51
|
Zhai J, Qi Q, Wang M, Yan J, Li K, Xu H. Overexpression of tomato thioredoxin h (SlTrxh) enhances excess nitrate stress tolerance in transgenic tobacco interacting with SlPrx protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111137. [PMID: 35067307 DOI: 10.1016/j.plantsci.2021.111137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
The thioredoxin (Trx) system plays a vital function in cellular antioxidative defense. However, little is known about Trx in tomato under excess nitrate. In this study, we isolated the tomato gene encoding h-type Trx gene (SlTrxh). The mRNA transcript of SlTrxh in roots and leaves of tomato was induced incrementally under excess nitrate for 24 h. Subcellular localization showed that SlTrxh might localize in the cytoplasm, nucleus and plasma membrane. Enzymatic activity characterization revealed that SlTrxh protein possesses the disulfide reductase function and Cysteine (Cys) 54 is important for its activity. Overexpressing SlTrxh in tobacco resulted in increasing seed germination rate, root length and decreasing H2O2 and O2- accumulation, compared with the wild type (WT) tobacco under nitrate stress. While overexpressing SlTrxhC54S (Cysteine 54 mutated to Serine) in tobacco showed decreased germination rate and root length compared with the WT after nitrate treatment. After nitrate stress treatment, SlTrxh overexpressing transgenic tobacco plants have lower malonaldehyde (MDA), H2O2 contents and Reactive Oxygen Species (ROS) accumulation, and higher mRNA transcript level of NtP5CS, NtDREB2, higher ratio of ASA/DHA and GSH/GSSG, higher activities of ascorbate peroxidase and NADP thioredoxin reductase. Besides, SlTrxh overexpressing plants showed higher tolerance to Methyl Viologen (MV) in the seed germination and seedling stage. The yeast two-hybrid, pull-down, Co-immunoprecipitation and Bimolecular luciferase complementation assay confirmed that SlTrxh physically interacted with tomato peroxiredoxin (SlPrx). These results suggest that SlTrxh contributes to maintaining ROS homeostasis under excess nitrate stress interacting with SlPrx and Cys54 is important for its enzyme activity.
Collapse
Affiliation(s)
- Jiali Zhai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China
| | - Qi Qi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China
| | - Manqi Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China
| | - Jinping Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China.
| |
Collapse
|
52
|
McClean C, Davison GW. Circadian Clocks, Redox Homeostasis, and Exercise: Time to Connect the Dots? Antioxidants (Basel) 2022; 11:antiox11020256. [PMID: 35204138 PMCID: PMC8868136 DOI: 10.3390/antiox11020256] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Compelling research has documented how the circadian system is essential for the maintenance of several key biological processes including homeostasis, cardiovascular control, and glucose metabolism. Circadian clock disruptions, or losses of rhythmicity, have been implicated in the development of several diseases, premature ageing, and are regarded as health risks. Redox reactions involving reactive oxygen and nitrogen species (RONS) regulate several physiological functions such as cell signalling and the immune response. However, oxidative stress is associated with the pathological effects of RONS, resulting in a loss of cell signalling and damaging modifications to important molecules such as DNA. Direct connections have been established between circadian rhythms and oxidative stress on the basis that disruptions to circadian rhythms can affect redox biology, and vice versa, in a bi-directional relationship. For instance, the expression and activity of several key antioxidant enzymes (SOD, GPx, and CAT) appear to follow circadian patterns. Consequently, the ability to unravel these interactions has opened an exciting area of redox biology. Exercise exerts numerous benefits to health and, as a potent environmental cue, has the capacity to adjust disrupted circadian systems. In fact, the response to a given exercise stimulus may also exhibit circadian variation. At the same time, the relationship between exercise, RONS, and oxidative stress has also been scrutinised, whereby it is clear that exercise-induced RONS can elicit both helpful and potentially harmful health effects that are dependent on the type, intensity, and duration of exercise. To date, it appears that the emerging interface between circadian rhythmicity and oxidative stress/redox metabolism has not been explored in relation to exercise. This review aims to summarise the evidence supporting the conceptual link between the circadian clock, oxidative stress/redox homeostasis, and exercise stimuli. We believe carefully designed investigations of this nexus are required, which could be harnessed to tackle theories concerned with, for example, the existence of an optimal time to exercise to accrue physiological benefits.
Collapse
|
53
|
Zhao T, Chen J, Liu S, Yang J, Wu J, Miao L, Sun W. Transcriptome analysis of Fusobacterium nucleatum reveals differential gene expression patterns in the biofilm versus planktonic cells. Biochem Biophys Res Commun 2022; 593:151-157. [PMID: 35085920 DOI: 10.1016/j.bbrc.2021.11.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/02/2022]
Abstract
As a chronic infectious disease, periodontitis can cause gum recession, loss of alveolar bone, loosening of teeth, and even loss of teeth. Dental plaque biofilm is the initiating factor for the occurrence and development of periodontitis. Fusobacterium nucleatum (F. nucleatum) plays a vital role in the structure and ecology of dental plaque biofilms. It is a bridge between early and late colonization bacteria in dental plaque. Understanding the molecular mechanism of F. nucleatum during biofilm development is essential to control periodontitis. This study aimed to determine gene expression profiles of the F. nucleatum strain, ATCC 25586, in the planktonic and biofilm phase through RNA-sequencing approach. The results were confirmed by quantitative reverse transcriptase PCR (RT-qPCR). The results clearly illustrate the difference in gene expression of F. nucleatum under planktonic and biofilms. A total of 110 genes were differentially expressed by F. nucleatum in the biofilm state compared with the planktonic state. The 25 upregulated genes in the biofilm state were mainly related to carbohydrate and amino acid metabolism, while the 85 downregulated genes were primarily associated with cell growth, division, and oxidative stress; most of the upregulated genes of F. nucleatum involved in virulence and oral malodor. Furthermore, the transcriptome analysis and antibacterial activity test also identified Lysine might exhibit the antibacterial and antibiofilm activity of F. nucleatum for the first time. These new findings could provide caveats for future studies on the regulation and maintenance of plaque biofilm and the development of biomarkers for periodontitis.
Collapse
Affiliation(s)
- Tian Zhao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiaqi Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Shuai Liu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jie Yang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
54
|
Cloning, Functional Characterization and Response to Cadmium Stress of the Thioredoxin-like Protein 1 Gene from Phascolosoma esculenta. Int J Mol Sci 2021; 23:ijms23010332. [PMID: 35008758 PMCID: PMC8745482 DOI: 10.3390/ijms23010332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Cadmium (Cd) is a heavy metal toxicant and is widely distributed in aquatic environments. It can cause excessive production of reactive oxygen species (ROS) in the organism, which in turn leads to a series of oxidative damages. Thioredoxin (Trx), a highly conserved disulfide reductase, plays an important role in maintaining the intracellular redox homeostasis in eukaryotes and prokaryotes. Phascolosoma esculenta is an edible marine worm, an invertebrate that is extensively found on the mudflats of coastal China. To explore the molecular response of Trx in mudflat organisms under Cd stress, we identified a new Trx isoform (Trx-like protein 1 gene) from P. esculenta for the first time, designated as PeTrxl. Molecular and structural characterization, as well as multiple sequence and phylogenetic tree analysis, demonstrated that PeTrxl belongs to the Trx superfamily. PeTrxl transcripts were found to be ubiquitous in all tissues, and the highest expression level occurred in the coelomic fluid. Exposure to three sublethal concentrations of Cd resulted in the upregulation and then downregulation of PeTrxl expression levels over time in coelomic fluid of P. esculenta. The significant elevation of PeTrxl expression after 12 and 24 h of Cd exposure at 6 and 96 mg/L, respectively, might reflect its important role in the resistance to Cd stress. Recombinant PeTrxl (rPeTrxl) showed prominent dose-dependent insulin-reducing and ABTS free radical-scavenging abilities. After exposure to 96 mg/L Cd for 24 h, the ROS level increased significantly in the coelomic fluid, suggesting that Cd induced oxidative stress in P. esculenta. Furthermore, the injection of rPeTrxl during Cd exposure significantly reduced the ROS in the coelomic fluid. Our data suggest that PeTrxl has significant antioxidant capacity and can protect P. esculenta from Cd-induced oxidative stress.
Collapse
|
55
|
Emodin ameliorates antioxidant capacity and exerts neuroprotective effect via PKM2-mediated Nrf2 transactivation. Food Chem Toxicol 2021; 160:112790. [PMID: 34971761 DOI: 10.1016/j.fct.2021.112790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022]
Abstract
Pyruvate kinase M2 (PKM2) is overexpressed in neuronal cells. However, there are few studies on the involvement of PKM2 modulators in neurodegenerative diseases. Emodin, a dominating anthraquinone derivative extracting from the rhizome of rhubarb, has received expanding consideration due to its pharmacological properties. Our data reveal that emodin could resist hydrogen peroxide- or 6-hydroxydopamine-mediated mitochondrial fission and apoptosis in PC12 cells (a neuron-like rat pheochromocytoma cell line). Notably, emodin at nontoxic concentrations significantly inhibits PKM2 activity and promotes dissociation of tetrameric PKM2 into dimers in cells. The PKM2 dimerization enhances the interaction of PKM2 and NFE2-related factor 2 (Nrf2), which further triggers the activation of the Nrf2/ARE pathway to upregulate a panel of cytoprotective genes. Modulating the PKM2/Nrf2/ARE axis by emodin unveils a novel mechanism for understanding the pharmacological functions of emodin. Our findings indicate that emodin is a potential candidate for the treatment of oxidative stress-related neurodegenerative disorders.
Collapse
|
56
|
Nguyen TT, Hoang T, Tran KN, Kim H, Jang SH, Lee C. Essential roles of buried phenylalanine in the structural stability of thioredoxin from a psychrophilic Arctic bacterium Sphingomonas sp. PLoS One 2021; 16:e0261123. [PMID: 34910731 PMCID: PMC8673628 DOI: 10.1371/journal.pone.0261123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
Thioredoxin (Trx), a small redox protein, exhibits thermal stability at high temperatures regardless of its origin, including psychrophiles. Trxs have a common structure consisting of the central β-sheet flanked by an aliphatic cluster on one side and an aromatic cluster on the other side. Although the roles of aromatic amino acids in the folding and stability of proteins have been studied extensively, the contributions of aromatic residues to the stability and function of Trx, particularly Trxs from cold-adapted organisms, have not been fully elucidated. This study examined the roles of aromatic amino acids in the aromatic cluster of a Trx from the psychrophilic Arctic bacterium Sphingomonas sp. PAMC 26621 (SpTrx). The aromatic cluster of SpTrx was comprised of W11, F26, F69, and F80, in which F26 at the β2 terminus was buried inside. The substitution of tyrosine for F26 changed the SpTrx conformation substantially compared to that of F69 and F80. Further biochemical and spectroscopic investigations on F26 showed that the F26Y, F26W, and F26A mutants resulted in structural instability of SpTrx in both urea- and temperature-induced unfolding and lower insulin reduction activities. The Trx reductase (SpTR) showed lower catalytic efficiencies against F26 mutants compared to the wild-type SpTrx. These results suggest that buried F26 is essential for maintaining the active-site conformation of SpTrx as an oxidoreductase and its structural stability for interactions with SpTR at colder temperatures.
Collapse
Affiliation(s)
- Thu-Thuy Nguyen
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Trang Hoang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Kiet N. Tran
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Hyeonji Kim
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
- * E-mail:
| |
Collapse
|
57
|
Pillay CS, John N. Can thiol-based redox systems be utilized as parts for synthetic biology applications? Redox Rep 2021; 26:147-159. [PMID: 34378494 PMCID: PMC8366655 DOI: 10.1080/13510002.2021.1966183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Synthetic biology has emerged from molecular biology and engineering approaches and aims to develop novel, biologically-inspired systems for industrial and basic research applications ranging from biocomputing to drug production. Surprisingly, redoxin (thioredoxin, glutaredoxin, peroxiredoxin) and other thiol-based redox systems have not been widely utilized in many of these synthetic biology applications. METHODS We reviewed thiol-based redox systems and the development of synthetic biology applications that have used thiol-dependent parts. RESULTS The development of circuits to facilitate cytoplasmic disulfide bonding, biocomputing and the treatment of intestinal bowel disease are amongst the applications that have used thiol-based parts. We propose that genetically encoded redox sensors, thiol-based biomaterials and intracellular hydrogen peroxide generators may also be valuable components for synthetic biology applications. DISCUSSION Thiol-based systems play multiple roles in cellular redox metabolism, antioxidant defense and signaling and could therefore offer a vast and diverse portfolio of components, parts and devices for synthetic biology applications. However, factors limiting the adoption of redoxin systems for synthetic biology applications include the orthogonality of thiol-based components, limitations in the methods to characterize thiol-based systems and an incomplete understanding of the design principles of these systems.
Collapse
Affiliation(s)
- Ché S. Pillay
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Nolyn John
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
58
|
Bisdemethoxycurcumin Protects Small Intestine from Lipopolysaccharide-Induced Mitochondrial Dysfunction via Activating Mitochondrial Antioxidant Systems and Mitochondrial Biogenesis in Broiler Chickens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9927864. [PMID: 34795844 PMCID: PMC8595021 DOI: 10.1155/2021/9927864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Bisdemethoxycurcumin is one of the three curcuminoids of turmeric and exhibits good antioxidant activity in animal models. This study is aimed at investigating the effect of bisdemethoxycurcumin on small intestinal mitochondrial dysfunction in lipopolysaccharide- (LPS-) treated broilers, especially on the mitochondrial thioredoxin 2 system and mitochondrial biogenesis. A total of 320 broiler chickens were randomly assigned into four experimental diets using a 2 × 2 factorial arrangement with diet (0 and 150 mg/kg bisdemethoxycurcumin supplementation) and stress (saline or LPS challenge) for 20 days. Broilers received a dose of LPS (1 mg/kg body weight) or sterile saline intraperitoneally on days 16, 18, and 20 of the trial. Bisdemethoxycurcumin mitigated the mitochondrial dysfunction of jejunum and ileum induced by LPS, as evident by the reduced reactive oxygen species levels and the increased mitochondrial membrane potential. Bisdemethoxycurcumin partially reversed the decrease in the mitochondrial DNA copy number and the depletion of ATP levels. Bisdemethoxycurcumin activated the mitochondrial antioxidant response, including the prevention of lipid peroxidation, enhancement of manganese superoxide dismutase activity, and the upregulation of the mitochondrial glutaredoxin 5 and thioredoxin 2 system. The enhanced mitochondrial respiratory complex activities in jejunum and ileum were also attributed to bisdemethoxycurcumin treatment. In addition, bisdemethoxycurcumin induced mitochondrial biogenesis via transcriptional regulation of proliferator-activated receptor-gamma coactivator-1alpha pathway. In conclusion, our results demonstrated the potential of bisdemethoxycurcumin to attenuate small intestinal mitochondrial dysfunction, which might be mediated via activating the mitochondrial antioxidant system and mitochondrial biogenesis in LPS-treated broilers.
Collapse
|
59
|
Song ZL, Zhang J, Xu Q, Shi D, Yao X, Fang J. Structural Modification of Aminophenylarsenoxides Generates Candidates for Leukemia Treatment via Thioredoxin Reductase Inhibition. J Med Chem 2021; 64:16132-16146. [PMID: 34704769 DOI: 10.1021/acs.jmedchem.1c01441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Upregulation of the selenoprotein thioredoxin reductase (TrxR) is of pathological significance in maintaining tumor phenotypes. Thus, TrxR inhibitors are promising cancer therapeutic agents. We prepared different amino-substituted phenylarsine oxides and evaluated their cytotoxicity and inhibition of TrxR. Compared with our reported p-substituted molecule (8), the o-substituted molecule (10) shows improved efficacy (nearly a fourfold increase) to kill leukemia HL-60 cells. Although the compounds 8 and 10 display similar potency to inhibit the purified TrxR, the o-substitution 10 exhibits higher potency than the p-substitution 8 to inhibit the cellular TrxR activity. Molecular docking results demonstrate the favorable weak interactions of the o-amino group with the TrxR C-terminal active site. Efficient inhibition of TrxR consequently induces the oxidative stress-mediated apoptosis of cancer cells. Silence of the TrxR expression sensitizes the cells to the arsenic compound treatment, further supporting the critical involvement of TrxR in the cellular actions of compound 10.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
60
|
The Efficacy of Antioxidative Stress Therapy on Oxidative Stress Levels in Rheumatoid Arthritis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3302886. [PMID: 34659630 PMCID: PMC8517629 DOI: 10.1155/2021/3302886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/04/2021] [Indexed: 12/29/2022]
Abstract
Objective To explore the efficacy of antioxidative stress therapy on oxidative stress levels in rheumatoid arthritis (RA) by a systematic review and meta-analysis of randomized controlled trials. Methods Chinese and English databases such as PubMed, Embase, China National Knowledge Infrastructure (CNKI), and China Biomedical Literature were searched, mainly searching for clinical randomized controlled trials of antioxidant therapy for rheumatoid arthritis. The search time is from the establishment of the database to July 2021. Two researchers independently carried out literature search, screening, and data extraction. The bias risk tool provided by the Cochrane Collaboration was used to evaluate the bias risk of all the included literature, and the RevMan 5.3 software was used for meta-analysis. Results A total of 24 RCTs (28 records) and 1277 participants were included. The time span of randomized controlled trials (RCTs) is from 1986 to 2020. These RCTs involve 14 types of antioxidants or antioxidant therapies, and these therapies have varying degrees of improvement on oxidative stress in RA patients. The summary results showed that the MDA in the experiment group is lower (SMD -0.82, 95% CI -1.35 to -0.28, P = 0.003). The difference of TAC, SOD, NO, GPx, CAT, and GSH between two groups was of no statistical significance (TAC (SMD 0.27, 95% CI -0.21 to 0.75, P = 0.27), SOD (SMD 0.12, 95% CI -0.16 to 0.40, P = 0.41), NO (SMD -2.03, 95% CI -4.22 to 0.16, P = 0.07), GPx (SMD 0.24, 95% CI -0.07 to 0.54, P = 0.13), CAT (SMD 2.95, 95% CI -2.6 to 8.51, P = 0.30), and GSH (SMD 2.46, 95% CI -0.06 to 4.98, P = 0.06)). For adverse events, the summary results showed that the difference was of no statistical significance (RR 1.16, 95% CI 0.79 to 1.71, P = 0.45). In addition, antioxidant therapy has also shown improvement in clinical efficacy indexes (number of tender joints, number of swollen joints, DAS28, VAS, and HAQ) and inflammation indexes (ESR, CRP, TNF-α, and IL6) for RA patients. Conclusion The existing evidence shows potential benefits, mainly in reducing MDA and increasing TAC and GSH in some subgroups. However, more large samples and higher quality RCTs are needed to provide high-quality evidence, so as to provide more clinical reference information for the antioxidant treatment of RA.
Collapse
|
61
|
Liu Y, Zhong J, Zhao L, Yu S, Zha H, Chai Y, Zhu Q. Molecular characterization and functional analysis of Trx and Trp14 in roughskin sculpin (Trachidermus fasciatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1369-1382. [PMID: 34279744 DOI: 10.1007/s10695-021-00978-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Thioredoxins (Trxs) are a family of small and highly conserved proteins which play crucial roles in the maintenance and regulation of the cellular redox homeostasis. In this study, the full-length cDNAs of thioredoxin 1 (TfTrx1) and thioredoxin-related protein of 14 kDa (TfTrp14) were isolated from roughskin sculpin (Trachidermus fasciatus). TfTrx1 is 662 bp in length with a 336-bp open reading frame (ORF) that encodes for a peptide with 111 amino acids, and TfTrp14 consists of 1066 bp with a 372-bp ORF that is translated to 123 amino acids. TfTrx1 and TfTrp14 contain highly conserved catalytic site motif CGPC and CPDC, respectively. Tissue distribution analysis indicated that both genes were broadly expressed in all examined tissues with the highest expression of TfTrx1 in the blood and TfTrp14 in the brain. In post-LPS and heavy metal challenge, the mRNA of both genes was significantly increased in the skin, liver, spleen, and brain at various times. The results of western blot detection displayed that the time of the induced maximum protein expression was 6-h post-LPS injection in the skin and liver, which were slightly delayed compared with that of 2 h at mRNA level. The recombinant TfTrp14 and TfTrx1 proteins were expressed in E. coli BL21 (DE3). The increase of the fluorescence intensity in rTfTrx1 and rTfTrp14 suggested the redox state changes in the microenvironment around tryptophan residues. Both of the recombinant proteins exhibited concentration-dependent disulfide reductase activity towards insulin, and the catalytic activity of rTfTrx1 was much higher than that of rTfTrp14.
Collapse
Affiliation(s)
- Yingying Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jinmiao Zhong
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Lihua Zhao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shanshan Yu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haidong Zha
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yingmei Chai
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Qian Zhu
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
62
|
Wang Y, Zhang R, Pan W, Xu Z, Yang H, Luo Q, Ye X, Cheng X. Effects of L-carnitine combined with pancreatic kininogenase on thioredoxin 2, thioredoxin reductase 1, and sperm quality in patients with oligoasthenospermia. Transl Androl Urol 2021; 10:3515-3523. [PMID: 34532275 PMCID: PMC8421838 DOI: 10.21037/tau-21-680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022] Open
Abstract
Background To study the effects of L-carnitine (LC) combined with pancreatic kininogenase on thioredoxin 2 (Trx 2), thioredoxin reductase 1 (TrxR 1), and sperm quality in patients with oligoasthenospermia. Methods A total of 300 male infertility patients with oligoasthenospermia who were treated in the andrology clinic of our hospital from December 2019 to December 2020 were randomly divided into an LC group and combined treatment group, and 50 males with normal semen were selected as a control group. The computer-assisted semen analysis system (CASA) was used to detect the total number, vitality, and forward motility of the sperm before and after treatment, and sperm morphology was detected by the Diff-Quik method of the sperm staining kit. Sperm chromatin dispersion (SCD) method was used to detect sperm DNA fragments, and Western-blot was used to detect the protein expression of Trx 2 and TrxR 1. Results There were no significant differences in sperm density, motility rate, forward motile sperm rate, and DNA fragmentation rate in oligoasthenospermia patients before treatment (P>0.05). However, after 1 month of treatment, the sperm density, motility rate, and forward motile sperm rate were all higher than before treatment (P<0.05), while the DNA fragmentation rate was lower than before treatment. At the same time, each index of semen in the combination group was higher than that in the LC group (P<0.05), and the total effective rate in the combination group was significantly higher than in the LC group (P<0.01). The expression of Trx2 protein in oligoasthenospermia patients was significantly increased (P<0.05), while the expression of TrxR1 protein was significantly decreased (P<0.05). After 3 months of treatment, the expression of Trx2 protein was significantly decreased (P<0.05), while the expression of TrxR1 protein was significantly increased (P<0.05). Conclusions The results suggest Trx 2 and TrxR 1 may be candidate protein markers for oligoasthenospermia. LC combined with pancreatic kininogenase in the treatment of male oligoasthenospermia can effectively promote sperm maturation, enhance sperm motility, and improve semen quality, which has high application value.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmacy, Ma'anshan Maternal and Child Health Hospital, Anhui, China
| | - Rui Zhang
- Department of Andrology, Ma'anshan Maternal and Child Health Hospital, Anhui, China
| | - Weijun Pan
- Department of reproductive center, Ma'anshan Maternal and Child Health Hospital, Anhui, China
| | - Zhe Xu
- Department of Pharmacy, Ma'anshan Maternal and Child Health Hospital, Anhui, China
| | - Huan Yang
- Department of Pharmacy, Ma'anshan Maternal and Child Health Hospital, Anhui, China
| | - Qi Luo
- Department of Pharmacy, Ma'anshan Maternal and Child Health Hospital, Anhui, China
| | - Xiping Ye
- Department of Reproduction laboratory, Ma'anshan Maternal and Child Health Hospital, Anhui, China
| | - Xianfeng Cheng
- Department of Laboratory Medicine, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
63
|
Marcuello C, Frempong GA, Balsera M, Medina M, Lostao A. Atomic Force Microscopy to Elicit Conformational Transitions of Ferredoxin-Dependent Flavin Thioredoxin Reductases. Antioxidants (Basel) 2021; 10:antiox10091437. [PMID: 34573070 PMCID: PMC8469568 DOI: 10.3390/antiox10091437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Flavin and redox-active disulfide domains of ferredoxin-dependent flavin thioredoxin reductase (FFTR) homodimers should pivot between flavin-oxidizing (FO) and flavin-reducing (FR) conformations during catalysis, but only FR conformations have been detected by X-ray diffraction and scattering techniques. Atomic force microscopy (AFM) is a single-molecule technique that allows the observation of individual biomolecules with sub-nm resolution in near-native conditions in real-time, providing sampling of molecular properties distributions and identification of existing subpopulations. Here, we show that AFM is suitable to evaluate FR and FO conformations. In agreement with imaging under oxidizing condition, only FR conformations are observed for Gloeobacter violaceus FFTR (GvFFTR) and isoform 2 of Clostridium acetobutylicum FFTR (CaFFTR2). Nonetheless, different relative dispositions of the redox-active disulfide and FAD-binding domains are detected for FR homodimers, indicating a dynamic disposition of disulfide domains regarding the central protein core in solution. This study also shows that AFM can detect morphological changes upon the interaction of FFTRs with their protein partners. In conclusion, this study paves way for using AFM to provide complementary insight into the FFTR catalytic cycle at pseudo-physiological conditions. However, future approaches for imaging of FO conformations will require technical developments with the capability of maintaining the FAD-reduced state within the protein during AFM scanning.
Collapse
Affiliation(s)
- Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (C.M.); (G.A.F.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Gifty Animwaa Frempong
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (C.M.); (G.A.F.)
| | - Mónica Balsera
- Department of Abiotic Stress, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain;
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Correspondence: (M.M.); (A.L.); Tel.: +34-97-676-2476 (M.M.); +34-87-655-5357 (A.L.)
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (C.M.); (G.A.F.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Correspondence: (M.M.); (A.L.); Tel.: +34-97-676-2476 (M.M.); +34-87-655-5357 (A.L.)
| |
Collapse
|
64
|
Ojeda V, Jiménez-López J, Romero-Campero FJ, Cejudo FJ, Pérez-Ruiz JM. A chloroplast redox relay adapts plastid metabolism to light and affects cytosolic protein quality control. PLANT PHYSIOLOGY 2021; 187:88-102. [PMID: 34618130 PMCID: PMC8418392 DOI: 10.1093/plphys/kiab246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/04/2021] [Indexed: 06/01/2023]
Abstract
In chloroplasts, thiol-dependent redox regulation is linked to light since the disulfide reductase activity of thioredoxins (Trxs) relies on photo-reduced ferredoxin (Fdx). Furthermore, chloroplasts harbor an NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC. The activity of these two redox systems is integrated by the redox balance of 2-Cys peroxiredoxin (Prx), which is controlled by NTRC. However, NTRC was proposed to participate in redox regulation of additional targets, prompting inquiry into whether the function of NTRC depends on its capacity to maintain the redox balance of 2-Cys Prxs or by direct redox interaction with chloroplast enzymes. To answer this, we studied the functional relationship of NTRC and 2-Cys Prxs by a comparative analysis of the triple Arabidopsis (Arabidopsis thaliana) mutant, ntrc-2cpab, which lacks NTRC and 2-Cys Prxs, and the double mutant 2cpab, which lacks 2-Cys Prxs. These mutants exhibit almost indistinguishable phenotypes: in growth rate, photosynthesis performance, and redox regulation of chloroplast enzymes in response to light and darkness. These results suggest that the most relevant function of NTRC is in controlling the redox balance of 2-Cys Prxs. A comparative transcriptomics analysis confirmed the phenotypic similarity of the two mutants and suggested that the NTRC-2-Cys Prxs system participates in cytosolic protein quality control. We propose that NTRC and 2-Cys Prxs constitute a redox relay, exclusive to photosynthetic organisms that fine-tunes the redox state of chloroplast enzymes in response to light and affects transduction pathways towards the cytosol.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Julia Jiménez-López
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Francisco José Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| |
Collapse
|
65
|
Cejudo FJ, González MC, Pérez-Ruiz JM. Redox regulation of chloroplast metabolism. PLANT PHYSIOLOGY 2021; 186:9-21. [PMID: 33793865 PMCID: PMC8154093 DOI: 10.1093/plphys/kiaa062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX-FTR-TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX-FTR-TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.
Collapse
Affiliation(s)
- Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
- Author for communication:
| | - María-Cruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
66
|
Cui J, Nathanael JG, Wille U. Oxidative Damage of S‐Containing Amino Acids by the Environmental Radical NO
3
.
: A Kinetic, Product and Computational Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202101027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiaxing Cui
- School of Chemistry Bio21 Institute The University of Melbourne 30 Flemington Road Parkville Victoria 3010 Australia
| | - Joses G. Nathanael
- School of Chemistry Bio21 Institute The University of Melbourne 30 Flemington Road Parkville Victoria 3010 Australia
| | - Uta Wille
- School of Chemistry Bio21 Institute The University of Melbourne 30 Flemington Road Parkville Victoria 3010 Australia
| |
Collapse
|
67
|
Lhee D, Bhattacharya D, Yoon HS. Independent evolution of the thioredoxin system in photosynthetic Paulinella species. Curr Biol 2021; 31:R328-R329. [PMID: 33848483 DOI: 10.1016/j.cub.2021.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Redox regulation allows phytoplankton to monitor and stabilize metabolic pathways under changing conditions1. In plastids, the thioredoxin (TRX) system is linked to photosynthetic electron transport and fine tuning of metabolic pathways to fluctuating light levels. Expansion of the number of redox signal transmitters and their protein targets, as seen in plants, is believed to increase cell robustness2. In this study, we searched for genes related to redox regulation in the photosynthetic amoeba Paulinella micropora KR01 (hereafter, KR01). The genus Paulinella includes testate filose amoebae, in which a single clade acquired a photosynthetic organelle, the chromatophore, from an alpha-cyanobacterial donor3. This independent primary endosymbiosis occurred relatively recently (∼124 million years ago) when compared to Archaeplastida (>1 billion years ago), making photosynthetic Paulinella a valuable model for studying the early stages of primary endosymbiosis4. Our comparative analysis demonstrates that this lineage has evolved a TRX system similar to other algae, relying, however, on genes with diverse phylogenetic origins (including the endosymbiont, host, bacteria, and red algae). One TRX of eukaryotic provenance is targeted to the chromatophore, implicating host-endosymbiont coordination of redox regulation. A chromatophore-targeted glucose-6-phosphate dehydrogenase (G6PDH) of red algal origin suggests that Paulinella exploited the existing redox regulation system in Archaeplastida to foster integration. Our study elucidates the independent evolution of the TRX system in photosynthetic Paulinella, whose parts derive from the existing genetic toolkit in diverse organisms.
Collapse
Affiliation(s)
- Duckhyun Lhee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
68
|
Wohlrab P, Johann Danhofer M, Schaubmayr W, Tiboldi A, Krenn K, Markstaller K, Ullrich R, Ulrich Klein K, Tretter V. Oxygen conditions oscillating between hypoxia and hyperoxia induce different effects in the pulmonary endothelium compared to constant oxygen conditions. Physiol Rep 2021; 9:e14590. [PMID: 33565273 PMCID: PMC7873712 DOI: 10.14814/phy2.14590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
The pulmonary endothelium is an immediate recipient of high oxygen concentrations upon oxygen therapy and mediates down-stream responses. Cyclic collapse and reopening of atelectatic lung areas during mechanical ventilation with high fractions of inspired oxygen result in the propagation of oxygen oscillations in the hypoxic/hyperoxic range. We used primary murine lung endothelial cell cultures to investigate cell responses to constant and oscillating oxygen conditions in the hypoxic to hyperoxic range. Severe constant hyperoxia had pro-inflammatory and cytotoxic effects including an increase in expression of ICAM1, E-selectin, and RAGE at 24 hr exposure. The coagulative/fibrinolytic system responded by upregulation of uPA, tPA, and vWF and PAI1 under constant severe hyperoxia. Among antioxidant enzymes, the upregulation of SOD2, TXN1, TXNRD3, GPX1, and Gstp1 at 24 hr, but downregulation of SOD3 at 72 hr constant hyperoxia was evident. Hypoxic/hyperoxic oscillating oxygen conditions induced pro-inflammatory cytokine release to a lesser extent and later than constant hyperoxia. Gene expression analyses showed upregulation of NFKB p65 mRNA at 72 hr. More evident was a biphasic response of NOS3 and ACE1 gene expression (downregulation until 24 hr and upregulation at 72 hr). ACE2 mRNA was upregulated until 72 hr, but shedding of the mature protein from the cell surface favored ACE1. Oscillations resulted in severe production of peroxynitrite, but apart from upregulation of Gstp1 at 24 hr responses of antioxidative proteins were less pronounced than under constant hyperoxia. Oscillating oxygen in the hypoxic/hyperoxic range has a characteristical impact on vasoactive mediators like NOS3 and on the activation of the renin-angiotensin system in the lung endothelium.
Collapse
Affiliation(s)
- Peter Wohlrab
- Department of Anesthesia and General Intensive CareMedical University ViennaViennaAustria
| | | | - Wolfgang Schaubmayr
- Department of Anesthesia and General Intensive CareMedical University ViennaViennaAustria
| | - Akos Tiboldi
- Department of Anesthesia and General Intensive CareMedical University ViennaViennaAustria
| | - Katharina Krenn
- Department of Anesthesia and General Intensive CareMedical University ViennaViennaAustria
| | - Klaus Markstaller
- Department of Anesthesia and General Intensive CareMedical University ViennaViennaAustria
| | - Roman Ullrich
- Department of Anesthesia and General Intensive CareMedical University ViennaViennaAustria
| | - Klaus Ulrich Klein
- Department of Anesthesia and General Intensive CareMedical University ViennaViennaAustria
| | - Verena Tretter
- Department of Anesthesia and General Intensive CareMedical University ViennaViennaAustria
| |
Collapse
|
69
|
Ulfig A, Leichert LI. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol Life Sci 2021; 78:385-414. [PMID: 32661559 PMCID: PMC7873122 DOI: 10.1007/s00018-020-03591-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Neutrophils are predominant immune cells that protect the human body against infections by deploying sophisticated antimicrobial strategies including phagocytosis of bacteria and neutrophil extracellular trap (NET) formation. Here, we provide an overview of the mechanisms by which neutrophils kill exogenous pathogens before we focus on one particular weapon in their arsenal: the generation of the oxidizing hypohalous acids HOCl, HOBr and HOSCN during the so-called oxidative burst by the enzyme myeloperoxidase. We look at the effects of these hypohalous acids on biological systems in general and proteins in particular and turn our attention to bacterial strategies to survive HOCl stress. HOCl is a strong inducer of protein aggregation, which bacteria can counteract by chaperone-like holdases that bind unfolding proteins without the need for energy in the form of ATP. These chaperones are activated by HOCl through thiol oxidation (Hsp33) or N-chlorination of basic amino acid side-chains (RidA and CnoX) and contribute to bacterial survival during HOCl stress. However, neutrophil-generated hypohalous acids also affect the host system. Recent studies have shown that plasma proteins act not only as sinks for HOCl, but get actively transformed into modulators of the cellular immune response through N-chlorination. N-chlorinated serum albumin can prevent aggregation of proteins, stimulate immune cells, and act as a pro-survival factor for immune cells in the presence of cytotoxic antigens. Finally, we take a look at the emerging role of HOCl as a potential signaling molecule, particularly its role in neutrophil extracellular trap formation.
Collapse
Affiliation(s)
- Agnes Ulfig
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
70
|
Gu J, Yao J, Duran R, Sunahara G. Comprehensive genomic and proteomic profiling reveal Acinetobacter johnsonii JH7 responses to Sb(III) toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141174. [PMID: 32805562 DOI: 10.1016/j.scitotenv.2020.141174] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Antimony (Sb) pollution poses a severe health threat to ecosystems. However, the toxic effects of Sb on biota are far from being elucidated. One of the unresolved questions is the molecular signal pathways underlying microbial adaptation to excess antimonite or Sb(III) exposure. The response of a Sb(III)-resistant bacterium Acinetobacter. johnsonii JH7 to Sb(III) stress was investigated using genomic and proteomic profiling. Sb(III) induced the formation of reactive oxygen species thereby leading to oxidative stress and the up-regulation of antioxidant enzyme activities. In addition, two important operons (ars and pst) playing critical roles in this cellular response were identified. The ars proteins functioned cooperatively to expel Sb(III) thereby decreasing antimonite toxicity. Downregulation of the phosphate-specific transporter might reduce the uptake of Sb(V) while hindering phosphorus assimilation. Interaction of Sb(III) with JH7 strain cells also affected peptide syntheses and folding, energy conversion, and stability of the cellular envelope. The present study provides for the first time a global map of cellular adaptation to excess Sb(III). Such information is potentially useful to future Sb pollution remediation strategies.
Collapse
Affiliation(s)
- Jihai Gu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China.
| | - Robert Duran
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Geoffrey Sunahara
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
71
|
Woo JS, Jeong SY, Park JH, Choi JH, Lee EH. Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 2020; 52:1908-1925. [PMID: 33288873 PMCID: PMC8080761 DOI: 10.1038/s12276-020-00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 10833, USA
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
72
|
SARS-CoV2 infectivity is potentially modulated by host redox status. Comput Struct Biotechnol J 2020; 18:3705-3711. [PMID: 33250972 PMCID: PMC7678423 DOI: 10.1016/j.csbj.2020.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022] Open
Abstract
The current coronavirus disease (COVID-19) outbreak caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV2) has emerged as a threat to global social and economic systems. Disparity in the infection of SARS-CoV2 among host population and species is an established fact without any clear explanation. To initiate infection, viral S-protein binds to the Angiotensin-Converting Enzyme 2 (ACE2) receptor of the host cell. Our analysis of retrieved amino acid sequences deposited in data bases shows that S-proteins and ACE2 are rich in cysteine (Cys) residues, many of which are conserved in various SARS-related coronaviruses and participate in intra-molecular disulfide bonds. High-resolution protein structures of S-proteins and ACE2 receptors highlighted the probability that two of these disulfide bonds are potentially redox-active, facilitating the primal interaction between the receptor and the spike protein. Presence of redox-active disulfides in the interacting parts of S-protein, ACE2, and a ferredoxin-like fold domain in ACE2, strongly indicate the role of redox in COVID-19 pathogenesis and severity. Resistant animals lack a redox-active disulfide (Cys133-Cys141) in ACE2 sequences, further strengthening the redox hypothesis for infectivity. ACE2 is a known regulator of oxidative stress. Augmentation of cellular oxidation with aging and illness is the most likely explanation of increased vulnerability of the elderly and persons with underlying health conditions to COVID-19.
Collapse
|
73
|
Quenneville S, Labouèbe G, Basco D, Metref S, Viollet B, Foretz M, Thorens B. Hypoglycemia-Sensing Neurons of the Ventromedial Hypothalamus Require AMPK-Induced Txn2 Expression but Are Dispensable for Physiological Counterregulation. Diabetes 2020; 69:2253-2266. [PMID: 32839348 PMCID: PMC7576557 DOI: 10.2337/db20-0577] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022]
Abstract
The ventromedial nucleus of the hypothalamus (VMN) is involved in the counterregulatory response to hypoglycemia. VMN neurons activated by hypoglycemia (glucose-inhibited [GI] neurons) have been assumed to play a critical although untested role in this response. Here, we show that expression of a dominant negative form of AMPK or inactivation of AMPK α1 and α2 subunit genes in Sf1 neurons of the VMN selectively suppressed GI neuron activity. We found that Txn2, encoding a mitochondrial redox enzyme, was strongly downregulated in the absence of AMPK activity and that reexpression of Txn2 in Sf1 neurons restored GI neuron activity. In cell lines, Txn2 was required to limit glucopenia-induced reactive oxygen species production. In physiological studies, absence of GI neuron activity after AMPK suppression in the VMN had no impact on the counterregulatory hormone response to hypoglycemia or on feeding. Thus, AMPK is required for GI neuron activity by controlling the expression of the antioxidant enzyme Txn2. However, the glucose-sensing capacity of VMN GI neurons is not required for the normal counterregulatory response to hypoglycemia. Instead, it may represent a fail-safe system in case of impaired hypoglycemia sensing by peripherally located glucose detection systems that are connected to the VMN.
Collapse
Affiliation(s)
- Simon Quenneville
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Davide Basco
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Salima Metref
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
74
|
Exploring the Functional Relationship between y-Type Thioredoxins and 2-Cys Peroxiredoxins in Arabidopsis Chloroplasts. Antioxidants (Basel) 2020; 9:antiox9111072. [PMID: 33142810 PMCID: PMC7694023 DOI: 10.3390/antiox9111072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022] Open
Abstract
Thioredoxins (Trxs) are small, ubiquitous enzymes that catalyze disulphide–dithiol interchange in target enzymes. The large set of chloroplast Trxs, including f, m, x and y subtypes, use reducing equivalents fueled by photoreduced ferredoxin (Fdx) for fine-tuning photosynthetic performance and metabolism through the control of the activity of redox-sensitive proteins. Although biochemical analyses suggested functional diversity of chloroplast Trxs, genetic studies have established that deficiency in a particular Trx subtype has subtle phenotypic effects, leading to the proposal that the Trx isoforms are functionally redundant. In addition, chloroplasts contain an NADPH-dependent Trx reductase with a joint Trx domain, termed NTRC. Interestingly, Arabidopsis mutants combining the deficiencies of x- or f-type Trxs and NTRC display very severe growth inhibition phenotypes, which are partially rescued by decreased levels of 2-Cys peroxiredoxins (Prxs). These findings indicate that the reducing capacity of Trxs f and x is modulated by the redox balance of 2-Cys Prxs, which is controlled by NTRC. In this study, we explored whether NTRC acts as a master regulator of the pool of chloroplast Trxs by analyzing its functional relationship with Trxs y. While Trx y interacts with 2-Cys Prxs in vitro and in planta, the analysis of Arabidopsis mutants devoid of NTRC and Trxs y suggests that Trxs y have only a minor effect, if any, on the redox state of 2-Cys Prxs.
Collapse
|
75
|
Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:415-425. [PMID: 32380253 PMCID: PMC7498668 DOI: 10.1016/j.jshs.2020.04.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 02/18/2020] [Indexed: 05/02/2023]
Abstract
The first report demonstrating that prolonged endurance exercise promotes oxidative stress in humans was published more than 4 decades ago. Since this discovery, many ensuing investigations have corroborated the fact that muscular exercise increases the production of reactive oxygen species (ROS) and results in oxidative stress in numerous tissues including blood and skeletal muscles. Although several tissues may contribute to exercise-induced ROS production, it is predicted that muscular contractions stimulate ROS production in active muscle fibers and that skeletal muscle is a primary source of ROS production during exercise. This contraction-induced ROS generation is associated with (1) oxidant damage in several tissues (e.g., increased protein oxidation and lipid peroxidation), (2) accelerated muscle fatigue, and (3) activation of biochemical signaling pathways that contribute to exercise-induced adaptation in the contracting muscle fibers. While our understanding of exercise and oxidative stress has advanced rapidly during the last decades, questions remain about whether exercise-induced increases in ROS production are beneficial or harmful to health. This review addresses this issue by discussing the site(s) of oxidant production during exercise and detailing the health consequences of exercise-induced ROS production.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, 10011, Brazil
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA; Department of Exercise and Sport Sciences, Hacettepe University, Ankara, 06800, Turkey.
| | - Toshinori Yoshihara
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA; Department of Exercise Physiology, Juntendo University, Tokyo, 270-1695, Japan
| | - Matthew P Bomkamp
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA
| | - Hayden Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA
| |
Collapse
|
76
|
Bobrovskikh A, Zubairova U, Kolodkin A, Doroshkov A. Subcellular compartmentalization of the plant antioxidant system: an integrated overview. PeerJ 2020; 8:e9451. [PMID: 32742779 PMCID: PMC7369019 DOI: 10.7717/peerj.9451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023] Open
Abstract
The antioxidant system (AOS) maintains the optimal concentration of reactive oxygen species (ROS) in a cell and protects it against oxidative stress. In plants, the AOS consists of seven main classes of antioxidant enzymes, low-molecular antioxidants (e.g., ascorbate, glutathione, and their oxidized forms) and thioredoxin/glutaredoxin systems which can serve as reducing agents for antioxidant enzymes. The number of genes encoding AOS enzymes varies between classes, and same class enzymes encoded by different gene copies may have different subcellular localizations, functional loads and modes of evolution. These facts hereafter reinforce the complex nature of AOS regulation and functioning. Further studies can describe new trends in the behavior and functioning of systems components, and provide new fundamental knowledge about systems regulation. The system is revealed to have a lot of interactions and interplay pathways between its components at the subcellular level (antioxidants, enzymes, ROS level, and hormonal and transcriptional regulation). These facts should be taken into account in further studies during the AOS modeling by describing the main pathways of generating and utilizing ROS, as well as the associated signaling processes and regulation of the system on cellular and organelle levels, which is a complicated and ambitious task. Another objective for studying the phenomenon of the AOS is related to the influence of cell dynamics and circadian rhythms on it. Therefore, the AOS requires an integrated and multi-level approach to study. We focused this review on the existing scientific background and experimental data used for the systems biology research of the plant AOS.
Collapse
Affiliation(s)
- Aleksandr Bobrovskikh
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Ulyana Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Alexey Kolodkin
- University of Amsterdam, Amsterdam, Netherlands
- The University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Luxembourg, Luxembourg
| | - Alexey Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
77
|
Matsushita M, Nakamura T, Moriizumi H, Miki H, Takekawa M. Stress-responsive MTK1 SAPKKK serves as a redox sensor that mediates delayed and sustained activation of SAPKs by oxidative stress. SCIENCE ADVANCES 2020; 6:eaay9778. [PMID: 32637591 PMCID: PMC7314524 DOI: 10.1126/sciadv.aay9778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/13/2020] [Indexed: 05/29/2023]
Abstract
Cells respond to oxidative stress by inducing intracellular signaling, including stress-activated p38 and JNK MAPK (SAPK) pathways, but the underlying mechanisms remain unclear. Here, we report that the MAP three kinase 1 (MTK1) SAPK kinase kinase (SAPKKK) functions as an oxidative-stress sensor that perceives the cellular redox state and transduces it into SAPK signaling. Following oxidative stress, MTK1 is rapidly oxidized and gradually reduced at evolutionarily conserved cysteine residues. These coupled oxidation-reduction modifications of MTK1 elicit its catalytic activity. Gene knockout experiments showed that oxidative stress-induced SAPK signaling is mediated by coordinated activation of the two SAPKKKs, MTK1 and apoptosis signal-regulating kinase 1 (ASK1), which have different time and dose-response characteristics. The MTK1-mediated redox sensing system is crucial for delayed and sustained SAPK activity and dictates cell fate decisions including cell death and interleukin-6 production. Our results delineate a molecular mechanism by which cells generate optimal biological responses under fluctuating redox environments.
Collapse
Affiliation(s)
- Moe Matsushita
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hisashi Moriizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
78
|
Adzigbli L, Zheng Z, Liao Y, Deng Y, Du X, Yang C. Characterization of thioredoxin-like PROTEIN-5 (TRXLP-5) and its differential response to grafting challenge in the black coloured selected line and control stocks of Pinctada fucata martensii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103635. [PMID: 32014470 DOI: 10.1016/j.dci.2020.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Thioredoxin-like protein 5 (Trxlp-5) is a thioredoxin isoform associated with cellular redox homeostasis through the activity of thiol-disulfide reductase. In our study, Trxlp-5 was identified and characterized in Pinctada fucata martensii. The expression of PmTrxlp-5 was detected in response to polyinosinic: polycytidylic acid (poly I:C) and lipopolysaccharides (LPS) stimulation. The differences in PmTrxlp-5 expression were evaluated between the black coloured selected line and the control stock after grafting operation. The open reading frame (ORF) consisted of 1167bp encoding a 388 amino acid, 5'-UTR of 41bp and a 3'-UTR of 846bp. PmTrxlp-5 exhibited a conserved WCXXC functional motif similar to thioredoxins from other species. Tissue analysis showcased the highest relative mRNA expressions of PmTrxlp-5 in the haemocytes. Interestingly, after the grafting operation, mRNA expression of PmTrxlp-5 in the haemocytes was differentially expressed post grafting with a peak 6 h after grafting suggesting the high involvement of the gene in immune response in the early stage after grafting. The black coloured selected line group (BS) had significantly higher expression than the control group (CG) at 24 h, 6 d and 30 d after grafting operation. PmTrxlp-5 also showed a wave-like pattern in mRNA expression after bacterial endotoxin LPS and viral mimic poly I:C. These results suggested that PmTrxlp-5 plays a vital function in cellular redox homeostasis and immune response against grafting operation and pathogenic infections and can be used as a gene marker for selective breeding programs.
Collapse
Affiliation(s)
- Linda Adzigbli
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongshan Liao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
79
|
Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7536805. [PMID: 31934269 PMCID: PMC6942903 DOI: 10.1155/2019/7536805] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Numerous rheumatologic autoimmune diseases, among which rheumatoid arthritis, are chronic inflammatory diseases capable of inducing multiple cumulative articular and extra-articular damage, if not properly treated. Nevertheless, benign conditions may, similarly, exhibit arthritis as their major clinical finding, but with short-term duration instead, and evolve to spontaneous resolution in a few days to weeks, without permanent articular damage. Such distinction—self-limited arthritis with no need of immunosuppressive treatment or chronic arthritis at early stages?—represents one of the greatest challenges in clinical practice, once many metabolic, endocrine, neoplastic, granulomatous, infectious diseases and other autoimmune conditions may mimic rheumatoid arthritis. Indeed, the diagnosis of rheumatoid arthritis at early stages is a crucial step to a more effective mitigation of the disease-related damage. As a prototype of chronic inflammatory autoimmune disease, rheumatoid arthritis has been linked to oxidative stress, a condition in which the pool of reactive oxygen species increases over time, either by their augmented production, the reduction in antioxidant defenses, or the combination of both, ultimately implying compromise in the redox signaling. The exact mechanisms through which oxidative stress may contribute to the initiation and perpetuation of local (in the articular milieu) and systemic inflammation in rheumatoid arthritis, particularly at early stages, still remain to be determined. Furthermore, the role of antioxidants as therapeutic adjuvants in the control of disease activity seems to be overlooked, as a little number of short studies addressing this issue is currently found. Thus, the present review focuses on the binomial rheumatoid arthritis-oxidative stress, bringing insights into their pathophysiological relationships, as well as the implications of potential diagnostic oxidative stress biomarkers and therapeutic interventions directed to the oxidative status in patients with rheumatoid arthritis.
Collapse
|
80
|
Shaw P, Chattopadhyay A. Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J Cell Physiol 2019; 235:3119-3130. [PMID: 31549397 DOI: 10.1002/jcp.29219] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Pallab Shaw
- Department of Zoology, Toxicology and Cancer Biology Laboratory Visva‐Bharati Santiniketan West Bengal India
| | - Ansuman Chattopadhyay
- Department of Zoology, Toxicology and Cancer Biology Laboratory Visva‐Bharati Santiniketan West Bengal India
| |
Collapse
|
81
|
The Thioredoxin System is Regulated by the ASK-1/JNK/p38/Survivin Pathway During Germ Cell Apoptosis. Molecules 2019; 24:molecules24183333. [PMID: 31547465 PMCID: PMC6767173 DOI: 10.3390/molecules24183333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
The aim is to explore the mechanism of the apoptosis signal-regulating kinase-1 (ASK-1) signaling pathway and the involvement of the thioredoxin (Trx) system during testicular ischemia reperfusion injury (tIRI) by using ASK-1 specific inhibitor, NQDI-1. Male Sprague-Dawley rats (n = 36, 250–300 g) were equally divided into 3 groups: sham, tIRI, and tIRI + NQDI-1 (10 mg/kg, i.p, pre-reperfusion). For tIRI induction, the testicular cord and artery were occluded for 1 h followed by 4 h of reperfusion. Histological analyses, protein immunoexpression, biochemical assays, and real-time PCR were used to evaluate spermatogenesis, ASK-1/Trx axis expression, enzyme activities, and relative mRNA expression, respectively. During tIRI, ipsilateral testes underwent oxidative stress indicated by low levels of superoxide dismutase (SOD) and Glutathione (GSH), increased oxidative damage to lipids and DNA, and spermatogenic damage. This was associated with induced mRNA expression of pro-apoptosis genes, downregulation of antiapoptosis genes, increased caspase 3 activity and activation of the ASK-1/JNK/p38/survivin apoptosis pathway. In parallel, the expression of Trx, Trx reductase were significantly reduced, while the expression of Trx interacting protein (TXNIP) and the NADP+/ nicotinamide Adenine Dinucleotide phosphate (NADPH) ratio were increased. These modulations were attenuated by NQDI-1 treatment. In conclusion, the Trx system is regulated by the ASK-1/Trx/TXNIP axis to maintain cellular redox homeostasis and is linked to tIRI-induced germ cell apoptosis via the ASK-1/JNK/p38/survivin apoptosis pathway.
Collapse
|
82
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DTY. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019; 8:cells8091055. [PMID: 31500396 PMCID: PMC6770671 DOI: 10.3390/cells8091055] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of reducing equivalent NADPH via glucose-6-phosphate dehydrogenase (G6PD) is critical for the maintenance of redox homeostasis and reductive biosynthesis in cells. NADPH also plays key roles in cellular processes mediated by redox signaling. Insufficient G6PD activity predisposes cells to growth retardation and demise. Severely lacking G6PD impairs embryonic development and delays organismal growth. Altered G6PD activity is associated with pathophysiology, such as autophagy, insulin resistance, infection, inflammation, as well as diabetes and hypertension. Aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers. The present review aims to update the existing knowledge concerning G6PD and emphasizes how G6PD modulates redox signaling and affects cell survival and demise, particularly in diseases such as cancer. Exploiting G6PD as a potential drug target against cancer is also discussed.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
83
|
Napolitano S, Reber RJ, Rubini M, Glockshuber R. Functional analyses of ancestral thioredoxins provide insights into their evolutionary history. J Biol Chem 2019; 294:14105-14118. [PMID: 31366732 PMCID: PMC6755812 DOI: 10.1074/jbc.ra119.009718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Thioredoxin (Trx) is a conserved, cytosolic reductase in all known organisms. The enzyme receives two electrons from NADPH via thioredoxin reductase (TrxR) and passes them on to multiple cellular reductases via disulfide exchange. Despite the ubiquity of thioredoxins in all taxa, little is known about the functions of resurrected ancestral thioredoxins in the context of a modern mesophilic organism. Here, we report on functional in vitro and in vivo analyses of seven resurrected Precambrian thioredoxins, dating back 1–4 billion years, in the Escherichia coli cytoplasm. Using synthetic gene constructs for recombinant expression of the ancestral enzymes, along with thermodynamic and kinetic assays, we show that all ancestral thioredoxins, as today's thioredoxins, exhibit strongly reducing redox potentials, suggesting that thioredoxins served as catalysts of cellular reduction reactions from the beginning of evolution, even before the oxygen catastrophe. A detailed, quantitative characterization of their interactions with the electron donor TrxR from Escherichia coli and the electron acceptor methionine sulfoxide reductase, also from E. coli, strongly hinted that thioredoxins and thioredoxin reductases co-evolved and that the promiscuity of thioredoxins toward downstream electron acceptors was maintained during evolution. In summary, our findings suggest that thioredoxins evolved high specificity for their sole electron donor TrxR while maintaining promiscuity to their multiple electron acceptors.
Collapse
Affiliation(s)
- Silvia Napolitano
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Robin J Reber
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|