51
|
Qu H, Liu J, Zhang D, Xie R, Wang L, Hong J. Glycolysis in Chronic Liver Diseases: Mechanistic Insights and Therapeutic Opportunities. Cells 2023; 12:1930. [PMID: 37566009 PMCID: PMC10417805 DOI: 10.3390/cells12151930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic liver diseases (CLDs) cover a spectrum of liver diseases, ranging from nonalcoholic fatty liver disease to liver cancer, representing a growing epidemic worldwide with high unmet medical needs. Glycolysis is a conservative and rigorous process that converts glucose into pyruvate and sustains cells with the energy and intermediate products required for diverse biological activities. However, abnormalities in glycolytic flux during CLD development accelerate the disease progression. Aerobic glycolysis is a hallmark of liver cancer and is responsible for a broad range of oncogenic functions including proliferation, invasion, metastasis, angiogenesis, immune escape, and drug resistance. Recently, the non-neoplastic role of aerobic glycolysis in immune activation and inflammatory disorders, especially CLD, has attracted increasing attention. Several key mediators of aerobic glycolysis, including HIF-1α and pyruvate kinase M2 (PKM2), are upregulated during steatohepatitis and liver fibrosis. The pharmacological inhibition or ablation of PKM2 effectively attenuates hepatic inflammation and CLD progression. In this review, we particularly focused on the glycolytic and non-glycolytic roles of PKM2 in the progression of CLD, highlighting the translational potential of a glycolysis-centric therapeutic approach in combating CLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China; (H.Q.)
| |
Collapse
|
52
|
Wu Y, Li A, Chen C, Fang Z, Chen L, Zheng X. Biological function and research progress of N6-methyladenosine binding protein heterogeneous nuclear ribonucleoprotein A2B1 in human cancers. Front Oncol 2023; 13:1229168. [PMID: 37546413 PMCID: PMC10399595 DOI: 10.3389/fonc.2023.1229168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification found in both mRNA and lncRNA. It exerts reversible regulation over RNA function and affects RNA processing and metabolism in various diseases, especially tumors. The m6A binding protein, hnRNPA2B1, is extensively studied as a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) protein family. It is frequently dysregulated and holds significant importance in multiple types of tumors. By recognizing m6A sites for variable splicing, maintaining RNA stability, and regulating translation and transport, hnRNPA2B1 plays a vital role in various aspects of tumor development, metabolism, and regulation of the immune microenvironment. In this review, we summarized the latest research on the functional roles and underlying molecular mechanisms of hnRNPA2B1. Moreover, we discussed its potential as a target for tumor therapy.
Collapse
Affiliation(s)
- Yue Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - An Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Can Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
53
|
Dai ZQ, Gao F, Zhang ZJ, Lu MJ, Luo YJ, Zhang T, Shang BX, Gu YH, Zeng Q, Gao S, Guo ZQ, Xu B, Lei HM. Anti-tumor effects of novel alkannin derivatives with potent selectivity on comprehensive analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154912. [PMID: 37295023 DOI: 10.1016/j.phymed.2023.154912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
BACKGROUND Therapeutic approaches based on glycolysis and energy metabolism of tumor cells are new promising strategies for the treatment of cancer. Currently, researches on the inhibition of pyruvate kinase M2, a key rate limiting enzyme in glycolysis, have been corroborated as an effective cancer therapy. Alkannin is a potent pyruvate kinase M2 inhibitor. However, its non-selective cytotoxicity has affected its subsequent clinical application. Thus, it needs to be structurally modified to develop novel derivatives with high selectivity. PURPOSE Our study aimed to ameliorate the toxicity of alkannin through structural modification and elucidate the mechanism of the superior derivative 23 in lung cancer therapy. METHODS On the basis of the principle of collocation, different amino acids and oxygen-containing heterocycles were introduced into the hydroxyl group of the alkannin side chain. We examined the cell viability of all derivatives on three tumor cells (HepG2, A549 and HCT116) and two normal cells (L02 and MDCK) by MTT assay. Besides, the effect of derivative 23 on the morphology of A549 cells as observed by Giemsa and DAPI staining, respectively. Flow cytometry was performed to assess the effects of derivative 23 on apoptosis and cell cycle arrest. To further assess the effect of derivative 23 on the Pyruvate kinase M2 in glycolysis, an enzyme activity assay and western blot assay were performed. Finally, in vivo the antitumor activity and safety of the derivative 23 were evaluated by using Lewis mouse lung cancer xenograft model. RESULTS Twenty-three novel alkannin derivatives were designed and synthesized to improve the cytotoxicity selectivity. Among these derivatives, derivative 23 showed the highest cytotoxicity selectivity between cancer and normal cells. The anti-proliferative activity of derivative 23 on A549 cells (IC50 = 1.67 ± 0.34 μM) was 10-fold higher than L02 cells (IC50 = 16.77 ± 1.44 μM) and 5-fold higher than MDCK cells (IC50 = 9.23 ± 0.29 μM) respectively. Subsequently, fluorescent staining and flow cytometric analysis showed that derivative 23 was able to induce apoptosis of A549 cells and arrest the cell cycle in the G0/G1 phase. In addition, the mechanistic studies suggested derivative 23 was an inhibitor of pyruvate kinase; it could regulate glycolysis by inhibiting the activation of the phosphorylation of PKM2/STAT3 signaling pathway. Furthermore, studies in vivo demonstrated derivative 23 significantly inhibited the growth of xenograft tumor. CONCLUSION In this study, alkannin selectivity is reported to be significantly improved following structural modification, and derivative 23 is first shown to be able to inhibit lung cancer growth via the PKM2/STAT3 phosphorylation signaling pathway in vitro, indicating the potential value of derivative 23 in treating lung cancer.
Collapse
Affiliation(s)
- Zi-Qi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zi-Jie Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ming-Jun Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yu-Jin Luo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Bing-Xian Shang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yu-Hao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qi Zeng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shan Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhuo-Qian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
54
|
Liu X, Shao P, Wang Y, Chen Y, Cui S. Anti-inflammatory mechanism of the optimized active ingredients of Sargentodoxa cuneata and Patrinia villosa. Int Immunopharmacol 2023; 120:110337. [PMID: 37244114 DOI: 10.1016/j.intimp.2023.110337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Pelvic inflammatory disease (PID) is a common gynecological infection. The combined use of Sargentodoxa cuneata (da xue teng) and Patrinia villosa (bai jiang cao) has been shown to inhibit PID progression. The active components of S. cuneata (emodin, Emo) and P. villosa (acacetin, Aca; oleanolic acid, OA; sinoacutine, Sin) have been identified but the mode of action of this combination of compounds against PID has not been clarified. Therefore, this study aims to investigate the mechanism of these active components against PID through network pharmacological, molecular docking and experimental validation. The results showed the optimal combination of components was 40 µM Emo + 40 µM OA, 40 µM Emo + 40 µM Aca, and 40 µM Emo + 150 µM Sin by cell proliferation and NO release. The potential key targets of this combination in the treatment of PID include SRC, GRB2, PIK3R1, PIK3CA, PTPN11, and SOS1, which act on signaling pathways such as EGFR, PI3K/Akt, TNF, and IL-17. Emo, Aca, OA, and their optimal combination inhibited the expression of IL-6, TNF-α, MCP-1, IL-12p70, IFN-γ, and the M1 phenotype markers CD11c and CD16/32, and promoted the expression of the M2 phenotype markers CD206 and arginase 1 (Arg1). Western blotting confirmed that Emo, Aca, OA, and their optimal combination significantly inhibited the expression of glucose metabolism-related proteins PKM2, PD, HK I, and HK II. This study proved the advantage of combination use of active components from S. cuneata and P. villosa, and clarified that they exert the anti-inflammatory effect by regulation of M1/M2 phenotype transition and regulation of glucose metabolism. The results provide a theoretical basis for the clinical treatment of PID.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Puwei Shao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Ying Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Yuanyuan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China; Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
55
|
Buneeva O, Kopylov A, Gnedenko O, Medvedeva M, Veselovsky A, Ivanov A, Zgoda V, Medvedev A. Proteomic Profiling of Mouse Brain Pyruvate Kinase Binding Proteins: A Hint for Moonlighting Functions of PKM1? Int J Mol Sci 2023; 24:ijms24087634. [PMID: 37108803 PMCID: PMC10143413 DOI: 10.3390/ijms24087634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Affinity-based proteomic profiling is widely used for the identification of proteins involved in the formation of various interactomes. Since protein-protein interactions (PPIs) reflect the role of particular proteins in the cell, identification of interaction partners for a protein of interest can reveal its function. The latter is especially important for the characterization of multifunctional proteins, which can play different roles in the cell. Pyruvate kinase (PK), a classical glycolytic enzyme catalyzing the last step of glycolysis, exists in four isoforms: PKM1, PKM2, PKL, and PKR. The enzyme isoform expressed in actively dividing cells, PKM2, exhibits many moonlighting (noncanonical) functions. In contrast to PKM2, PKM1, predominantly expressed in adult differentiated tissues, lacks well-documented moonlighting functions. However, certain evidence exists that it can also perform some functions unrelated to glycolysis. In order to evaluate protein partners, bound to PKM1, in this study we have combined affinity-based separation of mouse brain proteins with mass spectrometry identification. The highly purified PKM1 and a 32-mer synthetic peptide (PK peptide), sharing high sequence homology with the interface contact region of all PK isoforms, were used as the affinity ligands. This proteomic profiling resulted in the identification of specific and common proteins bound to both affinity ligands. Quantitative affinity binding to the affinity ligands of selected identified proteins was validated using a surface plasmon resonance (SPR) biosensor. Bioinformatic analysis has shown that the identified proteins, bound to both full-length PKM1 and the PK peptide, form a protein network (interactome). Some of these interactions are relevant for the moonlighting functions of PKM1. The proteomic dataset is available via ProteomeXchange with the identifier PXD041321.
Collapse
Affiliation(s)
- Olga Buneeva
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Arthur Kopylov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Oksana Gnedenko
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Marina Medvedeva
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russia
| | - Alexander Veselovsky
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Alexei Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| |
Collapse
|
56
|
Chen W, Li X, Du B, Cui Y, Ma Y, Li Y. The long noncoding RNA HOXA11-AS promotes lung adenocarcinoma proliferation and glycolysis via the microRNA-148b-3p/PKM2 axis. Cancer Med 2023; 12:4421-4433. [PMID: 35924724 PMCID: PMC9972162 DOI: 10.1002/cam4.5103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer is the most common malignancy in the world and a growing number of researches have focused on its metabolic characteristics. Studies have shown that the long non-coding RNA (lncRNA) HOXA11-AS is aberrantly expressed in many tumors. However, the role of HOXA11-AS in lung adenocarcinoma (LUAD) glycolysis and other energy metabolism pathways has not been characterized. METHOD The mRNA levels of HOXA11-AS, microRNA-148b-3p (miR-148b-3p), and pyruvate kinase M2 (PKM2) were detected using qRT-PCR. The expression levels of proteins were measured using immunohistochemistry and western blot. The CCK-8, EdU, and colony formation assays were used to assess proliferation. Glycolytic changes were assessed by measuring lactate production, ATP production, and 18 F-FDG uptake. Bioinformatics analysis and dual-luciferase reporter assays were used to characterize the relationship between HOXA11-AS, miR-148b-3p, and PKM2. Proliferation and glycolytic changes were analyzed in xenograft tumor experiments using Micro-PET imaging after downregulation of HOXA11-AS in vivo. RESULTS The expression of HOXA11-AS was markedly increased in LUAD, and was strongly associated with a poor prognosis. In addition, HOXA11-AS promoted proliferation and glycolysis in LUAD, and miR-148b-3p inhibited proliferation and glycolysis in LUAD. Mechanistically, HOXA11-AS positively regulated PKM2 expression by binding to miR-148b-3p, thereby promoting LUAD proliferation and glycolysis. In addition, HOXA11-AS inhibited LUAD xenograft growth and glycolysis via upregulation of miR-148b-3p expression and downregulation of PKM2 expression in vivo. CONCLUSIONS These results showed that HOXA11-AS enhanced LUAD proliferation and glycolysis via the miR-148b-3p/PKM2 axis. The findings in this paper expanded our understanding of the molecular mechanisms of LUAD tumorigenesis and glycolysis and showed that HOXA11-AS could be useful as a diagnostic and prognostic marker for LUAD. 18 F-FDG PET/CT can be used to visually evaluate the therapeutic effect of targeting HOXA11-AS.
Collapse
Affiliation(s)
- Wenkun Chen
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bulin Du
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yan Cui
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yu Ma
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
57
|
Vadlamani S, Karmakar R, Kumar A, Rajala MS. Non-metabolic role of alpha-enolase in virus replication. Mol Biol Rep 2023; 50:1677-1686. [PMID: 36402937 DOI: 10.1007/s11033-022-08067-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/31/2022] [Indexed: 11/20/2022]
Abstract
Viruses are extremely complex and highly evolving microorganisms; thus, it is difficult to analyse them in detail. The virion is believed to contain all the essential components required from its entry to the establishment of a successful infection in a susceptible host cell. Hence, the virion composition is the principal source for its transmissibility and immunogenicity. A virus is completely dependent on a host cell for its replication and progeny production. Occasionally, they recruit and package host proteins into mature virion. These incorporated host proteins are believed to play crucial roles in the subsequent infection, although the significance and the molecular mechanism regulated are poorly understood. One such host protein which is hijacked by several viruses is the glycolytic enzyme, Enolase (Eno-1) and is also packaged into mature virion of several viruses. This enzyme exhibits a highly flexible nature of functions, ranging from metabolic to several non-metabolic activities. All the glycolytic enzymes are known to be moonlighting proteins including enolase. The non-metabolic functions of this moonlighting protein are also highly diverse with respect to its cellular localization. Although very little is known about the virological significance of this enzyme, several of its non-metabolic functions have been observed to influence the virus replication cycle in infected cells. In this review, we have attempted to provide a comprehensive picture of the non-metabolic role of Eno-1, its significance in the virus replication cycle and to stimulate interest around its scope as a therapeutic target for treating viral pathologies.
Collapse
Affiliation(s)
- Satya Vadlamani
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Ruma Karmakar
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Alok Kumar
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | | |
Collapse
|
58
|
Park YS, Han JH, Park JH, Choi JS, Kim SH, Kim HS. Pyruvate Kinase M2: A New Biomarker for the Early Detection of Diabetes-Induced Nephropathy. Int J Mol Sci 2023; 24:ijms24032683. [PMID: 36769016 PMCID: PMC9916947 DOI: 10.3390/ijms24032683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes. DN progresses to end-stage renal disease, which has a high mortality rate. Current research is focused on identifying non-invasive potential biomarkers in the early stage of DN. We previously indicated that pyruvate kinase M2 (PKM2) is excreted in the urine of rats after cisplatin-induced acute kidney injury (AKI). However, it has not been reported whether PKM2 can be used as a biomarker to diagnose DN. Therefore, we try to compare whether the protein PKM2 can be detected in the urine samples from diabetic patients as shown in the results of DN models. In this study, high-fat diet (HFD)-induced Zucker diabetic fatty (ZDF) rats were used for DN phenotyping. After 19 weeks of receiving a HFD, the DN model's blood glucose, blood urea nitrogen, and serum creatinine levels were significantly increased; severe tubular and glomerular damages were also noted. The following protein-based biomarkers were increased in the urine of these models: kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and PKM2. PKM2 had the earliest detection rate. In the urine samples of patients, PKM2 protein was highly detected in the urine of diabetic patients but was not excreted in the urine of normal subjects. Therefore, PKM2 was selected as the new biomarker for the early diagnosis of DN. Our results reflect current knowledge on the role of PKM2 in DN.
Collapse
Affiliation(s)
- Yeon Su Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joo Hee Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Soo Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung Hyeon Kim
- St. Mark’s School, 25 Marlboro Rd, Southborough, MA 01772, USA
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: ; Tel.:+82-31-290-7789
| |
Collapse
|
59
|
Chan CY, Hong SC, Chang CM, Chen YH, Liao PC, Huang CY. Oral Squamous Cell Carcinoma Cells with Acquired Resistance to Erlotinib Are Sensitive to Anti-Cancer Effect of Quercetin via Pyruvate Kinase M2 (PKM2). Cells 2023; 12:cells12010179. [PMID: 36611972 PMCID: PMC9818869 DOI: 10.3390/cells12010179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) frequently carries high epidermal growth factor receptor (EGFR) expression. Erlotinib, a small molecule tyrosine kinase inhibitor (TKI), is an effective inhibitor of EGFR activity; however, resistance to this drug can occur, limiting therapeutic outcomes. Therefore, in the current study, we aimed to unveil key intracellular molecules and adjuvant reagents to overcome erlotinib resistance. First, two HSC-3-derived erlotinib-resistant cell lines, ERL-R5 and ERL-R10, were established; both exhibited relatively higher growth rates, glucose utilization, epithelial-mesenchymal transition (EMT), and invasiveness compared with parental cells. Cancer aggressiveness-related proteins, such as N-cadherin, Vimentin, Twist, MMP-2, MMP-9, and MMP-13, and the glycolytic enzymes PKM2 and GLUT1 were upregulated in ERL-R cells. Notably, ERL-R cells were sensitive to quercetin, a naturally-existing flavonol phytochemical with anti-cancer properties against various cancer cells. At a concentration of 5 μM, quercetin effectively arrested cell growth, reduced glucose utilization, and inhibited cellular invasiveness. An ERL-R5-derived xenograft mouse model confirmed the growth-inhibitory efficacy of quercetin. Additionally, knock-down of PKM2 by siRNA mimicked the effect of quercetin and re-sensitized ERL-R cells to erlotinib. Furthermore, adding quercetin blocked the development of erlotinib-mediated resistance by enhancing apoptosis. In conclusion, our data support the application of quercetin in anti-erlotinib-resistant OSCC and indicate that PKM2 is a determinant factor in erlotinib resistance and quercetin sensitivity.
Collapse
Affiliation(s)
- Chien-Yi Chan
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 711301, Taiwan
| | - Shih-Cing Hong
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Chin-Ming Chang
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Yuan-Hong Chen
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Pin-Chen Liao
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 7515)
| |
Collapse
|
60
|
Dihydrotanshinone I preconditions myocardium against ischemic injury via PKM2 glutathionylation sensitive to ROS. Acta Pharm Sin B 2023; 13:113-127. [PMID: 36815040 PMCID: PMC9939318 DOI: 10.1016/j.apsb.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemic preconditioning (IPC) is a potential intervention known to protect the heart against ischemia/reperfusion injury, but its role in the no-reflow phenomenon that follows reperfusion is unclear. Dihydrotanshinone I (DT) is a natural compound and this study illustrates its role in cardiac ischemic injury from the aspect of IPC. Pretreatment with DT induced modest ROS production and protected cardiomyocytes against oxygen and glucose deprivation (OGD), but the protection was prevented by a ROS scavenger. In addition, DT administration protected the heart against isoprenaline challenge. Mechanistically, PKM2 reacted to transient ROS via oxidization at Cys423/Cys424, leading to glutathionylation and nuclear translocation in dimer form. In the nucleus, PKM2 served as a co-factor to promote HIF-1α-dependent gene induction, contributing to adaptive responses. In mice subjected to permanent coronary ligation, cardiac-specific knockdown of Pkm2 blocked DT-mediated preconditioning protection, which was rescued by overexpression of wild-type Pkm2, rather than Cys423/424-mutated Pkm2. In conclusion, PKM2 is sensitive to oxidation, and subsequent glutathionylation promotes its nuclear translocation. Although IPC has been viewed as a protective means against reperfusion injury, our study reveals its potential role in protection of the heart from no-reflow ischemia.
Collapse
|
61
|
Zhang X, Tai Z, Miao F, Huang H, Zhu Q, Bao L, Chen Z. Metabolism heterogeneity in melanoma fuels deactivation of immunotherapy: Predict before protect. Front Oncol 2022; 12:1046102. [PMID: 36620597 PMCID: PMC9813867 DOI: 10.3389/fonc.2022.1046102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Malignant melanoma is widely acknowledged as the most lethal skin malignancy. The metabolic reprogramming in melanoma leads to alterations in glycolysis and oxidative phosphorylation (OXPHOS), forming a hypoxic, glucose-deficient and acidic tumor microenvironment which inhibits the function of immune cells, resulting in a low response rate to immunotherapy. Therefore, improving the tumor microenvironment by regulating the metabolism can be used to improve the efficacy of immunotherapy. However, the tumor microenvironment (TME) and the metabolism of malignant melanoma are highly heterogeneous. Therefore, understanding and predicting how melanoma regulates metabolism is important to improve the local immune microenvironment of the tumor, and metabolism regulators are expected to increase treatment efficacy in combination with immunotherapy. This article reviews the energy metabolism in melanoma and its regulation and prediction, the integration of immunotherapy and metabolism regulators, and provides a comprehensive overview of future research focal points in this field and their potential application in clinical treatment.
Collapse
Affiliation(s)
- Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Huang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Zhongjian Chen, ; Leilei Bao,
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Zhongjian Chen, ; Leilei Bao,
| |
Collapse
|
62
|
Liu Z, Guo Y, Liu X, Cao P, Liu H, Dong X, Ding K, Fu R. Pim-2 Kinase Regulates Energy Metabolism in Multiple Myeloma. Cancers (Basel) 2022; 15:cancers15010067. [PMID: 36612063 PMCID: PMC9817993 DOI: 10.3390/cancers15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Pim-2 kinase is overexpressed in multiple myeloma (MM) and is associated with poor prognosis in patients with MM. Changes in quantitative metabolism, glycolysis, and oxidative phosphorylation pathways are reportedly markers of all tumor cells. However, the relationship between Pim-2 and glycolysis in MM cells remains unclear. In the present study, we explored the relationship between Pim-2 and glycolysis. We found that Pim-2 inhibitors inhibited glycolysis and energy production in MM cells. Inhibition of Pim-2 decreased the proliferation of MM tumor cells and increased their susceptibility to apoptosis. Our data suggest that reduced Pim-2 expression inhibits the energy metabolism process in MM, thereby inhibiting tumor progression. Hence, Pim-2 is a potential metabolic target for MM treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rong Fu
- Correspondence: ; Tel.: +86-022-60817181
| |
Collapse
|
63
|
Demeter JB, Elshaarrawi A, Dowker‐Key PD, Bettaieb A. The emerging role of
PKM
in keratinocyte homeostasis and pathophysiology. FEBS J 2022; 290:2311-2319. [PMID: 36541050 DOI: 10.1111/febs.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Increased aerobic glycolysis in keratinocytes has been reported as a hallmark of skin diseases while its pharmacological inhibition restores keratinocyte homeostasis. Pyruvate kinase muscle (PKM) isoforms are key enzymes in the glycolytic pathway and, therefore, an attractive therapeutic target. Simon Nold and colleagues used CRISPR/Cas9-mediated gene editing to investigate the outcomes of PKM splicing perturbations and specific PKM1 or PKM2 deficiency in human HaCaT keratinocytes. Collectively, the study demonstrated different effects of PKM1 or PKM2 depletion on the reciprocal PKM isoform and on keratinocyte gene expression, metabolism and proliferation. Findings from this study provide novel insights into the role of PKM in keratinocyte homeostasis, warranting additional investigations into the underlying molecular mechanisms and potential therapeutic applications.
Collapse
Affiliation(s)
- Jenna B. Demeter
- Department of Nutrition The University of Tennessee Knoxville TN USA
| | - Ahmed Elshaarrawi
- Graduate School of Genome Science and Technology The University of Tennessee Knoxville TN USA
| | | | - Ahmed Bettaieb
- Department of Nutrition The University of Tennessee Knoxville TN USA
- Graduate School of Genome Science and Technology The University of Tennessee Knoxville TN USA
- Department of Biochemistry & Cellular and Molecular Biology The University of Tennessee Knoxville TN USA
| |
Collapse
|
64
|
Zhu J, Chen H, Le Y, Guo J, Liu Z, Dou X, Lu D. Salvianolic acid A regulates pyroptosis of endothelial cells via directly targeting PKM2 and ameliorates diabetic atherosclerosis. Front Pharmacol 2022; 13:1009229. [PMID: 36425580 PMCID: PMC9679534 DOI: 10.3389/fphar.2022.1009229] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2023] Open
Abstract
Rescuing endothelial cells from pyroptotic cell death emerges as a potential therapeutic strategy to combat diabetic atherosclerosis. Salvianolic acid A (SAA) is a major water-soluble phenolic acid in the Salvia miltiorrhiza Bunge, which has been used in traditional Chinese medicine (TCM) and health food products for a long time. This study investigated whether SAA-regulated pyruvate kinase M2 (PKM2) functions to protect endothelial cells. In streptozotocin (STZ)-induced diabetic ApoE-/- mice subjected to a Western diet, SAA attenuated atherosclerotic plaque formation and inhibited pathological changes in the aorta. In addition, SAA significantly prevented NLRP3 inflammasome activation and pyroptosis of endothelial cells in the diabetic atherosclerotic aortic sinus or those exposed to high glucose. Mechanistically, PKM2 was verified to be the main target of SAA. We further revealed that SAA directly interacts with PKM2 at its activator pocket, inhibits phosphorylation of Y105, and hinders the nuclear translocation of PKM2. Also, SAA consistently decreased high glucose-induced overproduction of lactate and partially lactate-dependent phosphorylation of PKR (a regulator of the NLRP3 inflammasome). Further assay on Phenylalanine (PKM2 activity inhibitor) proved that SAA exhibits the function in high glucose-induced pyroptosis of endothelial cells dependently on PKM2 regulation. Furthermore, an assay on c16 (inhibitor of PKR activity) with co-phenylalanine demonstrated that the regulation of the phosphorylated PKR partially drives PKM2-dependent SAA modulation of cell pyroptosis. Therefore, this article reports on the novel function of SAA in the pyroptosis of endothelial cells and diabetic atherosclerosis, which provides important insights into immunometabolism reprogramming that is important for diabetic cardiovascular disease complications therapy.
Collapse
Affiliation(s)
- Ji Zhu
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
65
|
Rihan M, Sharma SS. Role of Pyruvate Kinase M2 (PKM2) in Cardiovascular Diseases. J Cardiovasc Transl Res 2022; 16:382-402. [PMID: 36178660 DOI: 10.1007/s12265-022-10321-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular diseases (CVDs) are the world's leading cause of death, accounting for 32% of all fatalities. Although therapeutic agents are available for CVDs, however, most of them have significant limitations such as the time-dependency effect, hypotension, and bradycardia. To overcome the limitations of current pharmacological therapies, new molecular targets and pathways need to be identified and investigated to provide better treatment options for CVDs. Recent evidence suggested the involvement of pyruvate kinase M2 (PKM2) and targeting PKM2 by its modulators (inhibitors and activators) has shown promising results in several CVDs. PKM2 regulates gene activation in the context of apoptosis, mitosis, hypoxia, inflammation, and metabolic reprogramming. PKM2 modulators might have a significant impact on the molecular pathways involved in CVD pathogenesis. Therefore, PKM2 modulators can be one of the therapeutic options for CVDs. This review provides an insight into PKM2 involvement in various CVDs along with their therapeutic potential.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
66
|
Wang M, Pang Y, Guo Y, Tian L, Liu Y, Shen C, Liu M, Meng Y, Cai Z, Wang Y, Zhao W. Metabolic reprogramming: A novel therapeutic target in diabetic kidney disease. Front Pharmacol 2022; 13:970601. [PMID: 36120335 PMCID: PMC9479190 DOI: 10.3389/fphar.2022.970601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common microvascular complications of diabetes mellitus. However, the pathological mechanisms contributing to DKD are multifactorial and poorly understood. Diabetes is characterized by metabolic disorders that can bring about a series of changes in energy metabolism. As the most energy-consuming organs secondary only to the heart, the kidneys must maintain energy homeostasis. Aberrations in energy metabolism can lead to cellular dysfunction or even death. Metabolic reprogramming, a shift from mitochondrial oxidative phosphorylation to glycolysis and its side branches, is thought to play a critical role in the development and progression of DKD. This review focuses on the current knowledge about metabolic reprogramming and the role it plays in DKD development. The underlying etiologies, pathological damages in the involved cells, and potential molecular regulators of metabolic alterations are also discussed. Understanding the role of metabolic reprogramming in DKD may provide novel therapeutic approaches to delay its progression to end-stage renal disease.
Collapse
|
67
|
Esen I, Jiemy WF, van Sleen Y, Bijzet J, de Jong DM, Nienhuis PH, Slart RHJA, Heeringa P, Boots AMH, Brouwer E. Plasma Pyruvate Kinase M2 as a marker of vascular inflammation in giant cell arteritis. Rheumatology (Oxford) 2022; 61:3060-3070. [PMID: 34730794 PMCID: PMC9258600 DOI: 10.1093/rheumatology/keab814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/29/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES GCA is a large vessel vasculitis in which metabolically active immune cells play an important role. GCA diagnosis is based on CRP/ESR and temporal artery biopsies (TABs), in combination with 18F-fluorodeoxyglucose ([18F]FDG)-PET/CT relying on enhanced glucose uptake by glycolytic macrophages. Here, we studied circulating Pyruvate Kinase M2 (PKM2), a glycolytic enzyme, as a possible systemic marker of vessel wall inflammation in GCA. METHODS Immunohistochemical detection of PKM2 was performed on inflamed (n = 12) and non-inflamed (n = 4) TABs from GCA patients and non-GCA (n = 9) patients. Dimeric PKM2 levels were assessed in plasma of GCA patients (n = 44), age-matched healthy controls (n = 41), metastatic melanoma patients (n = 7) and infection controls (n = 11). CRP, ESR and macrophage markers calprotectin and YKL-40 were correlated with plasma PKM2 levels. To detect the cellular source of plasma PKM2 in tissue, double IF staining was performed on inflamed GCA TABs. [18F]FDG-PET scans of 23 GCA patients were analysed and maximum standard uptake values and target to background ratios were calculated. RESULTS PKM2 is abundantly expressed in TABs of GCA patients. Dimeric PKM2 plasma levels were elevated in GCA and correlated with CRP, ESR, calprotectin and YKL-40 levels. Elevated plasma PKM2 levels were downmodulated by glucocorticoid treatment. PKM2 was detected in both macrophages and T cells at the site of vascular inflammation. Circulating PKM2 levels correlated with average target to background ratios PET scores. CONCLUSION Elevated plasma PKM2 levels reflect active vessel inflammation in GCA and may assist in disease diagnosis and in disease monitoring.
Collapse
Affiliation(s)
- Idil Esen
- Department of Rheumatology and Clinical Immunology
| | | | | | - Johan Bijzet
- Department of Rheumatology and Clinical Immunology
| | | | - Pieter H Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
68
|
Xu Y, Chen Y, Zhang X, Ma J, Liu Y, Cui L, Wang F. Glycolysis in Innate Immune Cells Contributes to Autoimmunity. Front Immunol 2022; 13:920029. [PMID: 35844594 PMCID: PMC9284233 DOI: 10.3389/fimmu.2022.920029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases (AIDs) refer to connective tissue inflammation caused by aberrant autoantibodies resulting from dysfunctional immune surveillance. Most of the current treatments for AIDs use non-selective immunosuppressive agents. Although these therapies successfully control the disease process, patients experience significant side effects, particularly an increased risk of infection. There is a great need to study the pathogenesis of AIDs to facilitate the development of selective inhibitors for inflammatory signaling to overcome the limitations of traditional therapies. Immune cells alter their predominant metabolic profile from mitochondrial respiration to glycolysis in AIDs. This metabolic reprogramming, known to occur in adaptive immune cells, i.e., B and T lymphocytes, is critical to the pathogenesis of connective tissue inflammation. At the cellular level, this metabolic switch involves multiple signaling molecules, including serine-threonine protein kinase, mammalian target of rapamycin, and phosphoinositide 3-kinase. Although glycolysis is less efficient than mitochondrial respiration in terms of ATP production, immune cells can promote disease progression by enhancing glycolysis to satisfy cellular functions. Recent studies have shown that active glycolytic metabolism may also account for the cellular physiology of innate immune cells in AIDs. However, the mechanism by which glycolysis affects innate immunity and participates in the pathogenesis of AIDs remains to be elucidated. Therefore, we reviewed the molecular mechanisms, including key enzymes, signaling pathways, and inflammatory factors, that could explain the relationship between glycolysis and the pro-inflammatory phenotype of innate immune cells such as neutrophils, macrophages, and dendritic cells. Additionally, we summarize the impact of glycolysis on the pathophysiological processes of AIDs, including systemic lupus erythematosus, rheumatoid arthritis, vasculitis, and ankylosing spondylitis, and discuss potential therapeutic targets. The discovery that immune cell metabolism characterized by glycolysis may regulate inflammation broadens the avenues for treating AIDs by modulating immune cell metabolism.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongkang Chen
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Fang Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
69
|
Alquraishi M, Chahed S, Alani D, Puckett DL, Dowker PD, Hubbard K, Zhao Y, Kim JY, Nodit L, Fatima H, Donohoe D, Voy B, Chowanadisai W, Bettaieb A. Podocyte specific deletion of PKM2 ameliorates LPS-induced podocyte injury through beta-catenin. Cell Commun Signal 2022; 20:76. [PMID: 35637461 PMCID: PMC9150347 DOI: 10.1186/s12964-022-00884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is associated with a severe decline in kidney function caused by abnormalities within the podocytes' glomerular matrix. Recently, AKI has been linked to alterations in glycolysis and the activity of glycolytic enzymes, including pyruvate kinase M2 (PKM2). However, the contribution of this enzyme to AKI remains largely unexplored. METHODS Cre-loxP technology was used to examine the effects of PKM2 specific deletion in podocytes on the activation status of key signaling pathways involved in the pathophysiology of AKI by lipopolysaccharides (LPS). In addition, we used lentiviral shRNA to generate murine podocytes deficient in PKM2 and investigated the molecular mechanisms mediating PKM2 actions in vitro. RESULTS Specific PKM2 deletion in podocytes ameliorated LPS-induced protein excretion and alleviated LPS-induced alterations in blood urea nitrogen and serum albumin levels. In addition, PKM2 deletion in podocytes alleviated LPS-induced structural and morphological alterations to the tubules and to the brush borders. At the molecular level, PKM2 deficiency in podocytes suppressed LPS-induced inflammation and apoptosis. In vitro, PKM2 knockdown in murine podocytes diminished LPS-induced apoptosis. These effects were concomitant with a reduction in LPS-induced activation of β-catenin and the loss of Wilms' Tumor 1 (WT1) and nephrin. Notably, the overexpression of a constitutively active mutant of β-catenin abolished the protective effect of PKM2 knockdown. Conversely, PKM2 knockdown cells reconstituted with the phosphotyrosine binding-deficient PKM2 mutant (K433E) recapitulated the effect of PKM2 depletion on LPS-induced apoptosis, β-catenin activation, and reduction in WT1 expression. CONCLUSIONS Taken together, our data demonstrates that PKM2 plays a key role in podocyte injury and suggests that targetting PKM2 in podocytes could serve as a promising therapeutic strategy for AKI. TRIAL REGISTRATION Not applicable. Video abstract.
Collapse
Affiliation(s)
- Mohammed Alquraishi
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Present Address: Department of Community Health Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Samah Chahed
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Dina Alani
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Dexter L. Puckett
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Presley D. Dowker
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Katelin Hubbard
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Yi Zhao
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Present Address: Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105 USA
| | - Ji Yeon Kim
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Laurentia Nodit
- Department of Pathology, University of Tennessee Medical Center, Knoxville, TN 37920 USA
| | - Huma Fatima
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Dallas Donohoe
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Brynn Voy
- Tennessee Agricultural Experiment Station, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-0840 USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 USA
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078 USA
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 USA
| |
Collapse
|
70
|
Pu F, Liu J, Jing D, Chen F, Huang X, Shi D, Wu W, Lin H, Zhao L, Zhang Z, Lv X, Wang B, Zhang Z, Shao Z. LncCCAT1 interaction protein PKM2 upregulates SREBP2 phosphorylation to promote osteosarcoma tumorigenesis by enhancing the Warburg effect and lipogenesis. Int J Oncol 2022; 60:44. [PMID: 35244192 PMCID: PMC8923656 DOI: 10.3892/ijo.2022.5334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) plays an important role in the consumption of glucose and the production of lactic acid, the striking feature of cancer metabolism. The association of PKM2 with osteosarcoma (OS) has been reported but its role in OS has yet to be elucidated. To study this, PKM2‑bound RNAs in HeLa cells, a type of cancer cells widely used in the study of molecular function and mechanism, were obtained. Peak calling analysis revealed that PKM2 binds to long noncoding RNAs (lncRNAs), which are associated with cancer pathogenesis and development. Validation of the PKM2‑lncRNA interaction in the human OS cell line revealed that lncRNA colon cancer associated transcript‑1 (lncCCAT1) interacted with PKM2, which upregulated the phosphorylation of sterol regulatory element‑binding protein 2 (SREBP2). These factors promoted the Warburg effect, lipogenesis, and OS cell growth. PKM2 appears to be a key regulator in OS by binding to lncCCAT1. This further extends the biological functions of PKM2 in tumorigenesis and makes it a novel potential therapeutic for OS.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Doudou Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lei Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenhao Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Baichuan Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
71
|
Tan J, Zhang J, Wang M, Wang Y, Dong M, Ma X, Sun B, Liu S, Zhao Z, Chen L, Jin W, Liu K, Xin Y, Zhuang L. DRAM1 increases the secretion of PKM2-enriched EVs from hepatocytes to promote macrophage activation and disease progression in ALD. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:375-389. [PMID: 35036051 PMCID: PMC8728309 DOI: 10.1016/j.omtn.2021.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
DNA damage-regulated autophagy modulator 1 (DRAM1) could play important roles in inflammation and hepatic apoptosis, while its roles in alcohol-related liver disease (ALD), which is characterized by hepatic inflammation and apoptosis, are still unclear. In this study, we explored the expression, role, and mechanism of DRAM1 in ALD. Firstly, our results showed that DRAM1 was significantly increased in liver tissues of mice at the early stage of alcohol treatment. In addition, DRAM1 knockout reduced, and liver-specific overexpression of DRAM1 aggravated, alcohol-induced hepatic steatosis, injury, and expressions of M1 macrophage markers in mice. Furthermore, ethanol-induced DRAM1 of hepatic cells increased pyruvate kinase M2 (PKM2)-enriched extracellular vesicles (EVs), and ectosomes derived from hepatic cells with DRAM1 overexpression promoted macrophage activation. Mechanistic investigations showed that DRAM1 interacted with PKM2 and increased the PKM2 level in plasma membrane. At last, DRAM1 was significantly increased in liver tissues of ALD patients, and it was positively correlated with M1 macrophage markers. Taken together, this study revealed that ethanol-induced DRAM1 of hepatic cells could increase the PKM2-enriched EVs, promote macrophage activation, and aggravate the disease progression of ALD. These findings suggested that DRAM1 might be a potentially promising target for the therapy of ALD.
Collapse
Affiliation(s)
- Jie Tan
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Jie Zhang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Mengke Wang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Yifen Wang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Mengzhen Dong
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Xuefeng Ma
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Baokai Sun
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zhenzhen Zhao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lizhen Chen
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Wenwen Jin
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Kai Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yongning Xin
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Likun Zhuang
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
72
|
Park JH, Lee JS, Oh Y, Lee JS, Park HE, Lee H, Park YS, Kyung SY, Kim HS, Yoon S. PKM2 Is Overexpressed in Glioma Tissues, and Its Inhibition Highly Increases Late Apoptosis in U87MG Cells With Low-density Specificity. In Vivo 2022; 36:694-703. [PMID: 35241524 PMCID: PMC8931915 DOI: 10.21873/invivo.12755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Pyruvate kinase M2 (PKM2) functions as an important rate-limiting enzyme in aerobic glycolysis and is involved in tumor initiation and progression. However, there are few studies on the correlation between PKM2 expression and its role in glioma. MATERIALS AND METHODS PKM2 expression was immunohistochemically examined in human brain tumor samples. Furthermore, we studied the effects of two PKM2 inhibitors (shikonin and compound 3K) on the U87MG glioma cell line. RESULTS PKM2 was overexpressed in most glioma tissues when compared to controls. Interestingly, glioma-adjacent tissues from showed slight PKM2 overexpression. This suggests that PKM2 overexpression maybe an important trigger factor for glioma tumorigenesis. We found that the PKM2 inhibitor shikonin was effective against U87MG cells at a relatively low dose and was largely dependent on low cellular density compared to the effects of the anticancer drug vincristine. Shikonin highly increased late-apoptosis of U87MG cells. We also demonstrated that autophagy was involved in the increase in late-apoptosis levels caused by shikonin. Although vincristine treatment led to a high level of G2-phase arrest in U87MG cells, shikonin did not increase G2 arrest. Co-treatment with two PKM2 inhibitors, shikonin and compound 3K, increased the inhibitory effects. CONCLUSION Combination therapy with PKM2 inhibitors together might be more effective than combination therapy with anticancer drugs. Our findings encourage the application of PKM2-targeting in gliomas, and lay the foundation for the development of PKM2 inhibitors as promising antitumor agents for glioma.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yunmoon Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Sun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hae Eun Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haeun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeon Su Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - So Young Kyung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
73
|
The Quality Changes and Proteomic Analysis of Cattle Muscle Postmortem during Rigor Mortis. Foods 2022; 11:foods11020217. [PMID: 35053949 PMCID: PMC8775072 DOI: 10.3390/foods11020217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/26/2021] [Accepted: 01/08/2022] [Indexed: 01/19/2023] Open
Abstract
Rigor mortis occurs in a relatively early postmortem period and is a complex biochemical process in the conversion of muscle to meat. Understanding the quality changes and biomarkers during rigor mortis can provide a theoretical basis for maintaining and improving meat quality. Herein, a tandem mass tag proteomic method is used to investigate the effects of differentially expressed proteins on the meat quality of cattle Longissimus lumborum muscle postmortem (0, 6, and 24 h). The pH, total sulfhydryl content and sarcomere length decrease significantly during storage. In contrast, meat color values (L*, a*, and b*) and the myofibril fragmentation index increase significantly. Altogether, 147 differentially expressed proteins are identified, most being categorized as metabolic enzymes, mitochondrial proteins, necroptosis and ferroptosis proteins and structural proteins. The results also reveal additional proteins that are potentially involved in rigor mortis, such as cardiac phospholamban, acetyl-coenzyme A acyltransferase, and ankyrin repeat domain 2. The current results provide proteomic insights into the changes in meat quality during rigor mortis.
Collapse
|
74
|
Boschert V, Teusch J, Müller-Richter UDA, Brands RC, Hartmann S. PKM2 Modulation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:775. [PMID: 35054968 PMCID: PMC8775697 DOI: 10.3390/ijms23020775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The enzyme pyruvate kinase M2 (PKM2) plays a major role in the switch of tumor cells from oxidative phosphorylation to aerobic glycolysis, one of the hallmarks of cancer. Different allosteric inhibitors or activators and several posttranslational modifications regulate its activity. Head and neck squamous cell carcinoma (HNSCC) is a common disease with a high rate of recurrence. To find out more about PKM2 and its modulation in HNSCC, we examined a panel of HNSCC cells using real-time cell metabolic analysis and Western blotting with an emphasis on phosphorylation variant Tyr105 and two reagents known to impair PKM2 activity. Our results show that in HNSCC, PKM2 is commonly phosphorylated at Tyrosine 105. Its levels depended on tyrosine kinase activity, emphasizing the importance of growth factors such as EGF (epidermal growth factor) on HNSCC metabolism. Furthermore, its correlation with the expression of CD44 indicates a role in cancer stemness. Cells generally reacted with higher glycolysis to PKM2 activator DASA-58 and lower glycolysis to PKM2 inhibitor Compound 3k, but some were more susceptible to activation and others to inhibition. Our findings emphasize the need to further investigate the role of PKM2 in HNSCC, as it could aid understanding and treatment of the disease.
Collapse
Affiliation(s)
- Verena Boschert
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany; (J.T.); (U.D.A.M.-R.); (R.C.B.); (S.H.)
| | - Jonas Teusch
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany; (J.T.); (U.D.A.M.-R.); (R.C.B.); (S.H.)
| | - Urs D. A. Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany; (J.T.); (U.D.A.M.-R.); (R.C.B.); (S.H.)
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97070 Würzburg, Germany
- Bavarian Cancer Research Center (BZKF), D-91054 Erlangen, Germany
| | - Roman C. Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany; (J.T.); (U.D.A.M.-R.); (R.C.B.); (S.H.)
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany; (J.T.); (U.D.A.M.-R.); (R.C.B.); (S.H.)
| |
Collapse
|
75
|
Tu C, Wang L, Wei L. The Role of PKM2 in Diabetic Microangiopathy. Diabetes Metab Syndr Obes 2022; 15:1405-1412. [PMID: 35548702 PMCID: PMC9081029 DOI: 10.2147/dmso.s366403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic microangiopathy is among the most common complications affecting patients with diabetes, and includes both diabetic retinopathy (DR) and diabetic nephropathy (DKD). Diabetic microangiopathy remains a persistent threat to the health and quality of life of affected patients. Mechanistically, the severity of DR and DKD is tied to mitochondrial and glucose metabolism abnormalities, with the activation of the glycolytic enzyme pyruvate kinase M2 (PKM2) contributing to mitochondrial and glomerular dysfunction, abnormal renal hemodynamics, and retinopathy. PKM2 can activate inflammatory bodies in macrophages to promote the release of inflammatory mediators, and serves as a key regulator of inflammatory factors, chemokines and adhesion molecules. As such, there is sufficient evidence that PKM2 can be used as a biomarker for the diagnosis of diabetes and diabetic microangiopathy. Here, we survey the mechanisms whereby PKM2 contributes to diabetes-related microvascular diseases, associated regulatory roles, post-translational modifications, and the potential utility of PKM2 as a therapeutic target. Through this literature review, we have determined that PKM2 offers promise as both a diagnostic marker and therapeutic target with direct relevance to research pertaining to diabetic microangiopathy.
Collapse
Affiliation(s)
- Chao Tu
- Department of Internal Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Liangzhi Wang
- Department of Internal Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Lan Wei
- Department of Internal Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, People’s Republic of China
- Correspondence: Lan Wei, Department of Internal Medicine, the Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, Jiangsu, 213000, People’s Republic of China, Tel +86 0519 68871132, Email
| |
Collapse
|
76
|
Wei X, Hou Y, Long M, Jiang L, Du Y. Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis. Front Endocrinol (Lausanne) 2022; 13:927329. [PMID: 35957825 PMCID: PMC9357883 DOI: 10.3389/fendo.2022.927329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis is the result of renal tissue damage and repair response disorders. If fibrosis is not effectively blocked, it causes loss of renal function, leading to chronic renal failure. Metabolic reprogramming, which promotes cell proliferation by regulating cellular energy metabolism, is considered a unique tumor cell marker. The transition from oxidative phosphorylation to aerobic glycolysis is a major feature of renal fibrosis. Hypoxia-inducible factor-1 α (HIF-1α), a vital transcription factor, senses oxygen status, induces adaptive changes in cell metabolism, and plays an important role in renal fibrosis and glucose metabolism. This review focuses on the regulation of proteins related to aerobic glycolysis by HIF-1α and attempts to elucidate the possible regulatory mechanism underlying the effects of HIF-1α on glucose metabolism during renal fibrosis, aiming to provide new ideas for targeted metabolic pathway intervention in renal fibrosis.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yujun Du,
| |
Collapse
|
77
|
Emodin ameliorates antioxidant capacity and exerts neuroprotective effect via PKM2-mediated Nrf2 transactivation. Food Chem Toxicol 2021; 160:112790. [PMID: 34971761 DOI: 10.1016/j.fct.2021.112790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022]
Abstract
Pyruvate kinase M2 (PKM2) is overexpressed in neuronal cells. However, there are few studies on the involvement of PKM2 modulators in neurodegenerative diseases. Emodin, a dominating anthraquinone derivative extracting from the rhizome of rhubarb, has received expanding consideration due to its pharmacological properties. Our data reveal that emodin could resist hydrogen peroxide- or 6-hydroxydopamine-mediated mitochondrial fission and apoptosis in PC12 cells (a neuron-like rat pheochromocytoma cell line). Notably, emodin at nontoxic concentrations significantly inhibits PKM2 activity and promotes dissociation of tetrameric PKM2 into dimers in cells. The PKM2 dimerization enhances the interaction of PKM2 and NFE2-related factor 2 (Nrf2), which further triggers the activation of the Nrf2/ARE pathway to upregulate a panel of cytoprotective genes. Modulating the PKM2/Nrf2/ARE axis by emodin unveils a novel mechanism for understanding the pharmacological functions of emodin. Our findings indicate that emodin is a potential candidate for the treatment of oxidative stress-related neurodegenerative disorders.
Collapse
|
78
|
Li M, Lu H, Wang X, Duan C, Zhu X, Zhang Y, Ge X, Ji F, Wang X, Su J, Zhang D. Pyruvate kinase M2 (PKM2) interacts with activating transcription factor 2 (ATF2) to bridge glycolysis and pyroptosis in microglia. Mol Immunol 2021; 140:250-266. [PMID: 34798593 DOI: 10.1016/j.molimm.2021.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Pyruvate kinase M2 (PKM2), a glycolytic rate-limiting enzyme, reportedly plays an important role in tumorigenesis and the inflammatory response by regulating the metabolic reprogramming. However, its contribution to microglial activation during neuroinflammation is still unknown. In this study, we observed an enhanced glycolysis level in the lipopolysaccharide (LPS)-activated microglia. Utilizing the glycolysis inhibitor 2-DG, we proved that LPS requires glycolysis to induce microglial pyroptosis. Moreover, the protein expression, dimer/monomer formation, phosphorylation and nuclear translocation of PKM2 were all increased by LPS. Silencing PKM2 or preventing its nuclear translocation by TEPP-46 significantly alleviated the LPS-induced inflammatory response and pyroptosis in microglia. Employing biological mass spectrometry combined with immunoprecipitation technology, we identified for the first time that PKM2 interacts with activating transcription factor 2 (ATF2) in microglia. Inhibition of glycolysis or preventing PKM2 nuclear aggregation significantly reduced the phosphorylation and activation of ATF2. Furthermore, knocking down ATF2 reduced the LPS-induced pyroptosis of microglia. In vivo, we showed the LPS-induced pyroptosis in the cerebral cortex tissues of mice, and first found that an increased PKM2 expression was co-localized with ATF2 in the inflamed mice brain. Collectively, our data suggested for the first time that PKM2, a key rate-limiting enzyme of the Warburg effect, directly interacts with the pro-inflammatory transcription factor ATF2 to bridge glycolysis and pyroptosis in microglia, which might be a pivotal crosstalk between metabolic reprogramming and neuroinflammation in the CNS.
Collapse
Affiliation(s)
- Mengmeng Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Hongjian Lu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xueyan Wang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xiangyang Zhu
- Neurology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yi Zhang
- Neurosurgery Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xin Ge
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Feng Ji
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xueqin Wang
- Endocrinology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Jianbin Su
- Endocrinology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
79
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
80
|
Ding Z, Xi J, Zhong M, Chen F, Zhao H, Zhang B, Fang J. Cynaropicrin Induces Cell Cycle Arrest and Apoptosis by Inhibiting PKM2 to Cause DNA Damage and Mitochondrial Fission in A549 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13557-13567. [PMID: 34726896 DOI: 10.1021/acs.jafc.1c05394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metabolic reprogramming is critical for tumorigenesis. Pyruvate kinase M2 (PKM2) is overexpressed in lung carcinoma cells and plays a critical role in the Warburg effect, making the enzyme a research hotspot for anticancer drug development. Cynaropicrin (CYN), a natural sesquiterpene lactone compound from artichoke, has received increasing consideration due to its consumable esteem and pharmacological properties. Our data reveal that CYN not only inhibited the purified PKM2 activity but also decreased the cellular PKM2 expression in A549 cells. The inhibition of PKM2 leads to the upregulation of p53 and the downregulation of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP), and subsequently causes the cell cycle arrest. Additionally, CYN inhibits the interaction of PKM2 and Nrf2, resulting in the impairment of cellular antioxidant capacity, induction of oxidative stress, and mitochondrial damages. Overexpression of PKM2 attenuates the CYN-induced DNA damage, mitochondrial fission, and cell viability. Thus, targeting PKM2 provides an original mechanism for understanding the pharmacological impact of CYN and assists in the further development of CYN as an anticancer agent.
Collapse
Affiliation(s)
- Zhenjiang Ding
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Huanhuan Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
81
|
Protocatechuic aldehyde protects cardiomycoytes against ischemic injury via regulation of nuclear pyruvate kinase M2. Acta Pharm Sin B 2021; 11:3553-3566. [PMID: 34900536 PMCID: PMC8642444 DOI: 10.1016/j.apsb.2021.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Rescuing cells from stress damage emerges a potential therapeutic strategy to combat myocardial infarction. Protocatechuic aldehyde (PCA) is a major phenolic acid in Chinese herb Danshen (Salvia miltiorrhiza root). This study investigated whether PCA regulated nuclear pyruvate kinase isoform M2 (PKM2) function to protect cardiomyocytes. In rats subjected to isoprenaline, PCA attenuated heart injury and protected cardiomyocytes from apoptosis. Through DARTS and CETSA assays, we identified that PCA bound and promoted PKM2 nuclear translocation in cardiomyocytes exposed to oxygen/glucose deprivation (OGD). In the nucleus, PCA increased the binding of PKM2 to β-catenin via preserving PKM2 acetylation, and the complex, in cooperation with T-cell factor 4 (TCF4), was required for transcriptional induction of genes encoding anti-apoptotic proteins, contributing to rescuing cardiomyocyte survival. In addition, PCA ameliorated mitochondrial dysfunction and prevented mitochondrial apoptosis dependent on PKM2. Consistently, PCA increased the binding of PKM2 to β-catenin, improved heart contractive function, normalized heart structure and attenuated oxidative damage in mice subjected to artery ligation, but the protective effects were lost in Pkm2-deficient heart. Together, we showed that PCA regulated nuclear PKM2 function to rescue cardiomyocyte survival via β-catenin/TCF4 signaling cascade, suggesting the potential of pharmacological intervention of PKM2 shuttle to protect the heart.
Collapse
Key Words
- Apoptosis
- CETSA, cellular thermal shift assay
- CK-MB, creatine kinase isoenzyme-MB
- DARTS, drug affinity responsive target stability
- Heart ischemia
- ISO, isoprenaline
- LDH, lactate dehydrogenase
- Mitochondrial damage
- Myocardial infarction
- NRVMs, neonatal rat ventricular myocytes
- Nuclear translocation
- OGD, oxygen and glucose deprivation
- PCA, protocatechuic aldehyde
- PKM2
- PKM2, pyruvate kinase isoform M2
- Protocatechuic aldehyde
- ROS, reactive oxygen species
- TCF4
- TCF4, T-cell factor 4
- TUNEL, deoxynucleotidyl transferase-mediated dUTP nick end-labeling
- shRNA, short hairpin RNA
- β-Catenin
Collapse
|
82
|
Patel R, Raj AK, Lokhande KB, Almasri MA, Alzahrani KJ, Almeslet AS, Swamy KV, Sarode GS, Sarode SC, Patil S, Sharma NK. Detection of Nail Oncometabolite SAICAR in Oral Cancer Patients and Its Molecular Interactions with PKM2 Enzyme. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11225. [PMID: 34769743 PMCID: PMC8583651 DOI: 10.3390/ijerph182111225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023]
Abstract
Oncometabolites are known to drive metabolic adaptations in oral cancer. Several oncometabolites are known to be shared between cancer cells and non-cancer cells including microbiotas to modulate the tumor microenvironment. Among potential oncometabolites, succinylaminoimidazolecarboxamide ribose5'-phosphate (SAICAR) supports the growth and invasiveness of cancer cells by pyruvate kinase M2 (PKM2) enzyme in a glucose starved tumor microenvironment. There is a significant gap that shows the detection of SAICAR in biological samples including nails of oral cancer patients. Metabolite identification of SAICAR was investigated in the nails of oral cancer patients using novel vertical tube gel electrophoresis (VTGE) and LC-HRMS. Further molecular docking and molecular dynamics simulations (MDS) were employed to determine the nature of molecular interactions of SAICAR (CHEBI ID:18319) with PKM2 (PDB ID: 4G1N). Molecular docking of SAICAR (CHEBI ID:18319) was performed against pyruvate kinase M2 (PDB ID: 4G1N). Data suggest the presence of oncometabolite SAICAR in nails of oral cancer. Molecular docking of SAICAR with PKM2 showed appreciable binding affinity (-8.0 kcal/mol) with residues including ASP407, THR405, GLU410, ARG443, GLY321, ARG436, HIS439, LYS266, and TYR466. Furthermore, MDS confirmed the specific binding of SAICAR within the activator site of PKM2 and the stability of SAICAR and PKM2 molecular interactions. In conclusion, SAICAR is a promising oncometabolite biomarker present in the nails of oral cancer patients. A significant activation potential of SAICAR exists with the PKM2 enzyme.
Collapse
Affiliation(s)
- Rushikesh Patel
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (R.P.); (A.K.R.)
| | - Ajay Kumar Raj
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (R.P.); (A.K.R.)
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India;
| | - Mazen A. Almasri
- Oral and Maxillofacial Surgery Department, King Abdulaziz University, Jeddah City 21589, Saudi Arabia;
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Asma Saleh Almeslet
- Oral and Maxillofacial Surgery and Diagnostic Sciences Department, Riyadh Elm University, Riyadh 12611, Saudi Arabia;
| | - K. Venkateswara Swamy
- MIT-School of Bioengineering Sciences & Research, MIT-Art, Design and Technology University, Pune 412201, Maharashtra, India;
| | - Gargi S. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411033, Maharashtra, India;
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411033, Maharashtra, India;
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (R.P.); (A.K.R.)
| |
Collapse
|
83
|
Parsons RB, Facey PD. Nicotinamide N-Methyltransferase: An Emerging Protagonist in Cancer Macro(r)evolution. Biomolecules 2021; 11:1418. [PMID: 34680055 PMCID: PMC8533529 DOI: 10.3390/biom11101418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) has progressed from being considered merely a Phase II metabolic enzyme to one with a central role in cell function and energy metabolism. Over the last three decades, a significant body of evidence has accumulated which clearly demonstrates a central role for NNMT in cancer survival, metastasis, and drug resistance. In this review, we discuss the evidence supporting a role for NNMT in the progression of the cancer phenotype and how it achieves this by driving the activity of pro-oncogenic NAD+-consuming enzymes. We also describe how increased NNMT activity supports the Warburg effect and how it promotes oncogenic changes in gene expression. We discuss the regulation of NNMT activity in cancer cells by both post-translational modification of the enzyme and transcription factor binding to the NNMT gene, and describe for the first time three long non-coding RNAs which may play a role in the regulation of NNMT transcription. We complete the review by discussing the development of novel anti-cancer therapeutics which target NNMT and provide insight into how NNMT-based therapies may be best employed clinically.
Collapse
Affiliation(s)
- Richard B. Parsons
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| | - Paul D. Facey
- Singleton Park Campus, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK;
| |
Collapse
|
84
|
Peng Y, Yang H, Li S. The role of glycometabolic plasticity in cancer. Pathol Res Pract 2021; 226:153595. [PMID: 34481210 DOI: 10.1016/j.prp.2021.153595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Dysregulated glycometabolism represented by the Warburg effect is well recognized as a hallmark of cancer that can be driven by oncogenes (e.g., c-Myc, K-ras, and BRAF) and contribute to cellular malignant transformation. The Warburg effect reveals the different glycometabolic patterns of cancer cells, but this unique glycometabolic pattern has the characteristic of plasticity rather than changeless which can vary with different internal or external stimuli during evolution. Glycometabolic plasticity enables cancer cells to modulate glycometabolism to support progression, metastasis, treatment resistance and recurrence. In this review, we report the characteristics of glycometabolic plasticity during different stages of cancer evolution, providing insight into the molecular mechanisms of glycometabolic plasticity in cancer. In addition, we discussed the challenges and future research directions of glycometabolism research in cancer.
Collapse
Affiliation(s)
- Yuyang Peng
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Song Li
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
85
|
Lee YB, Min JK, Kim JG, Cap KC, Islam R, Hossain AJ, Dogsom O, Hamza A, Mahmud S, Choi DR, Kim YS, Koh YH, Kim HA, Chung WS, Suh SW, Park JB. Multiple functions of pyruvate kinase M2 in various cell types. J Cell Physiol 2021; 237:128-148. [PMID: 34311499 DOI: 10.1002/jcp.30536] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
Glucose metabolism is a mechanism by which energy is produced in form of adenosine triphosphate (ATP) by mitochondria and precursor metabolites are supplied to enable the ultimate enrichment of mature metabolites in the cell. Recently, glycolytic enzymes have been shown to have unconventional but important functions. Among these enzymes, pyruvate kinase M2 (PKM2) plays several roles including having conventional metabolic enzyme activity, and also being a transcriptional regulator and a protein kinase. Compared with the closely related PKM1, PKM2 is highly expressed in cancer cells and embryos, whereas PKM1 is dominant in mature, differentiated cells. Posttranslational modifications such as phosphorylation and acetylation of PKM2 change its cellular functions. In particular, PKM2 can translocate to the nucleus, where it regulates the transcription of many target genes. It is notable that PKM2 also acts as a protein kinase to phosphorylate several substrate proteins. Besides cancer cells and embryonic cells, astrocytes also highly express PKM2, which is crucial for lactate production via expression of lactate dehydrogenase A (LDHA), while mature neurons predominantly express PKM1. The lactate produced in cancer cells promotes tumor progress and that in astrocytes can be supplied to neurons and may act as a major source for neuronal ATP energy production. Thereby, we propose that PKM2 along with its different posttranslational modifications has specific purposes for a variety of cell types, performing unique functions.
Collapse
Affiliation(s)
- Yoon-Beom Lee
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jung K Min
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kim Cuong Cap
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,eLmed Inc. #3419, Hallym University, Chuncheon, Kangwon-do, Republic of Korea.,Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Rokibul Islam
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, Bangladesh
| | - Abu J Hossain
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Oyungerel Dogsom
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Amir Hamza
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Shohel Mahmud
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,National Institute of Biotechnology, Ganakbari, Savar, Dhaka, Bangladesh
| | - Dae R Choi
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Young-Ho Koh
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Hyun-A Kim
- Department of Internal Medicine, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Ahnyang, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang W Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,eLmed Inc. #3419, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| |
Collapse
|
86
|
Rathod B, Chak S, Patel S, Shard A. Tumor pyruvate kinase M2 modulators: a comprehensive account of activators and inhibitors as anticancer agents. RSC Med Chem 2021; 12:1121-1141. [PMID: 34355179 PMCID: PMC8292966 DOI: 10.1039/d1md00045d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate. It plays a central role in the metabolic reprogramming of cancer cells and is expressed in most human tumors. It is essential in indiscriminate proliferation, survival, and tackling apoptosis in cancer cells. This positions PKM2 as a hot target in cancer therapy. Despite its well-known structure and several reported modulators targeting PKM2 as activators or inhibitors, a comprehensive review focusing on such modulators is lacking. Herein we summarize modulators of PKM2, the assays used to detect their potential, the preferable tense (T) and relaxed (R) states in which the enzyme resides, lacunae in existing modulators, and several strategies that may lead to effective anticancer drug development targeting PKM2.
Collapse
Affiliation(s)
- Bhagyashri Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad Opposite Air Force Station Gandhinagar Gujarat 382355 India
| | - Shivam Chak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad Opposite Air Force Station Gandhinagar Gujarat 382355 India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad Opposite Air Force Station Gandhinagar Gujarat 382355 India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad Opposite Air Force Station Gandhinagar Gujarat 382355 India
| |
Collapse
|
87
|
Pei L, Le Y, Chen H, Feng J, Liu Z, Zhu J, Wang C, Chen L, Dou X, Lu D. Cynaroside prevents macrophage polarization into pro-inflammatory phenotype and alleviates cecal ligation and puncture-induced liver injury by targeting PKM2/HIF-1α axis. Fitoterapia 2021; 152:104922. [PMID: 33984439 DOI: 10.1016/j.fitote.2021.104922] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
The treatment of sepsis is still challenging and the liver is an important target of sepsis-related injury. Macrophages are important innate immune cells in liver, and modulation of macrophages M1/M2 polarization may be a promising strategy for septic liver injury treatment. Macrophage polarization and inflammation of liver tissue has been shown regulated by pyruvate kinase M2 (PKM2)-mediated aerobic glycolysis and immune inflammatory pathways. Therefore, modulating PKM2-mediated immunometabolic reprogramming presents a novel strategy for inflammation-associated diseases. In this study, cynaroside, a flavonoid compound, promoted macrophage phenotypic transition from pro-inflammatory M1 to anti-inflammatory M2, and mitigated sepsis-associated liver inflammatory damage. We established that cynaroside reduced binding of PKM2 to hypoxia-inducible factor-1α (HIF-1α) by abolishing translocation of PKM2 to the nucleus and promoting PKM2 tetramer formation, as well as suppressing phosphorylation of PKM2 at Y105 in vivo and in vitro. Moreover, cynaroside restored pyruvate kinase activity, inhibited glycolysis-related proteins including PFKFB3, HK2 and HIF-1α, and inhibited glycolysis-related hyperacetylation of HMGB1 in septic liver. Therefore, this study reports a novel function of cynaroside in hepatic macrophage polarization, and cecum ligation and puncture-induced liver injury in septic mice. The findings provide crucial information with regard to therapeutic efficacy of cynaroside in the treatment of sepsis.
Collapse
Affiliation(s)
- Liuhua Pei
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Yifei Le
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Hang Chen
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Jiafan Feng
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Zhijun Liu
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 330106 Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Lin Chen
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China.
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China.
| |
Collapse
|
88
|
Jiang J, Peng L, Wang K, Huang C. Moonlighting Metabolic Enzymes in Cancer: New Perspectives on the Redox Code. Antioxid Redox Signal 2021; 34:979-1003. [PMID: 32631077 DOI: 10.1089/ars.2020.8123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Metabolic reprogramming is considered to be a critical adaptive biological event that fulfills the energy and biomass demands for cancer cells. One hallmark of metabolic reprogramming is reduced oxidative phosphorylation and enhanced aerobic glycolysis. Such metabolic abnormalities contribute to the accumulation of reactive oxygen species (ROS), the by-products of metabolic pathways. Emerging evidence suggests that ROS can in turn directly or indirectly affect the expression, activity, or subcellular localization of metabolic enzymes, contributing to the moonlighting functions outside of their primary roles. This review summarizes the multifunctions of metabolic enzymes and the involved redox modification patterns, which further reveal the inherent connection between metabolism and cellular redox state. Recent Advances: These noncanonical functions of metabolic enzymes involve the regulation of epigenetic modifications, gene transcription, post-translational modification, cellular antioxidant capacity, and many other fundamental cellular events. The multifunctional properties of metabolic enzymes further expand the metabolic dependencies of cancer cells, and confer cancer cells with a means of adapting to diverse environmental stimuli. Critical Issues: Deciphering the redox-manipulated mechanisms with specific emphasis on the moonlighting function of metabolic enzymes is important for clarifying the pertinence between metabolism and redox processes. Future Directions: Investigation of the redox-regulated moonlighting functions of metabolic enzymes will shed new lights into the mechanism by which metabolic enzymes gain noncanonical functions, and yield new insights into the development of novel therapeutic strategies for cancer treatment by targeting metabolic-redox abnormalities. Antioxid. Redox Signal. 34, 979-1003.
Collapse
Affiliation(s)
- Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|
89
|
Chen M, Liu H, Li Z, Ming AL, Chen H. Mechanism of PKM2 affecting cancer immunity and metabolism in Tumor Microenvironment. J Cancer 2021; 12:3566-3574. [PMID: 33995634 PMCID: PMC8120184 DOI: 10.7150/jca.54430] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
PKM2 is the enzyme that regulates the final rate-limiting step of glycolysis. PKM2 expression can reinforce the utilization of oxygen and synthesis of growth substances in cancer cells by enhancing OXPHOS and the Warburg effect. In cancer immunity, PKM2 can modulate the expression of PD-L1 in M2 macrophage and decrease the amount and activity of CD8+ T cells. This affects cancer cell killing and immune escape sequentially. How PKM2 regulates PD-L1 expression through immunometabolism is summarized. PKM2 builds a bridge between energy metabolism and cancer immunity. The activator and inhibitor of PKM2 both promote the anti-cancer immune response and inhibit cancer growth and metastasis by regulating the metabolism of cancer cells and immune cells in the tumor microenvironment through HIF-1α/PKM2 pathway. This review focuses on the precise role of PKM2 modulating immunometabolism, providing valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Mengxi Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Huan Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Zhang Li
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Alex Lau Ming
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Honglei Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
90
|
Patel S, Das A, Meshram P, Sharma A, Chowdhury A, Jariyal H, Datta A, Sarmah D, Nalla LV, Sahu B, Khairnar A, Bhattacharya P, Srivastava A, Shard A. Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein-protein interactions. Cell Biol Toxicol 2021; 37:653-678. [PMID: 33864549 DOI: 10.1007/s10565-021-09605-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer's disease, allergy, asthma, autoimmune diseases, coeliac disease, glomerulonephritis, sepsis, hepatitis, inflammatory bowel disease, reperfusion injury, and transplant rejections. Despite several expansions in our understanding of inflammatory disorders and their mediators, it seems clear that numerous proteins participate in the onset of CI. One crucial protein pyruvate kinase M2 (PKM2) much studied in cancer is also found to be inextricably woven in the onset of several CI's. It has been found that PKM2 plays a significant role in several disorders using a network of proteins that interact in multiple ways. For instance, PKM2 forms a close association with epidermal growth factor receptors (EGFRs) for uncontrolled growth and proliferation of tumor cells. In neurodegeneration, PKM2 interacts with apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) to onset Alzheimer's disease pathogenesis. The cross-talk of protein tyrosine phosphatase 1B (PTP1B) and PKM2 acts as stepping stones for the commencement of diabetes. Perhaps PKM2 stores the potential to unlock the pathophysiology of several diseases. Here we provide an overview of the notoriously convoluted biology of CI's and PKM2. The cross-talk of PKM2 with several proteins involved in stroke, Alzheimer's, cancer, and other diseases has also been discussed. We believe that considering the importance of PKM2 in inflammation-related diseases, new options for treating various disorders with the development of more selective agents targeting PKM2 may appear.
Collapse
Affiliation(s)
- Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Anwesha Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Payal Meshram
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Ayushi Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Arnab Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
91
|
Huang J, Zhao X, Li X, Peng J, Yang W, Mi S. HMGCR inhibition stabilizes the glycolytic enzyme PKM2 to support the growth of renal cell carcinoma. PLoS Biol 2021; 19:e3001197. [PMID: 33905408 PMCID: PMC8104400 DOI: 10.1371/journal.pbio.3001197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/07/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) is responsible for most cases of the kidney cancer. Previous research showed that low serum levels of cholesterol level positively correlate with poorer RCC-specific survival outcomes. However, the underlying mechanisms and functional significance of the role of cholesterol in the development of RCC remain obscure. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) plays a pivotal role in RCC development as it is the key rate-limiting enzyme of the cholesterol biosynthetic pathway. In this study, we demonstrated that the inhibition of HMGCR could accelerate the development of RCC tumors by lactate accumulation and angiogenesis in animal models. We identified that the inhibition of HMGCR led to an increase in glycolysis via the regulated HSP90 expression levels, thus maintaining the levels of a glycolysis rate-limiting enzyme, pyruvate kinase M2 (PKM2). Based on these findings, we reversed the HMGCR inhibition-induced tumor growth acceleration in RCC xenograft mice by suppressing glycolysis. Furthermore, the coadministration of Shikonin, a potent PKM2 inhibitor, reverted the tumor development induced by the HMGCR signaling pathway.
Collapse
Affiliation(s)
- Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xiang Li
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Jiwei Peng
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Weihao Yang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| |
Collapse
|
92
|
Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev 2021; 66:101249. [PMID: 33383189 DOI: 10.1016/j.arr.2020.101249] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by low-grade inflammation and high levels of clinical heterogeneity. Aberrant chondrocyte metabolism is a response to changes in the inflammatory microenvironment and may play a key role in cartilage degeneration and OA progression. Under conditions of environmental stress, chondrocytes tend to adapt their metabolism to microenvironmental changes by shifting from one metabolic pathway to another, for example from oxidative phosphorylation to glycolysis. Similar changes occur in other joint cells, including synoviocytes. Switching between these pathways is implicated in metabolic alterations that involve mitochondrial dysfunction, enhanced anaerobic glycolysis, and altered lipid and amino acid metabolism. The shift between oxidative phosphorylation and glycolysis is mainly regulated by the AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) pathways. Chondrocyte metabolic changes are likely to be a feature of different OA phenotypes. Determining the role of chondrocyte metabolism in OA has revealed key features of disease pathogenesis. Future research should place greater emphasis on immunometabolism and altered metabolic pathways as a means to understand the pathophysiology of age-related OA. This knowledge will advance the development of new drugs against therapeutic targets of metabolic significance.
Collapse
Affiliation(s)
- Linli Zheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Puyi Sheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China.
| | - Ali Mobasheri
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, PO Box 5000, FI-90014 Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
93
|
Li R, Ning X, He J, Lin Z, Su Y, Li R, Yin Y. Synthesis of novel sulfonamide derivatives containing pyridin-3-ylmethyl 4-(benzoyl)piperazine-1-carbodithioate moiety as potent PKM2 activators. Bioorg Chem 2021; 108:104653. [PMID: 33517002 DOI: 10.1016/j.bioorg.2021.104653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 01/13/2023]
Abstract
Pyruvate kinase M2 isoform (PKM2) plays a key role in cancer progression through both metabolic and non-metabolic functions, thus it is recognized as a potential target for cancer diagnosis and treatment. In this study, we discovered a sulfonamide-dithiocarbamate compound 8a as a novel PKM2 activator from a random screening of an in-house compound library. Then, a series of lead compound 8a analogs were designed and synthesized for screening as potent PKM2 activators. Among them, compound 8b (AC50 = 0.136 µM) and 8k (AC50 = 0.056 µM) showed higher PKM2 activation activities than positive control NZT (AC50 = 0.228 µM), and they (IC50 < 1 µM) exhibited more significant anti-proliferative activities against human tumor cell lines than NZT (IC50 > 10 µM). Especially, compound 8k inhibited the proliferation of multiple cancer cells, but showed little toxicity on normal cells. In addition, we found that compound 8k inhibit the colony formation of MCF7 cells. Western blot analysis demonstrated that 8k could reduce PKM2 nuclear localization and block the downstream signaling pathway of PKM2, resulting in suppression of tumor cell proliferation. Overall, compound 8k may be a promising candidate for further mechanistic investigation of PKM2 and cancer therapy.
Collapse
Affiliation(s)
- Ridong Li
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Xianling Ning
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Jianan He
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville Victoria 3010, Australia
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Yue Su
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
94
|
Wang Y, Li Y, Jiang L, Ren X, Cheng B, Xia J. Prognostic value of glycolysis markers in head and neck squamous cell carcinoma: a meta-analysis. Aging (Albany NY) 2021; 13:7284-7299. [PMID: 33653965 PMCID: PMC7993722 DOI: 10.18632/aging.202583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
Glycolysis markers including glucose transporter 1 (GLUT1), monocarboxylate transporter 4 (MCT4), hexokinase 2 (HK2), pyruvate kinase M2 (PKM2) and glucose transporter 4 (GLUT4) play vital roles in head and neck squamous cell carcinoma (HNSCC). However, their prognostic value in HNSCC is still controversial. In this meta-analysis, we searched the PubMed, Web of Science and Cochrane Library databases and included thirty-seven studies (3272 patients) that met the inclusion criteria. Higher expression levels of the glycolysis markers in tumor tissues correlated with poorer overall survival (OS; P < 0.001), disease-free survival (DFS; P = 0.03) and recurrence-free survival (RFS; P < 0.001) of HNSCC patients. Subgroup and sensitivity analyses demonstrated that higher expression levels of GLUT1 (P < 0.001), MCT4 (P = 0.002), HK2 (P = 0.002) and PKM2 (P < 0.001) correlated with poorer OS among HNSCC patients. Higher expression of MCT4 (P < 0.001) and PKM2 (P = 0.008) predicted poorer DFS among HNSCC patients. However, GLUT4 expression levels did not associate with clinical outcomes in HNSCC patients. These results demonstrate that glycolysis markers, such as GLUT1, MCT4, HK2 and PKM2, are potential prognostic predictors and therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Yanting Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
| | - Yuanyuan Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
| | - Laibo Jiang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
| |
Collapse
|
95
|
Ying ZH, Li HM, Yu WY, Yu CH. Iridin Prevented Against Lipopolysaccharide-Induced Inflammatory Responses of Macrophages via Inactivation of PKM2-Mediated Glycolytic Pathways. J Inflamm Res 2021; 14:341-354. [PMID: 33574693 PMCID: PMC7872898 DOI: 10.2147/jir.s292244] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose Abnormal glycolysis of immune cells contributed to the development of inflammatory response. Inhibition of this Warburg phenotype could be a promising strategy for preventing various inflammatory diseases. Iridin (IRD) is a natural isoflavone, and exerts anticancer, antioxidant, and anti-inflammatory effects. However, the underlying mechanism of IRD on acute inflammation remains unknown. In this study, the protective effects of IRD against lipopolysaccharide (LPS)-induced inflammation were investigated in murine macrophage RAW264.7 cells and in mice. Methods The inhibition of IRD on NO production in culture medium was detected by Griess assay while the levels of TNF-α, IL-1β, and MCP-1 were detected by ELISA assay. The effects of IRD on OCR and ECAR levels in LPS-treated macrophages were monitored by using Seahorse Analyzer. The apoptosis rate as well as the release of ROS and NO of RAW264.7 cells were analyzed by flow cytometric assay. The protective effects of IRD were investigated on LPS-induced inflammation in mice. The expressions of PKM2 and its downstream (p-JAK1, p-STAT1, p-STAT3, p-p65, iNOS, and COX2) in cells and in lung tissues were detected by Western blotting analysis. Results IRD treatment at the concentrations of 12.5-50 μM significantly inhibited the productions of TNF-α, IL-1β, MCP-1, and ROS, and suppressed the levels of glucose uptake and lactic acid in LPS-treated RAW264.7 cells. Oral administration with IRD (20-80 mg/kg) inhibited LPS-induced acute lung injury as well as inflammatory cytokine production in mice. Moreover, IRD targeted pyruvate kinase isozyme type M2 (PKM2) and suppressed its downstream p-JAK1, p-STAT1, p-STAT3, p-p65, iNOS, and COX2, which could be abolished by PKM2 agonist DASA-58 and antioxidant N-acetyl-L-cysteine, but partly be reversed by NF-κB activator CUT129 and JAK1 activator RO8191. Conclusion IRD alleviated LPS-induced inflammation through suppressing PKM2-mediated pathways, and could be a potential candidate for the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Zhen-Hua Ying
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310006, People's Republic of China
| | - Hui-Min Li
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310006, People's Republic of China
| | - Wen-Ying Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, People's Republic of China
| | - Chen-Huan Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, People's Republic of China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310018, People's Republic of China.,Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, People's Republic of China
| |
Collapse
|
96
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
97
|
Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol 2021; 599:1745-1757. [PMID: 33347611 DOI: 10.1113/jp278810] [Citation(s) in RCA: 473] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
Contrary to Warburg's original thesis, accelerated aerobic glycolysis is not a primary, permanent and universal consequence of dysfunctional or impaired mitochondria compensating for poor ATP yield per mole of glucose. Instead, in most tumours the Warburg effect is an essential part of a 'selfish' metabolic reprogramming, which results from the interplay between (normoxic/hypoxic) hypoxia-inducible factor-1 (HIF-1) overexpression, oncogene activation (cMyc, Ras), loss of function of tumour suppressors (mutant p53, mutant phosphatase and tensin homologue (PTEN), microRNAs and sirtuins with suppressor functions), activated (PI3K-Akt-mTORC1, Ras-Raf-MEK-ERK-cMyc, Jak-Stat3) or deactivated (LKB1-AMPK) signalling pathways, components of the tumour microenvironment, and HIF-1 cooperation with epigenetic mechanisms. Molecular and functional processes of the Warburg effect include: (a) considerable acceleration of glycolytic fluxes; (b) adequate ATP generation per unit time to maintain energy homeostasis and electrochemical gradients; (c) backup and diversion of glycolytic intermediates facilitating the biosynthesis of nucleotides, non-essential amino acids, lipids and hexosamines; (d) inhibition of pyruvate entry into mitochondria; (e) excessive formation and accumulation of lactate, which stimulates tumour growth and suppression of anti-tumour immunity - in addition, lactate can serve as an energy source for normoxic cancer cells and drives malignant progression and resistances to conventional therapies; (f) cytosolic lactate being mainly exported through upregulated lactate-proton symporters (MCT4), working together with other H+ transporters, and carbonic anhydrases (CAII, CAIX), which hydrate CO2 from oxidative metabolism to form H+ and bicarbonate; (g) these proton export mechanisms, in concert with poor vascular drainage, being responsible for extracellular acidification, driving malignant progression and resistance to conventional therapies; (h) maintenance of the cellular redox homeostasis and low reactive oxygen species (ROS) formation; and (i) HIF-1 overexpression, mutant p53 and mutant PTEN, which inhibit mitochondrial biogenesis and functions, negatively impacting cellular respiration rate. The glycolytic switch is an early event in oncogenesis and primarily supports cell survival. All in all, the Warburg effect, i.e. aerobic glycolysis in the presence of oxygen and - in principle - functioning mitochondria, constitutes a major driver of the cancer progression machinery, resistance to conventional therapies, and poor patient outcome. However, as evidenced during the last two decades, in a minority of tumours primary mitochondrial defects can play a key role promoting the Warburg effect and tumour progression due to mutations in some Krebs cycle enzymes and mitochondrial ROS overproduction.
Collapse
Affiliation(s)
- Peter Vaupel
- Department of Radiation Oncology, Tumour Pathophysiology Group, University Medical Centre, University of Mainz, Germany.,Department of Radiation Oncology, University Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Gabriele Multhoff
- Center for Translational Cancer Research, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,Department of RadioOncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
98
|
Zhang R, Shen M, Wu C, Chen Y, Lu J, Li J, Zhao L, Meng H, Zhou X, Huang G, Zhao X, Liu J. HDAC8-dependent deacetylation of PKM2 directs nuclear localization and glycolysis to promote proliferation in hepatocellular carcinoma. Cell Death Dis 2020; 11:1036. [PMID: 33279948 PMCID: PMC7719180 DOI: 10.1038/s41419-020-03212-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/11/2023]
Abstract
Pyruvate kinase M2 (PKM2) is not only a key rate-limiting enzyme that guides glycolysis, but also acts as a non-metabolic protein in regulating gene transcription. In recent years, a series of studies have confirmed that post-translational modification has become an important mechanism for regulating the function of PKM2, which in turn affects tumorigenesis. In this study, we found that K62 residues were deacetylated, which is related to the prognosis of HCC. Further studies indicate that HDAC8 binds and deacetylates the K62 residue of PKM2. Mechanistically, K62 deacetylation facilitate PKM2 transport into the nucleus and bind β-catenin, thereby promoting CCND1 gene transcription and cell cycle progression. In addition, the deacetylation of K62 affects the enzyme activity of PKM2 and the flux of glucose metabolism. Therefore, these results suggest that HDAC8 / PKM2 signaling may become a new target for the treatment of HCC.
Collapse
Affiliation(s)
- Ruixue Zhang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengqin Shen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chunhua Wu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yumei Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiani Lu
- Division of Physical Therapy Education, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jiajin Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huannan Meng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Division of Physical Therapy Education, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
99
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
100
|
Yang X, Das PP, Oppenheimer P, Zhou G, Wong SM. iTRAQ-based protein analysis provides insight into heterologous superinfection exclusion with TMV-43A against CMV in tobacco (Nicotiana benthamiana) plants. J Proteomics 2020; 229:103948. [PMID: 32858166 DOI: 10.1016/j.jprot.2020.103948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Heterologous superinfection exclusion (HSE) is a phenomenon of an initial virus infection which prevents reinfection by a distantly related or unrelated challenger virus strain in the same host. Here, we demonstrate that a mild strain mutant of Tobacco mosaic virus (TMV-43A) can protect Nicotiana benthamiana plants against infection by a challenger Cucumber mosaic virus (CMV)-Fny strain. The isobaric tags for relative and absolute quantification (iTRAQ) technique was used to investigate proteome of N. benthamiana plant during HSE. Our results indicated that in superinfected plants, the PSI and PSII proteins in the photosynthetic pathway increased in abundance, providing sufficient energy to plants for survival. The fatty acid synthesis-related proteins acetyl-CoA carboxylase 1-like and fatty acid synthase were decreased in abundance, affecting the formation of virus replication complex, which in turn reduced CMV replication and lessen hijacking of basic building blocks of RNA transcription and protein synthesis required for normal host functions. This is the first analyses of host proteins that are correlated to HSE between two unrelated plant viruses TMV-43A and CMV in N. benthamiana plants. BIOLOGICAL SIGNIFICANCE: CMV is one of the most studied host-virus interaction models in plants. It infects both monocot and dicot crop plants, causing significant economic losses. Superinfection exclusion (also known as cross protection) is one of the methods to combat virus infection. However, there is lack of proteome information of heterologous superinfection exclusion between two taxonomically unrelated plant viruses (such as between CMV and TMV). An iTRAQ-based quantitative approach was used to study proteomics of superinfection, where TMV-43A acts as a protector of N. benthamiana plants against its challenger CMV. Results showed that TMV-43A protects host plants and prevents plant death from CMV infection. This study provided insights into host responses involving multiple host pathways: photosynthesis, plant defence, carbon metabolism, translation and protein processing, fatty acid metabolism and amino acid biosynthesis. The findings provide a reference database for other viruses and increase our knowledge in host proteins that are correlated to superinfection.
Collapse
Affiliation(s)
- Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Prem Prakash Das
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Peter Oppenheimer
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|