51
|
Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch Pharm Res 2020; 43:371-384. [PMID: 32152852 DOI: 10.1007/s12272-020-01225-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Sulforaphane is an isothiocyanate compound that has been derived from cruciferous vegetables. It was shown in numerous studies to be active against multiple cancer types including pancreatic, prostate, breast, lung, cervical, and colorectal cancers. Sulforaphane exerts its therapeutics action by a variety of mechanisms, such as by detoxifying carcinogens and oxidants through blockage of phase I metabolic enzymes, and by arresting cell cycle in the G2/M and G1 phase to inhibit cell proliferation. The most striking observation was the ability of sulforaphane to potentiate the activity of several classes of anticancer agents including paclitaxel, docetaxel, and gemcitabine through additive and synergistic effects. Although a good number of reviews have reported on the mechanisms by which sulforaphane exerts its anticancer activity, a comprehensive review on the synergistic effect of sulforaphane and its delivery strategies is lacking. Therefore, the aim of the current review was to provide a summary of the studies that have been reported on the activity enhancement effect of sulforaphane in combination with other anticancer therapies. Also provided is a summary of the strategies that have been developed for the delivery of sulforaphane.
Collapse
|
52
|
Wang L, Zhu R, Wang J, Yu S, Wang J, Zhang Y. Nrf2 Activation Enhances Muscular MCT1 Expression and Hypoxic Exercise Capacity. Med Sci Sports Exerc 2020; 52:1719-1728. [PMID: 32079911 DOI: 10.1249/mss.0000000000002312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Skeletal muscle is the major producing and metabolizing site of lactic acid. A family of monocarboxylate transporter (MCT) proteins, especially MCT1 and MCT4, are involved in the lactate-pyruvate exchange and metabolism. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal coordinator of antioxidant response and energy metabolism, and has been reported to associate with the physiological functions of the skeletal muscle. METHODS In this study, C57BL/6 J mice were administrated with an Nrf2 activator, sulforaphane (SFN) before taking incremental treadmill exercise to exhaustion under hypoxia; then the effects of SFN on exercise endurance and molecular/biochemical makers of the skeletal muscle were evaluated. RESULTS The results indicated that SFN pretreatment enhanced the exercise endurance under hypoxia. SFN not only increased the expressions of antioxidant genes and activity of antioxidant enzymes, but also significantly increased the mRNA and protein levels of MCT1 and CD147, but not MCT4. Moreover, the expressions of LDH-B and LDH activity of converting lactate into pyruvate, as well as citrate synthase activity were significantly higher, whereas the LDH activity of converting pyruvate into lactate and blood lactate level were remarkably lower in the SFN-exercise mice than those of the phosphate-buffered saline-exercise group. Furthermore, Atf3Δzip2 (the alternatively spliced isoform of activating transcription factor-3) mRNA was increased by the exercise and further potentiated by SFN. CONCLUSION These results show, for the first time, that SFN increases MCT1 expression in the skeletal muscle under acute hypoxic exercise and suggest that Nrf2 activation is a promising strategy to enhance exercise performance under hypoxia.
Collapse
Affiliation(s)
- Linjia Wang
- School of Sport Science, Beijing Sport University, Beijing, CHINA
| | - Rongxin Zhu
- Shanghai Research Institute of Sports Science, Shanghai, CHINA
| | - Jiahui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, CHINA
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, CHINA
| | - Jianxiong Wang
- Faculty of Health, Engineering, and Sciences, University of Southern Queensland, Toowoomba, Queensland, AUSTRALIA
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing, CHINA
| |
Collapse
|
53
|
Berberine Ameliorates Doxorubicin-Induced Cardiotoxicity via a SIRT1/p66Shc-Mediated Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2150394. [PMID: 31885776 PMCID: PMC6918936 DOI: 10.1155/2019/2150394] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
Doxorubicin- (DOX-) induced cardiotoxicity is associated with oxidative stress and cardiomyocyte apoptosis. The adaptor protein p66Shc regulates the cellular redox status and determines cell susceptibility to apoptosis. This study is aimed at investigating the involvement of sirtuin 1- (SIRT1-) mediated p66Shc inhibition in DOX-induced redox signalling and exploring the possible protective mechanisms of berberine (Ber) against DOX-triggered cardiac injury in rats and a cultured H9c2 cell line. Our results showed that the Ber pretreatment markedly increased CAT, SOD, and GSH-PX activities, decreased the levels of MDA, and improved the electrocardiogram and histopathological changes in the myocardium in DOX-treated rats (in vivo). Furthermore, Ber significantly ameliorated the DOX-induced oxidative insult and mitochondrial damage by adjusting the levels of intracellular ROS, ΔΨm, and [Ca2+]m in H9c2 cells (in vitro). Importantly, the Ber pretreatment increased SIRT1 expression following DOX exposure but downregulated p66Shc. Consistent with the results demonstrating the SIRT1-mediated inhibition of p66Shc expression, the Ber pretreatment inhibited DOX-triggered cardiomyocyte apoptosis and mitochondrial dysfunction. After exposing H9c2 cells to DOX, the increased SIRT1 expression induced by Ber was abrogated by a SIRT1-specific inhibitor (EX527) or the use of siRNA against SIRT1. Accordingly, SIRT1 inhibition significantly abrogated the suppression of p66Shc expression and protection of Ber against DOX-induced oxidative stress and apoptosis. These results suggest that Ber protects the heart from DOX injury through SIRT1-mediated p66Shc suppression, offering a novel mechanism responsible for the protection of Ber against DOX-induced cardiomyopathy.
Collapse
|
54
|
Jabbarzadeh Kaboli P, Afzalipour Khoshkbejari M, Mohammadi M, Abiri A, Mokhtarian R, Vazifemand R, Amanollahi S, Yazdi Sani S, Li M, Zhao Y, Wu X, Shen J, Cho CH, Xiao Z. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives. Biomed Pharmacother 2019; 121:109635. [PMID: 31739165 DOI: 10.1016/j.biopha.2019.109635] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common type of cancer among women. Therefore, discovery of new and effective drugs with fewer side effects is necessary to treat it. Sulforaphane (SFN) is an organosulfur compound obtained from cruciferous plants, such as broccoli and mustard, and it has the potential to treat breast cancer. Hence, it is vital to find out how SFN targets certain genes and cellular pathways in treating breast cancer. In this review, molecular targets and cellular pathways of SFN are described. Studies have shown SFN inhibits cell proliferation, causes apoptosis, stops cell cycle and has anti-oxidant activities. Increasing reactive oxygen species (ROS) produces oxidative stress, activates inflammatory transcription factors, and these result in inflammation leading to cancer. Increasing anti-oxidant potential of cells and discovering new targets to reduce ROS creation reduces oxidative stress and it eventually reduces cancer risks. In short, SFN effectively affects histone deacetylases involved in chromatin remodeling, gene expression, and Nrf2 anti-oxidant signaling. This review points to the potential of SFN to treat breast cancer as well as the importance of other new cruciferous compounds, derived from and isolated from mustard, to target Keap1 and Akt, two key regulators of cellular homeostasis.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China; Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia.
| | | | - Mahsa Mohammadi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Mokhtarian
- Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia
| | - Reza Vazifemand
- Laboratory of Virology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, 43400, Malaysia
| | - Shima Amanollahi
- Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia; School of Mathematical, Physical, and Natural Sciences, University of Florence, Firenze, 50134, Italy
| | - Shaghayegh Yazdi Sani
- Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China.
| |
Collapse
|
55
|
miR-200a Attenuated Doxorubicin-Induced Cardiotoxicity through Upregulation of Nrf2 in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1512326. [PMID: 31781322 PMCID: PMC6875222 DOI: 10.1155/2019/1512326] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/07/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was closely involved in doxorubicin- (DOX-) induced cardiotoxicity. MicroRNA-200a (miR-200a) could target Keap1 mRNA and promote degradation of Keap1 mRNA, resulting in Nrf2 activation. However, the role of miR-200a in DOX-related cardiotoxicity remained unclear. Our study is aimed at investigating the effect of miR-200a on DOX-induced cardiotoxicity in mice. For cardiotropic expression, male mice received an injection of an adeno-associated virus 9 (AAV9) system carrying miR-200a or miR-scramble. Four weeks later, mice received a single intraperitoneal injection of DOX at 15 mg/kg. In our study, we found that miR-200a mRNA was the only microRNA that was significantly decreased in DOX-treated mice and H9c2 cells. miR-200a supplementation blocked whole-body wasting and heart atrophy caused by acute DOX injection, decreased the levels of cardiac troponin I and the N-terminal probrain natriuretic peptide, and improved cardiac and adult cardiomyocyte contractile function. Moreover, miR-200a reduced oxidative stress and cardiac apoptosis without affecting matrix metalloproteinase and inflammatory factors in mice with acute DOX injection. miR-200a also attenuated DOX-induced oxidative injury and cell loss in vitro. As expected, we found that miR-200a activated Nrf2 and Nrf2 deficiency abolished the protection provided by miR-200a supplementation in mice. miR-200a also provided cardiac benefits in a chronic model of DOX-induced cardiotoxicity. In conclusion, miR-200a protected against DOX-induced cardiotoxicity via activation of the Nrf2 signaling pathway. Our data suggest that miR-200a may represent a new cardioprotective strategy against DOX-induced cardiotoxicity.
Collapse
|
56
|
Zhang WC, Yang JH, Liu GH, Yang F, Gong JL, Jia MG, Zhang MJ, Zhao LS. miR-34b/c regulates doxorubicin-induced myocardial cell injury through ITCH. Cell Cycle 2019; 18:3263-3274. [PMID: 31627713 DOI: 10.1080/15384101.2019.1673618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Objective: To determine the underlying mechanism of miR-34b/c in regulating doxorubicin (Dox)-induced myocardial cell injury.Methods: The viability of mouse myocardial cells HL-1 was detected by MTT assay. The apoptosis of HL-1 cells was detected by TUNEL assay. mRNA expressions of ITCH, TNF-α and IL-6 were measured by qRT-PCR. Protein levels of ITCH, NF-κB, TNF-α and IL-6 were measured by western blot. Dual luciferase assay was performed to detect the regulation of miR-34b/c on ITCH. Mouse model of cardiomyopathy was induced by intraperitoneal injection of Dox.Results: Dox reduced HL-1 cell viability and activated NF-κB pathway in HL-1 cells. miR-34b/c expressions were gradually up-regulated and ITCH expression was gradually down-regulated in Dox-treated HL-1 cells. miR-34b/c expression had negative correlation with the mRNA expression of ITCH. Besides, ITCH was a target of miR-34b/c. miR-34b/c mimic reduced cell viability, suppressed ITCH expression, increased TNF-α and IL-6 level, and promoted NF-κB expression in nucleus and cytoplasm of HL-1 cells. Whereas silencing miR-34 protected HL-1 cells through regulating ITCH. Finally, we demonstrated miR-34 antagomir-protected myocardial cells in mouse model of cardiomyopathy.Conclusion: miR-34b/c decreased HL-1 cell viability and promoted the secretion of proinflammatory cytokines in Dox-induced myocardial cells through ITCH/NF-κB pathway.
Collapse
Affiliation(s)
- Wen-Cai Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin-Hua Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guang-Hui Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fan Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun-Long Gong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Ge Jia
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Juan Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luo-Sha Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
57
|
Kaviani M, Di Valentin C. Rational design of nanosystems for simultaneous drug delivery and photodynamic therapy by quantum mechanical modeling. NANOSCALE 2019; 11:15576-15588. [PMID: 31403155 DOI: 10.1039/c9nr03763b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug delivery systems are based on reversible interactions between carriers and drugs. Spacers are often introduced to tailor the type of interaction and to keep drugs intact. Here, we model a drug delivery system based on a functionalized curved TiO2 nanoparticle of realistic size (700 atoms - 2.2 nm) by the neurotransmitter dopamine to carry the anticancer chemotherapeutic agent doxorubicin (DOX). The multiscale quantum chemical study aims at unraveling the nature and mechanism of the interactions between the components and the electronic properties of the composite system. We simulate the temperature effect through molecular dynamics runs of thermal annealing. Dopamine binds preferentially to low coordinated Ti sites on the nanoparticle through dissociated bidentate and chelate modes involving the diol groups. DOX is tethered by H-bonds, π-π stacking, dipole-dipole interactions and dispersion forces. Comparing different coverage densities of the spacer on the nanoparticle surface, we assess the best conditions for an effective drug transport and release: only at full coverage, DOX does not slip among the dopamine molecules to reach the nanoparticle surface, which is crucial to avoid the formation of stable coordinative bonds with under-coordinated Ti atoms. Finally, given the strong absorption properties and fluorescence of DOX and of the TiO2 photocatalyst, we model the effect of light irradiation through excited state calculations to localize excitons and to follow the charge carrier's life path. This fundamental study on the nature and mechanism of drug/carrier interaction provides a solid ground for the rational design of new experimental protocols for a more efficient drug transport and release and its combination with photodynamic therapy.
Collapse
Affiliation(s)
- Moloud Kaviani
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| |
Collapse
|
58
|
3,4-dimethoxybenzyl isothiocyanate enhances doxorubicin efficacy in LoVoDX doxorubicin-resistant colon cancer and attenuates its toxicity in vivo. Life Sci 2019; 231:116530. [DOI: 10.1016/j.lfs.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 01/16/2023]
|
59
|
Curdione Ameliorated Doxorubicin-Induced Cardiotoxicity Through Suppressing Oxidative Stress and Activating Nrf2/HO-1 Pathway. J Cardiovasc Pharmacol 2019; 74:118-127. [DOI: 10.1097/fjc.0000000000000692] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
60
|
miR-451 Silencing Inhibited Doxorubicin Exposure-Induced Cardiotoxicity in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1528278. [PMID: 31355248 PMCID: PMC6637715 DOI: 10.1155/2019/1528278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022]
Abstract
Oxidative stress and cardiomyocytes apoptosis were closely involved in the pathological process of doxorubicin- (Dox-) induced cardiac injury. MicroRNA-451 (miR-451) was mainly expressed in cardiomyocytes. However, the role of miR-451 in Dox-induced cardiac injury remained unclear. Our study aimed to investigate the effect of miR-451 on Dox-induced cardiotoxicity in mice. We established a Dox-induced cardiotoxicity model in the mice and manipulated miR-451 expression in the heart using a miR-451 inhibitor, which was injected every other day beginning at one day before Dox injection. Oxidative stress and apoptosis in the hearts were evaluated. miR-451 levels were significantly increased in Dox-treated mice or cardiomyocytes. miR-451 inhibition attenuated Dox-induced whole-body wasting and heart atrophy, reduced cardiac injury, restored cardiac function, and improved cardiomyocyte contractile function. Moreover, miR-451 inhibition reduced oxidative stress and cardiomyocytes apoptosis in vivo and in vitro. miR-451 inhibition increased the expression of calcium binding protein 39 (Cab39) and activated adenosine monophosphate activated protein kinase (AMPK) signaling pathway. A specific inhibitor of AMPK abolished the protection provided by miR-451 inhibition against cell injury in vitro. In conclusion, miR-451 inhibition protected against Dox-induced cardiotoxicity via activation of AMPK signaling pathway.
Collapse
|
61
|
Negrette-Guzmán M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur J Pharmacol 2019; 859:172513. [PMID: 31260654 DOI: 10.1016/j.ejphar.2019.172513] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Drugs used in clinical oncology have narrow therapeutic indices with adverse toxicity often involving oxidative damage. Chemoresistance to these conventional antineoplastics is usually mediated by oxidative stress-upregulated pathways such as those of nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor-1 alpha (HIF-1α). Accordingly, the use of antioxidants in combinational approaches has begun to be considered for fighting cancer because of both the protective role against adverse effects and the ability to sensitize chemoresistant cancer cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been identified as a mediator of the cytoprotection but it is not regularly associated with tumor chemosensitization. However, some Nrf2 inducers could be exerting cytoprotective and chemosensitizing roles through a simple integrated mechanism in which the cellular level of reactive oxygen species is controlled, thus inhibiting the oxidative damage in non-target tissues and the tumor chemoresistance mediated by NF-κB or HIF-1α. As examples to show the general idea of this antioxidant combination chemotherapy, this review explores the preclinical information available for four combinations, each composed by a paradigmatic oncological drug (cisplatin or doxorubicin) and a recognized antioxidant (sulforaphane or curcumin). The issues for translating these outcomes to clinical trials are briefly discussed.
Collapse
Affiliation(s)
- Mario Negrette-Guzmán
- Centro de Investigaciones en Enfermedades Tropicales (CINTROP), Departamento de Ciencias Básicas, Escuela de Medicina, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, 68002, Colombia.
| |
Collapse
|
62
|
Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 2019; 307:41-48. [DOI: 10.1016/j.toxlet.2019.02.013] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/10/2019] [Accepted: 02/23/2019] [Indexed: 12/30/2022]
|
63
|
Bai Z, Wang Z. Genistein protects against doxorubicin-induced cardiotoxicity through Nrf-2/HO-1 signaling in mice model. ENVIRONMENTAL TOXICOLOGY 2019; 34:645-651. [PMID: 30734460 DOI: 10.1002/tox.22730] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 05/07/2023]
Abstract
Doxorubicin (DOX)-induced cardiomyopathy is a lethal disease. DOX-induced cardiotoxic effects are attributed towards increased redox status and apoptotic signaling. In this study, we show that genistein offers protection against DOX-induced cardio toxicity in the mice model. DOX-mediated increase in serum cardiac troponin and redox markers (ROS, LPO, 4-hydroxynonenal-protein adducts [HNE] levels) was significantly reduced by genistein treatment. Significantly increased TNF-α, IL-6, IL-8 expressions during DOX-induced inflammatory responses were down regulated by genistein treatment. Further, we found that genistein regulated antioxidant response through increased Nrf-2, HO-1, NQO1 protein expressions. In addition, DOX downregulated survival proteins (p-Akt, Bcl-2) with concomitant upregulation in Erk (1/2), Bax and cleaved caspase-3 expressions. The apoptotic activation was significantly downregulated by genistein treatment through suppression of apoptosis. Altogether, these findings show that genistein protects against DOX-induced cardiotoxic effects through activation of Nrf-2/HO-1 signaling.
Collapse
Affiliation(s)
- Zhifeng Bai
- Department of Cardiology, Shangqiu No 1 People's Hospital, Shangqiu, Henan, China
| | - Zhijian Wang
- Department of Cardiology, Shangqiu No 1 People's Hospital, Shangqiu, Henan, China
| |
Collapse
|
64
|
Alkharashi NAO, Periasamy VS, Athinarayanan J, Alshatwi AA. Sulforaphane alleviates cadmium-induced toxicity in human mesenchymal stem cells through POR and TNFSF10 genes expression. Biomed Pharmacother 2019; 115:108896. [PMID: 31035011 DOI: 10.1016/j.biopha.2019.108896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 04/07/2019] [Accepted: 04/17/2019] [Indexed: 12/29/2022] Open
Abstract
Sulforaphane is a dietary compound possessing anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, and anti-aging properties. The role of sulforaphane in the context of cadmium (Cd)-induced toxicity through the alteration of nuclear morphology, mitochondrial membrane potential, and gene expression patterns, however, remains unclear. Thus, we assessed the protective role of sulforaphane against Cd-induced nuclear and mitochondrial damage in human mesenchymal stem cells (hMSCs). Cells were exposed to Cd and sulforaphane, either alone or in combination, for 48 h. The cell viability was assessed by adopting MTT assay. The nuclear morphology was investigated using Acridine orange/Ethidium bromide (AO/EB) dual staining and Hoechst staining. The mitochondrial membrane potential loss and lysosomal staining were analyzed using JC-1 staining and LysoRed staining respectively. The gene expression was studied using quantitative real-time PCR analysis. After 48 h of exposure to Cd, the viability of hMSCs decreased in a dose-dependent manner. In contrast, a single treatment with the phytochemical sulforaphane did not cause any remarkable reduction in hMSC viability. Combined treatment with Cd and sulforaphane resulted in a marked recovery in cell viability compared to that observed in cells treated with Cd alone. Analysis of nuclear morphology indicated that Cd induced necrotic cell death, while combined Cd and sulforaphane treatment prevented nuclear morphology changes. Cd ions also significantly attenuate the mitochondrial membrane potential (MMP) and alter gene expression in hMSCs; however, we observed that sulforaphane improves MMP under conditions of Cd-sulforaphane co-treatment of hMSCs. The gene expression results indicate that POR, TNFRSF1A and TNFSF10 genes expression are significantly upregulated by Cd-sulforaphane co-treatment than Cd or sulforaphane treatment alone. Our study results clearly indicate that sulforaphane can protect hMSCs against Cd-induced changes in nuclear morphology, attenuation of MMP, and alteration of gene expression patterns. Thus, intake of sulforaphane-enriched vegetables and fruits will be helpful to overcome Cd-induced toxicity in humans.
Collapse
Affiliation(s)
- Nouf Abdulkareem Omer Alkharashi
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Home EconomicsPrince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
65
|
Mielczarek L, Krug P, Mazur M, Milczarek M, Chilmonczyk Z, Wiktorska K. In the triple-negative breast cancer MDA-MB-231 cell line, sulforaphane enhances the intracellular accumulation and anticancer action of doxorubicin encapsulated in liposomes. Int J Pharm 2019; 558:311-318. [PMID: 30641176 DOI: 10.1016/j.ijpharm.2019.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023]
Abstract
A new combination of sulforaphane (a natural compound obtained from Brassicaceae vegetables) and the cytostatic drug doxorubicin was entrapped in nanometer-sized liposomes. In vitro experiments were performed to investigate the cytotoxicity of these structures on the human breast cancer cell line MDA-MB-231. Confocal microscopy studies revealed enhanced cellular endocytotic internalization, followed by the release of the examined combination from the lysosomes. The in vitro interaction analysis using the Chou-Talalay approach showed high synergistic activity of the examined combination. This synergistic activity enables a considerable reduction in cytostatic dosage and an increase in cancer treatment efficiency.
Collapse
Affiliation(s)
- Lidia Mielczarek
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; Department of Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Pamela Krug
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Małgorzata Milczarek
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Zdzisław Chilmonczyk
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Katarzyna Wiktorska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland.
| |
Collapse
|
66
|
Fix C, Carver-Molina A, Chakrabarti M, Azhar M, Carver W. Effects of the isothiocyanate sulforaphane on TGF-β1-induced rat cardiac fibroblast activation and extracellular matrix interactions. J Cell Physiol 2019; 234:13931-13941. [PMID: 30609032 DOI: 10.1002/jcp.28075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022]
Abstract
An important step in many pathological conditions, particularly tissue and organ fibrosis, is the conversion of relatively quiescent cells into active myofibroblasts. These are highly specialized cells that participate in normal wound healing but also contribute to pathogenesis. These cells possess characteristics of smooth muscle cells and fibroblasts, have enhanced synthetic activity secreting abundant extracellular matrix components, cytokines, and growth factors, and are capable of generating contractile force. As such, these cells have become potential therapeutic targets in a number of disease settings. Transforming growth factor β (TGF-β) is a potent stimulus of fibrosis and myofibroblast formation and likewise is an important therapeutic target in several disease conditions. The plant-derived isothiocyanate sulforaphane has been shown to have protective effects in several pathological models including diabetic cardiomyopathy, carcinogenesis, and fibrosis. These studies suggest that sulforaphane may be an attractive preventive agent against disease progression, particularly in conditions involving alterations of the extracellular matrix and activation of myofibroblasts. However, few studies have evaluated the effects of sulforaphane on cardiac fibroblast activation and their interactions with the extracellular matrix. The present studies were carried out to determine the potential effects of sulforaphane on the conversion of quiescent cardiac fibroblasts to an activated myofibroblast phenotype and associated alterations in signaling, expression of extracellular matrix receptors, and cellular physiology following stimulation with TGF-β1. These studies demonstrate that sulforaphane attenuates TGF-β1-induced myofibroblast formation and contractile activity. Sulforaphane also reduces expression of collagen-binding integrins and inhibits canonical and noncanonical TGF-β signaling pathways.
Collapse
Affiliation(s)
- Charity Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Amanda Carver-Molina
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Wayne Carver
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
67
|
El-Agamy DS, El-Harbi KM, Khoshhal S, Ahmed N, Elkablawy MA, Shaaban AA, Abo-Haded HM. Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Manag Res 2018; 11:47-61. [PMID: 30588110 PMCID: PMC6304079 DOI: 10.2147/cmar.s186696] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background/purpose Pristimerin (Pris) is triterpenoid compound with many biological effects. Until now, nothing is known about its effect on doxorubicin (DOX)-induced cardiotoxicity. Hence, this study investigated the impact of Pris on DOX-induced cardiotoxic effects. Materials and methods Rats were treated with Pris 1 week before and 2 weeks contaminant with repeated DOX injection. Afterwards, electrocardiography (ECG), biochemical, histopathological, PCR, and Western blot assessments were performed. Results Pris effectively alleviated DOX-induced deleterious cardiac damage. It inhibited DOX-induced ECG abnormities as well as DOX-induced elevation of serum indices of cardiotoxicity. The histopathological cardiac lesions and fibrosis were remarkably improved in Pris-treated animals. Pris reduced hydroxyproline content and attenuated the mRNA and protein expression of the pro-fibrogenic genes. The antioxidant activity of Pris was prominent through the amelioration of oxidative stress parameters and enhancement of antioxidants. Furthermore, Pris enhanced the activation of nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway as it increased the mRNA and protein expression of Nrf2 and Nrf2-dependent antioxidant genes (GCL, NQO1, HO-1). Additionally, the anti-inflammatory effect of Pris was obvious through the inhibition of mitogen activated protein kinase (MAPK)/nuclear factor kappa-B (NF-kB) signaling and subsequent inhibition of inflammatory mediators. Conclusion This study provides evidence of the cardioprotective activity of Pris which is related to the modulation of Nrf2 and MAPK/NF-kB signaling pathways.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Khaled M El-Harbi
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia,
| | - Saad Khoshhal
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia,
| | - Nishat Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia
| | - Mohamed A Elkablawy
- Department of Pathology, Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmacology, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Hany M Abo-Haded
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia, .,Pediatric Cardiology Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt,
| |
Collapse
|
68
|
Bientinesi R, Sacco E. Managing urinary incontinence in women - a review of new and emerging pharmacotherapy. Expert Opin Pharmacother 2018; 19:1989-1997. [PMID: 30304645 DOI: 10.1080/14656566.2018.1532502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The pharmacological treatment of urinary incontinence and overactive bladder (OAB) has been, for a longer time, based on antimuscarinic agents. In recent years, two other pharmacological principles have been introduced for the treatment of OAB and urgency urinary incontinence: the β3-adrenergic agent mirabegron and botulinum neurotoxin. Meanwhile, there is lack of effective drugs for the treatment of stress incontinence. AREAS COVERED This literature review presents synthetic compounds aimed to treat female urinary incontinence that are in phase II-III clinical development. EXPERT OPINION Antimuscarinic agents will continue to represent the current gold standard for the first-line pharmacological management of OAB and urgency urinary incontinence. The class of β3-agonists will certainly expand with the discovery and clinical development of novel agents. Combination therapy of antimuscarinic agents and β3-agonists could offer an alternative treatment in these patients, including those with symptoms refractory to first-line monotherapy. A huge number of preclinical studies are underway in this field exploring the therapeutic potential of many novel compounds while some have advanced to clinical phases of development.
Collapse
Affiliation(s)
- Riccardo Bientinesi
- a Urology Department, Agostino Gemelli Academic Hospital Foundation IRCCS , Catholic University School of Medicine of Rome , Rome , Italy
| | - Emilio Sacco
- a Urology Department, Agostino Gemelli Academic Hospital Foundation IRCCS , Catholic University School of Medicine of Rome , Rome , Italy
| |
Collapse
|
69
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
70
|
Chen H, Gao L, Huang Z, Liu Y, Guo S, Xing J, Meng Z, Liang C, Li Y, Yao R, Li L, Zhang Y, Gu H, Liu Y. C1qTNF-related protein 1 attenuates doxorubicin-induced cardiac injury via activation of AKT. Life Sci 2018; 207:492-498. [DOI: 10.1016/j.lfs.2018.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/15/2022]
|
71
|
Shi W, Deng H, Zhang J, Zhang Y, Zhang X, Cui G. Mitochondria-Targeting Small Molecules Effectively Prevent Cardiotoxicity Induced by Doxorubicin. Molecules 2018; 23:E1486. [PMID: 29921817 PMCID: PMC6099719 DOI: 10.3390/molecules23061486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent widely used for the treatment of numerous cancers. However, the clinical use of Dox is limited by its unwanted cardiotoxicity. Mitochondrial dysfunction has been associated with Dox-induced cardiotoxicity. To mitigate Dox-related cardiotoxicity, considerable successful examples of a variety of small molecules that target mitochondria to modulate Dox-induced cardiotoxicity have appeared in recent years. Here, we review the related literatures and discuss the evidence showing that mitochondria-targeting small molecules are promising cardioprotective agents against Dox-induced cardiac events.
Collapse
Affiliation(s)
- Wei Shi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Jianyong Zhang
- Pharmacy School, Zunyi Medical University, Zunyi 563003, China.
| | - Ying Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
72
|
Bai Y, Chen Q, Sun YP, Wang X, Lv L, Zhang LP, Liu JS, Zhao S, Wang XL. Sulforaphane protection against the development of doxorubicin-induced chronic heart failure is associated with Nrf2 Upregulation. Cardiovasc Ther 2018. [PMID: 28636290 DOI: 10.1111/1755-5922.12277] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an anthracycline antitumor drug. However, its clinical use is limited by dose-dependent cardiotoxicity and even progresses to chronic heart failure (CHF). OBJECTIVE This study aims to investigate whether the Nrf2 activator, sulforaphane (SFN), can prevent DOX-induced CHF. METHODS Male Sprague-Dawley rats which received treatment for 6 weeks were divided into four groups (n=30 per group): control, SFN, DOX and DOX plus SFN group. RESULTS Results revealed that DOX induced progressive cardiac damage as indicated by increased cardiac injury markers, cardiac inflammation, fibrosis and oxidative stress. SFN significantly prevented DOX-induced progressive cardiac dysfunction between 2-6 weeks and prevented DOX-induced cardiac function deterioration. Furthermore, it significantly decreased ejection fraction and increased the expression of brain natriuretic peptide. SFN also almost completely prevented DOX-induced cardiac oxidative stress, inflammation and fibrosis. SFN upregulated NF-E2-related factor 2 (Nrf2) expression and transcription activity, which was reflected by the increased mRNA expression of Nrf2 and its downstream genes. Furthermore, in cultured H9c2 cardiomyocytes, the protective effect of SFN against DOX-induced fibrotic and inflammatory responses was abolished by Nrf2 silencing. CONCLUSION We arrived at the conclusion that DOX-induced CHF can be prevented by SFN through the upregulation of Nrf2 expression and transcriptional function.
Collapse
Affiliation(s)
- Yang Bai
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun, China
| | - Qiang Chen
- School of Public Health, Jilin University, Changchun, China
| | - Yun-Peng Sun
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun, China
| | - Xuan Wang
- Department of Pharmacology, The College of Basic Medicine of Jilin University, Changchun, China
| | - Li Lv
- The Jilin Province People's Hospital, Changchun, China
| | - Li-Ping Zhang
- The Cardiovascular Department, The First Hospital of Jilin University, Changchun, China
| | - Jin-Sha Liu
- The Cardiovascular Department, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Song Zhao
- The Spine Surgery Department, The First Hospital of Jilin University, Changchun, China
| | - Xiao-Lu Wang
- The Jilin Province People's Hospital, Changchun, China
| |
Collapse
|
73
|
Chen L, Xia W, Hou M. Mesenchymal stem cells attenuate doxorubicin‑induced cellular senescence through the VEGF/Notch/TGF‑β signaling pathway in H9c2 cardiomyocytes. Int J Mol Med 2018; 42:674-684. [PMID: 29693137 DOI: 10.3892/ijmm.2018.3635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/05/2018] [Indexed: 11/06/2022] Open
Abstract
The clinical use of doxorubicin (Dox) is limited by its cardiotoxicity. The fundamental changes it induces include interstitial myocardial fibrosis and the appearance of senescent cardiomyocytes. Mesenchymal stem cell (MSC)‑based therapies have also been reported to modulate cellular senescence, and have been used effectively to treat age‑related cardiovascular diseases. In the present study, the Transwell system was used to coculture H9c2 cells with MSCs, and their proliferation and viability were assessed. The expression of senescence‑related genes p53 and p16, and telomere length were measured using reverse transcription‑quantitative polymerase chain reaction analysis, and the Jagged‑1/Notch‑1 signaling pathway was detected using western blot analysis. The results revealed that Dox induced the senescence of H9c2 cells, characterized by a low proliferation rate, poor viability, reduced telomere length and impaired telomerase activity, and by marked increases in the expression of p53 and p16. By contrast, when cocultured with MSCs in the presence of Dox, H9c2 cell proliferation and viability increased, whereas the expression levels of p53 and p16 decreased, and telomere length and telomerase activity increased. The mechanism underlying the antisenescence function of MSCs was clarified, which involved the vascular endothelial growth factor (VEGF)/Jagged‑1/Notch‑1/transforming growth factor‑β1 (TGF‑β1) signaling pathway. It was confirmed that inhibiting VEGF, or silencing Jagged‑1 or Notch‑1 with small interfering RNA, or using recombinant TGF‑β1 eliminated the antisenescence effects of MSCs on the Dox‑treated H9c2 cells. The results revealed that MSCs rescued H9c2 cells from Dox‑induced senescence through the release of VEGF, which activated the Jagged‑1/Notch‑1 signaling pathway, leading to the inhibition of TGF‑β1 release. Therefore, treatment with MSCs may have important therapeutic implications on the attenuation of cardiotoxicity in patients with cancer treated with Dox.
Collapse
Affiliation(s)
- Lingli Chen
- Department of Neurology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
74
|
Bose C, Awasthi S, Sharma R, Beneš H, Hauer-Jensen M, Boerma M, Singh SP. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS One 2018; 13:e0193918. [PMID: 29518137 PMCID: PMC5843244 DOI: 10.1371/journal.pone.0193918] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/20/2018] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common malignancy in women of the Western world. Doxorubicin (DOX) continues to be used extensively to treat early-stage or node-positive breast cancer, human epidermal growth factor receptor-2 (HER2)-positive breast cancer, and metastatic disease. We have previously demonstrated in a mouse model that sulforaphane (SFN), an isothiocyanate isolated from cruciferous vegetables, protects the heart from DOX-induced toxicity and damage. However, the effects of SFN on the chemotherapeutic efficacy of DOX in breast cancer are not known. Present studies were designed to investigate whether SFN alters the effects of DOX on breast cancer regression while also acting as a cardioprotective agent. Studies on rat neonatal cardiomyocytes and multiple rat and human breast cancer cell lines revealed that SFN protects cardiac cells but not cancer cells from DOX toxicity. Results of studies in a rat orthotopic breast cancer model indicated that SFN enhanced the efficacy of DOX in regression of tumor growth, and that the DOX dosage required to treat the tumor could be reduced when SFN was administered concomitantly. Additionally, SFN enhanced mitochondrial respiration in the hearts of DOX-treated rats and reduced cardiac oxidative stress caused by DOX, as evidenced by the inhibition of lipid peroxidation, the activation of NF-E2-related factor 2 (Nrf2) and associated antioxidant enzymes. These studies indicate that SFN not only acts synergistically with DOX in cancer regression, but also protects the heart from DOX toxicity through Nrf2 activation and protection of mitochondrial integrity and functions.
Collapse
Affiliation(s)
- Chhanda Bose
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, Arkansas, United States of America
| | - Sanjay Awasthi
- Texas Tech Health Sciences Center, Division of Hematology & Oncology, Department of Internal Medicine, Lubbock, Texas, United States of America
| | - Rajendra Sharma
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas, United States of America
| | - Helen Beneš
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, Little Rock, Arkansas, United States of America
| | - Martin Hauer-Jensen
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, Arkansas, United States of America
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, Arkansas, United States of America
| | - Sharda P. Singh
- Texas Tech Health Sciences Center, Division of Hematology & Oncology, Department of Internal Medicine, Lubbock, Texas, United States of America
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| |
Collapse
|
75
|
Zhang J, Culp ML, Craver JG, Darley-Usmar V. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease. J Neurochem 2018; 144:691-709. [PMID: 29341130 PMCID: PMC5897151 DOI: 10.1111/jnc.14308] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a movement disorder with widespread neurodegeneration in the brain. Significant oxidative, reductive, metabolic, and proteotoxic alterations have been observed in PD postmortem brains. The alterations of mitochondrial function resulting in decreased bioenergetic health is important and needs to be further examined to help develop biomarkers for PD severity and prognosis. It is now becoming clear that multiple hits on metabolic and signaling pathways are likely to exacerbate PD pathogenesis. Indeed, data obtained from genetic and genome association studies have implicated interactive contributions of genes controlling protein quality control and metabolism. For example, loss of key proteins that are responsible for clearance of dysfunctional mitochondria through a process called mitophagy has been found to cause PD, and a significant proportion of genes associated with PD encode proteins involved in the autophagy-lysosomal pathway. In this review, we highlight the evidence for the targeting of mitochondria by proteotoxic, redox and metabolic stress, and the role autophagic surveillance in maintenance of mitochondrial quality. Furthermore, we summarize the role of α-synuclein, leucine-rich repeat kinase 2, and tau in modulating mitochondrial function and autophagy. Among the stressors that can overwhelm the mitochondrial quality control mechanisms, we will discuss 4-hydroxynonenal and nitric oxide. The impact of autophagy is context depend and as such can have both beneficial and detrimental effects. Furthermore, we highlight the potential of targeting mitochondria and autophagic function as an integrated therapeutic strategy and the emerging contribution of the microbiome to PD susceptibility.
Collapse
Affiliation(s)
- Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| | - M Lillian Culp
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jason G Craver
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| |
Collapse
|
76
|
Barta T, Tosaki A, Haines D, Balla G, Lekli I, Tosaki A. Endothelin-1-induced hypertrophic alterations and heme oxygenase-1 expression in cardiomyoblasts are counteracted by beta estradiol: in vitro and in vivo studies. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:371-383. [PMID: 29354880 PMCID: PMC5851684 DOI: 10.1007/s00210-018-1462-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022]
Abstract
Endothelin-1 (ET-1), a potent vasoconstrictor normally active in maintaining vascular tone, may mediate significant pathogenic effects, contributing to several serious diseases when aberrantly expressed or regulated. The present study evaluates the capacity of ET-1 to affect endothelin-1-associated hypertrophic activity and decreased expression of heme oxygenase-1 by H9c2 rat cardiomyoblasts in vitro, corresponding to in vivo processes underlying cardiovascular diseases (CVDs). Beta estradiol (β-E) is tested for its capacity to alter the effects of ET-1. H9c2 cells, cultured 48 h, were stimulated with 100-10,000 nM of ET-1 and evaluated for changes in cell size, cell viability, and expression of the cytoprotective heat shock protein heme oxygenase-1 (HO-1), with 200 nM of β-E included in selected cultures to evaluate its effect on ET-1-mediated changes. The application of 100 to 10,000 nM of ET-1 resulted in a significant increase in average cell size and decreases in both cell viability and HO-1 protein content (p < 0.05). Moreover, 200 nM of β-E was observed to significantly counteract these effects by cardiomyoblasts stimulated with 1000 nM of ET-1 (p < 0.05). Sprague-Dawley rats treated intravenously with 1000 ng/kg of ET-1 demonstrated reduced HO-1 expression in peripheral blood and left ventricular tissue, which was counteracted by injection of 200 ng/kg β-E-demonstrating a possible correspondence between in vitro and in vivo effects. An outcome of particular value for clinical use of β-E, in the management of cardiac hypertrophy, is the observed capacity of the drug to abate ET-1-mediated suppression of HO-1 expression. It has been previously demonstrated that HO-1 inducers exhibit potent cardioprotective properties, thus offering the promise of combining them with β-E, allowing lower effective dosage of the drug and concomitantly lower adverse side effects associated with its clinical use. Major findings of this investigation are that pretreatment of cardiomyoblasts with β-E inhibited their hypertrophic response to ET-1 and counteracts the decrease of cell viability. These effects were associated with a restoration of HO-1 protein expression in both under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Tunde Barta
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt., 98, Debrecen, 4032, Hungary
| | - Agnes Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt., 98, Debrecen, 4032, Hungary
| | - David Haines
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt., 98, Debrecen, 4032, Hungary
| | - Gyorgy Balla
- Department of Pediatrics, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.,Hemostasis, Thrombosis and Vascular Biology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Istvan Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt., 98, Debrecen, 4032, Hungary
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt., 98, Debrecen, 4032, Hungary.
| |
Collapse
|
77
|
Kabel AM. Zinc/alogliptin combination attenuates testicular toxicity induced by doxorubicin in rats: Role of oxidative stress, apoptosis and TGF-β1/NF-κB signaling. Biomed Pharmacother 2018; 97:439-449. [PMID: 29091894 DOI: 10.1016/j.biopha.2017.10.144] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022] Open
Abstract
The aim of this study was to assess the effect of alogliptin and/or zinc on doxorubicin (DOX)-induced testicular toxicity in rats. Sixty male Wistar rats were divided into 6 equal groups: Control; DOX; DOX+Zinc; DOX+Alogliptin; DOX+Carboxymethyl cellulose and DOX+Zinc+Alogliptin. Testis weight, testicular functions, serum testosterone, luteinizing hormone, follicle stimulating hormone and zinc were measured. Also, testicular tissue zinc, 3 β-hydroxysteroid dehydrogenase, 17 β- hydroxysteroid dehydrogenase, antioxidant enzymes, pro-inflammatory cytokines, transforming growth factor beta 1 (TGF-β1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and sperm characteristics were assessed. Parts of the testes were subjected to histopathological and immunohistochemical examination. Zinc/alogliptin combination restored the testicular weight and functions, sperm characteristics, serum and tissue zinc levels, hormonal profile and the antioxidant defenses compared to the use of each of these drugs alone. Also, this combination induced significant amelioration of the inflammatory processes, significant increase in tissue Nrf2 content and significant improvement of the histopathological and immunohistochemical picture compared to the use of each of these drugs alone. So, zinc/alogliptin combination might represent a promising therapeutic modality for amelioration of DOX-induced testicular toxicity.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
78
|
Matricellular protein CCN1 mediates doxorubicin-induced cardiomyopathy in mice. Oncotarget 2017; 7:36698-36710. [PMID: 27167338 PMCID: PMC5095032 DOI: 10.18632/oncotarget.9162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/23/2016] [Indexed: 12/24/2022] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic agent however its clinical use is limited by its cumulative cardiotoxicity. Matricellular protein CCN1 mediates work-overload-induced cardiac injury. We aimed to assess the role of CCN1 in DOX-associated cardiomyopathy. Here we discovered CCN1 expression in the myocardium 1 day after DOX treatment (15 mg/kg; i.p.) in mice. Whereas CCN1 synergizes with Fas ligand (FasL) to induce cardiomyocyte apoptosis, we found that FasL was also induced by DOX in the heart. To assess the function of CCN1 in vivo, knockin mice (Ccn1dm/dm) expressing an β6β1-binding defective CCN1 mutant were treated with a single dose of DOX (15 mg/kg; i.p.). Compared with wild-type mice, Ccn1dm/dm mice were resistant to DOX-induced cardiac injury and dysfunction 14 days after injection. Using rat cardiomyoblast H9c2 cells, we demonstrated that DOX induced reactive oxygen species accumulation to upregulate CCN1 and FasL expression. CCN1 mediated DOX cardiotoxicity by engaging integrin β6β1 to promote p38 mitogen-activated protein kinase activation and the release of mitochondrial Smac and HtrA2 to cytosol, thereby counteracting the inhibition of XIAP and facilitating apoptosis. In summary, CCN1 critically mediates DOX-induced cardiotoxicity. Disrupting CCN1/β6β1 engagement abolishes DOX-associated cardiomyopathy in mice.
Collapse
|
79
|
Lněničková K, Dymáková A, Szotáková B, Boušová I. Sulforaphane Alters β-Naphthoflavone-Induced Changes in Activity and Expression of Drug-Metabolizing Enzymes in Rat Hepatocytes. Molecules 2017; 22:molecules22111983. [PMID: 29144397 PMCID: PMC6150368 DOI: 10.3390/molecules22111983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022] Open
Abstract
Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, exerts many beneficial effects on human health such as antioxidant, anti-inflammatory, and anticancer effects. The effect of SFN alone on drug-metabolizing enzymes (DMEs) has been investigated in numerous in vitro and in vivo models, but little is known about the effect of SFN in combination with cytochrome P450 (CYP) inducer. The aim of our study was to evaluate the effect of SFN on the activity and gene expression of selected DMEs in primary cultures of rat hepatocytes treated or non-treated with β-naphthoflavone (BNF), the model CYP1A inducer. In our study, SFN alone did not significantly alter the activity and expression of the studied DMEs, except for the glutathione S-transferase (GSTA1) mRNA level, which was significantly enhanced. Co-treatment of hepatocytes with SFN and BNF led to a substantial increase in sulfotransferase, aldoketoreductase 1C, carbonylreductase 1 and NAD(P)H:quinone oxidoreductase 1 activity and a marked decrease in cytochrome P450 (CYP) Cyp1a1, Cyp2b and Cyp3a4 expression in comparison to the treatment with BNF alone. Sulforaphane is able to modulate the activity and/or expression of DMEs, thus shifting the balance of carcinogen metabolism toward deactivation, which could represent an important mechanism of its chemopreventive activity.
Collapse
Affiliation(s)
- Kateřina Lněničková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Andrea Dymáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| |
Collapse
|
80
|
A New Derivatization Reagent for HPLC-MS Analysis of Biological Organic Acids. Chromatographia 2017; 80:1723-1732. [PMID: 29213145 PMCID: PMC5698372 DOI: 10.1007/s10337-017-3421-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/22/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023]
Abstract
Small molecules containing carboxylic acid functional groups are ubiquitous throughout biology, playing vital roles in biological chemistry ranging from energy metabolism to cellular signaling. This paper describes a new derivatization reagent, 4-bromo-N-methylbenzylamine, which was selected for its potential to derivatize mono-, di- and tri-carboxylic acids, such as the intermediates of the tricarboxylic acid (TCA) cycle. This derivatization procedure facilitated the use of positive electrospray ionization (ESI) tandem mass spectrometry (MS/MS) detection of derivatized species allowing for clear identification thanks to the easily recognizable isotope pattern of the incorporated bromine. A liquid chromatography (LC)-MS/MS method was developed which provided limits of detection between 0.2 and 44 μg L−1 in under 6 min, depending on the analyte and total analysis time. This method was successfully applied in both in vitro and in vivo models.
Collapse
|
81
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Antioxidants and HNE in redox homeostasis. Free Radic Biol Med 2017; 111:87-101. [PMID: 27888001 DOI: 10.1016/j.freeradbiomed.2016.11.033] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022]
Abstract
Under physiological conditions, cells are in a stable state known as redox homeostasis, which is maintained by the balance between continuous ROS/RNS generation and several mechanisms involved in antioxidant activity. ROS overproduction results in alterations in the redox homeostasis that promote oxidative damage to major components of the cell, including the biomembrane phospholipids. Lipid peroxidation subsequently generates a diverse set of products, including α,β-unsaturated aldehydes. Of these products, 4-hydroxy-2-nonenal (HNE) is the most studied aldehyde on the basis of its involvement in cellular physiology and pathology. This review summarizes the current knowledge in the field of HNE generation, metabolism, and detoxification, as well as its interactions with various cellular macromolecules (protein, phospholipid, and nucleic acid). The formation of HNE-protein adducts enables HNE to participate in multi-step regulation of cellular metabolic pathways that include signaling and transcription of antioxidant enzymes, pro-inflammatory factors, and anti-apoptotic proteins. The most widely described roles for HNE in the signaling pathways are associated with its activation of kinases, as well as transcription factors that are responsible for redox homeostasis (Ref-1, Nrf2, p53, NFκB, and Hsf1). Depending on its level, HNE exerts harmful or protective effects associated with the induction of antioxidant defense mechanisms. These effects make HNE a key player in maintaining redox homeostasis, as well as producing imbalances in this system that participate in aging and the development of pathological conditions.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland.
| |
Collapse
|
82
|
Alkharashi NAO, Periasamy VS, Athinarayanan J, Alshatwi AA. Sulforaphane mitigates cadmium-induced toxicity pattern in human peripheral blood lymphocytes and monocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:223-239. [PMID: 28938194 DOI: 10.1016/j.etap.2017.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) is a highly toxic and widely distributed heavy metal that induces various diseases in humans through environmental exposure. Therefore, alleviation of Cd-induced toxicity in living organisms is necessary. In this study, we investigated the protective role of sulforaphane on Cd-induced toxicity in human peripheral blood lymphocytes and monocytes. Sulforaphane did not show any major reduction in the viability of lymphocytes and monocytes. However, Cd treatment at a concentration of 50μM induced around 69% cell death. Treatment of IC10-Cd and 100μM sulforaphane combination for 24 and 48h increased viability by 2 and 9% in cells subjected to Cd toxicity, respectively. In addition, IC25 of Cd and 100μM sulforaphane combination recovered 17-20% of cell viability. Cd induced apoptotic and necrotic cell death. Sulforaphane treatment reduced Cd-induced cell death in lymphocytes and monocytes. Our results clearly indicate that when the cells were treated with Cd+sulforaphane combination, sulforaphane decreased the Cd-induced cytotoxic effect in lymphocytes and monocytes. In addition, sulforaphane concentration plays a major role in the alleviation of Cd-induced toxicity.
Collapse
Affiliation(s)
- Nouf Abdulkareem Omer Alkharashi
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
83
|
Cardioprotective effects of fibroblast growth factor 21 against doxorubicin-induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell Death Dis 2017; 8:e3018. [PMID: 28837153 PMCID: PMC5596591 DOI: 10.1038/cddis.2017.410] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is a highly effective antineoplastic anthracycline drug; however, the adverse effect of the cardiotoxicity has limited its widespread application. Fibroblast growth factor 21 (FGF21), as a well-known regulator of glucose and lipid metabolism, was recently shown to exert cardioprotective effects. The aim of this study was to investigate the possible protective effects of FGF21 against DOX-induced cardiomyopathy. We preliminarily established DOX-induced cardiotoxicity models in H9c2 cells, adult mouse cardiomyocytes, and 129S1/SyImJ mice, which clearly showed cardiac dysfunction and myocardial collagen accumulation accompanying by inflammatory, oxidative stress, and apoptotic damage. Treatment with FGF21 obviously attenuated the DOX-induced cardiac dysfunction and pathological changes. Its effective anti-inflammatory activity was revealed by downregulation of inflammatory factors (tumor necrosis factor-α and interleukin-6) via the IKK/IκBα/nuclear factor-κB pathway. The anti-oxidative stress activity of FGF21 was achieved via reduced generation of reactive oxygen species through regulation of nuclear transcription factor erythroid 2-related factor 2 transcription. Its anti-apoptotic activity was shown by reductions in the number of TUNEL-positive cells and DNA fragments along with a decreased ratio of Bax/Bcl-2 expression. In a further mechanistic study, FGF21 enhanced sirtuin 1 (SIRT1) binding to liver kinase B1 (LKB1) and then decreased LKB1 acetylation, subsequently inducing AMP-activated protein kinase (AMPK) activation, which improved the cardiac inflammation, oxidative stress, and apoptosis. These alterations were significantly prohibited by SIRT1 RNAi. The present work demonstrates for the first time that FGF21 obviously prevented DOX-induced cardiotoxicity via the suppression of oxidative stress, inflammation, and apoptosis through the SIRT1/LKB1/AMPK signaling pathway.
Collapse
|
84
|
Koleini N, Nickel BE, Wang J, Roveimiab Z, Fandrich RR, Kirshenbaum LA, Cattini PA, Kardami E. Fibroblast growth factor-2-mediated protection of cardiomyocytes from the toxic effects of doxorubicin requires the mTOR/Nrf-2/HO-1 pathway. Oncotarget 2017; 8:87415-87430. [PMID: 29152091 PMCID: PMC5675643 DOI: 10.18632/oncotarget.20558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/04/2017] [Indexed: 12/09/2022] Open
Abstract
Background Cardiotoxic side effects impose limits to the use of anti-tumour chemotherapeutic drugs such as doxorubicin (Dox). There is a need for cardioprotective strategies to prevent the multiple deleterious effects of Dox. Here, we examined the ability of administered fibroblast growth factor-2 (FGF-2), a cardioprotective protein that is synthesized as high and low molecular weight (Hi-, Lo-FGF-2) isoforms, to prevent Dox-induced: oxidative stress; cell death; lysosome dysregulation; and inactivation of potent endogenous protective pathways, such as the anti-oxidant/detoxification nuclear factor erythroid-2-related factor (Nrf-2), heme oxygenase-1 (HO-1) axis. Methods and Results Brief pre-incubation of neonatal rat cardiomyocyte cultures with either Hi- or Lo-FGF-2 reduced the Dox-induced: oxidative stress; apoptotic/necrotic cell death; lysosomal dysregulation; decrease in active mammalian target of Rapamycin (mTOR). FGF-2 isoforms prevented the Dox-induced downregulation of Nrf-2, and promoted robust increases in the Nrf-2-downstream targets including the cardioprotective protein HO-1, and p62/SQSTM1, a multifunctional scaffold protein involved in autophagy. Chloroquine, an autophagic flux inhibitor, caused a further increase in p62/SQSTM1, indicating intact autophagic flux in the FGF-2-treated groups. A selective inhibitor for HO-1, Tin-Protoporphyrin, prevented the FGF-2 protection against cell death. The mTOR inhibitor Rapamycin prevented FGF-2 protection, and blocked the FGF-2 effects on Nrf-2, HO-1 and p62/SQSTM1. Conclusions In an acute setting Hi- or Lo-FGF-2 protect cardiomyocytes against multiple Dox-induced deleterious effects, by a mechanism dependent on preservation of mTOR activity, Nrf-2 levels, and the upregulation of HO-1. Preservation/activation of endogenous anti-oxidant/detoxification defences by FGF-2 is a desirable property in the setting of Dox-cardiotoxicity.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara E Nickel
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Jie Wang
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zeinab Roveimiab
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Robert R Fandrich
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
85
|
Lewinska A, Adamczyk-Grochala J, Deregowska A, Wnuk M. Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells. Theranostics 2017; 7:3461-3477. [PMID: 28912888 PMCID: PMC5596436 DOI: 10.7150/thno.20657] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/29/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer cells are characterized by genetic and epigenetic alterations and phytochemicals, epigenetic modulators, are considered as promising candidates for epigenetic therapy of cancer. In the present study, we have investigated cancer cell fates upon stimulation of breast cancer cells (MCF-7, MDA-MB-231, SK-BR-3) with low doses of sulforaphane (SFN), an isothiocyanate. SFN (5-10 µM) promoted cell cycle arrest, elevation in the levels of p21 and p27 and cellular senescence, whereas at the concentration of 20 µM, apoptosis was induced. The effects were accompanied by nitro-oxidative stress, genotoxicity and diminished AKT signaling. Moreover, SFN stimulated energy stress as judged by decreased pools of ATP and AMPK activation, and autophagy induction. Anticancer effects of SFN were mediated by global DNA hypomethylation, decreased levels of DNA methyltransferases (DNMT1, DNMT3B) and diminished pools of N6-methyladenosine (m6A) RNA methylation. SFN (10 µM) also affected microRNA profiles, namely SFN caused upregulation of sixty microRNAs and downregulation of thirty two microRNAs, and SFN promoted statistically significant decrease in the levels of miR-23b, miR-92b, miR-381 and miR-382 in three breast cancer cells. Taken together, we show for the first time that SFN is an epigenetic modulator in breast cancer cells that results in cell cycle arrest and senescence, and SFN may be considered to be used in epigenome-focused anticancer therapy.
Collapse
Affiliation(s)
- Anna Lewinska
- Laboratory of Cell Biology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | | | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Kolbuszowa, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Kolbuszowa, Poland
| |
Collapse
|
86
|
Chen S, Wang X, Ye X, Ma D, Chen C, Cai J, Fu Y, Cheng X, Chen Y, Gong X, Jin J. Identification of Human UMP/CMP Kinase 1 as Doxorubicin Binding Target Using Protein Microarray. SLAS DISCOVERY 2017; 22:1007-1015. [DOI: 10.1177/2472555217707704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is a leading anthracycline drug with exceptional efficacy; however, little is known about the molecular mechanisms of its side effects, which include heart muscle damage, noncancerous cell death, and drug resistance. A total of 17,950 human proteins expressed in HEK293 cells were screened and yielded 14 hits. Competitive and binding experiments further verified the binding of DOX to UMP/CMP kinase 1 (CMPK1), and microscale thermophoresis showed that DOX binds to CMPK1 with a Kd of 1216 nM. In addition, we observed that the binding of DOX to CMPK1 activated the phosphorylation of CMP, dCMP, and UMP. A significant activation was observed at the concentration of 30 µM DOX and reached plateau at the concentration of DOX 30 µM, 150 µM, and 100 µM, respectively. DOX would add up stimulation of CMPK1 by DTT and overcome inhibition of CMPK1 by NaF, EDTA. In summary, we showed that DOX might bind to the nonactive site of CMPK1 and regulate its activity with magnesium.
Collapse
Affiliation(s)
- Shuxian Chen
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xu Wang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xianghui Ye
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Donghui Ma
- OriGene Technologies Inc., Rockville, MD, USA
- OriGene Technologies Inc. at Beijing, Beijing, China
| | - Caiwei Chen
- OriGene Technologies Inc., Rockville, MD, USA
- OriGene Technologies Inc. at Beijing, Beijing, China
| | - Junlong Cai
- School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yongfeng Fu
- School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xunjia Cheng
- School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yun Chen
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaohai Gong
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Jin
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
87
|
Abushouk AI, Ismail A, Salem AMA, Afifi AM, Abdel-Daim MM. Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2017; 90:935-946. [PMID: 28460429 DOI: 10.1016/j.biopha.2017.04.033] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic, which is effectively used in the treatment of different malignancies, such as leukemias and lymphomas. Its most serious side effect is dose-dependent cardiotoxicity, which occurs through inducing oxidative stress apoptosis. Due to the myelosuppressive effect of dexrazoxane, a commonly-used drug to alleviate DOX-induced cardiotoxicity, researchers investigated the potential of phytochemicals for prophylaxis and treatment of this condition. Phytochemicals are plant chemicals that have protective or disease preventive properties. Preclinical trials have shown antioxidant properties for several plant extracts, such as those of Aerva lanata, Aronia melanocarpa, Astragalus polysaccharide, and Bombyx mori plants. Other plant extracts showed an ability to inhibit apoptosis, such as those of Astragalus polysaccharide, Azadirachta indica, Bombyx mori, and Allium stavium plants. Unlike synthetic agents, phytochemicals do not impair the clinical activity of DOX and they are particularly safe for long-term use. In this review, we summarized the results of preclinical trials that investigated the cardioprotective effects of phytochemicals against DOX-induced cardiotoxicity. Future human trials are required to translate these cardioprotective mechanisms into practical clinical implications.
Collapse
Affiliation(s)
| | - Ammar Ismail
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amr Muhammad Abdo Salem
- Faculty of Medicine, Ain Shams University, Cairo, Egypt; NovaMed Medical Research Association, Cairo, Egypt
| | - Ahmed M Afifi
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt; Pharmacology Department, Dr. D.Y. Patil Medical College, Pune, Maharashtra, India.
| |
Collapse
|
88
|
Barančík M, Grešová L, Barteková M, Dovinová I. Nrf2 as a key player of redox regulation in cardiovascular diseases. Physiol Res 2017; 65 Suppl 1:S1-S10. [PMID: 27643930 DOI: 10.33549/physiolres.933403] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The oxidative stress plays an important role in the development of cardiovascular diseases (CVD). In CVD progression an aberrant redox regulation was observed. In this regulation levels of reactive oxygen species (ROS) play an important role in cellular signaling, where Nrf2 is the key regulator of redox homeostasis. Keap1-Nrf2-ARE system regulates a great set of detoxificant and antioxidant enzymes in cells after ROS and electrophiles exposure. In this review we focus on radical-generating systems in cardiovascular system as well as on Nrf2 as a target against oxidative stress and a key player of redox regulation in cardiovascular diseases. We also summarize the current knowledge about the role of Nrf2 in pathophysiology of several CVD (hypertension, cardiac hypertrophy, cardiomyopathies) as well as in cardioprotection against myocardial ischemia/ reperfusion injury.
Collapse
Affiliation(s)
- M Barančík
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
89
|
Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis. Mar Drugs 2016; 14:md14120231. [PMID: 27999379 PMCID: PMC5192468 DOI: 10.3390/md14120231] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023] Open
Abstract
Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis.
Collapse
|
90
|
Jiang S, Yang Y, Li T, Ma Z, Hu W, Deng C, Fan C, Lv J, Sun Y, Yi W. An overview of the mechanisms and novel roles of Nrf2 in cardiovascular diseases. Expert Opin Ther Targets 2016; 20:1413-1424. [PMID: 27756179 DOI: 10.1080/14728222.2016.1250887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
91
|
Dong Z, Shang H, Chen YQ, Pan LL, Bhatia M, Sun J. Sulforaphane Protects Pancreatic Acinar Cell Injury by Modulating Nrf2-Mediated Oxidative Stress and NLRP3 Inflammatory Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7864150. [PMID: 27847555 PMCID: PMC5101394 DOI: 10.1155/2016/7864150] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
Abstract
Acute pancreatitis (AP) is characterized by early activation of intra-acinar proteases followed by acinar cell death and inflammation. Cellular oxidative stress is a key mechanism underlying these pathological events. Sulforaphane (SFN) is a natural organosulfur antioxidant with undescribed effects on AP. Here we investigated modulatory effects of SFN on cellular oxidation and inflammation in AP. AP was induced by cerulean hyperstimulation in BALB/c mice. Treatment group received a single dose of 5 mg/kg SFN for 3 consecutive days before AP. We found that SFN administration attenuated pancreatic injury as evidenced by serum amylase, pancreatic edema, and myeloperoxidase, as well as by histological examination. SFN administration reverted AP-associated dysregulation of oxidative stress markers including pancreatic malondialdehyde and redox enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In acinar cells, SFN treatment upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes including quinoneoxidoreductase-1, heme oxidase-1, SOD1, and GPx1. In addition, SFN selectively suppressed cerulein-induced activation of the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome, in parallel with reduced nuclear factor- (NF-) κB activation and modulated NF-κB-responsive cytokine expression. Together, our data suggested that SFN modulates Nrf2-mediated oxidative stress and NLRP3/NF-κB inflammatory pathways in acinar cells, thereby protecting against AP.
Collapse
Affiliation(s)
- Zhaojun Dong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haixiao Shang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiangnan University School of Medicine, Wuxi 214122, China
| | - Li-Long Pan
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Madhav Bhatia
- Inflammation Research Group, Department of Pathology, University of Otago, Christchurch, 2 Riccarton Avenue, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiangnan University School of Medicine, Wuxi 214122, China
| |
Collapse
|
92
|
Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5724973. [PMID: 27313831 PMCID: PMC4893565 DOI: 10.1155/2016/5724973] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/02/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) is a potent and widely used anthracycline antibiotic for the treatment of several malignancies. Unfortunately, the clinical utility of DOX is often restricted due to the elicitation of organ toxicity. Particularly, the increased risk for the development of dilated cardiomyopathy by DOX among the cancer survivors warrants major attention from the physicians as well as researchers to develop adjuvant agents to neutralize the noxious effects of DOX on the healthy myocardium. Despite these pitfalls, the use of traditional cytotoxic drugs continues to be the mainstay treatment for several types of cancer. Recently, phytochemicals have gained attention for their anticancer, chemopreventive, and cardioprotective activities. The ideal cardioprotective agents should not compromise the clinical efficacy of DOX and should be devoid of cumulative or irreversible toxicity on the naïve tissues. Furthermore, adjuvants possessing synergistic anticancer activity and quelling of chemoresistance would significantly enhance the clinical utility in combating DOX-induced cardiotoxicity. The present review renders an overview of cardioprotective effects of plant-derived small molecules and their purported mechanisms against DOX-induced cardiotoxicity. Phytochemicals serve as the reservoirs of pharmacophore which can be utilized as templates for developing safe and potential novel cardioprotective agents in combating DOX-induced cardiotoxicity.
Collapse
|
93
|
Inhibition of chymotryptic-like standard proteasome activity exacerbates doxorubicin-induced cytotoxicity in primary cardiomyocytes. Toxicology 2016; 353-354:34-47. [DOI: 10.1016/j.tox.2016.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 01/16/2023]
|
94
|
Ge W, Yuan M, Ceylan AF, Wang X, Ren J. Mitochondrial aldehyde dehydrogenase protects against doxorubicin cardiotoxicity through a transient receptor potential channel vanilloid 1-mediated mechanism. Biochim Biophys Acta Mol Basis Dis 2015; 1862:622-634. [PMID: 26692169 DOI: 10.1016/j.bbadis.2015.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 11/25/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022]
Abstract
Cardiotoxicity is one of the major life-threatening effects encountered in cancer chemotherapy with doxorubicin and other anthracyclines. Mitochondrial aldehyde dehydrogenase (ALDH2) may alleviate doxorubicin toxicity although the mechanism remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on doxorubicin-induced myocardial damage with a focus on mitochondrial injury. Wild-type (WT) and transgenic mice overexpressing ALDH2 driven by chicken β-actin promoter were challenged with doxorubicin (15mg/kg, single i.p. injection, for 6days) and cardiac mechanical function was assessed using the echocardiographic and IonOptix systems. Western blot analysis was used to evaluate intracellular Ca(2+) regulatory and mitochondrial proteins, PKA and its downstream signal eNOS. Doxorubicin challenge altered cardiac geometry and function evidenced by enlarged left ventricular end systolic and diastolic diameters, decreased factional shortening, cell shortening and intracellular Ca(2+) rise, prolonged relengthening and intracellular Ca(2+) decay, the effects of which were attenuated by ALDH2. Doxorubicin challenge compromised mitochondrial integrity and upregulated 4-HNE and UCP-2 levels while downregulating levels of TRPV1, SERCA2a and PGC-1α, the effects of which were alleviated by ALDH2. Doxorubicin-induced cardiac functional defect and apoptosis were reversed by the TRPV1 agonist SA13353 and the ALDH-2 agonist Alda-1 whereas the TRPV1 antagonist capsazepine nullified ALDH2/Alda-1-induced protection. Doxorubicin suppressed phosphorylation of PKA and eNOS, the effect of which was reversed by ALDH2. Moreover, 4-HNE mimicked doxorubicin-induced cardiomyocyte anomalies, the effect of which was ablated by SA13353. Taken together, our results suggested that ALDH2 may rescue against doxorubicin cardiac toxicity possibly through a TRPV1-mediated protection of mitochondrial integrity.
Collapse
Affiliation(s)
- Wei Ge
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Ming Yuan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Asli F Ceylan
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jun Ren
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|