the pathological progression of diabetic nephropathy (DN) induced by advanced glycation-end products (AGEs). Polydatin (PD), a glucoside of resveratrol, has been shown to possess strong anti-oxidative bioactivity. Our previous study demonstrated that PD markedly resists the progression of diabetic renal fibrosis and thus, inhibits the development of DN. Whereas, whether PD could resist DN through regulating Sirt1 and consequently promoting Nrf2-ARE pathway needs further investigation. Here, we found that concomitant with decreasing RAGE (the specific receptor for AGEs) expression, PD significantly reversed the downregulation of Sirt1 in terms of protein expression and deacetylase activity and attenuated FN and TGF-β1 expression in GMCs exposed to AGEs. Under AGEs-treatment condition, PD could decrease Keap1 expression and promote the nuclear content, ARE-binding ability, and transcriptional activity of Nrf2. In addition, PD increased the protein levels of heme oxygenase 1 (HO-1) and superoxide dismutase 1 (SOD1), two target genes of Nrf2. The activation of Nrf2-ARE pathway by PD eventually led to the quenching of ROS overproduction sharply boosted by AGEs. Depletion of Sirt1 blocked Nrf2-ARE pathway activation and reversed FN and TGF-β1 downregulation induced by PD in GMCs challenged with AGEs. Along with reducing HO-1 and SOD1 expression, silencing of Nrf2 increased FN and TGF-β1 levels. PD treatment elevated Sirt1 and Nrf2 levels in the kidney tissues of diabetic rats, then improved the anti-oxidative capacity and renal dysfunction of diabetic models, and finally reversed the upregulation of FN and TGF-β1. Taken together, the resistance of PD on upregulated FN and TGF-β1 induced by AGEs via oxidative stress in GMCs is closely associated with its activation of Sirt1-Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Kaipeng Huang
- Department of Pharmacy, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Hao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junying Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaogui Wang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
69
|
Foppoli C, De Marco F, Cini C, Perluigi M. Redox control of viral carcinogenesis: The human papillomavirus paradigm. Biochim Biophys Acta Gen Subj 2014; 1850:1622-32. [PMID: 25534611 DOI: 10.1016/j.bbagen.2014.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cervical cancer is the second most common neoplastic disease among women worldwide. The initiating event of such cancer is the infection with certain types of human papillomavirus (HPV), a very common condition in the general population. However, the majority of HPV infections is subclinical and transitory and is resolved spontaneously. Intriguingly, viral oncogene expression, although necessary, is not per se sufficient to promote cervical cancer and other factors are involved in the progression of infected cells to the full neoplastic phenotype. In this perspective it has been suggested that the redox balance and the oxidative stress (OS) may represent interesting and under-explored candidates as promoting factors in HPV-initiated carcinogenesis. SCOPE OF THE REVIEW The current review discusses the possible interplay between the viral mechanisms modulating cell homeostasis and redox sensitive mechanisms. Experimental data and indirect evidences are presented on the activity of viral dependent functions on i) the regulation of enzymes and compounds involved in OS; ii) the protection from oxidation of detoxifying/antiapoptotic enzymes and redox-sensitive transcription factors; iii) the suppression of apoptosis; and iv) the modulation of host microRNAs regulating genes associated with antioxidant defense. MAJOR CONCLUSIONS The resulting tangled scenario suggests that viral hosting cells adapt their metabolisms in order to support their growth and survival in the increasingly oxidant micro-environment associated with HPV tumor initiation and progression. GENERAL SIGNIFICANCE HPV can modulate the host cell redox homeostasis in order to favor infection and possibly tumor transformation. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Cesira Foppoli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Federico De Marco
- Laboratory of Virology, Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Cini
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - M Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
70
|
Torma F, Koltai E, Nagy E, Ziaaldini MM, Posa A, Koch LG, Britton SL, Boldogh I, Radak Z. Exercise Increases Markers of Spermatogenesis in Rats Selectively Bred for Low Running Capacity. PLoS One 2014; 9:e114075. [PMID: 25493948 PMCID: PMC4262201 DOI: 10.1371/journal.pone.0114075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/03/2014] [Indexed: 01/14/2023] Open
Abstract
The oxidative stress effect of exercise training on testis function is under debate. In the present study we used a unique rat model system developed by artificial selection for low and high intrinsic running capacity (LCR and HCR, respectively) to evaluate the effects of exercise training on apoptosis and spermatogenesis in testis. Twenty-four 13-month-old male rats were assigned to four groups: control LCR (LCR-C), trained LCR (LCR-T), control HCR (HCR-C), and trained HCR (HCR-T). Ten key proteins connecting aerobic exercise capacity and general testes function were assessed, including those that are vital for mitochondrial biogenesis. The VO2 max of LCR-C group was about 30% lower than that of HCR-C rats, and the SIRT1 levels were also significantly lower than HCR-C. Twelve weeks of training significantly increased maximal oxygen consumption in LCR by nearly 40% whereas HCR remained unchanged. LCR-T had significantly higher levels of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1α), decreased levels of reactive oxygen species and increased acetylated p53 compared to LCR-C, while training produced no significant changes for these measures in HCR rats. BAX and Blc-2 were not different among all four groups. The levels of outer dense fibers -1 (Odf-1), a marker of spermatogenesis, increased in LCR-T rats, but decreased in HCR-TR rats. Moreover, exercise training increased the levels of lactate dehydrogenase C (LDHC) only in LCR rats. These data suggest that rats with low inborn exercise capacity can increase whole body oxygen consumption and running exercise capacity with endurance training and, in turn, increase spermatogenesis function via reduction in ROS and heightened activity of p53 in testes.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Erika Koltai
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Enikő Nagy
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | | | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Lauren G. Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Zsolt Radak
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
71
|
Wu RM, Sun YY, Zhou TT, Zhu ZY, Zhuang JJ, Tang X, Chen J, Hu LH, Shen X. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways. Acta Pharmacol Sin 2014; 35:1274-84. [PMID: 25152028 PMCID: PMC4186987 DOI: 10.1038/aps.2014.70] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023]
Abstract
AIM Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan found in traditional Chinese herbs, has been determined to exhibit a variety of pharmacological activities, including anti-tumor, anti-inflammation, neuroprotection, and endurance enhancement. In the present study, we investigated the antioxidation and anti-fatigue effects of arctigenin in rats. METHODS Rat L6 skeletal muscle cell line was exposed to H2O2 (700 μmol/L), and ROS level was assayed using DCFH-DA as a probe. Male SD rats were injected with arctigenin (15 mg·kg(-1)·d(-1), ip) for 6 weeks, and then the weight-loaded forced swimming test (WFST) was performed to evaluate their endurance. The levels of antioxidant-related genes in L6 cells and the skeletal muscles of rats were analyzed using real-time RT-PCR and Western blotting. RESULTS Incubation of L6 cells with arctigenin (1, 5, 20 μmol/L) dose-dependently decreased the H2O2-induced ROS production. WFST results demonstrated that chronic administration of arctigenin significantly enhanced the endurance of rats. Furthermore, molecular biology studies on L6 cells and skeletal muscles of the rats showed that arctigenin effectively increased the expression of the antioxidant-related genes, including superoxide dismutase (SOD), glutathione reductase (Gsr), glutathione peroxidase (GPX1), thioredoxin (Txn) and uncoupling protein 2 (UCP2), through regulation of two potential antioxidant pathways: AMPK/PGC-1α/PPARα in mitochondria and AMPK/p53/Nrf2 in the cell nucleus. CONCLUSION Arctigenin efficiently enhances rat swimming endurance by elevation of the antioxidant capacity of the skeletal muscles, which has thereby highlighted the potential of this natural product as an antioxidant in the treatment of fatigue and related diseases.
Collapse
Affiliation(s)
- Ruo-ming Wu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan-yan Sun
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ting-ting Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhi-yuan Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-jing Zhuang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Chen
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li-hong Hu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xu Shen
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
72
|
Do MT, Kim HG, Choi JH, Jeong HG. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic Biol Med 2014; 74:21-34. [PMID: 24970682 DOI: 10.1016/j.freeradbiomed.2014.06.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/10/2014] [Accepted: 06/14/2014] [Indexed: 01/09/2023]
Abstract
Sirtuin 1 (Sirt1) plays an important role in cellular redox balance and resistance to oxidative stress. Sirt1 exhibits oncogenic properties in wild-type p53 cancer cells, whereas it acts as a tumor suppressor in p53-mutated cancer cells. Here, we investigated the effects of metformin on Sirt1 expression in several cancer cell lines. Using human cancer cell lines that exhibit differential expression of p53, we found that metformin reduced Sirt1 protein levels in cancer cells bearing wild-type p53, but did not affect Sirt1 protein levels in cancer cell lines harboring mutant forms of p53. Metformin-induced p53 protein levels in wild-type p53 cancer cells resulted in upregulation of microRNA (miR)-34a. The use of a miR-34a inhibitor confirmed that metformin-induced miR-34a was required for Sirt1 downregulation. Metformin suppressed peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (Pgc-1α) expression and its downstream target Nrf2 in MCF-7 cells. Genetic tools demonstrated that the reduction of Sirt1 and Pgc-1α by metformin caused Nrf2 downregulation via suppression of PPARγ transcriptional activity. Metformin reduced heme oxygenase-1 and superoxide dismutase 2 but upregulated catalase expression in MCF-7 cells. Metformin-treated MCF-7 cells had no increase in basal levels of reactive oxygen species but were more susceptible to oxidative stress. Furthermore, upregulation of death receptor 5 by metformin-mediated Sirt1 downregulation enhanced the sensitivity of wild-type p53 cancer cells to TRAIL-induced apoptosis. Our results demonstrated that metformin induces miR-34a to suppress the Sirt1/Pgc-1α/Nrf2 pathway and increases susceptibility of wild-type p53 cancer cells to oxidative stress and TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Minh Truong Do
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hyung Gyun Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
73
|
Bayod S, Guzmán-Brambila C, Sanchez-Roige S, Lalanza JF, Kaliman P, Ortuño-Sahagun D, Escorihuela RM, Pallàs M. Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain. J Mol Neurosci 2014; 55:525-32. [PMID: 25027560 DOI: 10.1007/s12031-014-0376-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/02/2014] [Indexed: 12/14/2022]
Abstract
Regular physical exercise mediates health and longevity promotion involving Sirtuin 1 (SIRT1)-regulated pathways. The anti-aging activity of SIRT1 is achieved, at least in part, by means of fine-tuning the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway by preventing the transition of an originally pro-survival program into a pro-aging mechanism. Additionally, SIRT1 promotes mitochondrial function and reduces the production of reactive oxygen species (ROS) through regulating peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the master controller of mitochondrial biogenesis. Here, by using senescence-accelerated mice prone 8 (SAMP8) as a model for aging, we determined the effect of wheel-running as a paradigm for long-term voluntary exercise on SIRT1-AMPK pathway and mitochondrial functionality measured by oxidative phosphorylation (OXPHOS) complex content in the hippocampus and cortex. We found differential activation of SIRT1 in both tissues and hippocampal-specific activation of AMPK. These findings correlated well with significant changes in OXPHOS in the hippocampal, but not in the cerebral cortex, area. Collectively, the results revealed greater benefits of the exercise in the wheel-running intervention in a murine model of senescence, which was directly related with mitochondrial function and which was mediated through the modulation of SIRT1 and AMPK pathways.
Collapse
Affiliation(s)
- Sergi Bayod
- Unitat de Farmacologia i Farmacognòsia. Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Long-term atorvastatin improves age-related endothelial dysfunction by ameliorating oxidative stress and normalizing eNOS/iNOS imbalance in rat aorta. Exp Gerontol 2014; 52:9-17. [DOI: 10.1016/j.exger.2014.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
|
75
|
Acs Z, Bori Z, Takeda M, Osvath P, Berkes I, Taylor AW, Yang H, Radak Z. High altitude exposure alters gene expression levels of DNA repair enzymes, and modulates fatty acid metabolism by SIRT4 induction in human skeletal muscle. Respir Physiol Neurobiol 2014; 196:33-7. [PMID: 24561637 DOI: 10.1016/j.resp.2014.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 11/18/2022]
Abstract
We hypothesized that high altitude exposure and physical activity associated with the attack to Mt Everest could alter mRNA levels of DNA repair and metabolic enzymes and cause oxidative stress-related challenges in human skeletal muscle. Therefore, we have tested eight male mountaineers (25-40 years old) before and after five weeks of exposure to high altitude, which included attacks to peaks above 8000m. Data gained from biopsy samples from vastus lateralis revealed increased mRNA levels of both cytosolic and mitochondrial superoxide dismutase. On the other hand 8-oxoguanine DNA glycosylase (OGG1) mRNA levels tended to decrease while Ku70 mRNA levels and SIRT6 decreased with altitude exposure. The levels of SIRT1 and SIRT3 mRNA did not change significantly. However, SIRT4 mRNA level increased significantly, which could indicate decreases in fatty acid metabolism, since SIRT4 is one of the important regulators of this process. Within the limitations of this human study, data suggest that combined effects of high altitude exposure and physical activity climbing to Mt. Everest, could jeopardize the integrity of the particular chromosome.
Collapse
Affiliation(s)
- Zoltan Acs
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Zoltan Bori
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Masaki Takeda
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Peter Osvath
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Istvan Berkes
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Albert W Taylor
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Hu Yang
- Research Institute, Bejing Sport University, Beijing, China
| | - Zsolt Radak
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
76
|
El Assar M, Angulo J, Rodríguez-Mañas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med 2013; 65:380-401. [PMID: 23851032 DOI: 10.1016/j.freeradbiomed.2013.07.003] [Citation(s) in RCA: 436] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 12/13/2022]
Abstract
Vascular aging, a determinant factor for cardiovascular disease and health status in the elderly, is now viewed as a modifiable risk factor. Impaired endothelial vasodilation is a early hallmark of arterial aging that precedes the clinical manifestations of vascular dysfunction, the first step to cardiovascular disease and influencing vascular outcomes in the elderly. Accordingly, the preservation of endothelial function is thought to be an essential determinant of healthy aging. With special attention on the effects of aging on the endothelial function, this review is focused on the two main mechanisms of aging-related endothelial dysfunction: oxidative stress and inflammation. Aging vasculature generates an excess of the reactive oxygen species (ROS), superoxide and hydrogen peroxide, that compromise the vasodilatory activity of nitric oxide (NO) and facilitate the formation of the deleterious radical, peroxynitrite. Main sources of ROS are mitochondrial respiratory chain and NADPH oxidases, although NOS uncoupling could also account for ROS generation. In addition, reduced antioxidant response mediated by erythroid-2-related factor-2 (Nrf2) and downregulation of mitochondrial manganese superoxide dismutase (SOD2) contributes to the establishment of chronic oxidative stress in aged vessels. This is accompanied by a chronic low-grade inflammatory phenotype that participates in defective endothelial vasodilation. The redox-sensitive transcription factor, nuclear factor-κB (NF-κB), is upregulated in vascular cells from old subjects and drives a proinflammatory shift that feedbacks oxidative stress. This chronic NF-κB activation is contributed by increased angiotensin-II signaling and downregulated sirtuins and precludes adequate cellular response to acute ROS generation. Interventions targeted to recover endogenous antioxidant capacity and cellular stress response rather than exogenous antioxidants could reverse oxidative stress-inflammation vicious cycle in vascular aging. Lifestyle attitudes such as caloric restriction and exercise training appear as effective ways to overcome defective antioxidant response and inflammation, favoring successful vascular aging and decreasing the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Spain
| | - Javier Angulo
- Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain.
| |
Collapse
|
77
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
78
|
The role of SIRT1 in ocular aging. Exp Eye Res 2013; 116:17-26. [PMID: 23892278 DOI: 10.1016/j.exer.2013.07.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 12/27/2022]
Abstract
The sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases that helps regulate the lifespan of diverse organisms. The human genome encodes seven different sirtuins (SIRT1-7), which share a common catalytic core domain but possess distinct N- and C-terminal extensions. Dysfunction of some sirtuins have been associated with age-related diseases, such as cancer, type II diabetes, obesity-associated metabolic diseases, neurodegeneration, and cardiac aging, as well as the response to environmental stress. SIRT1 is one of the targets of resveratrol, a polyphenolic SIRT1 activator that has been shown to increase the lifespan and to protect various organs against aging. A number of animal studies have been conducted to examine the role of sirtuins in ocular aging. Here we review current knowledge about SIRT1 and ocular aging. The available data indicate that SIRT1 is localized in the nucleus and cytoplasm of cells forming all normal ocular structures, including the cornea, lens, iris, ciliary body, and retina. Upregulation of SIRT1 has been shown to have an important protective effect against various ocular diseases, such as cataract, retinal degeneration, optic neuritis, and uveitis, in animal models. These results suggest that SIRT1 may provide protection against diseases related to oxidative stress-induced ocular damage, including cataract, age-related macular degeneration, and optic nerve degeneration in glaucoma patients.
Collapse
|
79
|
Pantazi E, Zaouali MA, Bejaoui M, Folch-Puy E, Abdennebi HB, Roselló-Catafau J. Role of sirtuins in ischemia-reperfusion injury. World J Gastroenterol 2013; 19:7594-7602. [PMID: 24616566 PMCID: PMC3837258 DOI: 10.3748/wjg.v19.i43.7594] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) remains an unresolved and complicated situation in clinical practice, especially in the case of organ transplantation. Several factors contribute to its complexity; the depletion of energy during ischemia and the induction of oxidative stress during reperfusion initiate a cascade of pathways that lead to cell death and finally to severe organ injury. Recently, the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases has gained increasing attention from researchers, due to their involvement in the modulation of a wide variety of cellular functions. There are seven mammalian sirtuins and, among them, the nuclear/cytoplasmic sirtuin 1 (SIRT1) and the mitochondrial sirtuin 3 (SIRT3) are ubiquitously expressed in many tissue types. Sirtuins are known to play major roles in protecting against cellular stress and in controlling metabolic pathways, which are key processes during IRI. In this review, we mainly focus on SIRT1 and SIRT3 and examine their role in modulating pathways against energy depletion during ischemia and their involvement in oxidative stress, apoptosis, microcirculatory stress and inflammation during reperfusion. We present evidence of the beneficial effects of sirtuins against IRI and emphasize the importance of developing new strategies by enhancing their action.
Collapse
|