51
|
Liu Y, Zong W, Diaby M, Lin Z, Wang S, Gao B, Ji T, Song C. Diversity and Evolution of pogo and Tc1/mariner Transposons in the Apoidea Genomes. BIOLOGY 2021; 10:940. [PMID: 34571816 PMCID: PMC8472432 DOI: 10.3390/biology10090940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Bees (Apoidea), the largest and most crucial radiation of pollinators, play a vital role in the ecosystem balance. Transposons are widely distributed in nature and are important drivers of species diversity. However, transposons are rarely reported in important pollinators such as bees. Here, we surveyed 37 bee genomesin Apoidea, annotated the pogo and Tc1/mariner transposons in the genome of each species, and performed a phylogenetic analysis and determined their overall distribution. The pogo and Tc1/mariner families showed high diversity and low abundance in the 37 species, and their proportion was significantly higher in solitary bees than in social bees. DD34D/mariner was found to be distributed in almost all species and was found in Apis mellifera, Apis mellifera carnica, Apis mellifera caucasia, and Apis mellifera mellifera, and Euglossa dilemma may still be active. Using horizontal transfer analysis, we found that DD29-30D/Tigger may have experienced horizontal transfer (HT) events. The current study displayed the evolution profiles (including diversity, activity, and abundance) of the pogo and Tc1/mariner transposons across 37 species of Apoidea. Our data revealed their contributions to the genomic variations across these species and facilitated in understanding of the genome evolution of this lineage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.Z.); (M.D.); (Z.L.); (S.W.); (B.G.); (T.J.)
| |
Collapse
|
52
|
Boutanaev AM. Components of Intrageneric Genome Size Dynamics in Plants and Animals. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421080032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
53
|
Yang N, Zhao B, Chen Y, D'Alessandro E, Chen C, Ji T, Wu X, Song C. Distinct Retrotransposon Evolution Profile in the Genome of Rabbit (Oryctolagus cuniculus). Genome Biol Evol 2021; 13:6322960. [PMID: 34270728 PMCID: PMC8346653 DOI: 10.1093/gbe/evab168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Although the rabbit genome has already been annotated, it is mobilome remains largely unknown. Here, multiple pipelines were used to de novo mine and annotate the mobilome in rabbit. Four families and 19 subfamilies of LINE1s, two families and nine subfamilies of SINEs, and 12 ERV families were defined in rabbit based on sequence identity, structural organization, and phylogenetic tree. The analysis of insertion age and polymerase chain reaction suggests that a number of families are very young and may remain active, such as L1B, L1D, OcuSINEA, and OcuERV1. RepeatMasker annotation revealed a distinct transposable element landscape within the genome, with approximately two million copies of SINEs, representing the greatest proportion of the genome (19.61%), followed by LINEs (15.44%), and LTRs (4.11%), respectively, considerably different from most other mammal mobilomes except hedgehog and tree shrew, in which LINEs have the highest proportion. Furthermore, a very high rate of insertion polymorphisms (>85%) for the youngest subfamily (OcuSINEA1) was identified by polymerase chain reaction. The majority of retrotransposon insertions overlapped with protein-coding regions (>80%) and lncRNA (90%) genes. Genomic distribution bias was observed for retrotransposons, with those immediately upstream (-1 kb) and downstream (1 kb) of genes significantly depleted. Local GC content in 50-kb widows had significantly negative correlations with LINE (rs=-0.996) and LTR (rs=-0.829) insertions. The current study revealed a distinct mobilome landscape in rabbit, which will assist in the elucidation of the evolution of the genome of lagomorphs, and even other mammals.
Collapse
Affiliation(s)
- Naisu Yang
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Yang Chen
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | | | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Ting Ji
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| |
Collapse
|
54
|
Impact of Repetitive DNA Elements on Snake Genome Biology and Evolution. Cells 2021; 10:cells10071707. [PMID: 34359877 PMCID: PMC8303610 DOI: 10.3390/cells10071707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
The distinctive biology and unique evolutionary features of snakes make them fascinating model systems to elucidate how genomes evolve and how variation at the genomic level is interlinked with phenotypic-level evolution. Similar to other eukaryotic genomes, large proportions of snake genomes contain repetitive DNA, including transposable elements (TEs) and satellite repeats. The importance of repetitive DNA and its structural and functional role in the snake genome, remain unclear. This review highlights the major types of repeats and their proportions in snake genomes, reflecting the high diversity and composition of snake repeats. We present snakes as an emerging and important model system for the study of repetitive DNA under the impact of sex and microchromosome evolution. We assemble evidence to show that certain repetitive elements in snakes are transcriptionally active and demonstrate highly dynamic lineage-specific patterns as repeat sequences. We hypothesize that particular TEs can trigger different genomic mechanisms that might contribute to driving adaptive evolution in snakes. Finally, we review emerging approaches that may be used to study the expression of repetitive elements in complex genomes, such as snakes. The specific aspects presented here will stimulate further discussion on the role of genomic repeats in shaping snake evolution.
Collapse
|
55
|
Lancaster L, Patel H, Kelly G, Uhlmann F. A role for condensin in mediating transcriptional adaptation to environmental stimuli. Life Sci Alliance 2021; 4:e202000961. [PMID: 34083394 PMCID: PMC8200293 DOI: 10.26508/lsa.202000961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023] Open
Abstract
Nuclear organisation shapes gene regulation; however, the principles by which three-dimensional genome architecture influences gene transcription are incompletely understood. Condensin is a key architectural chromatin constituent, best known for its role in mitotic chromosome condensation. Yet at least a subset of condensin is bound to DNA throughout the cell cycle. Studies in various organisms have reported roles for condensin in transcriptional regulation, but no unifying mechanism has emerged. Here, we use rapid conditional condensin depletion in the budding yeast Saccharomyces cerevisiae to study its role in transcriptional regulation. We observe a large number of small gene expression changes, enriched at genes located close to condensin-binding sites, consistent with a possible local effect of condensin on gene expression. Furthermore, nascent RNA sequencing reveals that transcriptional down-regulation in response to environmental stimuli, in particular to heat shock, is subdued without condensin. Our results underscore the multitude by which an architectural chromosome constituent can affect gene regulation and suggest that condensin facilitates transcriptional reprogramming as part of adaptation to environmental changes.
Collapse
Affiliation(s)
- Lucy Lancaster
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
56
|
Aroh O, Halanych KM. Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi. BMC Genomics 2021; 22:466. [PMID: 34157969 PMCID: PMC8220671 DOI: 10.1186/s12864-021-07749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Long Terminal Repeat retrotransposons (LTR retrotransposons) are mobile genetic elements composed of a few genes between terminal repeats and, in some cases, can comprise over half of a genome’s content. Available data on LTR retrotransposons have facilitated comparative studies and provided insight on genome evolution. However, data are biased to model systems and marine organisms, including annelids, have been underrepresented in transposable elements studies. Here, we focus on genome of Lamellibrachia luymesi, a vestimentiferan tubeworm from deep-sea hydrocarbon seeps, to gain knowledge of LTR retrotransposons in a deep-sea annelid. Results We characterized LTR retrotransposons present in the genome of L. luymesi using bioinformatic approaches and found that intact LTR retrotransposons makes up about 0.1% of L. luymesi genome. Previous characterization of the genome has shown that this tubeworm hosts several known LTR-retrotransposons. Here we describe and classify LTR retrotransposons in L. luymesi as within the Gypsy, Copia and Bel-pao superfamilies. Although, many elements fell within already recognized families (e.g., Mag, CSRN1), others formed clades distinct from previously recognized families within these superfamilies. However, approximately 19% (41) of recovered elements could not be classified. Gypsy elements were the most abundant while only 2 Copia and 2 Bel-pao elements were present. In addition, analysis of insertion times indicated that several LTR-retrotransposons were recently transposed into the genome of L. luymesi, these elements had identical LTR’s raising possibility of recent or ongoing retrotransposon activity. Conclusions Our analysis contributes to knowledge on diversity of LTR-retrotransposons in marine settings and also serves as an important step to assist our understanding of the potential role of retroelements in marine organisms. We find that many LTR retrotransposons, which have been inserted in the last few million years, are similar to those found in terrestrial model species. However, several new groups of LTR retrotransposons were discovered suggesting that the representation of LTR retrotransposons may be different in marine settings. Further study would improve understanding of the diversity of retrotransposons across animal groups and environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07749-1.
Collapse
Affiliation(s)
- Oluchi Aroh
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, College of Science and Mathematics, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA.
| | - Kenneth M Halanych
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, College of Science and Mathematics, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA
| |
Collapse
|
57
|
Insights into the genomic evolution of insects from cricket genomes. Commun Biol 2021; 4:733. [PMID: 34127782 PMCID: PMC8203789 DOI: 10.1038/s42003-021-02197-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping. Ylla, Extavour et al. use genomic data from crickets to investigate the evolution of large genome sizes and DNA methylation events in insects. Their findings indicate that transposable element activity drove genome expansion in hemimetabolous insects, such as crickets and grasshoppers, and that DNA methylation is predominant in conserved genes.
Collapse
|
58
|
Liu J. Giant cells: Linking McClintock's heredity to early embryogenesis and tumor origin throughout millennia of evolution on Earth. Semin Cancer Biol 2021; 81:176-192. [PMID: 34116161 DOI: 10.1016/j.semcancer.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
The "life code" theory postulates that egg cells, which are giant, are the first cells in reproduction and that damaged or aged giant somatic cells are the first cells in tumorigenesis. However, the hereditary basis for giant cells remains undefined. Here I propose that stress-induced genomic reorganization proposed by Nobel Laureate Barbara McClintock may represent the underlying heredity for giant cells, referred to as McClintock's heredity. Increase in cell size may serve as a response to environmental stress via switching proliferative mitosis to intranuclear replication for reproduction. Intranuclear replication activates McClintock's heredity to reset the genome following fertilization for reproduction or restructures the somatic genome for neoplastic transformation via formation of polyploid giant cancer cells (PGCCs). The genome-based McClintock heredity functions together with gene-based Mendel's heredity to regulate the genomic stability at two different stages of life cycle or tumorigenesis. Thus, giant cells link McClintock's heredity to both early embryogenesis and tumor origin. Cycling change in cell size together with ploidy number switch may represent the most fundamental mechanism on how both germ and soma for coping with environmental stresses for the survival across the tree of life which evolved over millions of years on Earth.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Anatomical Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, United States.
| |
Collapse
|
59
|
Pezenti LF, Sosa-Gómez DR, de Souza RF, Vilas-Boas LA, Gonçalves KB, da Silva CRM, Vilas-Bôas GT, Baranoski A, Mantovani MS, da Rosa R. Transcriptional profiling analysis of susceptible and resistant strains of Anticarsia gemmatalis and their response to Bacillus thuringiensis. Genomics 2021; 113:2264-2275. [PMID: 34022342 DOI: 10.1016/j.ygeno.2021.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Anticarsia gemmatalis is one of the main defoliators of soybean in Brazil. Bacillus thuringiensis (Bt) transgenic crops are used for their management. In this paper we used RNA-seq to explore the response of A. gemmatalis to Bt HD73, as well as to detect transcriptional differences after Bt infection between resistant and susceptible strains. A total of 3853 and 6224 differentially expressed genes (DGEs) were identified in susceptible and resistant larvae after Bt exposure, respectively. We identified 2143 DEGs between susceptible and resistant larvae and 1991 between susceptible and resistant larvae Bt exposed. Immunity-related genes, Bt toxins receptors, proteases, genes involved in metabolic processes, transporters, cuticle proteins and mobile elements have been identified. qRT-PCR data demonstrated upregulation of five genes in susceptible strain after Bt exposure. These results provide insights to understand the molecular and cellular mechanisms of response to Bt that could be used in strategies to control agricultural pests.
Collapse
Affiliation(s)
- Larissa Forim Pezenti
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Daniel Ricardo Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária/Centro Nacional de Pesquisa de Soja (Embrapa Soja), Londrina, Paraná, Brazil.
| | - Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Laurival Antônio Vilas-Boas
- Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; Laboratório de Genética e Taxonomia de Bactérias, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Kátia Brumatti Gonçalves
- Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Gislayne Trindade Vilas-Bôas
- Laboratório de Genética e Taxonomia de Bactérias, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Adrivanio Baranoski
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Mário Sérgio Mantovani
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Renata da Rosa
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
60
|
Specchia V, Bozzetti MP. The Role of HSP90 in Preserving the Integrity of Genomes Against Transposons Is Evolutionarily Conserved. Cells 2021; 10:cells10051096. [PMID: 34064379 PMCID: PMC8147803 DOI: 10.3390/cells10051096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
The HSP90 protein is a molecular chaperone intensively studied for its role in numerous cellular processes both under physiological and stress conditions. This protein acts on a wide range of substrates with a well-established role in cancer and neurological disorders. In this review, we focused on the involvement of HSP90 in the silencing of transposable elements and in the genomic integrity maintenance. The common feature of transposable elements is the potential jumping in new genomic positions, causing chromosome structure rearrangements, gene mutations, and influencing gene expression levels. The role of HSP90 in the control of these elements is evolutionarily conserved and opens new perspectives in the HSP90-related mechanisms underlying human disorders. Here, we discuss the hypothesis that its role in the piRNA pathway regulating transposons may be implicated in the onset of neurological diseases.
Collapse
|
61
|
Vogan AA, Ament-Velásquez SL, Bastiaans E, Wallerman O, Saupe SJ, Suh A, Johannesson H. The Enterprise, a massive transposon carrying Spok meiotic drive genes. Genome Res 2021; 31:789-798. [PMID: 33875482 PMCID: PMC8092012 DOI: 10.1101/gr.267609.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022]
Abstract
The genomes of eukaryotes are full of parasitic sequences known as transposable elements (TEs). Here, we report the discovery of a putative giant tyrosine-recombinase-mobilized DNA transposon, Enterprise, from the model fungus Podospora anserina Previously, we described a large genomic feature called the Spok block which is notable due to the presence of meiotic drive genes of the Spok gene family. The Spok block ranges from 110 kb to 247 kb and can be present in at least four different genomic locations within P. anserina, despite what is an otherwise highly conserved genome structure. We propose that the reason for its varying positions is that the Spok block is not only capable of meiotic drive but is also capable of transposition. More precisely, the Spok block represents a unique case where the Enterprise has captured the Spoks, thereby parasitizing a resident genomic parasite to become a genomic hyperparasite. Furthermore, we demonstrate that Enterprise (without the Spoks) is found in other fungal lineages, where it can be as large as 70 kb. Lastly, we provide experimental evidence that the Spok block is deleterious, with detrimental effects on spore production in strains which carry it. This union of meiotic drivers and a transposon has created a selfish element of impressive size in Podospora, challenging our perception of how TEs influence genome evolution and broadening the horizons in terms of what the upper limit of transposition may be.
Collapse
Affiliation(s)
- Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Eric Bastiaans
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
- Laboratory of Genetics, Wageningen University, 6703 BD, Wageningen, The Netherlands
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Comparative Genetics and Functional Genomics; Uppsala University, 752 37 Uppsala, Sweden
| | - Sven J Saupe
- IBGC, UMR 5095, CNRS Université de Bordeaux, 33077 Bordeaux Cedex, France
| | - Alexander Suh
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
62
|
Correa M, Lerat E, Birmelé E, Samson F, Bouillon B, Normand K, Rizzon C. The Transposable Element Environment of Human Genes Differs According to Their Duplication Status and Essentiality. Genome Biol Evol 2021; 13:6273345. [PMID: 33973013 PMCID: PMC8155550 DOI: 10.1093/gbe/evab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes and represent approximately 45% of the human genome. TEs can be important sources of novelty in genomes and there is increasing evidence that TEs contribute to the evolution of gene regulation in mammals. Gene duplication is an evolutionary mechanism that also provides new genetic material and opportunities to acquire new functions. To investigate how duplicated genes are maintained in genomes, here, we explored the TE environment of duplicated and singleton genes. We found that singleton genes have more short-interspersed nuclear elements and DNA transposons in their vicinity than duplicated genes, whereas long-interspersed nuclear elements and long-terminal repeat retrotransposons have accumulated more near duplicated genes. We also discovered that this result is highly associated with the degree of essentiality of the genes with an unexpected accumulation of short-interspersed nuclear elements and DNA transposons around the more-essential genes. Our results underline the importance of taking into account the TE environment of genes to better understand how duplicated genes are maintained in genomes.
Collapse
Affiliation(s)
- Margot Correa
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Etienne Birmelé
- Laboratoire MAP5 UMR 8145, Université de Paris, Paris, France
| | - Franck Samson
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Bérengère Bouillon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Kévin Normand
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| |
Collapse
|
63
|
Butler CL, Bell EA, Taylor MI. Removal of beneficial insertion effects prevent the long-term persistence of transposable elements within simulated asexual populations. BMC Genomics 2021; 22:241. [PMID: 33827443 PMCID: PMC8025564 DOI: 10.1186/s12864-021-07569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Background Transposable elements are significant components of most organism’s genomes, yet the reasons why their abundances vary significantly among species is poorly understood. A recent study has suggested that even in the absence of traditional molecular evolutionary explanations, transposon proliferation may occur through a process known as ‘transposon engineering’. However, their model used a fixed beneficial transposon insertion frequency of 20%, which we believe to be unrealistically high. Results Reducing this beneficial insertion frequency, while keeping all other parameters identical, prevented transposon proliferation. Conclusions We conclude that the author’s original findings are better explained through the action of positive selection rather than ‘transposon engineering’, with beneficial insertion effects remaining important during transposon proliferation events.
Collapse
Affiliation(s)
- Christopher L Butler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ellen A Bell
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
64
|
Mathers TC, Wouters RHM, Mugford ST, Swarbreck D, van Oosterhout C, Hogenhout SA. Chromosome-Scale Genome Assemblies of Aphids Reveal Extensively Rearranged Autosomes and Long-Term Conservation of the X Chromosome. Mol Biol Evol 2021; 38:856-875. [PMID: 32966576 PMCID: PMC7947777 DOI: 10.1093/molbev/msaa246] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chromosome rearrangements are arguably the most dramatic type of mutations, often leading to rapid evolution and speciation. However, chromosome dynamics have only been studied at the sequence level in a small number of model systems. In insects, Diptera and Lepidoptera have conserved genome structure at the scale of whole chromosomes or chromosome arms. Whether this reflects the diversity of insect genome evolution is questionable given that many species exhibit rapid karyotype evolution. Here, we investigate chromosome evolution in aphids-an important group of hemipteran plant pests-using newly generated chromosome-scale genome assemblies of the green peach aphid (Myzus persicae) and the pea aphid (Acyrthosiphon pisum), and a previously published assembly of the corn-leaf aphid (Rhopalosiphum maidis). We find that aphid autosomes have undergone dramatic reorganization over the last 30 My, to the extent that chromosome homology cannot be determined between aphids from the tribes Macrosiphini (Myzus persicae and Acyrthosiphon pisum) and Aphidini (Rhopalosiphum maidis). In contrast, gene content of the aphid sex (X) chromosome remained unchanged despite rapid sequence evolution, low gene expression, and high transposable element load. To test whether rapid evolution of genome structure is a hallmark of Hemiptera, we compared our aphid assemblies with chromosome-scale assemblies of two blood-feeding Hemiptera (Rhodnius prolixus and Triatoma rubrofasciata). Despite being more diverged, the blood-feeding hemipterans have conserved synteny. The exceptional rate of structural evolution of aphid autosomes renders them an important emerging model system for studying the role of large-scale genome rearrangements in evolution.
Collapse
Affiliation(s)
- Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Roland H M Wouters
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
65
|
Palazzo A, Marsano RM. Transposable elements: a jump toward the future of expression vectors. Crit Rev Biotechnol 2021; 41:792-808. [PMID: 33622117 DOI: 10.1080/07388551.2021.1888067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Expression vectors (EVs) are artificial nucleic acid molecules with a modular structure that allows for the transcription of DNA sequences of interest in either cellular or cell-free environments. These vectors have emerged as cross-disciplinary tools with multiple applications in an expanding Life Sciences market. The cis-regulatory sequences (CRSs) that control the transcription in EVs are typically sourced from either viruses or from characterized genes. However, the recent advancement in transposable elements (TEs) technology provides attractive alternatives that may enable a significant improvement in the design of EVs. Commonly known as "jumping genes," due to their ability to move between genetic loci, TEs are constitutive components of both eukaryotic and prokaryotic genomes. TEs harbor native CRSs that allow the regulated transcription of transposition-related genes. However, some TE-related CRSs display striking characteristics, which provides the opportunity to reconsider TEs as lead actors in the design of EVs. In this article, we provide a synopsis of the transcriptional control elements commonly found in EVs together with an extensive discussion of their advantages and limitations. We also highlight the latest findings that may allow for the implementation of TE-derived sequences in the EVs feasible, possibly improving existing vectors. By introducing this new concept of TEs as a source of regulatory sequences, we aim to stimulate a profitable discussion of the potential advantages and benefits of developing a new generation of EVs based on the use of TE-derived control sequences.
Collapse
Affiliation(s)
- Antonio Palazzo
- Laboratory of Translational Nanotechnology, "Istituto Tumori Giovanni Paolo II" I.R.C.C.S, Bari, Italy
| | | |
Collapse
|
66
|
Pourrajab F, Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials). Heliyon 2021; 7:e06029. [PMID: 33532648 PMCID: PMC7829209 DOI: 10.1016/j.heliyon.2021.e06029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
There is a concept proposing that the primitive lineages of prokaryotes, eukaryotes, and viruses emerged from the primordial pool of primitive genetic elements. In this genetic pool, transposable elements (TEs) became a source of raw material for primitive genomes, tools of genetic innovation, and ancestors of modern genes (e.g. ncRNAs, tRNAs, and rRNAs). TEs contributed directly to the genome evolution of three forms of life on the earth. TEs now appear as tools that were used to giving rise to sexual dimorphism and sex determination, lineage-specific expression of genes and tissue differentiation and finally genome stability and lifespan determination.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
67
|
Sohrab V, López-Díaz C, Di Pietro A, Ma LJ, Ayhan DH. TEfinder: A Bioinformatics Pipeline for Detecting New Transposable Element Insertion Events in Next-Generation Sequencing Data. Genes (Basel) 2021; 12:genes12020224. [PMID: 33557410 PMCID: PMC7914406 DOI: 10.3390/genes12020224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 11/16/2022] Open
Abstract
Transposable elements (TEs) are mobile elements capable of introducing genetic changes rapidly. Their importance has been documented in many biological processes, such as introducing genetic instability, altering patterns of gene expression, and accelerating genome evolution. Increasing appreciation of TEs has resulted in a growing number of bioinformatics software to identify insertion events. However, the application of existing tools is limited by either narrow-focused design of the package, too many dependencies on other tools, or prior knowledge required as input files that may not be readily available to all users. Here, we reported a simple pipeline, TEfinder, developed for the detection of new TE insertions with minimal software and input file dependencies. The external software requirements are BEDTools, SAMtools, and Picard. Necessary input files include the reference genome sequence in FASTA format, an alignment file from paired-end reads, existing TEs in GTF format, and a text file of TE names. We tested TEfinder among several evolving populations of Fusarium oxysporum generated through a short-term adaptation study. Our results demonstrate that this easy-to-use tool can effectively detect new TE insertion events, making it accessible and practical for TE analysis.
Collapse
Affiliation(s)
- Vista Sohrab
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (V.S.); (L.-J.M.)
| | - Cristina López-Díaz
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.-D.); (A.D.P.)
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.-D.); (A.D.P.)
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (V.S.); (L.-J.M.)
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dilay Hazal Ayhan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (V.S.); (L.-J.M.)
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Correspondence:
| |
Collapse
|
68
|
Coelho VL, de Brito TF, de Abreu Brito IA, Cardoso MA, Berni MA, Araujo HMM, Sammeth M, Pane A. Analysis of ovarian transcriptomes reveals thousands of novel genes in the insect vector Rhodnius prolixus. Sci Rep 2021; 11:1918. [PMID: 33479356 PMCID: PMC7820597 DOI: 10.1038/s41598-021-81387-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023] Open
Abstract
Rhodnius prolixus is a Triatominae insect species and a primary vector of Chagas disease. The genome of R. prolixus has been recently sequenced and partially assembled, but few transcriptome analyses have been performed to date. In this study, we describe the stage-specific transcriptomes obtained from previtellogenic stages of oogenesis and from mature eggs. By analyzing ~ 228 million paired-end RNA-Seq reads, we significantly improved the current genome annotations for 9206 genes. We provide extended 5' and 3' UTRs, complete Open Reading Frames, and alternative transcript variants. Strikingly, using a combination of genome-guided and de novo transcriptome assembly we found more than two thousand novel genes, thus increasing the number of genes in R. prolixus from 15,738 to 17,864. We used the improved transcriptome to investigate stage-specific gene expression profiles during R. prolixus oogenesis. Our data reveal that 11,127 genes are expressed in the early previtellogenic stage of oogenesis and their transcripts are deposited in the developing egg including key factors regulating germline development, genome integrity, and the maternal-zygotic transition. In addition, GO term analyses show that transcripts encoding components of the steroid hormone receptor pathway, cytoskeleton, and intracellular signaling are abundant in the mature eggs, where they likely control early embryonic development upon fertilization. Our results significantly improve the R. prolixus genome and transcriptome and provide novel insight into oogenesis and early embryogenesis in this medically relevant insect.
Collapse
Affiliation(s)
- Vitor Lima Coelho
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Maira Arruda Cardoso
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mateus Antonio Berni
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Maria Marcolla Araujo
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Michael Sammeth
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Applied Sciences, Institute of Bioanalysis, Coburg University, Coburg, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
69
|
Nong W, Qu Z, Li Y, Barton-Owen T, Wong AYP, Yip HY, Lee HT, Narayana S, Baril T, Swale T, Cao J, Chan TF, Kwan HS, Ngai SM, Panagiotou G, Qian PY, Qiu JW, Yip KY, Ismail N, Pati S, John A, Tobe SS, Bendena WG, Cheung SG, Hayward A, Hui JHL. Horseshoe crab genomes reveal the evolution of genes and microRNAs after three rounds of whole genome duplication. Commun Biol 2021; 4:83. [PMID: 33469163 PMCID: PMC7815833 DOI: 10.1038/s42003-020-01637-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/21/2020] [Indexed: 11/08/2022] Open
Abstract
Whole genome duplication (WGD) has occurred in relatively few sexually reproducing invertebrates. Consequently, the WGD that occurred in the common ancestor of horseshoe crabs ~135 million years ago provides a rare opportunity to decipher the evolutionary consequences of a duplicated invertebrate genome. Here, we present a high-quality genome assembly for the mangrove horseshoe crab Carcinoscorpius rotundicauda (1.7 Gb, N50 = 90.2 Mb, with 89.8% sequences anchored to 16 pseudomolecules, 2n = 32), and a resequenced genome of the tri-spine horseshoe crab Tachypleus tridentatus (1.7 Gb, N50 = 109.7 Mb). Analyses of gene families, microRNAs, and synteny show that horseshoe crabs have undergone three rounds (3R) of WGD. Comparison of C. rotundicauda and T. tridentatus genomes from populations from several geographic locations further elucidates the diverse fates of both coding and noncoding genes. Together, the present study represents a cornerstone for improving our understanding of invertebrate WGD events on the evolutionary fates of genes and microRNAs, at both the individual and population level. We also provide improved genomic resources for horseshoe crabs, of applied value for breeding programs and conservation of this fascinating and unusual invertebrate lineage.
Collapse
Affiliation(s)
- Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tom Barton-Owen
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Annette Y P Wong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Ting Lee
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Satya Narayana
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | | - Jianquan Cao
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sai Ming Ngai
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gianni Panagiotou
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- Leibniz Institute of Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Siddhartha Pati
- Department of Bioscience and Biotechnology, Fakir Mohan University, Balasore, India
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 20130, Kuala Nerus, Terengganu, Malaysia
- Research Division, Association for Biodiversity Conservation and Research (ABC), Odisha, 756003, India
| | - Akbar John
- Institute of Oceanography and Maritime Studies (INOCEM), Kulliyyah of Science, International Islamic University, Kuantan, Malaysia
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Siu Gin Cheung
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
70
|
KLAI K, CHÉNAIS B, ZIDI M, DJEBBI S, CARUSO A, DENIS F, CONFAIS J, BADAWI M, CASSE N, MEZGHANI KHEMAKHEM M. Screening of Helicoverpa armigera Mobilome Revealed Transposable Element Insertions in Insecticide Resistance Genes. INSECTS 2020; 11:insects11120879. [PMID: 33322432 PMCID: PMC7764229 DOI: 10.3390/insects11120879] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Transposable elements (TEs) are mobile DNA sequences that can copy themselves within a host genome. TE-mediated changes in regulation can lead to massive and rapid changes in expression, responses that are potentially highly adaptive when an organism is faced with a mortality agent in the environment, such as an insecticide. Helicoverpa armigera shows a hight number of reported cases of insecticide resistance worldwide, having evolved resistance against pyrethroids, organophosphates, carbamates, organochlorines, and recently to macrocyclic lactone spinosad and several Bacillus thuringiensis toxins. In the present study, we conducted a TE annotation using combined approaches, and the results revealed a total of 8521 TEs, representing 236,132 copies, covering 12.86% of the H. armigera genome. In addition, we underlined TE insertions in defensome genes and we successfully identified nine TE insertions belonging to the RTE, R2, CACTA, Mariner and hAT superfamilies. Abstract The cotton bollworm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is an important pest of many crops that has developed resistance to almost all groups of insecticides used for its management. Insecticide resistance was often related to Transposable Element (TE) insertions near specific genes. In the present study, we deeply retrieve and annotate TEs in the H. armigera genome using the Pipeline to Retrieve and Annotate Transposable Elements, PiRATE. The results have shown that the TE library consists of 8521 sequences representing 236,132 TE copies, including 3133 Full-Length Copies (FLC), covering 12.86% of the H. armigera genome. These TEs were classified as 46.71% Class I and 53.29% Class II elements. Among Class I elements, Short and Long Interspersed Nuclear Elements (SINEs and LINEs) are the main families, representing 21.13% and 19.49% of the total TEs, respectively. Long Terminal Repeat (LTR) and Dictyostelium transposable element (DIRS) are less represented, with 5.55% and 0.53%, respectively. Class II elements are mainly Miniature Inverted Transposable Elements (MITEs) (49.11%), then Terminal Inverted Repeats (TIRs) (4.09%). Superfamilies of Class II elements, i.e., Transib, P elements, CACTA, Mutator, PIF-harbinger, Helitron, Maverick, Crypton and Merlin, were less represented, accounting for only 1.96% of total TEs. In addition, we highlighted TE insertions in insecticide resistance genes and we successfully identified nine TE insertions belonging to RTE, R2, CACTA, Mariner and hAT superfamilies. These insertions are hosted in genes encoding cytochrome P450 (CyP450), glutathione S-transferase (GST), and ATP-binding cassette (ABC) transporter belonging to the G and C1 family members. These insertions could therefore be involved in insecticide resistance observed in this pest.
Collapse
Affiliation(s)
- Khouloud KLAI
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (K.K.); (M.Z.); (S.D.)
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
| | - Benoît CHÉNAIS
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
| | - Marwa ZIDI
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (K.K.); (M.Z.); (S.D.)
| | - Salma DJEBBI
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (K.K.); (M.Z.); (S.D.)
| | - Aurore CARUSO
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
| | - Françoise DENIS
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
| | - Johann CONFAIS
- URGI, INRAE, Université Paris-Saclay, 78026 Versailles, France;
- Plant Bioinformatics Facility, BioinfOmics, INRAE, Université Paris-Saclay, 78026 Versailles, France
| | - Myriam BADAWI
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
| | - Nathalie CASSE
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
- Correspondence: (N.C.); (M.M.K.)
| | - Maha MEZGHANI KHEMAKHEM
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (K.K.); (M.Z.); (S.D.)
- Correspondence: (N.C.); (M.M.K.)
| |
Collapse
|
71
|
Existence of Bov-B LINE Retrotransposons in Snake Lineages Reveals Recent Multiple Horizontal Gene Transfers with Copy Number Variation. Genes (Basel) 2020; 11:genes11111241. [PMID: 33105659 PMCID: PMC7716205 DOI: 10.3390/genes11111241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are dynamic elements present in all eukaryotic genomes. They can “jump” and amplify within the genome and promote segmental genome rearrangements on both autosomes and sex chromosomes by disruption of gene structures. The Bovine-B long interspersed nuclear element (Bov-B LINE) is among the most abundant TE-retrotransposon families in vertebrates due to horizontal transfer (HT) among vertebrate lineages. Recent studies have shown multiple HTs or the presence of diverse Bov-B LINE groups in the snake lineage. It is hypothesized that Bov-B LINEs are highly dynamic and that the diversity reflects multiple HTs in snake lineages. Partial sequences of Bov-B LINE from 23 snake species were characterized. Phylogenetic analysis resolved at least two Bov-B LINE groups that might correspond to henophidian and caenophidian snakes; however, the tree topology differed from that based on functional nuclear and mitochondrial gene sequences. Several Bov-B LINEs of snakes showed greater than 80% similarity to sequences obtained from insects, whereas the two Bov-B LINE groups as well as sequences from the same snake species classified in different Bov-B LINE groups showed sequence similarities of less than 80%. Calculation of estimated divergence time and pairwise divergence between all individual Bov-B LINE copies suggest invasion times ranging from 79.19 to 98.8 million years ago in snakes. Accumulation of elements in a lineage-specific fashion ranged from 9 × 10−6% to 5.63 × 10−2% per genome. The genomic proportion of Bov-B LINEs varied among snake species but was not directly associated with genome size or invasion time. No differentiation in Bov-B LINE copy number between males and females was observed in any of the snake species examined. Incongruence in tree topology between Bov-B LINEs and other snake phylogenies may reflect past HT events. Sequence divergence of Bov-B LINEs between copies suggests that recent multiple HTs occurred within the same evolutionary timeframe in the snake lineage. The proportion of Bov-B LINEs varies among species, reflecting species specificity in TE invasion. The rapid speciation of snakes, coinciding with Bov-B LINE invasion in snake genomes, leads us to better understand the effect of Bov-B LINEs on snake genome evolution.
Collapse
|
72
|
Qu Z, Nong W, Yu Y, Baril T, Yip HY, Hayward A, Hui JHL. Genome of the four-finger threadfin Eleutheronema tetradactylum (Perciforms: Polynemidae). BMC Genomics 2020; 21:726. [PMID: 33076831 PMCID: PMC7574432 DOI: 10.1186/s12864-020-07145-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Teleost fish play important roles in aquatic ecosystems and aquaculture. Threadfins (Perciformes: Polynemidae) show a range of interesting biology, and are of considerable importance for both wild fisheries and aquaculture. Additionally, the four-finger threadfin Eleutheronema tetradactylum is of conservation relevance since its populations are considered to be in rapid decline and it is classified as endangered. However, no genomic resources are currently available for the threadfin family Polynemidae. RESULTS We sequenced and assembled the first threadfin fish genome, the four-finger threadfin E. tetradactylum. We provide a genome assembly for E. tetradactylum with high contiguity (scaffold N50 = 56.3 kb) and high BUSCO completeness at 96.5%. The assembled genome size of E. tetradactylum is just 610.5 Mb, making it the second smallest perciform genome assembled to date. Just 9.07-10.91% of the genome sequence was found to consist of repetitive elements (standard RepeatMasker analysis vs custom analysis), making this the lowest repeat content identified to date for any perciform fish. A total of 37,683 protein-coding genes were annotated, and we include analyses of developmental transcription factors, including the Hox, ParaHox, and Sox families. MicroRNA genes were also annotated and compared with other chordate lineages, elucidating the gains and losses of chordate microRNAs. CONCLUSIONS The four-finger threadfin E. tetradactylum genome presented here represents the first available genome sequence for the ecologically, biologically, and commercially important clade of threadfin fish. Our findings provide a useful genomic resource for future research into the interesting biology and evolution of this valuable group of food fish.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yifei Yu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, Exeter, TR10 9FE, UK
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, Exeter, TR10 9FE, UK.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
73
|
Li Y, Nong W, Baril T, Yip HY, Swale T, Hayward A, Ferrier DEK, Hui JHL. Reconstruction of ancient homeobox gene linkages inferred from a new high-quality assembly of the Hong Kong oyster (Magallana hongkongensis) genome. BMC Genomics 2020; 21:713. [PMID: 33059600 PMCID: PMC7566022 DOI: 10.1186/s12864-020-07027-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Homeobox-containing genes encode crucial transcription factors involved in animal, plant and fungal development, and changes to homeobox genes have been linked to the evolution of novel body plans and morphologies. In animals, some homeobox genes are clustered together in the genome, either as remnants from ancestral genomic arrangements, or due to coordinated gene regulation. Consequently, analyses of homeobox gene organization across animal phylogeny provide important insights into the evolution of genome organization and developmental gene control, and their interaction. However, homeobox gene organization remains to be fully elucidated in several key animal ancestors, including those of molluscs, lophotrochozoans and bilaterians. RESULTS Here, we present a high-quality chromosome-level genome assembly of the Hong Kong oyster, Magallana hongkongensis (2n = 20), for which 93.2% of the genomic sequences are contained on 10 pseudomolecules (~ 758 Mb, scaffold N50 = 72.3 Mb). Our genome assembly was scaffolded using Hi-C reads, facilitating a larger scaffold size compared to the recently published M. hongkongensis genome of Peng et al. (Mol Ecol Resources, 2020), which was scaffolded using the Crassostrea gigas assembly. A total of 46,963 predicted gene models (45,308 protein coding genes) were incorporated in our genome, and genome completeness estimated by BUSCO was 94.6%. Homeobox gene linkages were analysed in detail relative to available data for other mollusc lineages. CONCLUSIONS The analyses performed in this study and the accompanying genome sequence provide important genetic resources for this economically and culturally valuable oyster species, and offer a platform to improve understanding of animal biology and evolution more generally. Transposable element content is comparable to that found in other mollusc species, contrary to the conclusion of another recent analysis. Also, our chromosome-level assembly allows the inference of ancient gene linkages (synteny) for the homeobox-containing genes, even though a number of the homeobox gene clusters, like the Hox/ParaHox clusters, are undergoing dispersal in molluscs such as this oyster.
Collapse
Affiliation(s)
- Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tobias Baril
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, UK
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Alexander Hayward
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, UK.
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Martine Laboratory, University of St. Andrews, St Andrews, UK.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
74
|
Qu Z, Nong W, So WL, Barton-Owen T, Li Y, Leung TCN, Li C, Baril T, Wong AYP, Swale T, Chan TF, Hayward A, Ngai SM, Hui JHL. Millipede genomes reveal unique adaptations during myriapod evolution. PLoS Biol 2020; 18:e3000636. [PMID: 32991578 PMCID: PMC7523956 DOI: 10.1371/journal.pbio.3000636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/24/2020] [Indexed: 01/27/2023] Open
Abstract
The Myriapoda, composed of millipedes and centipedes, is a fascinating but poorly understood branch of life, including species with a highly unusual body plan and a range of unique adaptations to their environment. Here, we sequenced and assembled 2 chromosomal-level genomes of the millipedes Helicorthomorpha holstii (assembly size = 182 Mb; shortest scaffold/contig length needed to cover 50% of the genome [N50] = 18.11 Mb mainly on 8 pseudomolecules) and Trigoniulus corallinus (assembly size = 449 Mb, N50 = 26.78 Mb mainly on 17 pseudomolecules). Unique genomic features, patterns of gene regulation, and defence systems in millipedes, not observed in other arthropods, are revealed. Both repeat content and intron size are major contributors to the observed differences in millipede genome size. Tight Hox and the first loose ecdysozoan ParaHox homeobox clusters are identified, and a myriapod-specific genomic rearrangement including Hox3 is also observed. The Argonaute (AGO) proteins for loading small RNAs are duplicated in both millipedes, but unlike in insects, an AGO duplicate has become a pseudogene. Evidence of post-transcriptional modification in small RNAs—including species-specific microRNA arm switching—providing differential gene regulation is also obtained. Millipedes possesses a unique ozadene defensive gland unlike the venomous forcipules found in centipedes. We identify sets of genes associated with the ozadene that play roles in chemical defence as well as antimicrobial activity. Macro-synteny analyses revealed highly conserved genomic blocks between the 2 millipedes and deuterostomes. Collectively, our analyses of millipede genomes reveal that a series of unique adaptations have occurred in this major lineage of arthropod diversity. The 2 high-quality millipede genomes provided here shed new light on the conserved and lineage-specific features of millipedes and centipedes. These findings demonstrate the importance of the consideration of both centipede and millipede genomes—and in particular the reconstruction of the myriapod ancestral situation—for future research to improve understanding of arthropod evolution, and animal evolutionary genomics more widely. Myriapods were among the first arthropods to invade the land over 400 million years ago, and survive today as the herbivorous millipedes and venomous centipedes. This study describes the genome sequences of two millipedes, Helicorthomorpha holstii and Trigoniulus corallinus, revealing unique adaptations not found in other arthropods.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Tom Barton-Owen
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Thomas C. N. Leung
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Chade Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Tobias Baril
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, United Kingdom
| | - Annette Y. P. Wong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Thomas Swale
- Dovetail Genomics, Scotts Valley, California, United States of America
| | - Ting-Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Alexander Hayward
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, United Kingdom
| | - Sai-Ming Ngai
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Jerome H. L. Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
75
|
Park J, Ahn SH, Shin MG, Kim HK, Chang S. tRNA-Derived Small RNAs: Novel Epigenetic Regulators. Cancers (Basel) 2020; 12:cancers12102773. [PMID: 32992597 PMCID: PMC7599909 DOI: 10.3390/cancers12102773] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cells must synthesize new proteins to maintain its life and tRNA (transfer RNA) is an essential component of the translation process. tRNA-derived small RNA (tsRNA) is a relatively uncharacterized small RNA, derived from enzymatic cleavage of the tRNAs. Accumulating evidences suggest that tsRNA is an abundant, highly modified, dynamically regulated small-RNA and interacts with other types of RNAs or proteins. Moreover, it is abnormally expressed in multiple human diseases including systemic lupus, neurological disorder, metabolic disorder and cancer, implying its diverse function in the initiation or progression of such diseases. In this review, we summarize the classification of tsRNA and its role focused on the epigenetic regulation. Further, we discuss the limitation of current knowledge about the tsRNA and its potential applications. Abstract An epigenetic change is a heritable genetic alteration that does not involve any nucleotide changes. While the methylation of specific DNA regions such as CpG islands or histone modifications, including acetylation or methylation, have been investigated in detail, the role of small RNAs in epigenetic regulation is largely unknown. Among the many types of small RNAs, tRNA-derived small RNAs (tsRNAs) represent a class of noncoding small RNAs with multiple roles in diverse physiological processes, including neovascularization, sperm maturation, immune modulation, and stress response. Regarding these roles, several pioneering studies have revealed that dysregulated tsRNAs are associated with human diseases, such as systemic lupus, neurological disorder, metabolic disorder, and cancer. Moreover, recent findings suggest that tsRNAs regulate the expression of critical genes linked with these diseases by a variety of mechanisms, including epigenetic regulation. In this review, we will describe different classes of tsRNAs based on their biogenesis and will focus on their role in epigenetic regulation.
Collapse
Affiliation(s)
- Joonhyeong Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
| | - Se Hee Ahn
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Myung Geun Shin
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
- Correspondence: (H.K.K.); (S.C.); Tel.: +82-2-820-5197 (H.K.K.); +82-2-3010-2095 (S.C.)
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (H.K.K.); (S.C.); Tel.: +82-2-820-5197 (H.K.K.); +82-2-3010-2095 (S.C.)
| |
Collapse
|
76
|
|
77
|
Moura MN, Cardoso DC, Lima Baldez BC, Cristiano MP. Intraspecific variation in the karyotype length and genome size of fungus-farming ants (genus Mycetophylax), with remarks on procedures for the estimation of genome size in the Formicidae by flow cytometry. PLoS One 2020; 15:e0237157. [PMID: 32760102 PMCID: PMC7410318 DOI: 10.1371/journal.pone.0237157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Ants (Formicidae) present considerable diversity in chromosome numbers, which vary from n = 1 to n = 60, although this variation is not proportional to that in genome size, for which estimates range from 0.18 pg to 0.77 pg. Intraspecific variation in the chromosome number and karyotype structure has been reported among species, although the variation among populations of the same species has received much less attention, and there are few data on genome size. Here, we studied the karyotype length and genome size of different populations of the fungus-farming ants Mycetophylax conformis (Mayr, 1884) and Mycetophylax morschi (Emery, 1888). We also provide remarks on procedure for the estimation of ant genome size by Flow Cytometry (FCM) analysis. Chromosome number and morphology did not vary among the populations of M. conformis or the cytotypes of M. morschi, but karyotype length and genome size were significantly distinct among the populations of these ants. Our results on the variation in karyotype length and genome size among M. morschi and M. conformis populations reveal considerable diversity that would be largely overlooked by more traditional descriptions of karyotypes, which were also supported by the estimates of genome size obtained using flow cytometry. Changes in the amount of DNA reflect variation in the fine structure of the chromosomes, which may represent the first steps of karyotype evolution and may occur previously to any changes in the chromosome number.
Collapse
Affiliation(s)
- Mariana Neves Moura
- Programa de Pós-graduação em Ecologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danon Clemes Cardoso
- Departamento de Biodiversidade, Evolução e Meio Ambiente/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Brenda Carla Lima Baldez
- Programa de Pós-graduação em Ecologia de Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maykon Passos Cristiano
- Departamento de Biodiversidade, Evolução e Meio Ambiente/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
78
|
De novo Transcriptome of the Non-saxitoxin Producing Alexandrium tamutum Reveals New Insights on Harmful Dinoflagellates. Mar Drugs 2020; 18:md18080386. [PMID: 32722301 PMCID: PMC7460133 DOI: 10.3390/md18080386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Many dinoflagellates species, especially of the Alexandrium genus, produce a series of toxins with tremendous impacts on human and environmental health, and tourism economies. Alexandrium tamutum was discovered for the first time in the Gulf of Naples, and it is not known to produce saxitoxins. However, a clone of A. tamutum from the same Gulf showed copepod reproduction impairment and antiproliferative activity. In this study, the full transcriptome of the dinoflagellate A. tamutum is presented in both control and phosphate starvation conditions. RNA-seq approach was used for in silico identification of transcripts that can be involved in the synthesis of toxic compounds. Phosphate starvation was selected because it is known to induce toxin production for other Alexandrium spp. Results showed the presence of three transcripts related to saxitoxin synthesis (sxtA, sxtG and sxtU), and others potentially related to the synthesis of additional toxic compounds (e.g., 44 transcripts annotated as "polyketide synthase"). These data suggest that even if this A. tamutum clone does not produce saxitoxins, it has the potential to produce toxic metabolites, in line with the previously observed activity. These data give new insights into toxic microalgae, toxin production and their potential applications for the treatment of human pathologies.
Collapse
|
79
|
Rosa BA, Choi YJ, McNulty SN, Jung H, Martin J, Agatsuma T, Sugiyama H, Le TH, Doanh PN, Maleewong W, Blair D, Brindley PJ, Fischer PU, Mitreva M. Comparative genomics and transcriptomics of 4 Paragonimus species provide insights into lung fluke parasitism and pathogenesis. Gigascience 2020; 9:giaa073. [PMID: 32687148 PMCID: PMC7370270 DOI: 10.1093/gigascience/giaa073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/19/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paragonimus spp. (lung flukes) are among the most injurious foodborne helminths, infecting ∼23 million people and subjecting ∼292 million to infection risk. Paragonimiasis is acquired from infected undercooked crustaceans and primarily affects the lungs but often causes lesions elsewhere including the brain. The disease is easily mistaken for tuberculosis owing to similar pulmonary symptoms, and accordingly, diagnostics are in demand. RESULTS We assembled, annotated, and compared draft genomes of 4 prevalent and distinct Paragonimus species: Paragonimus miyazakii, Paragonimus westermani, Paragonimus kellicotti, and Paragonimus heterotremus. Genomes ranged from 697 to 923 Mb, included 12,072-12,853 genes, and were 71.6-90.1% complete according to BUSCO. Orthologous group analysis spanning 21 species (lung, liver, and blood flukes, additional platyhelminths, and hosts) provided insights into lung fluke biology. We identified 256 lung fluke-specific and conserved orthologous groups with consistent transcriptional adult-stage Paragonimus expression profiles and enriched for iron acquisition, immune modulation, and other parasite functions. Previously identified Paragonimus diagnostic antigens were matched to genes, providing an opportunity to optimize and ensure pan-Paragonimus reactivity for diagnostic assays. CONCLUSIONS This report provides advances in molecular understanding of Paragonimus and underpins future studies into the biology, evolution, and pathogenesis of Paragonimus and related foodborne flukes. We anticipate that these novel genomic and transcriptomic resources will be invaluable for future lung fluke research.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Young-Jun Choi
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Samantha N McNulty
- The McDonnell Genome Institute at Washington University, School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| | - Hyeim Jung
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - John Martin
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Takeshi Agatsuma
- Department of Environmental Health Sciences, Kochi Medical School, Kohasu, Oko-cho 185-1, Nankoku, Kochi, 783-8505, Japan
| | - Hiromu Sugiyama
- Laboratory of Helminthology, Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
| | - Pham Ngoc Doanh
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
| | - Wanchai Maleewong
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Paul J Brindley
- Departments of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, and Pathology School of Medicine & Health Sciences, George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037, USA
| | - Peter U Fischer
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
- The McDonnell Genome Institute at Washington University, School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| |
Collapse
|
80
|
Punja ZK, Holmes JE. Hermaphroditism in Marijuana ( Cannabis sativa L.) Inflorescences - Impact on Floral Morphology, Seed Formation, Progeny Sex Ratios, and Genetic Variation. FRONTIERS IN PLANT SCIENCE 2020; 11:718. [PMID: 32670310 PMCID: PMC7329997 DOI: 10.3389/fpls.2020.00718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/06/2020] [Indexed: 05/26/2023]
Abstract
Cannabis sativa L. (hemp, marijuana) produces male and female inflorescences on different plants (dioecious) and therefore the plants are obligatory out-crossers. In commercial production, marijuana plants are all genetically female; male plants are destroyed as seed formation reduces flower quality. Spontaneously occurring hermaphroditic inflorescences, in which pistillate flowers are accompanied by formation of anthers, leads to undesired seed formation; the mechanism for this is poorly understood. We studied hermaphroditism in several marijuana strains with three objectives: (i) to compare the morphological features of this unique phenotype with normal male flowers; (ii) to assess pollen and seed viability from hermaphroditic flowers; and (iii) to assess the effect of hermaphroditism on progeny male:female (sex) ratios and on genetic variation using molecular methods. The morphological features of anthers, pollen production and germination in hermaphroditic flowers and in staminate inflorescences on male plants were compared using light and scanning electron microscopy. Seeds produced on hermaphroditic plants and seeds derived from cross-fertilization were germinated and seedlings were compared for gender ratios using a PCR-based assay as well as for the extent of genetic variation using six ISSR primers. Nei's index of gene diversity and Shannon's Information index were compared for these two populations. The morphology of anthers and pollen formation in hermaphroditic inflorescences was similar to that in staminate flowers. Seedlings from hermaphroditic seeds, and anther tissues, showed a female genetic composition while seedlings derived from cross-fertilized seeds showed a 1:1 male:female sex expression ratio. Uniquely, hermaphroditic inflorescences produced seeds which gave rise only to genetically female plants. In PCR assays, a 540 bp size fragment was present in male and female plants, while a 390 bp band was uniquely associated with male plants. Sequence analysis of these fragments revealed the presence of Copia-like retrotransposons within the C. sativa genome which may be associated with the expression of male or female phenotype. In ISSR analysis, the percentage of polymorphic loci ranged from 44 to 72% in hermaphroditic and cross-fertilized populations. Nei's index of gene diversity and Shannon's Information index were not statistically different for both populations. The extent of genetic variation after one generation of selfing in the progeny from hermaphroditic seed is similar to that in progeny from cross-fertilized seeds.
Collapse
|
81
|
Lanciano S, Cristofari G. Measuring and interpreting transposable element expression. Nat Rev Genet 2020; 21:721-736. [PMID: 32576954 DOI: 10.1038/s41576-020-0251-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene-TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.
Collapse
|
82
|
Boutanaev AM, Nemchinov LG. Genome Size Dynamics within Multiple Genera of Diploid Seed Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
83
|
Serrato-Capuchina A, Wang J, Earley E, Peede D, Isbell K, Matute DR. Paternally Inherited P-Element Copy Number Affects the Magnitude of Hybrid Dysgenesis in Drosophila simulans and D. melanogaster. Genome Biol Evol 2020; 12:808-826. [PMID: 32339225 PMCID: PMC7313671 DOI: 10.1093/gbe/evaa084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are repetitive regions of DNA that are able to self-replicate and reinsert themselves throughout host genomes. Since the discovery of TEs, a prevalent question has been whether increasing TE copy number has an effect on the fitness of their hosts. P-elements (PEs) in Drosophila are a well-studied TE that has strong phenotypic effects. When a female without PEs (M) is crossed to a male with them (P), the resulting females are often sterile, a phenomenon called hybrid dysgenesis (HD). Here, we used short- and long-read sequencing to infer the number of PEs in the genomes of dozens of isofemale lines from two Drosophila species and measured whether the magnitude of HD was correlated with the number of PEs in the paternal genome. Consistent with previous reports, we find evidence for a positive correlation between the paternal PE copy number and the magnitude of HD in progeny from ♀M × ♂ P crosses for both species. Other crosses are not affected by the number of PE copies. We also find that the correlation between the strength of HD and PE copy number differs between species, which suggests that there are genetic differences that might make some genomes more resilient to the potentially deleterious effects of TEs. Our results suggest that PE copy number interacts with other factors in the genome and the environment to cause HD and that the importance of these interactions is species specific.
Collapse
Affiliation(s)
| | - Jeremy Wang
- Genetics Department, University of North Carolina, Chapel Hill
| | - Eric Earley
- Genomics in Public Health and Medicine RTI International, Research Triangle Park, North Carolina
| | - David Peede
- Biology Department, University of North Carolina, Chapel Hill
| | - Kristin Isbell
- Biology Department, University of North Carolina, Chapel Hill
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill
| |
Collapse
|
84
|
Ourari M, Coriton O, Martin G, Huteau V, Keller J, Ainouche ML, Amirouche R, Ainouche A. Screening diversity and distribution of Copia retrotransposons reveals a specific amplification of BARE1 elements in genomes of the polyploid Hordeum murinum complex. Genetica 2020; 148:109-123. [PMID: 32361835 DOI: 10.1007/s10709-020-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
We explored diversity, distribution and evolutionary dynamics of Ty1-Copia retrotransposons in the genomes of the Hordeum murinum polyploid complex and related taxa. Phylogenetic and fluorescent in situ hybridization (FISH) analyses of reverse transcriptase sequences identified four Copia families in these genomes: the predominant BARE1 (including three groups or subfamilies, A, B and C), and the less represented RIRE1, IKYA and TAR-1. Within the BARE1 family, BARE1-A elements and a subgroup of BARE1-B elements (named B1) have proliferated in the allopolyploid members of the H. murinum complex (H. murinum and H. leporinum), and in their extant diploid progenitor, subsp. glaucum. Moreover, we found a specific amplification of BARE1-B elements within each Hordeum species surveyed. The low occurrence of RIRE1, IKYA and TAR-1 elements in the allopolyploid cytotypes suggests that they are either weakly represented or highly degenerated in their diploid progenitors. The results demonstrate that BARE1-A and BARE1-B1 Copia elements are particularly well represented in the genomes of the H. murinum complex and constitute its genomic hallmark. No BARE1-A and -B1 homologs were detected in the reference barley genome. The similar distribution of RT-Copia probes across chromosomes of diploid, tetraploid and hexaploid taxa of the murinum complex shows no evidence of proliferation following polyploidization.
Collapse
Affiliation(s)
- Malika Ourari
- Laboratory of Ecology and Environment, Department of Environment Biological Sciences, Faculty of Nature and Life Sciences, Université de Bejaia, Targa Ouzemmour, 06000, Bejaia, Algeria
| | - Olivier Coriton
- Institut National de Recherche en Agriculture, Alimentation et Environnement, UMR1349 INRAE-AgroCampus Ouest-Université de Rennes 1, Bât 301, INRA Centre de Bretagne-Normandie, BP 35327, 35653, Le Rheu Cedex, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, 34398, Montpellier, France.,Université de Montpellier, AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Virginie Huteau
- Institut National de Recherche en Agriculture, Alimentation et Environnement, UMR1349 INRAE-AgroCampus Ouest-Université de Rennes 1, Bât 301, INRA Centre de Bretagne-Normandie, BP 35327, 35653, Le Rheu Cedex, France
| | - Jean Keller
- Université de Toulouse, LRSV, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, 31320, Auzeville-Tolosane, France
| | - Malika-Lily Ainouche
- Université de Rennes 1, UMR-CNRS 6553, EcoBio, Campus Scientifique de Beaulieu, Bât. 14A, 35042, Rennes Cedex, France
| | - Rachid Amirouche
- Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Lab. LBPO, USTHB, BP 32 El-Alia, Bab-Ezzouar, 16111, Alger, Algerie.
| | - Abdelkader Ainouche
- Université de Rennes 1, UMR-CNRS 6553, EcoBio, Campus Scientifique de Beaulieu, Bât. 14A, 35042, Rennes Cedex, France
| |
Collapse
|
85
|
Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc Natl Acad Sci U S A 2020; 117:9973-9980. [PMID: 32303657 DOI: 10.1073/pnas.2001451117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using Cryptococcus deneoformans in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes URA3 or URA5 primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when Cryptococcus was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in Cryptococcus is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.
Collapse
|
86
|
Sampathkumar NK, Bravo JI, Chen Y, Danthi PS, Donahue EK, Lai RW, Lu R, Randall LT, Vinson N, Benayoun BA. Widespread sex dimorphism in aging and age-related diseases. Hum Genet 2020; 139:333-356. [PMID: 31677133 PMCID: PMC7031050 DOI: 10.1007/s00439-019-02082-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
Although aging is a conserved phenomenon across evolutionary distant species, aspects of the aging process have been found to differ between males and females of the same species. Indeed, observations across mammalian studies have revealed the existence of longevity and health disparities between sexes, including in humans (i.e. with a female or male advantage). However, the underlying mechanisms for these sex differences in health and lifespan remain poorly understood, and it is unclear which aspects of this dimorphism stem from hormonal differences (i.e. predominance of estrogens vs. androgens) or from karyotypic differences (i.e. XX vs. XY sex chromosome complement). In this review, we discuss the state of the knowledge in terms of sex dimorphism in various aspects of aging and in human age-related diseases. Where the interplay between sex differences and age-related differences has not been explored fully, we present the state of the field to highlight important future research directions. We also discuss various dietary, drug or genetic interventions that were shown to improve longevity in a sex-dimorphic fashion. Finally, emerging tools and models that can be leveraged to decipher the mechanisms underlying sex differences in aging are also briefly discussed.
Collapse
Affiliation(s)
- Nirmal K Sampathkumar
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yilin Chen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Masters Program in Nutrition, Healthspan, and Longevity, University of Southern California, Los Angeles, CA, 90089, USA
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Erin K Donahue
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rochelle W Lai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ryan Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lewis T Randall
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nika Vinson
- Department of Urology, Pelvic Medicine and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, 90024, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA, 90089, USA.
- USC Stem Cell Initiative, Los Angeles, CA, 90089, USA.
| |
Collapse
|
87
|
Evolution of Ty1 copy number control in yeast by horizontal transfer and recombination. PLoS Genet 2020; 16:e1008632. [PMID: 32084126 PMCID: PMC7055915 DOI: 10.1371/journal.pgen.1008632] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/04/2020] [Accepted: 01/27/2020] [Indexed: 01/04/2023] Open
Abstract
Transposable elements constitute a large fraction of most eukaryotic genomes. Insertion of mobile DNA sequences typically has deleterious effects on host fitness, and thus diverse mechanisms have evolved to control mobile element proliferation. Mobility of the Ty1 retrotransposon in Saccharomyces yeasts is regulated by copy number control (CNC) mediated by a self-encoded restriction factor derived from the Ty1 gag capsid gene that inhibits virus-like particle function. Here, we survey a panel of wild and human-associated strains of S. cerevisiae and S. paradoxus to investigate how genomic Ty1 content influences variation in Ty1 mobility. We observe high levels of mobility for a tester element with a gag sequence from the canonical Ty1 subfamily in permissive strains that either lack full-length Ty1 elements or only contain full-length copies of the Ty1' subfamily that have a divergent gag sequence. In contrast, low levels of canonical Ty1 mobility are observed in restrictive strains carrying full-length Ty1 elements containing a canonical gag sequence. Phylogenomic analysis of full-length Ty1 elements revealed that Ty1' is the ancestral subfamily present in wild strains of S. cerevisiae, and that canonical Ty1 in S. cerevisiae is a derived subfamily that acquired gag from S. paradoxus by horizontal transfer and recombination. Our results provide evidence that variation in the ability of S. cerevisiae and S. paradoxus strains to repress canonical Ty1 transposition via CNC is regulated by the genomic content of different Ty1 subfamilies, and that self-encoded forms of transposon control can spread across species boundaries by horizontal transfer.
Collapse
|
88
|
Choi YJ, Fontenla S, Fischer PU, Le TH, Costábile A, Blair D, Brindley PJ, Tort JF, Cabada MM, Mitreva M. Adaptive Radiation of the Flukes of the Family Fasciolidae Inferred from Genome-Wide Comparisons of Key Species. Mol Biol Evol 2020; 37:84-99. [PMID: 31501870 DOI: 10.1093/molbev/msz204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver and intestinal flukes of the family Fasciolidae cause zoonotic food-borne infections that impact both agriculture and human health throughout the world. Their evolutionary history and the genetic basis underlying their phenotypic and ecological diversity are not well understood. To close that knowledge gap, we compared the whole genomes of Fasciola hepatica, Fasciola gigantica, and Fasciolopsis buski and determined that the split between Fasciolopsis and Fasciola took place ∼90 Ma in the late Cretaceous period, and that between 65 and 50 Ma an intermediate host switch and a shift from intestinal to hepatic habitats occurred in the Fasciola lineage. The rapid climatic and ecological changes occurring during this period may have contributed to the adaptive radiation of these flukes. Expansion of cathepsins, fatty-acid-binding proteins, protein disulfide-isomerases, and molecular chaperones in the genus Fasciola highlights the significance of excretory-secretory proteins in these liver-dwelling flukes. Fasciola hepatica and Fasciola gigantica diverged ∼5 Ma near the Miocene-Pliocene boundary that coincides with reduced faunal exchange between Africa and Eurasia. Severe decrease in the effective population size ∼10 ka in Fasciola is consistent with a founder effect associated with its recent global spread through ruminant domestication. G-protein-coupled receptors may have key roles in adaptation of physiology and behavior to new ecological niches. This study has provided novel insights about the genome evolution of these important pathogens, has generated genomic resources to enable development of improved interventions and diagnosis, and has laid a solid foundation for genomic epidemiology to trace drug resistance and to aid surveillance.
Collapse
Affiliation(s)
- Young-Jun Choi
- McDonnell Genome Institute at Washington University in St. Louis, St. Louis, MO
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Peter U Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Thanh Hoa Le
- Immunology Department, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Alicia Costábile
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - David Blair
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miguel M Cabada
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX
| | - Makedonka Mitreva
- McDonnell Genome Institute at Washington University in St. Louis, St. Louis, MO.,Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
89
|
|
90
|
Pimpinelli S, Piacentini L. Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergio Pimpinelli
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| |
Collapse
|
91
|
Sordino P, D'Aniello S, Pelletier E, Wincker P, Nittoli V, Stemmann L, Mazzocchi MG, Lombard F, Iudicone D, Caputi L. Into the bloom: Molecular response of pelagic tunicates to fluctuating food availability. Mol Ecol 2019; 29:292-307. [PMID: 31793138 DOI: 10.1111/mec.15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/07/2023]
Abstract
The planktonic tunicates appendicularians and thaliaceans are highly efficient filter feeders on a wide range of prey size including bacteria and have shorter generation times than any other marine grazers. These traits allow some tunicate species to reach high population densities and ensure their success in a favourable environment. However, there are still few studies focusing on which genes and gene pathways are associated with responses of pelagic tunicates to environmental variability. Herein, we present the effect of food availability increase on tunicate community and gene expression at the Marquesas Islands (South-East Pacific Ocean). By using data from the Tara Oceans expedition, we show that changes in phytoplankton density and composition trigger the success of a dominant larvacean species (an undescribed appendicularian). Transcriptional signature to the autotroph bloom suggests key functions in specific physiological processes, i.e., energy metabolism, muscle contraction, membrane trafficking, and proteostasis. The relative abundance of reverse transcription-related Pfams was lower at bloom conditions, suggesting a link with adaptive genetic diversity in tunicates in natural ecosystems. Downstream of the bloom, pelagic tunicates were outcompeted by copepods. Our work represents the first metaomics study of the biological effects of phytoplankton bloom on a key zooplankton taxon.
Collapse
Affiliation(s)
| | | | - Eric Pelletier
- CEA - Institut Francois Jacob, Genoscope, Evry, France.,CNRS, UMR, Evry, France.,Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Patrick Wincker
- CEA - Institut Francois Jacob, Genoscope, Evry, France.,CNRS, UMR, Evry, France.,Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | | | - Lars Stemmann
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France.,CNRS, UMR 7093, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | | | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France.,CNRS, UMR 7093, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | | | | |
Collapse
|
92
|
Chen L, Lu Y, Li W, Ren Y, Yu M, Jiang S, Fu Y, Wang J, Peng S, Bilyk KT, Murphy KR, Zhuang X, Hune M, Zhai W, Wang W, Xu Q, Cheng CHC. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes. Gigascience 2019; 8:5304890. [PMID: 30715292 PMCID: PMC6457430 DOI: 10.1093/gigascience/giz016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background The Southern Ocean is the coldest ocean on Earth but a hot spot of evolution. The bottom-dwelling Eocene ancestor of Antarctic notothenioid fishes survived polar marine glaciation and underwent adaptive radiation, forming >120 species that fill all water column niches today. Genome-wide changes enabling physiological adaptations and the rapid expansion of the Antarctic notothenioids remain poorly understood. Results We sequenced and compared 2 notothenioid genomes—the cold-adapted and neutrally buoyant Antarctic toothfish Dissostichus mawsoni and the basal Patagonian robalo Eleginops maclovinus, representing the temperate ancestor. We detected >200 protein gene families that had expanded and thousands of genes that had evolved faster in the toothfish, with diverse cold-relevant functions including stress response, lipid metabolism, protein homeostasis, and freeze resistance. Besides antifreeze glycoprotein, an eggshell protein had functionally diversified to aid in cellular freezing resistance. Genomic and transcriptomic comparisons revealed proliferation of selcys–transfer RNA genes and broad transcriptional upregulation across anti-oxidative selenoproteins, signifying their prominent role in mitigating oxidative stress in the oxygen-rich Southern Ocean. We found expansion of transposable elements, temporally correlated to Antarctic notothenioid diversification. Additionally, the toothfish exhibited remarkable shifts in genetic programs towards enhanced fat cell differentiation and lipid storage, and promotion of chondrogenesis while inhibiting osteogenesis in bone development, collectively contributing to the achievement of neutral buoyancy and pelagicism. Conclusions Our study revealed a comprehensive landscape of evolutionary changes essential for Antarctic notothenioid cold adaptation and ecological expansion. The 2 genomes are valuable resources for further exploration of mechanisms underlying the spectacular notothenioid radiation in the coldest marine environment.
Collapse
Affiliation(s)
- Liangbiao Chen
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Lu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Yandong Ren
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kuming, China
| | - Mengchao Yu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Yanxia Fu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Sihua Peng
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Kevin T Bilyk
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Katherine R Murphy
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Xuan Zhuang
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Mathias Hune
- Fundación Ictiológica, Providencia, Santiago, Chile
| | - Wanying Zhai
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Wen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kuming, China
| | - Qianghua Xu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Chi-Hing Christina Cheng
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA.,Fundación Ictiológica, Providencia, Santiago, Chile
| |
Collapse
|
93
|
Ritschard EA, Whitelaw B, Albertin CB, Cooke IR, Strugnell JM, Simakov O. Coupled Genomic Evolutionary Histories as Signatures of Organismal Innovations in Cephalopods: Co-evolutionary Signatures Across Levels of Genome Organization May Shed Light on Functional Linkage and Origin of Cephalopod Novelties. Bioessays 2019; 41:e1900073. [PMID: 31664724 DOI: 10.1002/bies.201900073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/05/2019] [Indexed: 12/07/2023]
Abstract
How genomic innovation translates into organismal organization remains largely unanswered. Possessing the largest invertebrate nervous system, in conjunction with many species-specific organs, coleoid cephalopods (octopuses, squids, cuttlefishes) provide exciting model systems to investigate how organismal novelties evolve. However, dissecting these processes requires novel approaches that enable deeper interrogation of genome evolution. Here, the existence of specific sets of genomic co-evolutionary signatures between expanded gene families, genome reorganization, and novel genes is posited. It is reasoned that their co-evolution has contributed to the complex organization of cephalopod nervous systems and the emergence of ecologically unique organs. In the course of reviewing this field, how the first cephalopod genomic studies have begun to shed light on the molecular underpinnings of morphological novelty is illustrated and their impact on directing future research is described. It is argued that the application and evolutionary profiling of evolutionary signatures from these studies will help identify and dissect the organismal principles of cephalopod innovations. By providing specific examples, the implications of this approach both within and beyond cephalopod biology are discussed.
Collapse
Affiliation(s)
- Elena A Ritschard
- Department for Molecular Evolution and Development, University of Vienna, Austria
| | - Brooke Whitelaw
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | | | - Ira R Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Oleg Simakov
- Department for Molecular Evolution and Development, University of Vienna, Austria
| |
Collapse
|
94
|
Carducci F, Biscotti MA, Barucca M, Canapa A. Transposable elements in vertebrates: species evolution and environmental adaptation. EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1695967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- F. Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. A. Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. Barucca
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - A. Canapa
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
95
|
García E, Cross I, Portela-Bens S, Rodríguez ME, García-Angulo A, Molina B, Cuadrado A, Liehr T, Rebordinos L. Integrative genetic map of repetitive DNA in the sole Solea senegalensis genome shows a Rex transposon located in a proto-sex chromosome. Sci Rep 2019; 9:17146. [PMID: 31748593 PMCID: PMC6868151 DOI: 10.1038/s41598-019-53673-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023] Open
Abstract
Repetitive sequences play an essential role in the structural and functional evolution of the genome, particularly in the sexual chromosomes. The Senegalese sole (Solea senegalensis) is a valuable flatfish in aquaculture albeit few studies have addressed the mapping and characterization of repetitive DNA families. Here we analyzed the Simple Sequence Repeats (SSRs) and Transposable elements (TEs) content from fifty-seven BAC clones (spanning 7.9 Mb) of this species, located in chromosomes by multiple fluorescence in situ hybridization (m-BAC-FISH) technique. The SSR analysis revealed an average density of 675.1 loci per Mb and a high abundance (59.69%) of dinucleotide coverage was observed, being ‘AC’ the most abundant. An SSR-FISH analysis using eleven probes was also carried out and seven of the 11 probes yielded positive signals. ‘AC’ probes were present as large clusters in almost all chromosomes, supporting the bioinformatic analysis. Regarding TEs, DNA transposons (Class II) were the most abundant. In Class I, LINE elements were the most abundant and the hAT family was the most represented in Class II. Rex/Babar subfamily, observed in two BAC clones mapping to chromosome pair 1, showed the longest match. This chromosome pair has been recently reported as a putative sexual proto-chromosome in this species, highlighting the possible role of the Rex element in the evolution of this chromosome. In the Rex1 phylogenetic tree, the Senegalese sole Rex1 retrotransposon could be associated with one of the four major ancient lineages in fish genomes, in which it is included O. latipes.
Collapse
Affiliation(s)
- Emilio García
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Ismael Cross
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Silvia Portela-Bens
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510, Cádiz, Spain
| | - María E Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Aglaya García-Angulo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Belén Molina
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Angeles Cuadrado
- Department of Biomedicine and Biotechnology, University of Alcala, 28871, Alcalá de Henares (Madrid), Spain
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510, Cádiz, Spain.
| |
Collapse
|
96
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
97
|
Dunemann SM, Wasmuth JD. Horizontal transfer of a retrotransposon between parasitic nematodes and the common shrew. Mob DNA 2019; 10:24. [PMID: 31160924 PMCID: PMC6542046 DOI: 10.1186/s13100-019-0166-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
Background As the genomes of more metazoan species are sequenced, reports of horizontal transposon transfers (HTT) have increased. Our understanding of the mechanisms of such events is at an early stage. The close physical relationship between a parasite and its host could facilitate horizontal transfer. To date, two studies have identified horizontal transfer of RTEs, a class of retrotransposable elements, involving parasites: ticks might act as vector for BovB between ruminants and squamates, and AviRTE was transferred between birds and parasitic nematodes. Results We searched for RTEs shared between nematode and mammalian genomes. Given their physical proximity, it was necessary to detect and remove sequence contamination from the genome datasets, which would otherwise distort the signal of horizontal transfer. We developed an approach that is based on reads instead of genomic sequences to reliably detect contamination. From comparison of 43 RTEs across 197 genomes, we identified a single putative case of horizontal transfer: we detected RTE1_Sar from Sorex araneus, the common shrew, in parasitic nematodes. From the taxonomic distribution and evolutionary analysis, we show that RTE1_Sar was horizontally transferred. Conclusion We identified a new horizontal RTE transfer in host-parasite interactions, which suggests that it is not uncommon. Further, we present and provide the workflow a read-based method to distinguish between contamination and horizontal transfer. Electronic supplementary material The online version of this article (10.1186/s13100-019-0166-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sonja M Dunemann
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
| | - James D Wasmuth
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
| |
Collapse
|
98
|
Fonseca PM, Moura RD, Wallau GL, Loreto ELS. The mobilome of Drosophila incompta, a flower-breeding species: comparison of transposable element landscapes among generalist and specialist flies. Chromosome Res 2019; 27:203-219. [DOI: 10.1007/s10577-019-09609-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
|
99
|
Potocki L, Kuna E, Filip K, Kasprzyk B, Lewinska A, Wnuk M. Activation of transposable elements and genetic instability during long-term culture of the human fungal pathogen Candida albicans. Biogerontology 2019; 20:457-474. [PMID: 30989423 PMCID: PMC6593122 DOI: 10.1007/s10522-019-09809-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
It has been repeatedly reported that transposable elements (TE) become active and/or mobile in the genomes of replicatively and stress-induced senescent mammalian cells. However, the biological role of senescence-associated transposon activation and its occurrence and relevance in other eukaryotic cells remain to be elucidated. In the present study, Candida albicans, a prevalent opportunistic fungal pathogen in humans, was used to analyze changes in gene copy number of selected TE, namely Cirt2, Moa and Cmut1 during long-term culture (up to 90 days). The effects of stress stimuli (fluconazole, hydrogen peroxide, hypochlorite) and ploidy state (haploid, diploid, tetraploid cells) were also considered. An increase in copy number of Cirt2 and Moa was the most accented in tetraploid cells after 90 days of culture that was accompanied by changes in karyotype patterns and slightly more limited growth rate compared to haploid and diploid cells. Stress stimuli did not potentiate TE activity. Elevation in chromosomal DNA breaks was also observed during long-term culture of cells of different ploidy, however this was not correlated with increased TE activity. Our results suggest that increased TE activity may promote genomic diversity and plasticity, and cellular heterogeneity during long-term culture of C. albicans cells.
Collapse
Affiliation(s)
- Leszek Potocki
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Ewelina Kuna
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Kamila Filip
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Beata Kasprzyk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Anna Lewinska
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| |
Collapse
|
100
|
Wallberg A, Bunikis I, Pettersson OV, Mosbech MB, Childers AK, Evans JD, Mikheyev AS, Robertson HM, Robinson GE, Webster MT. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genomics 2019; 20:275. [PMID: 30961563 PMCID: PMC6454739 DOI: 10.1186/s12864-019-5642-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/24/2019] [Indexed: 01/27/2023] Open
Abstract
Background The ability to generate long sequencing reads and access long-range linkage information is revolutionizing the quality and completeness of genome assemblies. Here we use a hybrid approach that combines data from four genome sequencing and mapping technologies to generate a new genome assembly of the honeybee Apis mellifera. We first generated contigs based on PacBio sequencing libraries, which were then merged with linked-read 10x Chromium data followed by scaffolding using a BioNano optical genome map and a Hi-C chromatin interaction map, complemented by a genetic linkage map. Results Each of the assembly steps reduced the number of gaps and incorporated a substantial amount of additional sequence into scaffolds. The new assembly (Amel_HAv3) is significantly more contiguous and complete than the previous one (Amel_4.5), based mainly on Sanger sequencing reads. N50 of contigs is 120-fold higher (5.381 Mbp compared to 0.053 Mbp) and we anchor > 98% of the sequence to chromosomes. All of the 16 chromosomes are represented as single scaffolds with an average of three sequence gaps per chromosome. The improvements are largely due to the inclusion of repetitive sequence that was unplaced in previous assemblies. In particular, our assembly is highly contiguous across centromeres and telomeres and includes hundreds of AvaI and AluI repeats associated with these features. Conclusions The improved assembly will be of utility for refining gene models, studying genome function, mapping functional genetic variation, identification of structural variants, and comparative genomics. Electronic supplementary material The online version of this article (10.1186/s12864-019-5642-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Olga Vinnere Pettersson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mai-Britt Mosbech
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna K Childers
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA.,USDA-ARS Bee Research Lab, Beltsville, MD, USA
| | - Jay D Evans
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
| | | | - Hugh M Robertson
- Department of Entomology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Robinson
- Department of Entomology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|