51
|
Meyer MJ, Mordukhovich I, Coull BA, McCracken J, Wellenius GA, Mittleman MA, McNeely E. Impact of simulated flight conditions on supraventricular and ventricular ectopy. Sci Rep 2023; 13:481. [PMID: 36627318 PMCID: PMC9830600 DOI: 10.1038/s41598-022-27113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
Though billions of passengers and crew travel by air each year and are exposed to altitude equivalents of 7000-8000 feet, the health impact of cabin oxygenation levels has not been well studied. The hypoxic environment may produce ectopic heartbeats that may increase the risk of acute in-flight cardiac events. We enrolled forty older and at-risk participants under a block-randomized crossover design in a hypobaric chamber study to examine associations between flight oxygenation and both ventricular (VE) and supraventricular ectopy (SVE). We monitored participant VE and SVE every 5 min under both flight and control conditions to investigate the presence and rate of VE and SVE. While the presence of VE did not differ according to condition, the presence of SVE was higher during flight conditions (e.g. OR ratio = 1.77, 95% CI: 1.21, 2.59 for SVE couplets). Rates of VE and SVE were higher during flight conditions (e.g. RR ratio = 1.25, 95% CI: 1.03, 1.52 for VE couplets, RR ratio = 1.76, 95% CI: 1.39, 2.22 for SVE couplets). The observed higher presence and rate of ectopy tended to increase with duration of the flight condition. Further study of susceptible passengers and crew may elucidate the specific associations between intermittent or sustained ectopic heartbeats and hypoxic pathways.
Collapse
Affiliation(s)
- Mark J Meyer
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, 20057, USA.
| | - Irina Mordukhovich
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - John McCracken
- Global Health Institute, Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA
| | - Gregory A Wellenius
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Murray A Mittleman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Eileen McNeely
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
52
|
Karatela MF, Fudim M, Mathew JP, Piccini JP. Neuromodulation therapy for atrial fibrillation. Heart Rhythm 2023; 20:100-111. [PMID: 35988908 DOI: 10.1016/j.hrthm.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation has a multifactorial pathophysiology influenced by cardiac autonomic innervation. Both sympathetic and parasympathetic influences are profibrillatory. Innovative therapies targeting the neurocardiac axis include catheter ablation or pharmacologic suppression of ganglionated plexi, renal sympathetic denervation, low-level vagal stimulation, and stellate ganglion blockade. To date, these therapies have variable efficacy. As our understanding of atrial fibrillation and the cardiac nervous system expands, our approach to therapeutic neuromodulation will continue evolving for the benefit of those with AF.
Collapse
Affiliation(s)
- Maham F Karatela
- Cardiac Electrophysiology Section, Duke Heart Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Cardiac Electrophysiology Section, Duke Heart Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University, Durham, North Carolina
| | - Jonathan P Piccini
- Cardiac Electrophysiology Section, Duke Heart Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina.
| |
Collapse
|
53
|
van Rheede JJ, Feldmann LK, Busch JL, Fleming JE, Mathiopoulou V, Denison T, Sharott A, Kühn AA. Diurnal modulation of subthalamic beta oscillatory power in Parkinson’s disease patients during deep brain stimulation. NPJ Parkinsons Dis 2022; 8:88. [PMID: 35804160 PMCID: PMC9270436 DOI: 10.1038/s41531-022-00350-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Beta-band activity in the subthalamic local field potential (LFP) is correlated with Parkinson’s disease (PD) symptom severity and is the therapeutic target of deep brain stimulation (DBS). While beta fluctuations in PD patients are well characterized on shorter timescales, it is not known how beta activity evolves around the diurnal cycle, outside a clinical setting. Here, we obtained chronic recordings (34 ± 13 days) of subthalamic beta power in PD patients implanted with the Percept DBS device during high-frequency DBS and analysed their diurnal properties as well as sensitivity to artifacts. Time of day explained 41 ± 9% of the variance in beta power (p < 0.001 in all patients), with increased beta during the day and reduced beta at night. Certain movements affected LFP quality, which may have contributed to diurnal patterns in some patients. Future DBS algorithms may benefit from taking such diurnal and artifactual fluctuations in beta power into account.
Collapse
|
54
|
Yu Z, Liu Z, Jiao L, Zhang S, Nie L, Wang Y, Zhou L, Wang Y, Liu Z, Liu Z, Xu X, Li Z, Zhou Y, Zhou H, Li R, Peng C, Yu L, Jiang H. Bmal1 knockdown in the left stellate ganglion inhibits neural activity and prevents ventricular arrhythmias after myocardial ischemia. Front Cardiovasc Med 2022; 9:937608. [PMID: 36247430 PMCID: PMC9556266 DOI: 10.3389/fcvm.2022.937608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives The neural activity of the left stellate ganglion (LSG) is closely related to the occurrence of ventricular arrhythmias (VAs). Bmal1 modulates genes associated with neural activity in the central nervous system. However, few studies indicated the role of Bmal1 in the LSG and the subsequent effect on the heart. Therefore, we aimed to investigate the influence of Bmal1 knockdown in the LSG on its neural activity and cardiac electrophysiology and to explore the mechanisms. Materials and methods We used adeno-associated virus (AAV) to knock down Bmal1 in the LSG. Male beagles were randomized into the Bmal1 knockdown group and the control group. After 4 weeks of injection, the LSG function, neural activity, left ventricular effective refractory period (ERP), and action potential duration (APD) were measured. Electrocardiography for 1 h was recorded for VAs analysis after myocardial ischemia. Nerve growth factor (NGF) and c-fos in the LSG were quantified by immunofluorescence. Transcriptomic analysis was performed to assess the gene expression in the LSG. Results Bmal1 was sufficiently knocked down by AAV. Compared with the control group, heart rate variability (HRV) in the knockdown group was altered. Bmal1 knockdown inhibited neural activity and function of LSG. It also prolonged ERP as well as APD90. Ischemia-induced VAs were significantly reduced. Nerve growth factor (NGF) and c-fos in the LSG were reduced. Bmal1 knockdown led to the expression changes of genes associated with neural activity in the LSG. Conclusion Bmal1 knockdown in the LSG suppresses neural activity and prevents ventricular arrhythmias after myocardial ischemia.
Collapse
Affiliation(s)
- Zhongyang Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liying Jiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Song Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liqing Nie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zeyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huixin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Rui Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chen Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Lilei Yu,
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Hong Jiang,
| |
Collapse
|
55
|
Lecour S, Du Pré BC, Bøtker HE, Brundel BJJM, Daiber A, Davidson SM, Ferdinandy P, Girao H, Gollmann-Tepeköylü C, Gyöngyösi M, Hausenloy DJ, Madonna R, Marber M, Perrino C, Pesce M, Schulz R, Sluijter JPG, Steffens S, Van Linthout S, Young ME, Van Laake LW. Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovasc Res 2022; 118:2566-2581. [PMID: 34505881 DOI: 10.1093/cvr/cvab293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/04/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms are internal regulatory processes controlled by molecular clocks present in essentially every mammalian organ that temporally regulate major physiological functions. In the cardiovascular system, the circadian clock governs heart rate, blood pressure, cardiac metabolism, contractility, and coagulation. Recent experimental and clinical studies highlight the possible importance of circadian rhythms in the pathophysiology, outcome, or treatment success of cardiovascular disease, including ischaemic heart disease. Disturbances in circadian rhythms are associated with increased cardiovascular risk and worsen outcome. Therefore, it is important to consider circadian rhythms as a key research parameter to better understand cardiac physiology/pathology, and to improve the chances of translation and efficacy of cardiac therapies, including those for ischaemic heart disease. The aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to highlight key aspects of circadian rhythms to consider for improvement of preclinical and translational studies related to ischaemic heart disease and cardioprotection. Applying these considerations to future studies may increase the potential for better translation of new treatments into successful clinical outcomes.
Collapse
Affiliation(s)
- Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Bastiaan C Du Pré
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Andreas Daiber
- Department of Cardiology, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Henrique Girao
- Faculty of Medicine, Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | | | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, London, UK
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin 10178, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
56
|
Shi W, Chen C, Cui Q, Deng F, Yang B, Cao Y, Zhao F, Zhang Y, Du P, Wang J, Li T, Tang S, Shi X. Sleep disturbance exacerbates the cardiac conduction abnormalities induced by persistent heavy ambient fine particulate matter pollution: A multi-center cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156472. [PMID: 35660605 DOI: 10.1016/j.scitotenv.2022.156472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure and sleep disturbance have been significantly associated with adverse cardiovascular outcomes, however, the combined effects of these two factors are still unclear. We conducted a multi-center cross-sectional study from November 2018 to May 2019 in the Beijing-Tianjin-Hebei region in China to investigate the potential modifying effects of sleep disturbance on associations between cardiac conduction abnormalities and PM2.5 exposure, as well as the combined effects of sleep disturbance and heavy pollution episodes, which were defined based on the PM2.5 mass concentration (≥75 μg/m3, falling in the 75th/90th percentile) and duration (1 day and ≥2 days). The sleep quality and sleep duration of all participants were evaluated using the Pittsburgh Sleep Quality Index. Standard 12-lead electrocardiogram (ECG) test was performed to measure the heart rate (HR), QRS duration (time taken for ventricular depolarization), HR corrected QT interval (time for ventricular depolarization and repolarization) and PR interval (time for atrioventricular conduction). Multivariable linear regression models were performed to evaluate the associations of PM2.5 and heavy pollution events on ECG parameters and the joint effects with sleep disturbance. We found PM2.5 exposure was independently associated with prolonged QRS and QTc intervals. Association between PM2.5 and the QTc interval was significantly stronger in participants with poor sleep quality. For each 10-μg/m3 increase in PM2.5 concentration, the QTc interval in the participants with poor sleep quality increased by 0.41 % (95 % confidence interval: 0.19, 0.64). In addition, heavy PM2.5 pollution episodes, especially extremely heavy pollution of long duration, were found to have synergistic effects with sleep disturbance on ECG parameters. Our findings provide evidence that PM2.5 exposure, especially heavy pollution episodes, may increase abnormal cardiac conduction and have a synergistic effect with sleep disturbance. Improving sleep hygiene is crucial to protect the heart health of the general population.
Collapse
Affiliation(s)
- Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Cui
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yaqiang Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
57
|
Mehra R, Chung MK, Olshansky B, Dobrev D, Jackson CL, Kundel V, Linz D, Redeker NS, Redline S, Sanders P, Somers VK. Sleep-Disordered Breathing and Cardiac Arrhythmias in Adults: Mechanistic Insights and Clinical Implications: A Scientific Statement From the American Heart Association. Circulation 2022; 146:e119-e136. [PMID: 35912643 PMCID: PMC10227720 DOI: 10.1161/cir.0000000000001082] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sleep-disordered breathing (SDB), characterized by specific underlying physiological mechanisms, comprises obstructive and central pathophysiology, affects nearly 1 billion individuals worldwide, and is associated with excessive cardiopulmonary morbidity. Strong evidence implicates SDB in cardiac arrhythmogenesis. Immediate consequences of SDB include autonomic nervous system fluctuations, recurrent hypoxia, alterations in carbon dioxide/acid-base status, disrupted sleep architecture, and accompanying increases in negative intrathoracic pressures directly affecting cardiac function. Day-night patterning and circadian biology of SDB-induced pathophysiological sequelae collectively influence the structural and electrophysiological cardiac substrate, thereby creating an ideal milieu for arrhythmogenic propensity. Cohort studies support strong associations of SDB and cardiac arrhythmia, with evidence that discrete respiratory events trigger atrial and ventricular arrhythmic events. Observational studies suggest that SDB treatment reduces atrial fibrillation recurrence after rhythm control interventions. However, high-level evidence from clinical trials that supports a role for SDB intervention on rhythm control is not available. The goals of this scientific statement are to increase knowledge and awareness of the existing science relating SDB to cardiac arrhythmias (atrial fibrillation, ventricular tachyarrhythmias, sudden cardiac death, and bradyarrhythmias), synthesizing data relevant for clinical practice and identifying current knowledge gaps, presenting best practice consensus statements, and prioritizing future scientific directions. Key opportunities identified that are specific to cardiac arrhythmia include optimizing SDB screening, characterizing SDB predictive metrics and underlying pathophysiology, elucidating sex-specific and background-related influences in SDB, assessing the role of mobile health innovations, and prioritizing the conduct of rigorous and adequately powered clinical trials.
Collapse
|
58
|
Wang L, Sun H, Yang M, Xu Y, Hou L, Yu H, Wang X, Zhang Z, Han J. Bidirectional regulatory effects of Cordyceps on arrhythmia: Clinical evaluations and network pharmacology. Front Pharmacol 2022; 13:948173. [PMID: 36059969 PMCID: PMC9437265 DOI: 10.3389/fphar.2022.948173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Cordyceps is a precious Chinese herbal medicine with rich bio-active ingredients and is used for regulating arrhythmia alongside routine treatments. However, the efficacy and potential mechanisms of Cordyceps on patients with arrhythmia remain unclear. Methods: Randomized controlled trials of bradycardia treatment with Cordyceps were retrieved from diverse databases and available data. Dichotomous variables were expressed as a risk ratio (RR) with a 95% confidence interval (CI). Continuous variables were expressed as a standardized mean difference (SMD) with a 95% CI. Network pharmacology was used to identify potential targets of Cordyceps for arrhythmia. Metascape was used for gene ontology (GO) and genome (KEGG) pathway enrichment analysis. Results: Nineteen trials included 1,805 patients with arrhythmia, of whom 918 were treated with Ningxinbao capsule plus routine drugs, and, as a control, 887 were treated with only routine drugs. Six trials reported on bradycardia and the other 13 on tachycardia. Treatment with Cordyceps significantly improved the total efficacy rate in both bradycardia (RR = 1.24; 95% CI, 1.15 to 1.35; Pz <0.00001) and tachycardia (RR = 1.27; 95% CI, 1.17 to 1.39; Pz <0.00001). Cordyceps also had beneficial secondary outcomes. No serious adverse events occurred in patients treated with Cordyceps. The results of KEGG pathway enrichment analysis were mainly connected to adrenergic signaling in cardiomyocytes and the PI3K-Akt signaling pathway. IL6, TNF, TP53, CASP3, CTNNB1, EGF, and NOS3 might be key targets for Cordyceps in the treatment of arrhythmia. Conclusion: This study confirmed that Cordyceps has a certain positive effect on the treatment of arrhythmia and that its main mechanism may be through the regulation of adrenergic signaling in cardiomyocytes and the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University Weifang China, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Helin Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University Weifang China, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Meina Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs(Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Yulin Xu
- Key Laboratory of Biotechnology Drug (Shandong Academy of Medical Sciences), Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Linlin Hou
- Ambulatory Surgery Centers, Tai’an City Central Hospital, Tai’an, China
| | - Haomiao Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xueyin Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- *Correspondence: Zhongwen Zhang, ; Jinxiang Han,
| | - Jinxiang Han
- Key Laboratory of Biotechnology Drug (Shandong Academy of Medical Sciences), Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Zhongwen Zhang, ; Jinxiang Han,
| |
Collapse
|
59
|
Porto AA, Gonzaga LA, Benjamim CJR, Bueno CR, Garner DM, Vanderlei LCM, Ferreira C, Valenti VE. Acute Effects of Energy Drink on Autonomic and Cardiovascular Parameters Recovery in Individuals with Different Cardiorespiratory Fitness: A Randomized, Crossover, Double-Blind and Placebo-Controlled Trial. Arq Bras Cardiol 2022; 119:553-561. [PMID: 35946753 PMCID: PMC9563894 DOI: 10.36660/abc.20210625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
Fundamento Tem-se sugerido que o consumo de bebidas energéticas (BEs) possa afetar a atividade cardiovascular. Objetivos Investigar os efeitos agudos da ingestão de BE sobre a variabilidade da frequência cardíaca (VFC) recuperação cardiovascular após exercício aeróbico moderado em homens de diferentes capacidades cardiorrespiratórias. Métodos Este é um estudo randomizado, duplo cego, crossover, controlado por placebo. Vinte e oito jovens adultos foram divididos em dois grupos de acordo com o pico de consumo de oxigênio (pico de VO2): (1) pico de VO2 alto (AO) – pico de VO2 > 52,15 mL/Kg/min, e (2) pico de VO2 baixo (BO) - pico de VO2 <52,15 mL/Kg/min. Os indivíduos de ambos os grupos foram submetidos a dois protocolos de exercícios em ordem aleatória: exercício moderado aeróbico (60% de pico de VO2) após a ingestão de 250 mL de água (protocolo placebo) ou 250 mL de BE (protocolo BE). Durante os testes de exercício, foram registrados valores de parâmetros cardiorrespiratórios e de VFC. Resultados Foram observadas diferenças significativas para o índice de LF (unidades normalizadas) entre “repouso” e “Rec1” nos grupos de AO e BO durante o protocolo BE. Para a razão LF/HF, foram observadas diferenças significativas entre “repouso” e Rec1 nos grupos AO e BO nos protocolos BE. Conclusão A ingestão aguda de BE retardou a recuperação da frequência cardíaca após o exercício em indivíduos com capacidade cardiorrespiratória baixa e indivíduos com capacidade cardiorrespiratória alta.
Collapse
Affiliation(s)
- Andrey Alves Porto
- Departamento de Fisioterapia - Faculdade de Ciências e Tecnologias, UNESP, Presidente Prudente, SP - Brasil.,Centro de Estudos do Sistema Nervoso Autônomo (CESNA), UNESP, Marília, SP - Brasil
| | - Luana Almeida Gonzaga
- Departamento de Fisioterapia - Faculdade de Ciências e Tecnologias, UNESP, Presidente Prudente, SP - Brasil.,Centro de Estudos do Sistema Nervoso Autônomo (CESNA), UNESP, Marília, SP - Brasil
| | - Cicero Jonas R Benjamim
- Centro de Estudos do Sistema Nervoso Autônomo (CESNA), UNESP, Marília, SP - Brasil.,Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP - Brasil
| | - Carlos Roberto Bueno
- Escola de Educação Física de Ribeirão Preto, Universidade de São Paulo (EEFERP/USP), Ribeirão Preto, SP - Brasil
| | - David M Garner
- Grupo de Pesquisa Cardiorrespiratória, Departamento de Ciências Biológicas e Médicas, Faculdade de Saúde e Ciências da Vida, Oxford Brookes University, Headington Campus, Oxford - Reino Unido
| | - Luiz C M Vanderlei
- Departamento de Fisioterapia - Faculdade de Ciências e Tecnologias, UNESP, Presidente Prudente, SP - Brasil
| | - Celso Ferreira
- Departamento de Medicina, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP - Brasil
| | | |
Collapse
|
60
|
Oliveira MI, Dickson SA, Blake R, Pereira YM, Culshaw G. Validation of heart rate spot-check protocol to measure circadian variation and heart rate in healthy dogs and dogs with atrial fibrillation. J Vet Cardiol 2022; 43:41-54. [DOI: 10.1016/j.jvc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
|
61
|
Smets H, Stumpp L, Chavez J, Cury J, Vande Perre L, Doguet P, Vanhoestenberghe A, Delbeke J, El Tahry R, Nonclercq A. Chronic recording of the vagus nerve to analyze modulations by the light-dark cycle. J Neural Eng 2022; 19. [PMID: 35764074 DOI: 10.1088/1741-2552/ac7c8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/28/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The vagus nerve is considered to play a key role in the circadian rhythm. Chronic continuous analysis of the vagus nerve activity could contribute to a better understanding of the role of the vagus nerve in light-dark modulations. This paper presents a continuous analysis of spontaneous vagus nerve activity performed in four rats. APPROACH We analyzed the vagus electroneurogram (VENG) and electroencephalogram (EEG) over a recording period of 28 days. Spike activity and heart rate estimation were derived from the VENG, and slow-wave activity was derived from the EEG. The presence of repetitive patterns was investigated with periodograms, cosinor fitting, autocorrelation, and statistical tests. The light-dark variations derived from the VENG spikes were compared with EEG slow waves, an established metric in circadian studies. RESULTS Our results demonstrate that light-dark variations can be detected in long-term vagus nerve activity monitoring. A recording period of about seven days is required to characterize accurately the VENG light-dark variations. SIGNIFICANCE As a major outcome of this study, vagus nerve recordings hold the promise to help understand circadian regulation.
Collapse
Affiliation(s)
- Hugo Smets
- BEAMS, Université Libre de Bruxelles Faculté des sciences appliquées/Ecole polytechnique, Avenue Franklin Roosevelt, 50, CP 165/56, Bruxelles, 1050, BELGIUM
| | - Lars Stumpp
- IONS, Université catholique de Louvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, BELGIUM
| | - Javier Chavez
- BEAMS, Université Libre de Bruxelles Faculté des sciences appliquées/Ecole polytechnique, Avenue Franklin Roosevelt, 50, CP 165/56, Bruxelles, 1050, BELGIUM
| | - Joaquin Cury
- BEAMS, Université Libre de Bruxelles Faculté des sciences appliquées/Ecole polytechnique, Avenue Franklin Roosevelt, 50, CP 165/56, Bruxelles, 1050, BELGIUM
| | - Louis Vande Perre
- BEAMS, Université Libre de Bruxelles Faculté des sciences appliquées/Ecole polytechnique, Avenue Franklin Roosevelt, 50, CP 165/56, Bruxelles, 1050, BELGIUM
| | - Pascal Doguet
- Synergia Medical SA, Rue Emile Francqui 6, Mont-Saint-Guibert, 1435, BELGIUM
| | - Anne Vanhoestenberghe
- Aspire Centre for Rehabilitation Engineering and Assistive Technology, University College London, Brockley Hill, Aspire Create - IOMS BUilding, RNOH campus, London, HA74LP, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Jean Delbeke
- Private Address - Belgium, Seringenstraat 27, Kraainem, B-1950, BELGIUM
| | - Riëm El Tahry
- IONS, Université catholique de Louvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, BELGIUM
| | - Antoine Nonclercq
- BEAMS, Université Libre de Bruxelles Faculté des sciences appliquées/Ecole polytechnique, Avenue Franklin Roosevelt, 50, CP 165/56, Bruxelles, 1050, BELGIUM
| |
Collapse
|
62
|
Amoni M, Ingelaere S, Moeyersons J, Vandenberk B, Claus P, Lemmens R, Van Huffel S, Sipido K, Varon C, Willems R. Temporal Changes in Beat-to-Beat Variability of Repolarization Predict Imminent Nonsustained Ventricular Tachycardia in Patients With Ischemic and Nonischemic Dilated Cardiomyopathy. J Am Heart Assoc 2022; 11:e024294. [PMID: 35730633 PMCID: PMC9333369 DOI: 10.1161/jaha.121.024294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background An increase in beat‐to‐beat variability of repolarization (BVR) predicts arrhythmia onset in experimental models, but its clinical translation is not well established. We investigated the temporal changes in BVR before nonsustained ventricular tachycardia (nsVT) in patients with implantable cardioverter defibrillator (ICD). Methods and Results Patients with nsVT on 24‐hour Holter before ICD implantation for ischemic cardiomyopathy (ischemic cardiomyopathy+nsVT, n=43) or dilated cardiomyopathy (dilated cardiomyopathy+nsVT, n=37), matched ICD candidates without nsVT (ischemic cardiomyopathy‐nsVT, n=29 and dilated cardiomyopathy‐nsVT, n=26), and patients without ICD without structural heart disease (n=50) were studied. Digital Holter recordings from these patients were analyzed using a modified fiducial segment averaging technique to detect the QT interval. The nsVT episodes were semi‐automatically identified and QT‐BVR was assessed 1‐, 5‐, and 30‐minutes before nsVT, and at rest (at 3:00 am). Resting BVR was higher in ICD patients compared with controls without structural heart disease. In ICD patients with nsVT, BVR increased significantly 1‐minute pre‐nsVT in ischemic cardiomyopathy (2.21±0.59 ms, versus 5 minutes pre‐nsVT: 1.78±0.50 ms, P<0.001) and dilated cardiomyopathy (2.09±0.57 ms, versus 5‐minutes pre‐nsVT: 1.58±0.51 ms, P<0.001), but not in patients without nsVT. In multivariable Cox regression analysis, pre‐nsVT BVR was a significant predictor for appropriate therapy during follow‐up. Conclusions Baseline BVR is elevated and temporal changes in BVR predict imminent nsVT events in patients with ICD independent of underlying cause. Real‐time BVR monitoring could be used to predict impending ventricular arrhythmia and allow preventive therapy to be incorporated into ICDs.
Collapse
Affiliation(s)
- Matthew Amoni
- Cardiology University Hospitals Leuven Leuven Belgium.,Experimental Cardiology, Department of Cardiovascular Sciences University of Leuven Belgium
| | - Sebastian Ingelaere
- Cardiology University Hospitals Leuven Leuven Belgium.,Experimental Cardiology, Department of Cardiovascular Sciences University of Leuven Belgium
| | - Jonathan Moeyersons
- STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering University of Leuven Belgium
| | | | - Piet Claus
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - Robin Lemmens
- Neurology University Hospitals Leuven Leuven Belgium.,Laboratory of Neurobiology, Department of Neurosciences University of Leuven Belgium
| | - Sabine Van Huffel
- STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering University of Leuven Belgium
| | - Karin Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences University of Leuven Belgium
| | - Carolina Varon
- STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering University of Leuven Belgium
| | - Rik Willems
- Cardiology University Hospitals Leuven Leuven Belgium.,Experimental Cardiology, Department of Cardiovascular Sciences University of Leuven Belgium
| |
Collapse
|
63
|
Hu W, Clark RB, Giles WR, Kondo C, Zhang H. Frequency-Dependent Properties of the Hyperpolarization-Activated Cation Current, I f, in Adult Mouse Heart Primary Pacemaker Myocytes. Int J Mol Sci 2022; 23:4299. [PMID: 35457119 PMCID: PMC9024942 DOI: 10.3390/ijms23084299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
A number of distinct electrophysiological mechanisms that modulate the myogenic spontaneous pacemaker activity in the sinoatrial node (SAN) of the mammalian heart have been investigated extensively. There is agreement that several (3 or 4) different transmembrane ionic current changes (referred to as the voltage clock) are involved; and that the resulting net current interacts with direct and indirect effects of changes in intracellular Ca2+ (the calcium clock). However, significant uncertainties, and important knowledge gaps, remain concerning the functional roles in SAN spontaneous pacing of many of the individual ion channel- or exchanger-mediated transmembrane current changes. We report results from patch clamp studies and mathematical modeling of the hyperpolarization-activated current, If, in the generation/modulation of the diastolic depolarization, or pacemaker potential, produced by individual myocytes that were enzymatically isolated from the adult mouse sinoatrial node (SAN). Amphotericin-mediated patch microelectrode recordings at 35 °C were made under control conditions and in the presence of 5 or 10 nM isoproterenol (ISO). These sets of results were complemented and integrated with mathematical modeling of the current changes that take place in the range of membrane potentials (-70 to -50 mV), which corresponds to the 'pacemaker depolarization' in the adult mouse SAN. Our results reveal a very small, but functionally important, approximately steady-state or time-independent current generated by residual activation of If channels that are expressed in these pacemaker myocytes. Recordings of the pacemaker depolarization and action potential, combined with measurements of changes in If, and the well-known increases in the L-type Ca2+ current, ICaL, demonstrated that ICaL activation, is essential for myogenic pacing. Moreover, after being enhanced (approximately 3-fold) by 5 or 10 nM ISO, ICaL contributes significantly to the positive chronotropic effect. Our mathematical model has been developed in an attempt to better understand the underlying mechanisms for the pacemaker depolarization and action potential in adult mouse SAN myocytes. After being updated with our new experimental data describing If, our simulations reveal a novel functional component of If in adult mouse SAN. Computational work carried out with this model also confirms that in the presence of ISO the residual activation of If and opening of ICaL channels combine to generate a net current change during the slow diastolic depolarization phase that is essential for the observed accelerated pacemaking rate of these SAN myocytes.
Collapse
Affiliation(s)
- Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Robert B. Clark
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.); (C.K.)
| | - Wayne R. Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.); (C.K.)
| | - Colleen Kondo
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.); (C.K.)
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646099, China
| |
Collapse
|
64
|
Seed LM, Hearn TJ. A Systematic Review of Utilisation of Diurnal Timing Information in Clinical Trial Design for Long QT Syndrome. Front Pharmacol 2022; 13:867131. [PMID: 35370731 PMCID: PMC8965098 DOI: 10.3389/fphar.2022.867131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Diurnal oscillations in human cardiac electrophysiology are thought to be under the control of the endogenous circadian clock. The incidence of arrhythmic events in patients with Long QT syndrome (LQTS) varies diurnally. The diurnal variation in QT interval has previously been identified as a potential for error in clinical trials which utilise ECG measurement. We performed a systematic review of clinical trials for LQTS to identify practice around specification of timing information for point electrocardiogram (ECG) measurements, analysis of continual ECG recordings ≥24 h, and drug delivery. Despite guidelines having been issued around the analysis of 24-h ECG recordings, we identify a lack of usage of detailed time of day information in trial design for LQTS studies, which has the potential to affect the interpretation of the results of drug trials. We identify that, in contrast, clinical trials for QT prolonging drugs demonstrate increased incorporation of time of day information of both QT analysis and drug dosing. We provide a visual portal to allow trial designers and clinicians to better understand timing of common cardiac-targeting drugs, and to bear this concept in mind in the design of future clinical trials.
Collapse
Affiliation(s)
- Lydia M Seed
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Timothy J Hearn
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
65
|
Halimeh M, Yang Y, Sheehan T, Vieluf S, Jackson M, Loddenkemper T, Meisel C. Wearable device assessments of antiseizure medication effects on diurnal patterns of electrodermal activity, heart rate, and heart rate variability. Epilepsy Behav 2022; 129:108635. [PMID: 35278938 DOI: 10.1016/j.yebeh.2022.108635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Accepted: 02/19/2022] [Indexed: 11/03/2022]
Abstract
Patient-generated health data provide a great opportunity for more detailed ambulatory monitoring and more personalized treatments in many diseases. In epilepsy, robust diagnostics applicable to the ambulatory setting are needed as diagnosis and treatment decisions in current clinical practice are primarily reliant on patient self-reports, which are often inaccurate. Recent work using wearable devices has focused on methods to detect and forecast epileptic seizures. Whether wearable device signals may also contain information about the effect of antiseizure medications (ASMs), which may ultimately help to better monitor their efficacy, has not been evaluated yet. Here we systematically investigated the effect of ASMs on different data modalities (electrodermal activity, EDA, heart rate, HR, and heart rate variability, HRV) simultaneously recorded by a wearable device in 48 patients with epilepsy over several days in the epilepsy long-term monitoring unit at a tertiary hospital. All signals exhibited characteristic diurnal variations. HRV, but not HR or EDA-based metrics, were reduced by ASMs. By assessing multiple signals related to the autonomic nervous system simultaneously, our results provide novel insights into the effects of ASMs on the sympathetic and parasympathetic interplay in the setting of epilepsy and indicate the potential of easy-to-wear wearable devices for monitoring ASM action. Future work using longer data may investigate these metrics on multidien cycles and their utility for detecting seizures, assessing seizure risk, or informing treatment interventions.
Collapse
Affiliation(s)
- Mustafa Halimeh
- Computational Neurology, Department of Neurology, Charité - Universitätsmedizin Berlin, Germany; Berlin Institute of Health, Germany
| | - Yonghua Yang
- Hospital of Xi'an Jiaotong University, Pediatric Department, Shaanxi, China
| | | | | | | | | | - Christian Meisel
- Computational Neurology, Department of Neurology, Charité - Universitätsmedizin Berlin, Germany; Berlin Institute of Health, Germany.
| |
Collapse
|
66
|
Merschel S, Reinhardt L. Analyzability of Photoplethysmographic Smartwatch Data by the Preventicus Heartbeats Algorithm During Everyday Life: Feasibility Study. JMIR Form Res 2022; 6:e29479. [PMID: 35343902 PMCID: PMC9002588 DOI: 10.2196/29479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Continuous heart rate monitoring via mobile health technologies based on photoplethysmography (PPG) has great potential for the early detection of sustained cardiac arrhythmias such as atrial fibrillation. However, PPG measurements are impaired by motion artifacts. OBJECTIVE The aim of this investigation was to evaluate the analyzability of smartwatch-derived PPG data during everyday life and to determine the relationship between the analyzability of the data and the activity level of the participant. METHODS A total of 41 (19 female and 22 male) adults in good cardiovascular health (aged 19-79 years) continuously wore a smartwatch equipped with a PPG sensor and a 3D accelerometer (Cardio Watch 287, Corsano Health BV) for a period of 24 hours that represented their individual daily routine. For each participant, smartwatch data were analyzed on a 1-minute basis by an algorithm designed for heart rhythm analysis (Preventicus Heartbeats, Preventicus GmbH). As outcomes, the percentage of analyzable data (PAD) and the mean acceleration (ACC) were calculated. To map changes of the ACC and PAD over the course of one day, the 24-hour period was divided into 8 subintervals comprising 3 hours each. RESULTS Univariate analysis of variance showed a large effect (ηp2> 0.6; P<.001) of time interval (phase) on the ACC and PAD. The PAD ranged between 34% and 100%, with an average of 71.5% for the whole day, which is equivalent to a period of 17.2 hours. Between midnight and 6 AM, the mean values were the highest for the PAD (>94%) and the lowest for the ACC (<6×10-3 m/s2). Regardless of the time of the day, the correlation between the PAD and ACC was strong (r=-0.64). A linear regression analysis for the averaged data resulted in an almost perfect coefficient of determination (r2=0.99). CONCLUSIONS This study showed a large relationship between the activity level and the analyzability of smartwatch-derived PPG data. Given the high yield of analyzable data during the nighttime, continuous arrhythmia screening seems particularly effective during sleep phases.
Collapse
Affiliation(s)
| | - Lars Reinhardt
- Institute for Applied Training Science, Leipzig, Germany
| |
Collapse
|
67
|
Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, Heijman J. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Front Physiol 2022; 13:836622. [PMID: 35370783 PMCID: PMC8964409 DOI: 10.3389/fphys.2022.836622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular calcium is a critical component of cardiac electrophysiology and excitation-contraction coupling. The calcium spark, the fundamental element of the intracellular calcium transient, is initiated in specialized nanodomains which co-locate the ryanodine receptors and L-type calcium channels. However, calcium homeostasis is ultimately regulated at the cellular scale, by the interaction of spatially separated but diffusively coupled nanodomains with other sub-cellular and surface-membrane calcium transport channels with strong non-linear interactions; and cardiac electrophysiology and arrhythmia mechanisms are ultimately tissue-scale phenomena, regulated by the interaction of a heterogeneous population of coupled myocytes. Recent advances in imaging modalities and image-analysis are enabling the super-resolution reconstruction of the structures responsible for regulating calcium homeostasis, including the internal structure of nanodomains themselves. Extrapolating functional and imaging data from the nanodomain to the whole-heart is non-trivial, yet essential for translational insight into disease mechanisms. Computational modeling has important roles to play in relating structural and functional data at the sub-cellular scale and translating data across the scales. This review covers recent methodological advances that enable image-based modeling of the single nanodomain and whole cardiomyocyte, as well as the development of multi-scale simulation approaches to integrate data from nanometer to whole-heart. Firstly, methods to overcome the computational challenges of simulating spatial calcium dynamics in the nanodomain are discussed, including image-based modeling at this scale. Then, recent whole-cell models, capable of capturing a range of different structures (such as the T-system and mitochondria) and cellular heterogeneity/variability are discussed at two different levels of discretization. Novel methods to integrate the models and data across the scales and simulate stochastic dynamics in tissue-scale models are then discussed, enabling elucidation of the mechanisms by which nanodomain remodeling underlies arrhythmia and contractile dysfunction. Perspectives on model differences and future directions are provided throughout.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Blas Echebarria
- Departament de Fisica, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Henry Sutanto
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
68
|
Mehra R, Tjurmina OA, Ajijola OA, Arora R, Bolser DC, Chapleau MW, Chen PS, Clancy CE, Delisle BP, Gold MR, Goldberger JJ, Goldstein DS, Habecker BA, Handoko ML, Harvey R, Hummel JP, Hund T, Meyer C, Redline S, Ripplinger CM, Simon MA, Somers VK, Stavrakis S, Taylor-Clark T, Undem BJ, Verrier RL, Zucker IH, Sopko G, Shivkumar K. Research Opportunities in Autonomic Neural Mechanisms of Cardiopulmonary Regulation: A Report From the National Heart, Lung, and Blood Institute and the National Institutes of Health Office of the Director Workshop. JACC Basic Transl Sci 2022; 7:265-293. [PMID: 35411324 PMCID: PMC8993767 DOI: 10.1016/j.jacbts.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022]
Abstract
This virtual workshop was convened by the National Heart, Lung, and Blood Institute, in partnership with the Office of Strategic Coordination of the Office of the National Institutes of Health Director, and held September 2 to 3, 2020. The intent was to assemble a multidisciplinary group of experts in basic, translational, and clinical research in neuroscience and cardiopulmonary disorders to identify knowledge gaps, guide future research efforts, and foster multidisciplinary collaborations pertaining to autonomic neural mechanisms of cardiopulmonary regulation. The group critically evaluated the current state of knowledge of the roles that the autonomic nervous system plays in regulation of cardiopulmonary function in health and in pathophysiology of arrhythmias, heart failure, sleep and circadian dysfunction, and breathing disorders. Opportunities to leverage the Common Fund's SPARC (Stimulating Peripheral Activity to Relieve Conditions) program were characterized as related to nonpharmacologic neuromodulation and device-based therapies. Common themes discussed include knowledge gaps, research priorities, and approaches to develop novel predictive markers of autonomic dysfunction. Approaches to precisely target neural pathophysiological mechanisms to herald new therapies for arrhythmias, heart failure, sleep and circadian rhythm physiology, and breathing disorders were also detailed.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- AD, autonomic dysregulation
- AF, atrial fibrillation
- ANS, autonomic nervous system
- Ach, acetylcholine
- CNS, central nervous system
- COPD, chronic obstructive pulmonary disease
- CSA, central sleep apnea
- CVD, cardiovascular disease
- ECG, electrocardiogram
- EV, extracellular vesicle
- GP, ganglionated plexi
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HRV, heart rate variability
- LQT, long QT
- MI, myocardial infarction
- NE, norepinephrine
- NHLBI, National Heart, Lung, and Blood Institute
- NPY, neuropeptide Y
- NREM, non-rapid eye movement
- OSA, obstructive sleep apnea
- PAH, pulmonary arterial hypertension
- PV, pulmonary vein
- REM, rapid eye movement
- RV, right ventricular
- SCD, sudden cardiac death
- SDB, sleep disordered breathing
- SNA, sympathetic nerve activity
- SNSA, sympathetic nervous system activity
- TLD, targeted lung denervation
- asthma
- atrial fibrillation
- autonomic nervous system
- cardiopulmonary
- chronic obstructive pulmonary disease
- circadian
- heart failure
- pulmonary arterial hypertension
- sleep apnea
- ventricular arrhythmia
Collapse
Affiliation(s)
- Reena Mehra
- Cleveland Clinic, Cleveland, Ohio, USA
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Olga A. Tjurmina
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - Rishi Arora
- Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | | | - Mark W. Chapleau
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | - Michael R. Gold
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - David S. Goldstein
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Beth A. Habecker
- Oregon Health and Science University School of Medicine, Portland, Oregon, USA
| | - M. Louis Handoko
- Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - James P. Hummel
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Marc A. Simon
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- University of California-San Francisco, San Francisco, California, USA
| | | | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | - Richard L. Verrier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - George Sopko
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
69
|
Martínez-Campelo L, Cruz R, Blanco-Verea A, Moscoso I, Ramos-Luis E, Lage R, Álvarez-Barredo M, Sabater-Molina M, Peñafiel-Verdú P, Jiménez-Jáimez J, Rodríguez-Mañero M, Brion M. Searching for genetic modulators of the phenotypic heterogeneity in Brugada syndrome. PLoS One 2022; 17:e0263469. [PMID: 35231055 PMCID: PMC8887717 DOI: 10.1371/journal.pone.0263469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
In Brugada syndrome, even within the same family where all affected individuals share the same mutation, phenotypic variation is prominent, with variable penetrance and expressivity, presenting different degrees of involvement. It is difficult to establish a direct correlation between genotype and phenotype to predict prognosis in complications and risk of sudden death. The factors that modulate this inter- and intra-familial phenotypic variability remain to be determined. With the intention of testing whether other genetic factors, in addition to the causal mutation in SCN5A, may have a modulating effect on the Brugada phenotype and the risk of sudden death, we have studied 8 families with a causal variant in SCN5A with at least two affected individuals, one of whom has suffered cardiac arrest or sudden death. Whole exome sequencing was performed looking for additional variants that modify the phenotype and allow us to predict a better or worse prognosis for the evolution of the disease. The results did not show any clear genetic modifier; nevertheless, highlight the possible implication of the cholesterol and fibrosis pathways, as well as the circadian rhythm, as possible modulators of Brugada syndrome phenotype.
Collapse
Affiliation(s)
- Laura Martínez-Campelo
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- CIBER of Rare Diseases, Carlos III Health Institute, Madrid, Spain
| | - Alejandro Blanco-Verea
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Moscoso
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Ramos-Luis
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ricardo Lage
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Álvarez-Barredo
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
| | - María Sabater-Molina
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiogenetics Laboratory, Murcian Institute for Biosanitary Research, Cardiology Service, Virgen de la Arrixaca University Clinical Hospital, Murcia, Spain
| | - Pablo Peñafiel-Verdú
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiogenetics Laboratory, Murcian Institute for Biosanitary Research, Cardiology Service, Virgen de la Arrixaca University Clinical Hospital, Murcia, Spain
| | - Juan Jiménez-Jáimez
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Arrhythmia Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Moisés Rodríguez-Mañero
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiology Service, Santiago de Compostela University Hospital, Santiago de Compostela, Spain
| | - María Brion
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Family Heart Disease Unit, Cardiology Service, Santiago de Compostela University Hospital, Santiago de Compostela, Spain
| |
Collapse
|
70
|
Gabryelska A, Turkiewicz S, Karuga FF, Sochal M, Strzelecki D, Białasiewicz P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients-Possible Mechanisms Involved and Clinical Implication. Int J Mol Sci 2022; 23:ijms23020709. [PMID: 35054894 PMCID: PMC8775490 DOI: 10.3390/ijms23020709] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic condition characterized by recurrent pauses in breathing caused by the collapse of the upper airways, which results in intermittent hypoxia and arousals during the night. The disorder is associated with a vast number of comorbidities affecting different systems, including cardiovascular, metabolic, psychiatric, and neurological complications. Due to abnormal sleep architecture, OSA patients are at high risk of circadian clock disruption, as has been reported in several recent studies. The circadian clock affects almost all daily behavioral patterns, as well as a plethora of physiological processes, and might be one of the key factors contributing to OSA complications. An intricate interaction between the circadian clock and hypoxia may further affect these processes, which has a strong foundation on the molecular level. Recent studies revealed an interaction between hypoxia-inducible factor 1 (HIF-1), a key regulator of oxygen metabolism, and elements of circadian clocks. This relationship has a strong base in the structure of involved elements, as HIF-1 as well as PER, CLOCK, and BMAL, belong to the same Per-Arnt-Sim domain family. Therefore, this review summarizes the available knowledge on the molecular mechanism of circadian clock disruption and its influence on the development and progression of OSA comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
- Correspondence: ; Tel.: +48-660796004
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| |
Collapse
|
71
|
Baross AW, Brook RD, Kay AD, Howden R, Gaillard EC, Gordon BDH, Milne KJ, McGowan CLM, Swaine IL. Effects of isometric leg training on ambulatory blood pressure and morning blood pressure surge in young normotensive men and women. Sci Rep 2022; 12:356. [PMID: 35013400 PMCID: PMC8748906 DOI: 10.1038/s41598-021-04092-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Despite the reported association between diurnal variations in ambulatory blood pressure (BP) and elevated cardiovascular disease risk, little is known regarding the effects of isometric resistance training (IRT), a practical BP-lowering intervention, on ambulatory BP and morning BP surge (MBPS). Thus, we investigated whether (i) IRT causes reductions in ambulatory BP and MBPS, in young normotensives, and (ii) if there are any sex differences in these changes. Twenty normotensive individuals (mean 24-h SBP = 121 ± 7, DBP = 67 ± 6 mmHg) undertook 10-weeks of bilateral-leg IRT (4 × 2-min/2-min rest, at 20% maximum voluntary contraction (MVC) 3 days/week). Ambulatory BP and MBPS (mean systolic BP (SBP) 2 h after waking minus the lowest sleeping 1 h mean SBP) was measures pre- and post-training. There were significant reductions in 24-h ambulatory SBP in men (− 4 ± 2 mmHg, P = 0.0001) and women (− 4 ± 2 mmHg, P = 0.0001) following IRT. Significant reductions were also observed in MBPS (− 6 ± 8 mmHg, p = 0.044; − 6 ± 7 mmHg, P = 0.019), yet there were no significant differences between men and women in these changes, and 24-h ambulatory diastolic BP remained unchanged. Furthermore, a significant correlation was identified between the magnitude of the change in MBPS and the magnitude of changes in the mean 2-h SBP after waking for both men and women (men, r = 0.89, P = 0.001; women, r = 0.74, P = 0.014). These findings add further support to the idea that IRT, as practical lifestyle intervention, is effective in significantly lowering ambulatory SBP and MBPS and might reduce the incidence of adverse cardiovascular events that often occur in the morning.
Collapse
Affiliation(s)
- Anthony W Baross
- Sport and Exercise Science, University of Northampton, University Drive, NN1 5PH, Northampton, UK. .,Sport and Exercise Physiology, University of Northampton, University Drive, Northampton, NN1 5PH, UK.
| | - Robert D Brook
- Division of Cardiovascular Diseases, Wayne State University, Detroit, MI, USA
| | - Anthony D Kay
- Sport and Exercise Science, University of Northampton, University Drive, NN1 5PH, Northampton, UK
| | - Reuben Howden
- Laboratory of Systems Physiology: Department of Applied Physiology, Health and Clinical Sciences, UNC Charlotte, Charlotte, NC, USA
| | - Ebony C Gaillard
- Laboratory of Systems Physiology: Department of Applied Physiology, Health and Clinical Sciences, UNC Charlotte, Charlotte, NC, USA
| | - Ben D H Gordon
- Department of Exercise and Rehabilitative Sciences, Slippery Rock University, Slippery Rock, PA, USA
| | - Kevin J Milne
- Department of Kinesiology, University of Windsor, Windsor, Canada
| | - Cheri L M McGowan
- Division of Cardiovascular Diseases, Wayne State University, Detroit, MI, USA.,Department of Kinesiology, University of Windsor, Windsor, Canada
| | - Ian L Swaine
- Department of Kinesiology, University of Windsor, Windsor, Canada.,Sport Science, University of Greenwich, London, UK
| |
Collapse
|
72
|
Yu J, Lim JH, Seo SW, Lee D, Hong J, Kim J, Kim S, Nekar DM, Kang H. Effects of Caffeine Intake on Cardiopulmonary Variables and QT Interval after a Moderate-Intensity Aerobic Exercise in Healthy Adults: A Randomized Controlled Trial. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3170947. [PMID: 35036429 PMCID: PMC8754617 DOI: 10.1155/2022/3170947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022]
Abstract
Caffeine is considered a widely consumed natural and legal psychoactive stimulant with several effects on the body. The present study attempted to investigate the effects of caffeine consumed before and after a physical exercise on cardiovascular and cardiorespiratory functions in healthy adults. 36 healthy adult males were recruited and randomly allocated to one of the three (3) groups: group I (exercise without caffeine consumption), group II (caffeine beverage intake before exercise), and group III (caffeine beverage intake immediately after exercise). The heart rate (HR), QTc interval, blood pressure (BP), respiratory rate (RR), oxygen consumption (VO₂), and carbon dioxide emission (VCO₂) were measured at 0, 5, 10, and 15 min after the exercise. We observed a significant difference in all measured outcomes during the different recovery times in all the groups (p < 0.05). HR, RR, SBP, VO2, and VCO2 gradually decreased with time, DBP contrarily increased with time, and the QTc showed an irregular pattern. We can affirm that ingestion of caffeine before and after moderate aerobic exercise slows down the parasympathetic stimulation, heart rate recovery, and the recovery of HR and QTc with no major effects on BP, RR, VO₂, and VCO₂ in healthy adult men.
Collapse
Affiliation(s)
- JaeHo Yu
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - Jeong-Hun Lim
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - Sang-Woo Seo
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - DongYeop Lee
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - JiHeon Hong
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - JinSeop Kim
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - SeongGil Kim
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - Daekook M. Nekar
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - HyeYun Kang
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
73
|
Shibata N, Inada S, Nakazawa K, Ashihara T, Tomii N, Yamazaki M, Honjo H, Seno H, Sakuma I. Mechanism of Ventricular Fibrillation: Current Status and Problems. ADVANCED BIOMEDICAL ENGINEERING 2022. [DOI: 10.14326/abe.11.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Nitaro Shibata
- Department of Cardiology, Shinjuku Mitsui Building Clinic
| | - Shin Inada
- Faculty of Medical Science Technology, Morinomiya University of Medical Sciences
| | - Kazuo Nakazawa
- Faculty of Medical Science Technology, Morinomiya University of Medical Sciences
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical Engineering, Shiga University of Medical Science
| | - Naoki Tomii
- Department of Precision Engineering, The University of Tokyo
| | | | - Haruo Honjo
- Health Promotion Division, Toyota Autobody Co. Ltd
| | - Hiroshi Seno
- Department of Precision Engineering, The University of Tokyo
| | - Ichiro Sakuma
- Medical Device Development and Regulation Research Center, The University of Tokyo
| |
Collapse
|
74
|
Senesi P, Ferrulli A, Luzi L, Terruzzi I. Chrono-communication and cardiometabolic health: The intrinsic relationship and therapeutic nutritional promises. Front Endocrinol (Lausanne) 2022; 13:975509. [PMID: 36176473 PMCID: PMC9513421 DOI: 10.3389/fendo.2022.975509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythm, an innate 24-h biological clock, regulates several mammalian physiological activities anticipating daily environmental variations and optimizing available energetic resources. The circadian machinery is a complex neuronal and endocrinological network primarily organized into a central clock, suprachiasmatic nucleus (SCN), and peripheral clocks. Several small molecules generate daily circadian fluctuations ensuring inter-organ communication and coordination between external stimuli, i.e., light, food, and exercise, and body metabolism. As an orchestra, this complex network can be out of tone. Circadian disruption is often associated with obesity development and, above all, with diabetes and cardiovascular disease onset. Moreover, accumulating data highlight a bidirectional relationship between circadian misalignment and cardiometabolic disease severity. Food intake abnormalities, especially timing and composition of meal, are crucial cause of circadian disruption, but evidence from preclinical and clinical studies has shown that food could represent a unique therapeutic approach to promote circadian resynchronization. In this review, we briefly summarize the structure of circadian system and discuss the role playing by different molecules [from leptin to ghrelin, incretins, fibroblast growth factor 21 (FGF-21), growth differentiation factor 15 (GDF15)] to guarantee circadian homeostasis. Based on the recent data, we discuss the innovative nutritional interventions aimed at circadian re-synchronization and, consequently, improvement of cardiometabolic health.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Anna Ferrulli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- *Correspondence: Ileana Terruzzi,
| |
Collapse
|
75
|
Andersen A, Bagger JI, Sørensen SK, Baldassarre MPA, Pedersen-Bjergaard U, Forman JL, Gislason G, Lindhardt TB, Knop FK, Vilsbøll T. Associations of hypoglycemia, glycemic variability and risk of cardiac arrhythmias in insulin-treated patients with type 2 diabetes: a prospective, observational study. Cardiovasc Diabetol 2021; 20:241. [PMID: 34952579 PMCID: PMC8710000 DOI: 10.1186/s12933-021-01425-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background Insulin-treated patients with type 2 diabetes (T2D) are at risk of hypoglycemia, which is associated with an increased risk of cardiovascular disease and mortality. Using a long-term monitoring approach, we investigated the association between episodes of hypoglycemia, glycemic variability and cardiac arrhythmias in a real-life setting. Methods Insulin-treated patients with T2D (N = 21, [mean ± SD] age 66.8 ± 9.6 years, BMI 30.1 ± 4.5 kg/m2, HbA1c 6.8 ± 0.4% [51.0 ± 4.8 mmol/mol]) were included for a one-year observational study. Patients were monitored with continuous glucose monitoring ([mean ± SD] 118 ± 6 days) and an implantable cardiac monitor (ICM) during the study period. Results Time spend in hypoglycemia was higher during nighttime than during daytime ([median and interquartile range] 0.7% [0.7–2.7] vs. 0.4% [0.2–0.8]). The ICMs detected 724 episodes of potentially clinically significant arrhythmias in 12 (57%) participants, with atrial fibrillation and pauses accounting for 99% of the episodes. No association between hypoglycemia and cardiac arrhythmia was found during daytime. During nighttime, subject-specific hourly incidence of cardiac arrhythmias tended to increase with the occurrence of hypoglycemia (incident rate ratio [IRR] 1.70 [95% CI 0.36–8.01]) but only slightly with increasing time in hypoglycemia (IRR 1.04 [95% CI 0.89–1.22] per 5 min). Subject-specific incidence of cardiac arrhythmias during nighttime increased with increasing glycemic variability as estimated by coefficient of variation whereas it decreased during daytime (IRR 1.33 [95% CI 1.05–1.67] and IRR 0.77 [95% CI 0.59–0.99] per 5% absolute increase, respectively). Conclusions Cardiac arrhythmias were common in insulin-treated patients with T2D and were associated with glycemic variability, whereas arrhythmias were not strongly associated with hypoglycemia. Trial registration: NCT03150030, ClinicalTrials.gov, registered May 11, 2017. https://clinicaltrials.gov/ct2/show/NCT03150030 Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01425-0.
Collapse
Affiliation(s)
- Andreas Andersen
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark.,Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jonatan I Bagger
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark.,Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Samuel K Sørensen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Maria P A Baldassarre
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Medicine and Aging Sciences, G. d'Annunzio University, Chieti, Italy
| | - Ulrik Pedersen-Bjergaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology and Nephrology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Julie L Forman
- Deparment of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Gislason
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Danish Heart Foundation, Copenhagen, Denmark
| | - Tommi B Lindhardt
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark.,Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark. .,Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark. .,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
76
|
van Nieuwenhuizen BP, de Goede P, Tan HL, van den Born BJ, Kunst A. Is there an association between socioeconomic status and the degree of diurnal variation in heart rate? INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2021; 11:200118. [PMID: 34918012 PMCID: PMC8645920 DOI: 10.1016/j.ijcrp.2021.200118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Disruption in circadian rhythms is associated with cardiovascular disease and may play a role in socioeconomic differences in cardiovascular disease prevalence. However, it is unclear whether low SES is associated with a lower diurnal rhythm in autonomic activity markers. We investigated the association between SES and the amplitude of the daily fluctuation of heart rate. METHODS We included data of 450 participants of a HELIUS sub-study in Amsterdam, the Netherlands. Participants wore an Actiheart monitor (CamNtech), a chest-worn monitor which measures heart rate every 15 s for several days. Cosinor analysis was performed on the time series of heart rate within each participant. We analyzed the association between the cosinor parameters (amplitude, midline and peak time of the diurnal HR rhythm) and SES indicators (education, occupational class and a proxy of income) in multivariate linear regression models, adjusting for age, sex and ethnicity. RESULTS There was a clear diurnal rhythm in the average heart rates, with a peak between noon and 18:00 and a trough between 04:00 and 06:00. This rhythm was present for all categories of education, occupation and income proxy. The estimates for the cosinor parameters did not differ consistently and significantly between categories of education, occupation or income proxy. CONCLUSIONS We did not find any consistent evidence to support our hypothesis of a diminished amplitude in the diurnal variation of heart rate in individuals with lower SES. Future studies should explore SES differences in the diurnal variation in markers of autonomic activity other than heart rate.
Collapse
Affiliation(s)
| | - Paul de Goede
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, the Netherlands
- Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Hanno L. Tan
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Bert-Jan van den Born
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anton Kunst
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
77
|
Delisle BP, George AL, Nerbonne JM, Bass JT, Ripplinger CM, Jain MK, Hermanstyne TO, Young ME, Kannankeril PJ, Duffy JF, Goldhaber JI, Hall MH, Somers VK, Smolensky MH, Garnett CE, Anafi RC, Scheer FA, Shivkumar K, Shea SA, Balijepalli RC. Understanding Circadian Mechanisms of Sudden Cardiac Death: A Report From the National Heart, Lung, and Blood Institute Workshop, Part 1: Basic and Translational Aspects. Circ Arrhythm Electrophysiol 2021; 14:e010181. [PMID: 34719240 PMCID: PMC8815462 DOI: 10.1161/circep.121.010181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sudden cardiac death (SCD), the unexpected death due to acquired or genetic cardiovascular disease, follows distinct 24-hour patterns in occurrence. These 24-hour patterns likely reflect daily changes in arrhythmogenic triggers and the myocardial substrate caused by day/night rhythms in behavior, the environment, and endogenous circadian mechanisms. To better address fundamental questions regarding the circadian mechanisms, the National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death. We present a 2-part report of findings from this workshop. Part 1 summarizes the workshop and serves to identify research gaps and opportunities in the areas of basic and translational research. Among the gaps was the lack of standardization in animal studies for reporting environmental conditions (eg, timing of experiments relative to the light dark cycle or animal housing temperatures) that can impair rigor and reproducibility. Workshop participants also pointed to uncertainty regarding the importance of maintaining normal circadian rhythmic synchrony and the potential pathological impact of desynchrony on SCD risk. One related question raised was whether circadian mechanisms can be targeted to reduce SCD risk. Finally, the experts underscored the need for studies aimed at determining the physiological importance of circadian clocks in the many different cell types important to normal heart function and SCD. Addressing these gaps could lead to new therapeutic approaches/molecular targets that can mitigate the risk of SCD not only at certain times but over the entire 24-hour period.
Collapse
Affiliation(s)
| | - Alfred L. George
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Jeanne M. Nerbonne
- Departments of Medicine, Cardiovascular Division, and Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Joseph T. Bass
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | | | - Mukesh K. Jain
- Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Tracey O. Hermanstyne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Martin E. Young
- Department of Medicine, University of Alabama, Birmingham, AL
| | | | | | | | - Martica H. Hall
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | - Ron C. Anafi
- Department of Medicine and Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Kalyanam Shivkumar
- Departement of Medicine, David Greffen School of Medicine at UCLA, Los Angeles, CA
| | - Steven A. Shea
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR
| | | |
Collapse
|
78
|
Effect of Temporal Difference on Clinical Outcomes of Patients with Out-of-Hospital Cardiac Arrest: A Retrospective Study from an Urban City of Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111020. [PMID: 34769541 PMCID: PMC8582961 DOI: 10.3390/ijerph182111020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022]
Abstract
Circadian pattern influence on the incidence of out-of-hospital cardiac arrest (OHCA) has been demonstrated. However, the effect of temporal difference on the clinical outcomes of OHCA remains inconclusive. Therefore, we conducted a retrospective study in an urban city of Taiwan between January 2018 and December 2020 in order to investigate the relationship between temporal differences and the return of spontaneous circulation (ROSC), sustained (≥24 h) ROSC, and survival to discharge in patients with OHCA. Of the 842 patients with OHCA, 371 occurred in the daytime, 250 in the evening, and 221 at night. During nighttime, there was a decreased incidence of OHCA, but the outcomes of OHCA were significant poor compared to the incidents during the daytime and evening. After multivariate adjustment for influencing factors, OHCAs occurring at night were independently associated with lower probabilities of achieving sustained ROSC (aOR = 0.489, 95% CI: 0.285–0.840, p = 0.009) and survival to discharge (aOR = 0.147, 95% CI: 0.03–0.714, p = 0.017). Subgroup analyses revealed significant temporal differences in male patients, older adult patients, those with longer response times (≥5 min), and witnessed OHCA. The effects of temporal difference on the outcome of OHCA may be a result of physiological factors, underlying etiology of arrest, resuscitative efforts in prehospital and in-hospital stages, or a combination of factors.
Collapse
|
79
|
PER2 Regulates Reactive Oxygen Species Production in the Circadian Susceptibility to Ischemia/Reperfusion Injury in the Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6256399. [PMID: 34659637 PMCID: PMC8519710 DOI: 10.1155/2021/6256399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
The main objective of this study was to investigate the diurnal differences in Period 2 (PER2) expression in myocardial ischemia-reperfusion (I/R) injury. We investigated diurnal variations in oxidative stress and energy metabolism after myocardial I/R in vitro and in vivo. In addition, we also analyzed the effects of H2O2 treatment and serum shock in H9c2 cells transfected with silencing RNA against Per2 (siRNA-Per2) in vitro. We used C57BL/6 male mice to construct a model of I/R injury at zeitgeber time (ZT) 2 and ZT14 by synchronizing the circadian rhythms. Our in vivo analysis demonstrated that there were diurnal differences in the severity of injury caused by myocardial infarctions, with more injury occurring in the daytime. PER2 was significantly reduced in heart tissue in the daytime and was higher at night. Our results also showed that more severe injury of mitochondrial function in daytime produced more reactive oxygen species (ROS) and less ATP, which increased myocardial injury. In vitro, our findings presented a similar trend showing that apoptosis of H9c2 cells was increased when PER2 expression was lower. Meanwhile, downregulation of PER2 disrupted the oxidative balance by increasing ROS and mitochondrial injury. The result was a reduction in ATP and failure to provide sufficient energy protection for cardiomyocytes.
Collapse
|
80
|
Karoly PJ, Stirling RE, Freestone DR, Nurse ES, Maturana MI, Halliday AJ, Neal A, Gregg NM, Brinkmann BH, Richardson MP, La Gerche A, Grayden DB, D'Souza W, Cook MJ. Multiday cycles of heart rate are associated with seizure likelihood: An observational cohort study. EBioMedicine 2021; 72:103619. [PMID: 34649079 PMCID: PMC8517288 DOI: 10.1016/j.ebiom.2021.103619] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Background Circadian and multiday rhythms are found across many biological systems, including cardiology, endocrinology, neurology, and immunology. In people with epilepsy, epileptic brain activity and seizure occurrence have been found to follow circadian, weekly, and monthly rhythms. Understanding the relationship between these cycles of brain excitability and other physiological systems can provide new insight into the causes of multiday cycles. The brain-heart link has previously been considered in epilepsy research, with potential implications for seizure forecasting, therapy, and mortality (i.e., sudden unexpected death in epilepsy). Methods We report the results from a non-interventional, observational cohort study, Tracking Seizure Cycles. This study sought to examine multiday cycles of heart rate and seizures in adults with diagnosed uncontrolled epilepsy (N=31) and healthy adult controls (N=15) using wearable smartwatches and mobile seizure diaries over at least four months (M=12.0, SD=5.9; control M=10.6, SD=6.4). Cycles in heart rate were detected using a continuous wavelet transform. Relationships between heart rate cycles and seizure occurrence were measured from the distributions of seizure likelihood with respect to underlying cycle phase. Findings Heart rate cycles were found in all 46 participants (people with epilepsy and healthy controls), with circadian (N=46), about-weekly (N=25) and about-monthly (N=13) rhythms being the most prevalent. Of the participants with epilepsy, 19 people had at least 20 reported seizures, and 10 of these had seizures significantly phase locked to their multiday heart rate cycles. Interpretation Heart rate cycles showed similarities to multiday epileptic rhythms and may be comodulated with seizure likelihood. The relationship between heart rate and seizures is relevant for epilepsy therapy, including seizure forecasting, and may also have implications for cardiovascular disease. More broadly, understanding the link between multiday cycles in the heart and brain can shed new light on endogenous physiological rhythms in humans. Funding This research received funding from the Australian Government National Health and Medical Research Council (investigator grant 1178220), the Australian Government BioMedTech Horizons program, and the Epilepsy Foundation of America's ‘My Seizure Gauge’ grant.
Collapse
Affiliation(s)
- Philippa J Karoly
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Australia; Seer Medical, Australia.
| | - Rachel E Stirling
- Department of Biomedical Engineering, The University of Melbourne, Australia
| | | | - Ewan S Nurse
- Seer Medical, Australia; Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| | - Matias I Maturana
- Seer Medical, Australia; Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| | - Amy J Halliday
- Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| | - Andrew Neal
- Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| | - Nicholas M Gregg
- Bioelectronics Neurophysiology and Engineering Lab, Department of Neurology, Mayo Clinic, Rochester, MN
| | - Benjamin H Brinkmann
- Bioelectronics Neurophysiology and Engineering Lab, Department of Neurology, Mayo Clinic, Rochester, MN
| | | | - Andre La Gerche
- Sports Cardiology Laboratory, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Australia
| | - Wendyl D'Souza
- Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| | - Mark J Cook
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Australia; Departments of Medicine and Neurology, The University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
81
|
van Dongen L, de Goede P, Moeller S, Eroglu T, Folke F, Gislason G, Blom M, Elders P, Torp-Pedersen C, Tan H. Temporal variation in out-of-hospital cardiac arrest occurrence in individuals with or without diabetes. Resusc Plus 2021; 8:100167. [PMID: 34604822 PMCID: PMC8473536 DOI: 10.1016/j.resplu.2021.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Out-of-hospital cardiac arrest (OHCA) occurrence has been shown to exhibit a circadian rhythm, following the circadian rhythm of acute myocardial infarction (AMI) occurrence. Diabetes mellitus (DM) is associated with changes in circadian rhythm. We aimed to compare the temporal variation of OHCA occurrence over the day and week between OHCA patients with DM and those without. Methods In two population-based OHCA registries (Amsterdam Resuscitation Studies [ARREST] 2010-2016, n = 4163, and Danish Cardiac Arrest Registry [DANCAR], 2010-2014, n = 12,734), adults (≥18y) with presumed cardiac cause of OHCA and available medical history were included. Single and double cosinor analysis was performed to model circadian variation of OHCA occurrence. Stratified analysis of circadian variation was performed in patients with AMI as immediate cause of OHCA. Results DM patients (22.8% in ARREST, 24.2% in DANCAR) were older and more frequently had cardiovascular risk factors or previous cardiovascular disease. Both cohorts showed 24 h-rhythmicity, with significant amplitudes in single and double cosinor functions (P-range < 0.001). In both registries, a morning peak (10:00-11:00) and an evening peak (20:00-21:00) was observed in both DM and non-DM patients. No septadian variation was observed in either DM or non-DM patients (P-range 0.13-84). Conclusions In these two population-based OHCA registries, we observed a similar circadian rhythm of OHCA occurrence in DM and non-DM patients.
Collapse
Affiliation(s)
- L.H. van Dongen
- Amsterdam UMC, Academic Medical Center, University of Amsterdam, Department of Experimental and Clinical Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - P. de Goede
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
- Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - S. Moeller
- Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - T.E. Eroglu
- Amsterdam UMC, Academic Medical Center, University of Amsterdam, Department of Experimental and Clinical Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - F. Folke
- Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark
- Emergency Medical Services Copenhagen, University of Copenhagen, Denmark
| | - G. Gislason
- Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark
- The Danish Heart Foundation, Copenhagen, Denmark
| | - M.T. Blom
- Amsterdam UMC, Academic Medical Center, University of Amsterdam, Department of Experimental and Clinical Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - P.J.M. Elders
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, De Boelelaan 1117, Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of General Practice Medicine, Amsterdam Public Health Institute, De Boelelaan 1117, Amsterdam, Netherlands
| | - C. Torp-Pedersen
- Department of Cardiology, North Zealand Hospital, Hillerød, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Public Health, University of Copenhagen, Denmark
| | - H.L. Tan
- Amsterdam UMC, Academic Medical Center, University of Amsterdam, Department of Experimental and Clinical Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
- Corresponding author at: Amsterdam UMC, Academic Medical Center, Heart Center, Department of Cardiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
82
|
Bedford JP, Redfern O, Johnson A, Rajappan K, Watkinson PJ. Circadian variation in new-onset atrial fibrillation in patients in ICUs. J Crit Care 2021; 67:1-2. [PMID: 34560357 DOI: 10.1016/j.jcrc.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
New-onset atrial fibrillation (NOAF) is common in patients treated on an intensive care unit (ICU). Onset of certain arrhythmias exhibit circadian variation. Whether NOAF follows a circadian rhythm in patients in ICU is unknown. We undertook a retrospective observational study of two ICU databases to explore the timing of NOAF onset. We identified 2017 patients who developed NOAF during their ICU stay. NOAF onset exhibited a bimodal distribution with peaks at 8 am and 8 pm, consistent with the onset of paroxysmal AF in patients in the community. Future studies in ICUs should record time of AF onset, as understanding high risk periods may inform timing of preventative interventions.
Collapse
Affiliation(s)
- Jonathan P Bedford
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Oliver Redfern
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Alistair Johnson
- Glowyr ltd., Hawkstone House, Valley Road, Hebden Bridge, West Yorkshire, UK.
| | - Kim Rajappan
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Peter J Watkinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; National Institute for Health Research Biomedical Research Centre, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
83
|
Hong M, Wei L, Duan H, Chen T, Shi L, You Y, Chen Y, Li H, Ma J. Biological variations in hemodynamics and electrocardiogram rhythms among telemetered cynomolgus monkeys. J Pharmacol Toxicol Methods 2021; 112:107108. [PMID: 34363962 DOI: 10.1016/j.vascn.2021.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Telemetered cynomolgus monkeys are widely used in cardiovascular toxicology research. However, the biological variations in their hemodynamics and electrocardiogram rhythms have not been fully elucidated. METHOD To determine the potential effects of sex, handling stress, and circadian rhythm on the hemodynamics and electrocardiogram rhythms, data from 23 cynomolgus monkeys, implanted with DSI telemetry devices were examined. RESULTS Our data showed that males had a longer RR interval (RRi), slower heart rate (HR), shorter QT and corrected QT intervals (QTc), and lower blood pressure than females. During the night time, the animals showed a longer RRi, PRi, QTi, and QTc; slower HR, and lower blood pressure. Handling stress at 0.25- to 1-h post-treatment caused a decrease in RRi and increase in HR and QTi. For RRi, HR, and systolic, diastolic, and mean blood pressure, the coefficients of variation (CVs) between studies of individual animals were less than 30%; for other parameters, the CVs were less than 20%. DISCUSSION We demonstrated that sex, circadian rhythms, and handling stress all contributed towards variations in telemetry data, albeit to different extents. For each individual animal, the biological variation across different studies was relatively small and acceptable.
Collapse
Affiliation(s)
- Min Hong
- Shanghai Innostar Bio-tech Co. Ltd., 199 Guoshoujing Road, Shanghai 201203, China.
| | - Liping Wei
- Shanghai Innostar Bio-tech Co. Ltd., 199 Guoshoujing Road, Shanghai 201203, China.
| | - Huailong Duan
- Shanghai Innostar Bio-tech Co. Ltd., 199 Guoshoujing Road, Shanghai 201203, China.
| | - Tao Chen
- Shanghai Innostar Bio-tech Co. Ltd., 199 Guoshoujing Road, Shanghai 201203, China.
| | - Lei Shi
- Shanghai Innostar Bio-tech Co. Ltd., 199 Guoshoujing Road, Shanghai 201203, China.
| | - Yanfei You
- Shanghai Innostar Bio-tech Co. Ltd., 199 Guoshoujing Road, Shanghai 201203, China.
| | - Yan Chen
- Shanghai Innostar Bio-tech Co. Ltd., 199 Guoshoujing Road, Shanghai 201203, China.
| | - Hua Li
- Shanghai Innostar Bio-tech Co. Ltd., 199 Guoshoujing Road, Shanghai 201203, China.
| | - Jing Ma
- Shanghai Innostar Bio-tech Co. Ltd., 199 Guoshoujing Road, Shanghai 201203, China.
| |
Collapse
|
84
|
Sutovska H, Molcan L, Koprdova R, Piesova M, Mach M, Zeman M. Prenatal hypoxia increases blood pressure in male rat offspring and affects their response to artificial light at night. J Dev Orig Health Dis 2021; 12:587-594. [PMID: 33109302 DOI: 10.1017/s2040174420000963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prenatal hypoxia (PH) has negative consequences on the cardiovascular system in adulthood and can affect the responses to additional insults later in life. We explored the effects of PH imposed during embryonic day 20 (10.5% O2 for 12 h) on circadian rhythms of systolic blood pressure (BP) and heart rate (HR) in mature male rat offspring measured by telemetry. We evaluated: (1) stability of BP and HR changes after PH; (2) circadian variability of BP and HR after 2 and 5 weeks of exposure to artificial light at night (ALAN; 1-2 lx); and (3) response of BP and HR to norepinephrine. PH increased BP in the dark (134 ± 2 mmHg vs. control 127 ± 2 mmHg; p = 0.05) and marginally in the light (125 ± 1 mmHg vs. control 120 ± 2 mmHg) phase of the day but not HR. The effect of PH was highly repeatable between 21- and 27-week-old PH male offspring. Two weeks of ALAN decreased the circadian variability of HR (p < 0.05) and BP more in control than PH rats. After 5 weeks of ALAN, the circadian variability of HR and BP were damped compared to LD and did not differ between control and PH rats (p < 0.05). Responses of BP and HR to norepinephrine did not differ between control and PH rats. Hypoxia at the end of the embryonic period increases BP and affects the functioning of the cardiovascular system in mature male offspring. ALAN in adulthood decreased the circadian variability of cardiovascular parameters, more in control than PH rats.
Collapse
Affiliation(s)
- Hana Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Romana Koprdova
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Piesova
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Mojmír Mach
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
85
|
Baka T, Simko F. Monitoring Non-dipping Heart Rate by Consumer-Grade Wrist-Worn Devices: An Avenue for Cardiovascular Risk Assessment in Hypertension. Front Cardiovasc Med 2021; 8:711417. [PMID: 34368261 PMCID: PMC8342801 DOI: 10.3389/fcvm.2021.711417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
86
|
Regulation of sinus node pacemaking and atrioventricular node conduction by HCN channels in health and disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:61-85. [PMID: 34197836 DOI: 10.1016/j.pbiomolbio.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
The funny current, If, was first recorded in the heart 40 or more years ago by Dario DiFrancesco and others. Since then, we have learnt that If plays an important role in pacemaking in the sinus node, the innate pacemaker of the heart, and more recently evidence has accumulated to show that If may play an important role in action potential conduction through the atrioventricular (AV) node. Evidence has also accumulated to show that regulation of the transcription and translation of the underlying Hcn genes plays an important role in the regulation of sinus node pacemaking and AV node conduction under normal physiological conditions - in athletes, during the circadian rhythm, in pregnancy, and during postnatal development - as well as pathological states - ageing, heart failure, pulmonary hypertension, diabetes and atrial fibrillation. There may be yet more pathological conditions involving changes in the expression of the Hcn genes. Here, we review the role of If and the underlying HCN channels in physiological and pathological changes of the sinus and AV nodes and we begin to explore the signalling pathways (microRNAs, transcription factors, GIRK4, the autonomic nervous system and inflammation) involved in this regulation. This review is dedicated to Dario DiFrancesco on his retirement.
Collapse
|
87
|
Sutovska H, Miklovic M, Molcan L. Artificial light at night suppresses the expression of sarco/endoplasmic reticulum Ca 2+ -ATPase in the left ventricle of the heart in normotensive and hypertensive rats. Exp Physiol 2021; 106:1762-1771. [PMID: 34089548 DOI: 10.1113/ep089594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Artificial light at night decreases blood pressure and heart rate in rats. Are these changes in heart rate accompanied by changes in protein expression in the heart's left ventricle? What is the main finding and its importance? Five weeks of artificial light at night affected protein expression in the heart's left ventricle in normotensive and hypertensive rats. Artificial light at night decreased expression of the sarco/endoplasmic reticulum Ca2+ -ATPase, angiotensin II receptor type 1 and endothelin-1. ABSTRACT Artificial light at night (ALAN) affects the circadian rhythm of the heart rate in normotensive Wistar rats (WT) and spontaneously hypertensive rats (SHR) through the autonomic nervous system, which regulates the heart's activity through calcium handling, an important regulator in heart contractility. We analysed the expression of the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA2) and other selected regulatory proteins involved in the regulation of heart contractility, angiotensin II receptor type 1 (AT1 R), endothelin-1 (ET-1) and tyrosine hydroxylase (TH), in the left ventricle of the heart in WT and SHR after 2 and 5 weeks of ALAN with intensity 1-2 lx. Expression of SERCA2 was decreased in WT (control: 0.53 ± 0.07; ALAN: 0.46 ± 0.10) and SHR (control: 0.72 ± 0.18; ALAN: 0.56 ± 0.21) after 5 weeks of ALAN (P = 0.067). Expression of AT1 R was significantly decreased in WT (control: 0.51 ± 0.27; ALAN: 0.34 ± 0.20) and SHR (control: 0.38 ± 0.07; ALAN: 0.23 ± 0.09) after 2 weeks of ALAN (P = 0.028) and in SHR after 5 weeks of ALAN. Expression of ET-1 was decreased in WT (control: 0.51 ± 0.27; ALAN: 0.28 ± 0.12) and SHR (control: 0.54 ± 0.10; ALAN: 0.35 ± 0.23) after 5 weeks of ALAN (P = 0.015). ALAN did not affect the expression of TH in WT or SHR. In conclusion, ALAN suppressed the expression of SERCA2, AT1 R and ET-1, which are important for the regulation of heart contractility, in a strain-dependent pattern in both WT and SHR.
Collapse
Affiliation(s)
- Hana Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Matus Miklovic
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
88
|
Balducci V, Cerbai E. Toward an in vitro human pacemaker. Pflugers Arch 2021; 473:989-990. [PMID: 34032889 DOI: 10.1007/s00424-021-02585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Valentina Balducci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.
| |
Collapse
|
89
|
D'Imperio S, Monasky MM, Micaglio E, Negro G, Pappone C. Early Morning QT Prolongation During Hypoglycemia: Only a Matter of Glucose? Front Cardiovasc Med 2021; 8:688875. [PMID: 34046442 PMCID: PMC8144311 DOI: 10.3389/fcvm.2021.688875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sara D'Imperio
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Gabriele Negro
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
90
|
Hu W, Clark RB, Giles WR, Shibata E, Zhang H. Physiological Roles of the Rapidly Activated Delayed Rectifier K + Current in Adult Mouse Heart Primary Pacemaker Activity. Int J Mol Sci 2021; 22:4761. [PMID: 33946248 PMCID: PMC8124469 DOI: 10.3390/ijms22094761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Robust, spontaneous pacemaker activity originating in the sinoatrial node (SAN) of the heart is essential for cardiovascular function. Anatomical, electrophysiological, and molecular methods as well as mathematical modeling approaches have quite thoroughly characterized the transmembrane fluxes of Na+, K+ and Ca2+ that produce SAN action potentials (AP) and 'pacemaker depolarizations' in a number of different in vitro adult mammalian heart preparations. Possible ionic mechanisms that are responsible for SAN primary pacemaker activity are described in terms of: (i) a Ca2+-regulated mechanism based on a requirement for phasic release of Ca2+ from intracellular stores and activation of an inward current-mediated by Na+/Ca2+ exchange; (ii) time- and voltage-dependent activation of Na+ or Ca2+ currents, as well as a cyclic nucleotide-activated current, If; and/or (iii) a combination of (i) and (ii). Electrophysiological studies of single spontaneously active SAN myocytes in both adult mouse and rabbit hearts consistently reveal significant expression of a rapidly activating time- and voltage-dependent K+ current, often denoted IKr, that is selectively expressed in the leading or primary pacemaker region of the adult mouse SAN. The main goal of the present study was to examine by combined experimental and simulation approaches the functional or physiological roles of this K+ current in the pacemaker activity. Our patch clamp data of mouse SAN myocytes on the effects of a pharmacological blocker, E4031, revealed that a rapidly activating K+ current is essential for action potential (AP) repolarization, and its deactivation during the pacemaker potential contributes a small but significant component to the pacemaker depolarization. Mathematical simulations using a murine SAN AP model confirm that well known biophysical properties of a delayed rectifier K+ current can contribute to its role in generating spontaneous myogenic activity.
Collapse
Affiliation(s)
- Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Robert B. Clark
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.)
| | - Wayne R. Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.)
| | - Erwin Shibata
- Department of Physiology, Carver School of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
91
|
Delisle BP, Stumpf JL, Wayland JL, Johnson SR, Ono M, Hall D, Burgess DE, Schroder EA. Circadian clocks regulate cardiac arrhythmia susceptibility, repolarization, and ion channels. Curr Opin Pharmacol 2021; 57:13-20. [PMID: 33181392 PMCID: PMC8240636 DOI: 10.1016/j.coph.2020.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
Daily changes in the incidence of sudden cardiac death (SCD) reveal an interaction between environmental rhythms and internal circadian rhythms. Circadian rhythms are physiological rhythms that alter physiology to anticipate daily changes in the environment. They reflect coordinated activity of cellular circadian clocks that exist throughout the body. This review provides an overview of the state of the field by summarizing the results of several different transgenic mouse models that disrupt the function of circadian clocks throughout the body, in cardiomyocytes, or in adult cardiomyocytes. These studies identify important roles for circadian clocks in regulating heart rate, ventricular repolarization, arrhythmogenesis, and the functional expression of cardiac ion channels. They highlight a new dimension in the regulation of cardiac excitability and represent initial forays into understanding the complexities of how time impacts the functional regulation of ion channels, cardiac excitability, and time of day changes in the incidence of SCD.
Collapse
Affiliation(s)
- Brian P Delisle
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - John L Stumpf
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Jennifer L Wayland
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Sidney R Johnson
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Makoto Ono
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Dalton Hall
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Don E Burgess
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States; Department of Science and Health, Asbury University, One Macklem Drive, Wilmore, KY 40390, United States
| | - Elizabeth A Schroder
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States; Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, 740 S. Limestone Street, L543, Lexington, KY 40536-0284, United States.
| |
Collapse
|
92
|
Wang Y, Jiang W, Chen H, Zhou H, Liu Z, Liu Z, Liu Z, Zhou Y, Zhou X, Yu L, Jiang H. Sympathetic Nervous System Mediates Cardiac Remodeling After Myocardial Infarction in a Circadian Disruption Model. Front Cardiovasc Med 2021; 8:668387. [PMID: 33842566 PMCID: PMC8032890 DOI: 10.3389/fcvm.2021.668387] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Circadian rhythms have a considerable impact on the daily physiology of the heart, and their disruption causes pathology. Several studies have revealed that circadian disruption impaired cardiac remodeling after myocardial infarction (MI); however, the underlying brain-heart mechanisms remain unknown. We aim to discuss whether circadian disruption facilitates cardiac remodeling after MI by activating sympathetic nervous system. Methods: Rats were randomly divided into three groups: Sham group (Sham), MI group (MI), and MI+ circadian disruption group (MI+Dis); rats were treated with pseudorabies virus (PRV) injections for trans-synaptic retrograde tracing; rats were randomly divided into two groups: MI+ circadian disruption + Empty Vector+ clozapine N-oxide (CNO) (Empty Vector), and MI+ circadian disruption + hM4D(Gi)+ CNO [hM4D(Gi)]. Results: Circadian disruption significantly facilitated cardiac remodeling after MI with lower systolic function, larger left ventricular volume, and aggravated cardiac fibrosis. Cardiac sympathetic remodeling makers and serum norepinephrine levels were also significantly increased by circadian disruption. PRV virus-labeled neurons were identified in the superior cervical ganglion (SCG), paraventricular nucleus (PVN), and suprachiasmatic nucleus (SCN) regions. Ganglionic blockade via designer receptors exclusively activated by designer drugs (DREADD) technique suppressed the activity of sympathetic nervous system and significantly alleviated the disruption-related cardiac dysfunction. Conclusion: Circadian disruption adversely affected cardiac remodeling after MI possibly by activating sympathetic nervous system, and suppressing sympathetic activity can attenuate this disruption-related cardiac dysfunction.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huixin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
93
|
Zhang H, Dai J, Tian D, Xiao L, Xue H, Guo Q, Zhang X, Teng X, Jin S, Wu Y. Hydrogen Sulfide Restored the Diurnal Variation in Cardiac Function of Aging Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8841575. [PMID: 33747351 PMCID: PMC7943277 DOI: 10.1155/2021/8841575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
The present study was performed to investigate whether H2S could restore the diurnal variation in cardiac function of aging mice and explore the potential mechanisms. We found that ejection fraction (EF) and fractional shortening (FS) in 3-month-old mice exhibited diurnal variations over a 24-hour period. However, the diurnal variations were disrupted in 18-month-old mice, and there was a decline in EF and FS. In addition, the plasma malondialdehyde (MDA) levels were increased, and H2S concentrations and superoxide dismutase (SOD) activities were decreased in 18-month-old mice. Then, CSE KO mice were used to determine if there was a relationship between endogenous H2S and diurnal variations in EF and FS. There was no difference in 12-hour averaged EF and FS between dark and light periods in CSE KO mice accompanying increased MDA levels and decreased SOD activities in plasma, indicating that deficiency of endogenous H2S blunted diurnal variations of cardiac function. To determine whether oxidative stress disrupted the diurnal variations in cardiac function, D-galactose-induced subacute aging mice were employed. After 3-month D-gal treatment, both 12-hour averaged EF and FS in dark or light periods were decreased; meanwhile, there was no difference in 12-hour averaged EF and FS between dark and light periods. After 3-month NaHS treatment in the D-gal group, the plasma MDA levels were decreased and SOD activities were increased. The EF and FS were lower during the 12-hour light period than those during the 12-hour dark period which was fit to sine curves in the D-gal+NaHS group. Identical findings were also observed in 18-month-old mice. In conclusion, our studies revealed that the disrupted diurnal variation in cardiac function was associated with increased oxidative stress and decreased H2S levels in aging mice. H2S could restore the diurnal variation in cardiac function of aging mice by reducing oxidative stress.
Collapse
Affiliation(s)
- Huaxing Zhang
- School of Basic Medical Sciences, Hebei Medical University, Hebei 050017, China
| | - Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Hebei 050017, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 050017 Hebei, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 050017 Hebei, China
| |
Collapse
|
94
|
Cui Y, Huang H, Ren W, Xu Y, Zha X, Zeng M, Gao Z, Tang S, Yang G, Huang Y, Xu F, Qian H, Zhou W, Ouyang C, Zhang L, Gao X, Zhang J, Wang J, Guo J, Xing C, Wei Y, Wang N. Parathyroidectomy Is Associated with Reversed Nondipping Heart Rate That Impacts Mortality in Chronic Kidney Disease Patients. Endocr Pract 2021; 28:148-158. [PMID: 33610808 DOI: 10.1016/j.eprac.2021.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Nondipping heart rate (HR), defined as a night/day HR ratio >0.90, has been associated with increased mortality in epidemiologic studies. However, its prognostic value in stage 5 chronic kidney disease (CKD5) patients and the effects of parathyroidectomy (PTX) on nondipping HR remain unknown. METHODS This case-control study of 162 healthy controls and 502 CKD5 patients was performed between 2011 and 2018, in which CKD5 patients were further divided into non-PTX (n = 186) and severe secondary hyperparathyroidism (SHPT) with PTX (n = 316) subgroups. Each participant underwent 24-hour Holter monitoring for HR ratio. Mortality was followed up in CKD5 patients (median time: 46.0 months). RESULTS The HR ratio in CKD5 patients was higher than in controls (0.92 ± 0.08 vs 0.81 ± 0.08, P <.001), associated with a 44% increase in mortality risk per 0.1 increment (hazard ratio, 1.44; 95% CI: 1.02-2.03; P =.04), and was positively related to serum intact parathyroid hormone levels (P <.001). PTX reversed nondipping HR in SHPT patients (n = 50, median time: 6.3 months, P <.001). Survival probabilities for PTX (n = 294) were better than non-PTX (n = 47) (hazard ratio, 0.31; 95% CI: 0.14-0.67; P <.01) in SHPT patients (serum intact parathyroid hormone >500.0 pg/mL). CONCLUSION CKD5 patients displayed a nondipping HR pattern, which is a prognostic marker of all-cause mortality. PTX for SHPT patients was associated with a reversal in nondipping HR ratio, which may mediate a better outcome.
Collapse
Affiliation(s)
- Ying Cui
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China; Department of Nephrology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenkai Ren
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Xiaoming Zha
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ming Zeng
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zhanhui Gao
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guang Yang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yaoyu Huang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Fangyan Xu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hanyang Qian
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wenbin Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Chun Ouyang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China; Department of Nephrology, Liyang Branch, Jiangsu Province Hospital, Liyang People's Hospital, Liyang, China
| | - Lina Zhang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueyan Gao
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jing Wang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jing Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yongyue Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China.
| | - Ningning Wang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
95
|
RNAseq shows an all-pervasive day-night rhythm in the transcriptome of the pacemaker of the heart. Sci Rep 2021; 11:3565. [PMID: 33574422 PMCID: PMC7878777 DOI: 10.1038/s41598-021-82202-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Physiological systems vary in a day-night manner anticipating increased demand at a particular time. Heart is no exception. Cardiac output is primarily determined by heart rate and unsurprisingly this varies in a day-night manner and is higher during the day in the human (anticipating increased day-time demand). Although this is attributed to a day-night rhythm in post-translational ion channel regulation in the heart's pacemaker, the sinus node, by the autonomic nervous system, we investigated whether there is a day-night rhythm in transcription. RNAseq revealed that ~ 44% of the sinus node transcriptome (7134 of 16,387 transcripts) has a significant day-night rhythm. The data revealed the oscillating components of an intrinsic circadian clock. Presumably this clock (or perhaps the master circadian clock in the suprachiasmatic nucleus) is responsible for the rhythm observed in the transcriptional machinery, which in turn is responsible for the rhythm observed in the transcriptome. For example, there is a rhythm in transcripts responsible for the two principal pacemaker mechanisms (membrane and Ca2+ clocks), transcripts responsible for receptors and signalling pathways known to control pacemaking, transcripts from genes identified by GWAS as determinants of resting heart rate, and transcripts from genes responsible for familial and acquired sick sinus syndrome.
Collapse
|
96
|
Song W, Wang W, Jiang F. Intelligent Diagnosis Method Based on 2DECG Model. INT J PATTERN RECOGN 2021. [DOI: 10.1142/s0218001421590072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrophysiological signals can effectively reflect various physiological states of human body, and provide favorable basis for medical diagnosis. However, the correct analysis of electrophysiological signals requires professional medical diagnosis experience. With the rapid development of artificial intelligence, intelligent diagnosis methods based on deep learning are gradually applied in the medical field in order to reduce the dependence of diagnosis results on medical experience. Deep learning has made remarkable achievements in the field of image processing, through which deeper information can be extracted than through time-series signals. Therefore, this paper proposes a method of 2DECG diagnosis based on Faster R-CNN (Faster Region-based Convolutional Neural Network). First, the time-series ECG signal is transformed into two-dimensional curve. Then, the Faster R-CNN model based on beat is obtained by using dataset training. Finally, three kinds of ECG diseases are diagnosed by the Faster R-CNN model. The test results show that compared with the effect of one-dimensional CNN, the method proposed in this paper has high diagnosis accuracy and can help doctors to diagnose diseases more intuitively.
Collapse
Affiliation(s)
- Weibo Song
- School of Control Science and Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
- College of Information Engineering, Dalian Ocean University, Dalian, Liaoning, P. R. China
| | - Wei Wang
- School of Control Science and Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Fengjiao Jiang
- College of Information Engineering, Dalian Ocean University, Dalian, Liaoning, P. R. China
| |
Collapse
|
97
|
Steinberg C, Pilote S, Philippon F, Laksman ZW, Champagne J, Simard C, Krahn AD, Drolet B. SCN5A-C683R exhibits combined gain-of-function and loss-of-function properties related to adrenaline-triggered ventricular arrhythmia. Exp Physiol 2021; 106:683-699. [PMID: 33480457 DOI: 10.1113/ep089088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the role of SCN5A-C683R? SCN5A-C683R is a novel variant associated with an uncommon phenotype of adrenaline-triggered ventricular arrhythmia in the absence of a distinct ECG phenotype. What is the main finding and its importance? Functional studies demonstrated that NaV 1.5/C683R results in a mixed electrophysiological phenotype with gain-of-function (GOF) and loss-of-function (LOF) properties compared with NaV 1.5/wild type. Gain-of-function properties are characterized by a significant increase of the maximal current density and a hyperpolarizing shift of the steady-state activation. The LOF effect of NaV 1.5/C683R is characterized by increased closed-state inactivation. Electrophysiological properties and clinical manifestation of SCN5A-C683R are different from long-QT-3 or Brugada syndrome and might represent a distinct inherited arrhythmia syndrome. ABSTRACT Mutations of SCN5Ahave been identified as the genetic substrate of various inherited arrhythmia syndromes, including long-QT-3 and Brugada syndrome. We recently identified a novel SCN5A variant (C683R) in two genetically unrelated families. The index patients of both families experienced adrenaline-triggered ventricular arrhythmia with cardiac arrest but did not show a specific ECG phenotype, raising the hypothesis that SCN5A-C683R might be a susceptibility variant and the genetic substrate of distinct inherited arrhythmia. We conducted functional cellular studies to characterize the electrophysiological properties of NaV 1.5/C683R in order to explore the potential pathogenicity of this novel variant. The C683R variant was engineered by site-directed mutagenesis. NaV 1.5/wild type (WT) and NaV 1.5/C683R were expressed in tsA201 cells. Electrophysiological characterization of C683R was performed using the whole-cell patch-clamp technique. Adrenergic stimulation was mimicked by exposure to the protein kinase A activator 8-CPT-cAMP. The impact of β-blockers was tested by exposing NaV 1.5/WT and NaV 1.5/C683R currents to propranolol and nadolol. C683R resulted in a co-association of gain-of-function and loss-of-function properties of NaV 1.5. Gain-of-function properties were characterized by a significant increase of the maximal NaV 1.5 current density compared with NaV 1.5/WT (861 ± 309 vs. 627 ± 489 pA/pF; P < 0.05, n ≥ 9) that was potentiated in NaV 1.5/C683R with 8-CPT-cAMP stimulation (869 ± 287 vs. 607 ± 320 pA/pF; P < 0.05, n ≥ 12). C683R also resulted in a significant hyperpolarizing shift in the voltage of steady-state activation (-65.4 ± 3.0 vs. -57.2 ± 4.8 mV; P < 0.001), resulting in an increased window current compared with WT. The loss-of-function effect of NaV 1.5/C683R was characterized by significantly increased closed-state inactivation compared with NaV 1.5/WT (P < 0.05). C683R is a novel SCN5A variant resulting in a co-association of gain-of-function and loss-of-function properties of the cardiac sodium channel NaV 1.5. The phenotype is characterized by adrenaline-triggered ventricular arrhythmias. Electrophysiological properties and clinical manifestations are different from long-QT-3 or Brugada syndrome and might represent a distinct inherited arrhythmia syndrome.
Collapse
Affiliation(s)
- Christian Steinberg
- Division of Cardiology, Electrophysiology Service, Institut universitaire de cardiologie et de pneumologie de Québec, IUCPQ-UL), Laval University, Québec, QC, Canada.,IUCPQ-UL Research Center, Laval University, Québec, QC, Canada
| | - Sylvie Pilote
- IUCPQ-UL Research Center, Laval University, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - François Philippon
- Division of Cardiology, Electrophysiology Service, Institut universitaire de cardiologie et de pneumologie de Québec, IUCPQ-UL), Laval University, Québec, QC, Canada.,IUCPQ-UL Research Center, Laval University, Québec, QC, Canada
| | - Zachary W Laksman
- Heart Rhythm Services, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Jean Champagne
- Division of Cardiology, Electrophysiology Service, Institut universitaire de cardiologie et de pneumologie de Québec, IUCPQ-UL), Laval University, Québec, QC, Canada.,IUCPQ-UL Research Center, Laval University, Québec, QC, Canada
| | - Chantale Simard
- IUCPQ-UL Research Center, Laval University, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Andrew D Krahn
- Heart Rhythm Services, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Benoît Drolet
- IUCPQ-UL Research Center, Laval University, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| |
Collapse
|
98
|
Bernardi J, Aromolaran KA, Zhu H, Aromolaran AS. Circadian Mechanisms: Cardiac Ion Channel Remodeling and Arrhythmias. Front Physiol 2021; 11:611860. [PMID: 33519516 PMCID: PMC7841411 DOI: 10.3389/fphys.2020.611860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms are involved in many physiological and pathological processes in different tissues, including the heart. Circadian rhythms play a critical role in adverse cardiac function with implications for heart failure and sudden cardiac death, highlighting a significant contribution of circadian mechanisms to normal sinus rhythm in health and disease. Cardiac arrhythmias are a leading cause of morbidity and mortality in patients with heart failure and likely cause ∼250,000 deaths annually in the United States alone; however, the molecular mechanisms are poorly understood. This suggests the need to improve our current understanding of the underlying molecular mechanisms that increase vulnerability to arrhythmias. Obesity and its associated pathologies, including diabetes, have emerged as dangerous disease conditions that predispose to adverse cardiac electrical remodeling leading to fatal arrhythmias. The increasing epidemic of obesity and diabetes suggests vulnerability to arrhythmias will remain high in patients. An important objective would be to identify novel and unappreciated cellular mechanisms or signaling pathways that modulate obesity and/or diabetes. In this review we discuss circadian rhythms control of metabolic and environmental cues, cardiac ion channels, and mechanisms that predispose to supraventricular and ventricular arrhythmias including hormonal signaling and the autonomic nervous system, and how understanding their functional interplay may help to inform the development and optimization of effective clinical and therapeutic interventions with implications for chronotherapy.
Collapse
Affiliation(s)
- Joyce Bernardi
- Masonic Medical Research Institute, Utica, NY, United States
| | | | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | |
Collapse
|
99
|
Leguia MG, Rao VR, Kleen JK, Baud MO. Measuring synchrony in bio-medical timeseries. CHAOS (WOODBURY, N.Y.) 2021; 31:013138. [PMID: 33754758 DOI: 10.1063/5.0026733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Paroxysms are sudden, unpredictable, short-lived events that abound in physiological processes and pathological disorders, from cellular functions (e.g., hormone secretion and neuronal firing) to life-threatening attacks (e.g., cardiac arrhythmia, epileptic seizures, and diabetic ketoacidosis). With the increasing use of personal chronic monitoring (e.g., electrocardiography, electroencephalography, and glucose monitors), the discovery of cycles in health and disease, and the emerging possibility of forecasting paroxysms, the need for suitable methods to evaluate synchrony-or phase-clustering-between events and related underlying physiological fluctuations is pressing. Here, based on examples in epilepsy, where seizures occur preferentially in certain brain states, we characterize different methods that evaluate synchrony in a controlled timeseries simulation framework. First, we compare two methods for extracting the phase of event occurrence and deriving the phase-locking value, a measure of synchrony: (M1) fitting cycles of fixed period-length vs (M2) deriving continuous cycles from a biomarker. In our simulations, M2 provides stronger evidence for cycles. Second, by systematically testing the sensitivity of both methods to non-stationarity in the underlying cycle, we show that M2 is more robust. Third, we characterize errors in circular statistics applied to timeseries with different degrees of temporal clustering and tested with different strategies: Rayleigh test, Poisson simulations, and surrogate timeseries. Using epilepsy data from 21 human subjects, we show the superiority of testing against surrogate time-series to minimize false positives and false negatives, especially when used in combination with M1. In conclusion, we show that only time frequency analysis of continuous recordings of a related bio-marker reveals the full extent of cyclical behavior in events. Identifying and forecasting cycles in biomedical timeseries will benefit from recordings using emerging wearable and implantable devices, so long as conclusions are based on conservative statistical testing.
Collapse
Affiliation(s)
- Marc G Leguia
- Sleep-Wake-Epilepsy Center and Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California 94143, USA
| | - Jonathan K Kleen
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California 94143, USA
| | - Maxime O Baud
- Sleep-Wake-Epilepsy Center and Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
100
|
Diekman CO, Wei N. Circadian Rhythms of Early Afterdepolarizations and Ventricular Arrhythmias in a Cardiomyocyte Model. Biophys J 2020; 120:319-333. [PMID: 33285114 DOI: 10.1016/j.bpj.2020.11.2264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/25/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022] Open
Abstract
Sudden cardiac arrest is a malfunction of the heart's electrical system, typically caused by ventricular arrhythmias, that can lead to sudden cardiac death (SCD) within minutes. Epidemiological studies have shown that SCD and ventricular arrhythmias are more likely to occur in the morning than in the evening, and laboratory studies indicate that these daily rhythms in adverse cardiovascular events are at least partially under the control of the endogenous circadian timekeeping system. However, the biophysical mechanisms linking molecular circadian clocks to cardiac arrhythmogenesis are not fully understood. Recent experiments have shown that L-type calcium channels exhibit circadian rhythms in both expression and function in guinea pig ventricular cardiomyocytes. We developed an electrophysiological model of these cells to simulate the effect of circadian variation in L-type calcium conductance. In our simulations, we found that there is a circadian pattern in the occurrence of early afterdepolarizations (EADs), which are abnormal depolarizations during the repolarization phase of a cardiac action potential that can trigger fatal ventricular arrhythmias. Specifically, the model produces EADs in the morning, but not at other times of day. We show that the model exhibits a codimension-2 Takens-Bogdanov bifurcation that serves as an organizing center for different types of EAD dynamics. We also simulated a two-dimensional spatial version of this model across a circadian cycle. We found that there is a circadian pattern in the breakup of spiral waves, which represents ventricular fibrillation in cardiac tissue. Specifically, the model produces spiral wave breakup in the morning, but not in the evening. Our computational study is the first, to our knowledge, to propose a link between circadian rhythms and EAD formation and suggests that the efficacy of drugs targeting EAD-mediated arrhythmias may depend on the time of day that they are administered.
Collapse
Affiliation(s)
- Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey; EPSRC Centre for Predictive Modelling in Healthcare, Living Systems Institute, University of Exeter, Exeter, United Kingdom.
| | - Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, Indiana
| |
Collapse
|