51
|
Hou QL, Chen EH, Dou W, Wang JJ. Knockdown of specific cuticular proteins analogous to peritrophin 3 genes disrupt larval and ovarian development in Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2021; 28:1326-1337. [PMID: 32856386 DOI: 10.1111/1744-7917.12869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Cuticular proteins (CPs) are critical components of the insect cuticle and play important roles in maintaining normal insect development and defense against various environmental stresses. The oriental fruit fly (Bactrocera dorsalis) is one of the most destructive pests worldwide, and its eight CPs analogous to peritrophin 3 (BdCPAP3) family genes have been identified in our previous study. In the present study, we further explored the possible roles of CPAP3 genes in B. dorsalis development. Each sequence of BdCPAP3 genes contained three conserved ChtBD2 (chitin-binding) domains. Spatial and temporal expression patterns revealed that the four BdCPAP3 genes (BdCPAP3-A1, B, E, and E2) might play important roles in larval pupariation of B. dorsalis. Moreover, treatment with a juvenile hormone analog (methoprene) significantly restricted expression of these four CPAP3 genes, whereas treatment with 20-hydroxy-ecdysone induced expression. The RNA interference (RNAi) results revealed that down-regulated CPAP3 genes led to significant delay of pupariation, and injection of dsBdCPAP3-E into 5-d-old B. dorsalis larvae caused approximately 40% mortality. Interestingly, we also confirmed that BdCPAP3-D2 was involved in B. dorsalis ovarian development. This study showed that some specific CPAP3 genes had crucial roles in B. dorsalis development, and these CP genes could be used as potential targets to control this pest via RNAi.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| |
Collapse
|
52
|
Yao Q, Quan LF, Xu S, Dong YZ, Li WJ, Chen BX. Effect of diflubenzuron on the chitin biosynthesis pathway in Conopomorpha sinensis eggs. INSECT SCIENCE 2021; 28:1061-1075. [PMID: 32686293 DOI: 10.1111/1744-7917.12848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Conopomorpha sinensis is the dominant borer pest of Litchi chinensis (litchi) and Euphoria longan (longan) in China. Control of C. sinensis is difficult because of its cryptic life habit; thus, an effective ovicide could be beneficial. The larvicidal effects of diflubenzuron (DFB) have been documented in many insect pest species. Therefore, DFB might be a useful ovicide to control C. sinensis. However, the detailed mode of action of DFB interference with insect molting and egg hatching is unclear. Thus, we studied alterations in expression of all genes potentially affected by DFB treatment using a transcriptome approach in 2-d-old C. sinensis eggs. Clean reads were assembled to generate 203 455 unigenes and 440 558 transcripts. A total of 4625 differently expressed genes, which included 2670 up-regulated and 1955 down-regulated unigenes, were identified. Chitin binding and chitin metabolic processes were among the most significant enriched pathways according to Gene Ontology analyses. Most of the genes that encode enzymes involved in the chitin biosynthesis pathway were unaffected, whereas genes that presumably encode cuticle proteins were up-regulated. Furthermore, altered expression patterns of 10 genes involved in the chitin biosynthesis pathway of C. sinensis embryos were observed in response to DFB treatment at different time points by quantitative reverse transcription polymerase chain reaction. We also observed abnormal development; there was reduced chitin content and modulated chitin distribution of newly hatched larvae, and altered egg hatching. Our findings illustrate an ovicidal effect of DFB on C. sinensis, and reveal more molecular consequences of DFB treatment on insects.
Collapse
Affiliation(s)
- Qiong Yao
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lin-Fa Quan
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shu Xu
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yi-Zhi Dong
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wen-Jing Li
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bing-Xu Chen
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
53
|
Gong Y, Zhang K, Geng N, Wu M, Yi X, Liu R, Challis JK, Codling G, Xu EG, Giesy JP. Molecular mechanisms of zooplanktonic toxicity in the okadaic acid-producing dinoflagellate Prorocentrum lima. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116942. [PMID: 33765503 DOI: 10.1016/j.envpol.2021.116942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Prorocentrum lima is a dinoflagellate that forms hazardous blooms and produces okadaic acid (OA), leading to adverse environmental consequences associated with the declines of zooplankton populations. However, little is known about the toxic effects and molecular mechanisms of P. lima or OA on zooplankton. Here, their toxic effects were investigated using the brine shrimp Artemia salina. Acute exposure of A. salina to P. lima resulted in lethality at concentrations 100-fold lower than densities observed during blooms. The first comprehensive results from global transcriptomic and metabolomic analyses in A. salina showed up-regulated mRNA expression of antioxidant enzymes and reduced non-enzyme antioxidants, indicating general detoxification responses to oxidative stress after exposure to P. lima. The significantly up-regulated mRNA expression of proteasome, spliceosome, and ribosome, as well as the increased fatty acid oxidation and oxidative phosphorylation suggested the proteolysis of damaged proteins and induction of energy expenditure. Exposure to OA increased catabolism of chitin, which may further disrupt the molting and reproduction activities of A. salina. Our data shed new insights on the molecular responses and toxicity mechanisms of A. salina to P. lima or OA. The simple zooplankton model integrated with omic methods provides a sensitive assessment approach for studying hazardous algae.
Collapse
Affiliation(s)
- Yufeng Gong
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Keke Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Minghuo Wu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China.
| | - Renyan Liu
- National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | | | - Garry Codling
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; RECETOX Centre, Masaryk University, Kamenice, Brno, Czech Republic
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
54
|
Yang CL, Meng JY, Yao MS, Zhang CY. Transcriptome Analysis of Myzus persicae to UV-B Stress. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6281128. [PMID: 34021758 PMCID: PMC8140603 DOI: 10.1093/jisesa/ieab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As an environmental stress factor, ultraviolet-B (UV-B) radiation directly affects the growth and development of Myzus persicae (Sulzer) (Homoptera: Aphididae). How M. persicae responds to UV-B stress and the molecular mechanisms underlying this adaptation remain unknown. Here, we analyzed transcriptome data for M. persicae following exposure to UV-B radiation for 30 min. We identified 758 significant differentially expressed genes (DEGs) following exposure to UV-B stress, including 423 upregulated and 335 downregulated genes. In addition, enrichment analysis using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases illustrated that these DEGs are associated with antioxidation and detoxification, metabolic and protein turnover, immune response, and stress signal transduction. Simultaneously, these DEGs are closely related to the adaptability to UV-B stress. Our research can raise awareness of the mechanisms of insect responses to UV-B stress.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, People’s Republic of China
| | - Meng-Shuang Yao
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| |
Collapse
|
55
|
Liu Z, Li Y, Sepúlveda MS, Jiang Q, Jiao Y, Chen Q, Huang Y, Tian J, Zhao Y. Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144249. [PMID: 33421781 DOI: 10.1016/j.scitotenv.2020.144249] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Nanoplastics are a growing environmental and public health concern. However, the toxic mechanisms of nanoplastics are poorly understood. Here, we evaluated the effects of spherical polystyrene nanoplastics on reproduction of Daphnia pulex and analyzed the proteome of whole animals followed by molecular and biochemical analyses for the development of an adverse outcome pathway (AOP) for these contaminants of emerging concern. Animals were exposed to polystyrene nanoplastics (0, 0.1, 0.5, 1 and 2 mg/L) via water for 21 days. Nanoplastics negatively impacted cumulative offspring production. A total of 327 differentially expressed proteins (DEPs) were identified in response to nanoplastics which were further validated from gene expression and enzyme activity data. Based on these results, we propose an AOP for nanoplastics, including radical oxygen species production and oxidative stress as the molecular initiating event (MIE); followed by changes in specific signaling pathways (Jak-STAT, mTOR and FoxO) and in the metabolism of glutathione, protein, lipids, and molting proteins; with an end result of growth inhibition and decrease reproductive output. This study serves as a foundation for the development of a mechanistic understanding of nanoplastic toxicity in crustaceans and perhaps other aquatic organisms.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China; Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Yiming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Yang Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qiang Chen
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yinying Huang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Jiangtao Tian
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yunlong Zhao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
56
|
Fang C, Ye Z, Gai T, Lu K, Dai F, Lu C, Tong X. DIA-based proteome reveals the involvement of cuticular proteins and lipids in the wing structure construction in the silkworm. J Proteomics 2021; 238:104155. [PMID: 33610826 DOI: 10.1016/j.jprot.2021.104155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022]
Abstract
Wing discs of Bombyx mori (B. mori) are transformed into wings during metamorphosis via dramatic morphological and structural changes. Mutations in genes related to the wings cause the adults to have altered wing shapes or abnormal wing colour. At present, there are more than 20 wing mutants recorded in the silkworm. However, the key factors that influence B. mori wing development are still unclear. Here, we used the strains +Wes/+Wes and Wes/+Wes that are typical for the normal wing and shriveled wing phenotypes, respectively, to identify differentially expressed proteins by label-free data-independent acquisition (DIA). Ten enriched GO terms and 9 KEGG pathways were identified based on the 3993 proteins in the wings. Among the identified and quantified proteins, 370 differentially expressed proteins (DEPs) were detected (P-value <0.01, |log2FC| > 0.58). Mapping of the DEPs to the reference canonical pathways in KEGG showed that the top 20% of the pathways were related to fatty acid, cutin, suberin and wax biosynthesis, protein processing in endoplasmic reticulum, protein export, etc. Of the 370 DEPs, 238 were down-regulated, and 132 were up-regulated of Wes/+Wes compared with +Wes/+Wes. Numerous cuticular proteins were down-regulated, and fatty metabolism enzymes were up-regulated, in Wes/+Wes compared with +Wes/+Wes. SIGNIFICANCE: The comparative analysis of proteomes suggested that cuticular proteins and fatty metabolism enzymes are the main abnormally expressed proteins in the pupal wings of Wes/+Wes, leading to curly and shrunken wings after moth transformation. Our results also identify the substances affecting the development of silkworm wings from the perspective of proteins. The information from this study is important for further research on the molecular mechanisms of wing development in lepidopteran insects, and these differentially expressed genes may be targets for Lepidoptera pest control.
Collapse
Affiliation(s)
- Chunyan Fang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Zhanfeng Ye
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Tingting Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Kunpeng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China.
| |
Collapse
|
57
|
Huang Y, Yin H, Zhu Z, Jiang X, Li X, Dong Y, Sheng C, Liao M, Cao H. Expression and functional analysis of cytochrome P450 genes in the integument of the oriental armyworm, Mythimna separata (Walker). PEST MANAGEMENT SCIENCE 2021; 77:577-587. [PMID: 32816378 DOI: 10.1002/ps.6058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mythimna separata is a devastating agricultural pest that has recently developed insecticide resistance. Integument-specific cytochrome P450s were reported to participate in cuticle formation and could be potential targets for pesticide synthesis. RESULTS The transcriptome of integuments of M. separata larvae was constructed, generating a total of 38 058 unigenes with an average length of 1243 bp. These unigenes are enriched in functional categories such as lipid transport and metabolism, and secondary metabolites biosynthesis, transport and catabolism. Amongst unigenes, cytochrome P450s were identified and 66 unique P450s with complete open reading frames were named. These P450s were divided into 17 families and 32 subfamilies, containing conserved motifs such as helix C, helix I, helix K, and the heme-binding region. RNA-Seq and RT-qPCR analyses showed different expression levels of P450s in integuments of M. separata larvae. Further RT-qPCR analysis of P450s among different tissues showed that five P450s, especially CYP4G199, were specifically highly expressed in integuments. Moreover, knockdown of CYP4G199 disturbed cuticle formation, leading to imperfection in larval cuticle, and prevented pupation of M. separata. CONCLUSION Transcriptome of larval integuments provided sequence and expression of genes in M. separata. CYP4G199 is specifically highly expressed in larval integuments and is important for cuticle formation in M. separata.
Collapse
Affiliation(s)
- Yong Huang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hongqin Yin
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zeng Zhu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xingchuan Jiang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiuxia Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yongcheng Dong
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chengwang Sheng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Liao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
58
|
Finger DS, Whitehead KM, Phipps DN, Ables ET. Nuclear receptors linking physiology and germline stem cells in Drosophila. VITAMINS AND HORMONES 2021; 116:327-362. [PMID: 33752824 PMCID: PMC8063499 DOI: 10.1016/bs.vh.2020.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal nutrition and physiology are intimately associated with reproductive success in diverse organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila melanogaster, is an excellent genetically tractable model to study the relationship between NR signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the earliest stages of oocyte development. Long-recognized as an essential mediator of developmental transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of maternal physiology and their impact specifically on oocyte production. We propose that NRs form the molecular basis of a broad physiological surveillance network linking maternal diet with oocyte production. Given the functional conservation between Drosophila and humans, continued experimental investigation into the molecular mechanisms by which NRs promote oogenesis will likely aid our understanding of human fertility.
Collapse
Affiliation(s)
- Danielle S Finger
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kaitlin M Whitehead
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
59
|
Ma CP, Guo ZM, Zhang FL, Su JY. Molecular identification, expression and function analysis of peroxidasin in Chilo suppressalis. INSECT SCIENCE 2020; 27:1173-1185. [PMID: 31829500 DOI: 10.1111/1744-7917.12743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/21/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Peroxidasin plays a unique role in the formation and stability of extracellular matrix (ECM) in the animal kingdom; however, it was only characterized in Diptera, not in other insect orders. In this study peroxidasin (CsPxd) was first identified and characterized from Chilo suppressalis, a lepidopteran pest. CsPxd complementary DNA with a 4080 bp open reading frame encodes a peptide of 1359 amino acids; the derived amino acid sequence of CsPxd harbors the typical structural characteristics of peroxidasin family in heme-peroxidase superfamily, including the signal peptide at N-terminal, leucine-rich repeat domain, Ig-loop motifs and peroxidase domain, signifying the extracellular location of protein and the involvement in ECM formation. Eukaryotic expression reveals CsPxd protein displays peroxidase activity on H2 O2 , justifying the membership of peroxidase. Phyletic analysis shows the monophyletic evolution pattern of peroxidasin in insect phyle, and moreover only one peroxidasin is present in each species of insects, suggesting its evolutionary conservation on function. Peroxidasin messenger RNA is mainly expressed in egg and the final instar larvae stage. Injection of peroxidasin double-stranded RNA into the final instar larvae impacts the cuticle sclerotization during the metamorphosis from larvae to pupa, and eventually lead to lethality of larvae and pupa. These results suggest the presence of collagen crosslink in chorion and cuticle of insects, and indicate peroxidasin plays a role in the development of chorion and cuticle; furthermore peroxidasin might be the one of potential target genes for pest control using RNA interference.
Collapse
Affiliation(s)
- Chun-Ping Ma
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Mu Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Li Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Ya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
60
|
Kundanati L, Chahare NR, Jaddivada S, Karkisaval AG, Sridhar R, Pugno NM, Gundiah N. Cutting mechanics of wood by beetle larval mandibles. J Mech Behav Biomed Mater 2020; 112:104027. [DOI: 10.1016/j.jmbbm.2020.104027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/15/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
|
61
|
Transcriptomic and life history responses of the mayfly Neocloeon triangulifer to chronic diel thermal challenge. Sci Rep 2020; 10:19119. [PMID: 33154410 PMCID: PMC7644658 DOI: 10.1038/s41598-020-75064-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/08/2020] [Indexed: 01/31/2023] Open
Abstract
To better understand the effects of transient thermal stress in an aquatic insect, we first identified static temperatures associated with fitness deficits, and then reared larvae from egg hatch to adulthood under diurnally variable regimens including daily forays into deleterious temperatures. We sampled mature larvae at the coolest and warmest portions of their respective regimens for RNA-seq analysis. Few transcripts (28) were differentially expressed when larvae oscillated between favorable temperatures, while 614 transcripts were differentially expressed when experiencing daily transient thermal stress. Transcripts associated with N-glycan processing were downregulated while those associated with lipid catabolism and chitin turnover were significantly upregulated in heat stressed larvae. An across-regimen comparison of differentially expressed transcripts among organisms sampled at comparable temperatures demonstrated that the effects of daily thermal stress persisted even when larvae were sampled at a more optimal temperature (806 differentially expressed transcripts). The chronically stressed population had reduced expression of transcripts related to ATP synthesis, mitochondrial electron chain functions, gluconeogenesis and glycolytic processes while transcripts associated with cell adhesion, synaptic vesicle transport, regulation of membrane potential and lipid biosynthesis increased. Comparisons of constant vs. variable temperatures revealed that the negative consequences of time spent at stressful temperatures were not offset by more time spent at optimal temperatures.
Collapse
|
62
|
Volovych O, Lin Z, Du J, Jiang H, Zou Z. Identification and temporal expression profiles of cuticular proteins in the endoparasitoid wasp, Microplitis mediator. INSECT SCIENCE 2020; 27:998-1018. [PMID: 31317624 PMCID: PMC7497268 DOI: 10.1111/1744-7917.12711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 05/10/2023]
Abstract
Recently, parasitoid wasp species Microplitis mediator has evoked increasing research attention due to its possible use in the control of Lepidoptera insects. Because insect development involves changes in cuticle composition, identification and expression analysis of M. mediator cuticular proteins may clarify the mechanisms involved in parasite development processes. We found 70 cuticular proteins from the M. mediator transcriptome and divided them into seven distinct families. Expression profiling indicated that most of these cuticular protein genes have expression peaks specific for one particular developmental stage of M. mediator. Eggs and pupae have the highest number of transcriptionally active cuticular protein genes (47 and 52 respectively). Only 12 of these genes maintained high expression activity during late larval development. Functional analysis of two larval proteins, MmCPR3 and MmCPR14, suggested their important role in the proper organization of the cuticle layers of larvae. During M. mediator larval development, normal cuticle formation can be supported by a limited number of cuticular proteins.
Collapse
Affiliation(s)
- Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
63
|
Abstract
The evolution of insect metamorphosis is one of the most important sagas in animal history, transforming small, obscure soil arthropods into a dominant terrestrial group that has profoundly shaped the evolution of terrestrial life. The evolution of flight initiated the trajectory towards metamorphosis, favoring enhanced differences between juvenile and adult stages. The initial step modified postembryonic development, resulting in the nymph-adult differences characteristic of hemimetabolous species. The second step was to complete metamorphosis, holometaboly, and occurred by profoundly altering embryogenesis to produce a larval stage, the nymph becoming the pupa to accommodate the deferred development needed to make the adult. These changing life history patterns were intimately linked to two hormonal systems, the ecdysteroids and the juvenile hormones (JH), which function in both embryonic and postembryonic domains and control the stage-specifying genes Krüppel homolog 1 (Kr-h1), broad and E93. The ecdysteroids induce and direct molting through the ecdysone receptor (EcR), a nuclear hormone receptor with numerous targets including a conserved transcription factor network, the 'Ashburner cascade', which translates features of the ecdysteroid peak into the different phases of the molt. With the evolution of metamorphosis, ecdysteroids acquired a metamorphic function that exploited the repressor capacity of the unliganded EcR, making it a hormone-controlled gateway for the tissue development preceding metamorphosis. JH directs ecdysteroid action, controlling Kr-h1 expression which in turn regulates the other stage-specifying genes. JH appears in basal insect groups as their embryos shift from growth and patterning to differentiation. As a major portion of embryogenesis was deferred to postembryonic life with the evolution of holometaboly, JH also acquired a potent role in regulating postembryonic growth and development. Details of its involvement in broad expression and E93 suppression have been modified as life cycles became more complex and likely underlie some of the changes seen in the shift from incomplete to complete metamorphosis.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology and Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.
| |
Collapse
|
64
|
Cattenoz PB, Sakr R, Pavlidaki A, Delaporte C, Riba A, Molina N, Hariharan N, Mukherjee T, Giangrande A. Temporal specificity and heterogeneity of Drosophila immune cells. EMBO J 2020; 39:e104486. [PMID: 32162708 PMCID: PMC7298292 DOI: 10.15252/embj.2020104486] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Immune cells provide defense against non-self and have recently been shown to also play key roles in diverse processes such as development, metabolism, and tumor progression. The heterogeneity of Drosophila immune cells (hemocytes) remains an open question. Using bulk RNA sequencing, we find that the hemocytes display distinct features in the embryo, a closed and rapidly developing system, compared to the larva, which is exposed to environmental and metabolic challenges. Through single-cell RNA sequencing, we identify fourteen hemocyte clusters present in unchallenged larvae and associated with distinct processes, e.g., proliferation, phagocytosis, metabolic homeostasis, and humoral response. Finally, we characterize the changes occurring in the hemocyte clusters upon wasp infestation, which triggers the differentiation of a novel hemocyte type, the lamellocyte. This first molecular atlas of hemocytes provides insights and paves the way to study the biology of the Drosophila immune cells in physiological and pathological conditions.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Rosy Sakr
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Alexia Pavlidaki
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Claude Delaporte
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Andrea Riba
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Nivedita Hariharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
- The University of Trans‐disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| |
Collapse
|
65
|
Zhang QQ, Qiao M. Transcriptional response of springtail (Folsomia candida) exposed to decabromodiphenyl ether-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:134859. [PMID: 31837853 DOI: 10.1016/j.scitotenv.2019.134859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/29/2019] [Accepted: 10/05/2019] [Indexed: 05/22/2023]
Abstract
Decabromodiphenyl ether (BDE209) is a widely used brominated flame retardant that has become a common soil contaminant of concern due to its persistence and toxicity. However, little is known about molecular-level effects of BDE209 on soil invertebrates. Here, we detected changes in gene transcription of the soil springtail, Folsomia candida, exposed to BDE209 (0.81 mg/kg) in soil for 2, 7 and 14 days. We identified 16 and 771 significantly differentially expressed genes after 2 and 7 days of exposure respectively, and no significantly regulated genes were shared among the two time points. No genes were affected after 14 days of exposure. According to the annotation of the significantly differently expressed genes at 2 and 7 day exposure, we found that BDE209 affected the transcription of genes involved in moulting, neural signal transmission and detoxification. Our results suggested that BDE209 could disrupt moulting of F. candida via the ecdysteroid pathway, and cause neurotoxicity through disrupting some neurotransmitter signalling pathways. This study provided insights into the toxic mechanism of BDE209 on F. candida.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
66
|
Qi H, Liu T, Lu Q, Yang Q. Molecular Insights into the Insensitivity of Lepidopteran Pests to Cycloxaprid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:982-988. [PMID: 31909997 DOI: 10.1021/acs.jafc.9b06959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cycloxaprid (CYC) is effective in the control of hemipteran pests, but its bioactivity against lepidopteran pests is still unclear. Here, the bioactivity of CYC against lepidopteran pests was found to be much worse than that against hemipteran insects. To reveal the mechanism, the transcriptomes of CYC-treated and untreated Ostrinia furnacalis larvae were compared. Among the top 20 differentially expressed genes, 11 encode proteins involved in cuticle formation, while only one encodes a detoxifying enzyme. Thus, the cuticle appears to be important for the insensitivity of O. furnacalis to CYC. A pretreatment of O. furnacalis larvae with methoprene enhanced the bioactivity of CYC by 1.12-fold. Moreover, mixtures of CYC with graphene oxide increased the bioactivity of CYC by 1.88-fold. Because lepidopteran and hemipteran insects often harm crops at the same time, the work can help make full use of CYC and reduce the environmental impacts of using multiple pesticides.
Collapse
Affiliation(s)
- Huitang Qi
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Tian Liu
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Qiong Lu
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Qing Yang
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| |
Collapse
|
67
|
Guschinskaya N, Ressnikoff D, Arafah K, Voisin S, Bulet P, Uzest M, Rahbé Y. Insect Mouthpart Transcriptome Unveils Extension of Cuticular Protein Repertoire and Complex Organization. iScience 2020; 23:100828. [PMID: 32000126 PMCID: PMC7033635 DOI: 10.1016/j.isci.2020.100828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/03/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
Insects have developed intriguing cuticles with very specific structures and functions, including microstructures governing their interactions with transmitted microbes, such as in aphid mouthparts harboring virus receptors within such microstructures. Here, we provide the first transcriptome analysis of an insect mouthpart cuticle (“retort organs” [ROs], the stylets' precursors). This analysis defined stylets as a complex composite material. The retort transcriptome also allowed us to propose an algorithmic definition of a new cuticular protein (CP) family with low complexity and biased amino acid composition. Finally, we identified a differentially expressed gene encoding a pyrokinin (PK) neuropeptide precursor and characterizing the mandibular glands. Injection of three predicted synthetic peptides PK1/2/3 into aphids prior to ecdysis caused a molt-specific phenotype with altered head formation. Our study provides the most complete description to date of the potential protein composition of aphid stylets, which should improve the understanding of the transmission of stylet-borne viruses. First transcriptome of aphid retort glands and stylet cuticular protein composition A pyrokinin transcript is mandibular gland specific at the onset of adult moult Stylet cuticle is of higher protein complexity than other insect cuticles A new class of low-complexity cuticular proteins is predicted
Collapse
Affiliation(s)
- Natalia Guschinskaya
- Insa de Lyon, UMR5240 MAP CNRS-UCBL, 69622 Villeurbanne, France; Université de Lyon
| | - Denis Ressnikoff
- CIQLE, Centre d'imagerie Quantitative Lyon-Est, UCB Lyon 1, Lyon, France; Université de Lyon
| | | | | | - Philippe Bulet
- Platform BioPark Archamps, Archamps, France; CR University of Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, La Tronche, France
| | - Marilyne Uzest
- BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Yvan Rahbé
- Insa de Lyon, UMR5240 MAP CNRS-UCBL, 69622 Villeurbanne, France; BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France; Université de Lyon.
| |
Collapse
|
68
|
Kwan YH, Zhang D, Mestre NC, Wong WC, Wang X, Lu B, Wang C, Qian PY, Sun J. Comparative Proteomics on Deep-Sea Amphipods after in Situ Copper Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13981-13991. [PMID: 31638389 DOI: 10.1021/acs.est.9b04503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interest in deep-sea mining increased along with the environmental concerns of these activities to the deep-sea fauna. The discovery of optimal biomarkers of deep-sea mining activities in deep-sea species is a crucial step toward the supply of important ecological information for environmental impact assessment. In this study, an in situ copper exposure experiment was performed on deep-sea scavenging amphipods. Abyssorchomene distinctus individuals were selected among all the exposed amphipods for molecular characterization. Copper concentration within the gut was assessed, followed by a tandem mass tag-based coupled with two-dimensional liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) applied to identify and quantify the protein expression changes after 48 h of exposure. 2937 proteins were identified and annotated, and 1918 proteins among all identified proteins were assigned by at least two nonambiguous peptides. The screening process was performed based on the differences in protein abundance and the specific correlation between the proteins and copper in previous studies. These differentially produced proteins include Na+/K+ ATPase, cuticle, chitinase, and proteins with unknown function. Their abundances showed correlation with copper and had high sensitivity to indicate the copper level, being here proposed as biomarker candidates for deep-sea mining activities in the future. This is a key step in the development of environmental impact assessment of deep-sea mining activities integrating ecotoxicological data.
Collapse
Affiliation(s)
- Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Dongsheng Zhang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Nélia C Mestre
- CIMA - Centro de Investigação Marinha e Ambiental , Universidade do Algarve , Campus de Gambelas, 8005-139 Faro , Portugal
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Xiaogu Wang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Bo Lu
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Chunsheng Wang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| |
Collapse
|
69
|
Rasheed H, Ye C, Meng Y, Ran Y, Li J, Su X. Comparative transcriptomic analysis and endocuticular protein gene expression of alate adults, workers and soldiers of the termite Reticulitermes aculabialis. BMC Genomics 2019; 20:742. [PMID: 31615402 PMCID: PMC6794787 DOI: 10.1186/s12864-019-6149-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The insect cuticle is mainly composed of exocuticle and endocuticle layers that consist of a large number of structural proteins. The thickness and synthesis of the exocuticle depend on different castes that perform various functions in alates, workers and soldiers. However, it is not clear whether the soft endocuticle is involved in the division of labour in termite colonies. To reveal the structural characteristics of the endocuticle in different castes, we investigated the thickness of endocuticle layers in alates, workers and soldiers of the termite Reticulitermes aculabialis, and then we sequenced their transcriptome and detected the endocuticle protein genes. The differential expression levels of the endocuticular protein genes were confirmed in the three castes. RESULTS We found that there was a great difference in the thickness of the endocuticle among the alates, soldiers and workers. The thickest endocuticle layers were found in the heads of the workers 7.88 ± 1.67 μm. The endocuticle layer in the head of the workers was approximately three-fold and nine-fold thicker than that in the heads of soldiers and alates, respectively. The thinnest endocuticle layers occurred in the head, thorax and abdomen of alates, which were 0.86 ± 0.15, 0.76 ± 0.24 and 0.52 ± 0.17 μm thick, respectively, and had no significant differences. A total of 43,531,650 clean sequencing reads was obtained, and 89,475 unigenes were assembled. Of the 70 identified cuticular protein genes, 10 endocuticular genes that belong to the RR-1 family were selected. qRT-PCR analysis of the five endocuticular genes (SgAbd-2, SgAbd-9, Abd-5, SgAbd-2-like and Abd-4-like) revealed that the endocuticle genes were more highly expressed in workers than in soldiers and alates. CONCLUSION These results suggest that SgAbd and Abd are the key components of the endocuticle. We infer that the thicker endocuticle in workers is helpful for them to perform their functions against environmental stress.
Collapse
Affiliation(s)
- Humaira Rasheed
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Chenxu Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yufeng Meng
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yuehua Ran
- College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaohong Su
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China.
- College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
70
|
Merlin BL, Cônsoli FL. Regulation of the Larval Transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by Maternal and Other Factors of the Parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Front Physiol 2019; 10:1106. [PMID: 31555143 PMCID: PMC6742964 DOI: 10.3389/fphys.2019.01106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Koinobiont endoparasitoid wasps regulate the host's physiology to their own benefit during their growth and development, using maternal, immature and/or derived-tissue weaponry. The tools used to subdue the wasps' hosts interfere directly with host transcription activity. The broad range of host tissues and pathways affected impedes our overall understanding of the host-regulation process during parasitoid development. Next-generation sequencing and de novo transcriptomes are helpful approaches to broad questions, including in non-model organisms. In the present study, we used Illumina sequencing to assemble a de novo reference transcriptome of the sugarcane borer Diatraea saccharalis, to investigate the regulation of host gene expression by the larval endoparasitoid Cotesia flavipes. We obtained 174,809,358 reads and assembled 144,116 transcripts, of which 44,325 were putatively identified as lepidopteran genes and represented a substantial number of pathways that are well described in other lepidopteran species. Comparative transcriptome analyses of unparasitized versus parasitized larvae identified 1,432 transcripts of D. saccharalis that were up-regulated under parasitization by C. flavipes, while 1,027 transcripts were down-regulated. Comparison of the transcriptomes of unparasitized and pseudoparasitized D. saccharalis larvae led to the identification of 1,253 up-regulated transcripts and 972 down-regulated transcripts in the pseudoparasitized larvae. Analysis of the differentially expressed transcripts showed that C. flavipes regulated several pathways, including the Ca+2 transduction signaling pathway, glycolysis/gluconeogenesis, chitin metabolism, and hormone biosynthesis and degradation, as well as the immune system, allowing us to identify key target genes involved in the metabolism and development of D. saccharalis.
Collapse
|
71
|
Zhao X, Gou X, Liu W, Ma E, Moussian B, Li S, Zhu K, Zhang J. The wing-specific cuticular protein LmACP7 is essential for normal wing morphogenesis in the migratory locust. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103206. [PMID: 31425850 DOI: 10.1016/j.ibmb.2019.103206] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Wings are an indispensable structure in many insects for their foraging, courtship, escape from predators, and migration. Cuticular proteins are major components of the insect cuticle and wings, but there is limited information on how cuticular proteins may play an essential role in wing morphogenesis. We identified a wing-specific cuticular protein, LmACP7, which belongs to the RR-2 subfamily of CPR chitin-binding proteins in the migratory locust. LmACP7 was initially produced in epidermal cells and subsequently migrated to the exocuticle at the pre-ecdysial stage in adult wings. Depletion of LmACP7 transcripts by RNA interference markedly reduced its protein amounts, which consequently led to abnormal wing morphogenesis. The deformed wings were curved, wrinkled, and failed to fully expand. We further demonstrated that the deformation was caused by both severe damage of the endocuticle and death of the epidermal cells in the wings. Based on these data, we propose that LmACP7 not only serves as an essential structural protein in the wing but is also required for the integrity of wing epithelial cells. LmACP7 contributes to production of the wing endocuticle and to the morphogenesis of functional wings in the migratory locust.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xin Gou
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Weimin Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108, Nice CEDEX 2, France
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - KunYan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
72
|
Chen J, Lu HR, Zhang L, Liao CH, Han Q. RNA interference-mediated knockdown of 3, 4-dihydroxyphenylacetaldehyde synthase affects larval development and adult survival in the mosquito Aedes aegypti. Parasit Vectors 2019; 12:311. [PMID: 31234914 PMCID: PMC6591897 DOI: 10.1186/s13071-019-3568-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cuticle is an indispensable structure that protects the mosquito against adverse environmental conditions and prevents pathogen entry. While most cuticles are hard and rigid, some parts of cuticle are soft and flexible to allow movement and blood-feeding. It has been reported that 3, 4-dihydroxyphenylacetaldehyde (DOPAL) synthase is associated with flexible cuticle formation in Aedes aegypti. However, the molecular function of DOPAL synthase in the ontogenesis of mosquito remains largely unknown. In this study, we characterized gene expression profiles of DOPAL synthase and investigated its functions in larvae and female adults of Aedes agypti by RNAi. RESULTS Our results suggest that the expression of DOPAL synthase is different during development and the transcriptional level reached its peak at the female white pupal stage, and DOPAL synthase was more highly expressed in the cuticle and midgut than other tissues in the adult. The development process from larva to pupa was slowed down strikingly by feeding the first-instar larvae with chitosan/DOPAL synthase dsRNA nanoparticles. A qRT-PCR analysis confirmed that the dsRNA-mediated transcription of the DOPAL synthase was reduced > 50% in fourth-instar larvae. Meanwhile, larval molt was abnormal during development. Transmission electron microscopy results indicated that the formation of endocuticle and exocuticle was blocked. In addition, we detected that the dsDOPAL synthase RNA caused significant mortality when injected into the female adult mosquitoes. CONCLUSIONS Our findings demonstrate that DOPAL synthase plays a critical role in mosquito larval development and adult survival and suggest that DOPAL synthase could be a good candidate gene in RNAi intervention strategies in mosquito control.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China.,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Hao-Ran Lu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China.,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Lei Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China.,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Cheng-Hong Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China. .,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China. .,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
73
|
Wang Y, Maier A, Gehring N, Moussian B. Inhibition of fatty acid desaturation impairs cuticle differentiation in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21535. [PMID: 30672604 DOI: 10.1002/arch.21535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Previously, we showed that inhibition of the activity of fatty acid desaturases (Desat) perturbs signalling of the developmental timing hormone ecdysone in the fruit fly Drosophila melanogaster. To understand the impact of this effect on cuticle differentiation, a process regulated by ecdysone, we analysed the cuticle of D. melanogaster larvae fed with the Desat inhibitor CA10556. In these larvae, the expression of most of the key cuticle genes is normal or slightly elevated at day one of CA10556 feeding. As an exception, expression of twdlM coding for a yet uncharacterised cuticle protein is completely suppressed. The cuticle of these larvae appears to be normal at the morphological level. However, these animals are sensitive to desiccation, a trait that according to our data, among others, may be associated with reduced TwdlM amounts. At day two of CA10556 feeding, expression of most of the cuticle genes tested including twdlM is suppressed. Expression of cpr47Eb coding for a chitin-binding protein is, by contrast, highly elevated suggesting that Cpr47Eb participates at a specific compensation program. Overall, the cuticle of these larvae is thinner than the cuticle of control larvae. Taken together, lipid desaturation is necessary for a coordinated deployment of a normal cuticle differentiation program.
Collapse
Affiliation(s)
- Yiwen Wang
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Annette Maier
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Nicole Gehring
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Nice, France
| |
Collapse
|
74
|
Structural glycoprotein LmAbd-9 is required for the formation of the endocuticle during locust molting. Int J Biol Macromol 2019; 125:588-595. [DOI: 10.1016/j.ijbiomac.2018.11.279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 11/18/2022]
|
75
|
Zhang HZ, Li YY, An T, Huang FX, Wang MQ, Liu CX, Mao JJ, Zhang LS. Comparative Transcriptome and iTRAQ Proteome Analyses Reveal the Mechanisms of Diapause in Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae). Front Physiol 2018; 9:1697. [PMID: 30555341 PMCID: PMC6284037 DOI: 10.3389/fphys.2018.01697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 11/17/2022] Open
Abstract
Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae) is a solitary endoparasitoid used in the biological control of various aphids. Diapause plays an important role in the successful production and deployment of A. gifuensis. Diapause can effectively extend the shelf life of biological control agents and solve several practical production problems like long production cycles, short retention periods, and discontinuities between supply and demand. In recent years, studies have been conducted on the environmental regulation and physiological and biochemical mechanisms of diapause in A. gifuensis. Nevertheless, the molecular mechanism of diapause in this species remains unclear. In this study, we compared the transcriptomes and proteomes of diapause and non-diapause A. gifuensis to identify the genes and proteins associated with this process. A total of 557 transcripts and 568 proteins were differentially expressed between the two groups. Among them, (1) genes involved in trehalose synthesis such as glycogen synthase, glycogen phosphorylase, and trehalose 6-phosphate synthase were upregulated in diapause at mRNA or protein level while glycolysis and gluconeogenesis-related genes were downregulated, suggesting that A. gifuensis stores trehalose as an energy resource and cryoprotectant; (2) the expression of immune-related genes like C-type lectins, hemocyanin, and phenoloxidase was increased, which helps to maintain immunity during diapause; (3) a chitin synthase and several cuticular protein genes were upregulated to harden the cuticle of diapausing A. gifuensis larval. These findings improve our understanding of A. gifuensis. diapause and provide the foundation for further pertinent studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li-Sheng Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Sino-American Biological Control Laboratory, USDA-ARS/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
76
|
Huerta-Ocampo JA, García-Muñoz MS, Velarde-Salcedo AJ, Hernández-Domínguez EE, González-Escobar JL, Barrera-Pacheco A, Grajales-Lagunes A, Barba de la Rosa AP. The proteome map of the escamolera ant (Liometopum apiculatum Mayr) larvae reveals immunogenic proteins and several hexamerin proteoforms. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:107-121. [PMID: 30149319 DOI: 10.1016/j.cbd.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The larvae of escamolera ant (Liometopum apiculatum Mayr) have been considered a delicacy since Pre-Hispanic times. The increased demand for this stew has led to massive collection of ant nests. Yet biological aspects of L. apiculatum larvae remain unknown, and mapping the proteome of this species is important for understanding its biological characteristics. Two-dimensional gel electrophoresis (2-DE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to characterize the larvae proteome profile. From 380 protein spots analyzed, 174 were identified by LC-MS/MS and homology search against the Hymenoptera subset of the NCBInr protein database using the Mascot search engine. Peptide de novo sequencing and homology-based alignment allowed the identification of 36 additional protein spots. Identified proteins were classified by cellular location, molecular function, and biological process according to the Gene Ontology annotation. Immunity- and defense-related proteins were identified including PPIases, FK506, PEBP, and chitinases. Several hexamerin proteoforms were identified and the cDNA of the most abundant protein detected in the 2-DE map was isolated and characterized. L. apiculatum hexamerin (LaHEX, GeneBank accession no. MH256667) contains an open reading frame of 2199 bp encoding a polypeptide of 733 amino acid residues with a calculated molecular mass of 82.41 kDa. LaHEX protein is more similar to HEX110 than HEX70 from Apis mellifera. Down-regulation of LaHEX was observed throughout ant development. This work represents the first proteome map as well as the first hexamerin characterized from L. apiculatum larvae.
Collapse
Affiliation(s)
- José A Huerta-Ocampo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico; CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a La Victoria Km 0.6, Edificio C, C.P 83304 Hermosillo, Sonora, Mexico
| | - María S García-Muñoz
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Nava No.6, Zona Universitaria, C.P. 78200 San Luis Potosí, S.L.P, Mexico
| | - Aída J Velarde-Salcedo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico
| | - Eric E Hernández-Domínguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico
| | - Jorge L González-Escobar
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico
| | - Alberto Barrera-Pacheco
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico
| | - Alicia Grajales-Lagunes
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Nava No.6, Zona Universitaria, C.P. 78200 San Luis Potosí, S.L.P, Mexico.
| | - Ana P Barba de la Rosa
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico.
| |
Collapse
|
77
|
Xiong G, Tong X, Yan Z, Hu H, Duan X, Li C, Han M, Lu C, Dai F. Cuticular protein defective Bamboo mutant of Bombyx mori is sensitive to environmental stresses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:111-115. [PMID: 29891361 DOI: 10.1016/j.pestbp.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Insect cuticle acts as a primary protective barrier against environment stresses that may directly impact the insect body. Here, we report the mechanical defense function of a structural cuticular protein, BmorCPH24, to environmental stresses using a silkworm Bamboo (Bo) mutant with this gene mutation. Ultraviolet (UV) irradiation and topical application of an acetone insecticide were used as environmental stresses to determine the differences in susceptibility between Bo and wild-type larvae. UV irradiation resulted in a sunburn phenotype in the Bo strains earlier than the wild-type indicating the sensitivity of Bo. Higher malondialdehyde (MDA) content and a lower survival ratio were also observed in the Bo strains. Treatment with deltamethrin revealed that Bo larvae were more sensitive to insecticides than the wild-type. Furthermore, cuticle analysis by microsection revealed thinner cuticle and a significant decrease in the endocuticle layer (∼64.0%) in Bo. These results suggest that BmorCPH24 mutation can lead to deficiency in resources required to construct the cuticle in Bo resulting in thin cuticle and reduced resistance to UV and insecticides. These results provide us new insight into the role of structural cuticular proteins in insect cuticle against environment stresses.
Collapse
Affiliation(s)
- Gao Xiong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Zhengwen Yan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaohui Duan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Chunlin Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
78
|
Santos PKF, de Souza Araujo N, Françoso E, Zuntini AR, Arias MC. Diapause in a tropical oil-collecting bee: molecular basis unveiled by RNA-Seq. BMC Genomics 2018; 19:305. [PMID: 29703143 PMCID: PMC5923013 DOI: 10.1186/s12864-018-4694-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diapause is a natural phenomenon characterized by an arrest in development that ensures the survival of organisms under extreme environmental conditions. The process has been well documented in arthropods. However, its molecular basis has been mainly studied in species from temperate zones, leaving a knowledge gap of this phenomenon in tropical species. In the present study, the Neotropical and solitary bee Tetrapedia diversipes was employed as a model for investigating diapause in species from tropical zones. Being a bivoltine insect, Tetrapedia diversipes produce two generations of offspring per year. The first generation, normally born during the wet season, develops faster than individuals from the second generation, born after the dry season. Furthermore, it has been shown that the development of the progeny, of the second generation, is halted at the 5th larval instar, and remains in larval diapause during the dry season. Towards the goal of gaining a better understanding of the diapause phenomenon we compared the global gene expression pattern, in larvae, from both reproductive generations and during diapause. The results demonstrate that there are similarities in the observed gene expression patterns to those already described for temperate climate models, and also identify diapause-related genes that have not been previously reported in the literature. RESULTS The RNA-Seq analysis identified 2275 differentially expressed transcripts, of which 1167 were annotated. Of these genes, during diapause, 352 were upregulated and 815 were downregulated. According to their biological functions, these genes were categorized into the following groups: cellular detoxification, cytoskeleton, cuticle, sterol and lipid metabolism, cell cycle, heat shock proteins, immune response, circadian clock, and epigenetic control. CONCLUSION Many of the identified genes have already been described as being related to diapause; however, new genes were discovered, for the first time, in this study. Among those, we highlight: Niemann-Pick type C1, NPC2 and Acyl-CoA binding protein homolog (all involved in ecdysteroid synthesis); RhoBTB2 and SASH1 (associated with cell cycle regulation) and Histone acetyltransferase KAT7 (related to epigenetic transcriptional regulation). The results presented here add important findings to the understanding of diapause in tropical species, thus increasing the comprehension of diapause-related molecular mechanisms.
Collapse
Affiliation(s)
- Priscila Karla F. Santos
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| | - Natalia de Souza Araujo
- 0000 0001 0805 7253grid.4861.bCurrent address: GIGA – Medical Genomics, Unit of Animal Genomics, University of Liege, Quartier Hopital, Avenue de I’Hopital, 11, 4000 Liege, Belgium
| | - Elaine Françoso
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| | - Alexandre Rizzo Zuntini
- 0000 0001 0723 2494grid.411087.bDepartamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Barão Geraldo, Campinas, SP CEP 13083-970 Brazil
| | - Maria Cristina Arias
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| |
Collapse
|
79
|
Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology. Sci Rep 2018; 8:6594. [PMID: 29700344 PMCID: PMC5920108 DOI: 10.1038/s41598-018-24923-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/20/2018] [Indexed: 11/18/2022] Open
Abstract
Anopheles gambiae and An. coluzzii, the two most important malaria vectors in sub-Saharan Africa, are recently radiated sibling species that are reproductively isolated even in areas of sympatry. In females from these species, sexual transfer of male accessory gland products, including the steroid hormone 20-hydroxyecdysone (20E), induces vast behavioral, physiological, and transcriptional changes that profoundly shape their post-mating ecology, and that may have contributed to the insurgence of post-mating, prezygotic reproductive barriers. As these barriers can be detected by studying transcriptional changes induced by mating, we set out to analyze the post-mating response of An. gambiae and An. coluzzii females captured in natural mating swarms in Burkina Faso. While the molecular pathways shaping short- and long-term mating-induced changes are largely conserved in females from the two species, we unravel significant inter-specific differences that suggest divergent regulation of key reproductive processes such as egg development, processing of seminal secretion, and mating behavior, that may have played a role in reproductive isolation. Interestingly, a number of these changes occur in genes previously shown to be regulated by the sexual transfer of 20E and may be due to divergent utilization of this steroid hormone in the two species.
Collapse
|
80
|
Zhao H, Peng Z, Du Y, Xu K, Guo L, Yang S, Ma W, Jiang Y. Comparative antennal transcriptome of Apis cerana cerana from four developmental stages. Gene 2018; 660:102-108. [PMID: 29574189 DOI: 10.1016/j.gene.2018.03.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/08/2018] [Accepted: 03/20/2018] [Indexed: 01/23/2023]
Abstract
Apis cerana cerana, an important endemic honey bee species in China, possesses valuable characteristics such as a sensitive olfactory system, good foraging ability, and strong resistance to parasitic mites. Here, we performed transcriptome sequencing of the antenna, the major chemosensory organ of the bee, using an Illumina sequencer, to identify typical differentially expressed genes (DEGs) in adult worker bees of different ages, namely, T1 (1 day); T2 (10 days); T3 (15 days); and T4 (25 days). Surprisingly, the expression levels of DEGs changed significantly between the T1 period and the other three periods. All the DEGs were classified into 26 expression profiles by trend analysis. Selected trend clusters were analyzed, and valuable information on gene expression patterns was obtained. We found that the expression levels of genes encoding cuticle proteins declined after eclosion, while those of immunity-related genes increased. In addition, genes encoding venom proteins and major royal jelly proteins were enriched at the T2 stage; small heat shock proteins showed significantly higher expression at the T3 stage; and some metabolism-related genes were more highly expressed at the T4 stage. The DEGs identified in this study may serve as a valuable resource for the characterization of expression patterns of antennal genes in A. cerana cerana. Furthermore, this study provides insights into the relationship between labor division in social bees and gene function.
Collapse
Affiliation(s)
- Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhu Peng
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yali Du
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Kai Xu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lina Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shuang Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weihua Ma
- Institute of Horticulture, Shanxi Academy of Agricultural Science, Taiyuan, Shanxi 030031, China
| | - Yusuo Jiang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China.
| |
Collapse
|
81
|
Murata Y, Osakabe M. Developmental Phase-Specific Mortality After Ultraviolet-B Radiation Exposure in the Two-Spotted Spider Mite. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1448-1455. [PMID: 29069313 DOI: 10.1093/ee/nvx169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exposure to ambient ultraviolet-B (UVB) radiation generates DNA lesions, such as cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidine photoproducts in Tetranychus urticae Koch (Acari: Tetranychidae). Larvae appeared normal and healthy after UVB irradiation. Conversely, many mites were trapped in their old epidermis or experienced retarded development and shrunk, thus failing to molt from protochrysalises to protonymphs and died. This suggested that DNA lesions per se were not causing lethality in mites unless damaged genes were expressed. UVB-induced DNA lesions may have interfered with DNA replication and gene expression during the physiological changes of morphogenesis in the chrysalis stage. Comprehensive gene expression analysis by RNA sequencing revealed that gene expression involving epidermal tissue (characteristically cuticular protein genes) and myosin heavy chain muscle-like genes were downregulated in protochrysalises irradiated with UVB at the larval stage. We conclude that the success of protochrysalis molting is determined by whether the DNA lesions of genes, particularly those connected with morphogenesis, are repaired before expression at the protochrysalis stage.
Collapse
Affiliation(s)
- Yasumasa Murata
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Japan
| |
Collapse
|
82
|
Microscopic cuticle structure comparison of pupal melanic and wild strain of Spodoptera exigua and their gene expression profiles in three time points. Microb Pathog 2017; 114:483-493. [PMID: 29196168 DOI: 10.1016/j.micpath.2017.11.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022]
Abstract
The beet armyworm, Spodoptera exigua (Hubner), is one of the major crop pests and is a target for current pest control approaches using insecticides. S. exigua melanic mutants (SEM) spontaneously occurred in the S. exigua wild type (SEW) strain and have been maintained under laboratory conditions on an artificial diet. Scanning electron microscopy showed that the inner cuticle of the SEM had a denser and less orderly structure. We investigated the cuticle protein genes using RNA-seq at three different developmental stages of both SEM and SEW. Comparison of cDNA libraries showed that 7257 CPs were significantly up-regulated and 664 genes were significantly downregulated in SEM at the developmental stage of 46-h in the fifth instar. In addition, 460 genes were significantly up-regulated and 439 genes were significantly down-regulated in the SEM at the development stage of 4-h before pupation. Moreover, 162 genes were significantly up-regulated and 293 genes were significantly downregulated in the SEM, just after pupation. Two genes CPR63 and CPR97 were identified from RNA sequences to verify the differentially expressed gene (DEG) results through quantitative real-time PCR (qRT-PCR). The results show that expression of both CPR63 and CPR97 structural cuticular proteins were significantly different between SEM and SEW. This functional analysis may help in understanding the role that these genes play in the cuticle pattern of the SEM.
Collapse
|
83
|
Jan S, Liu S, Hafeez M, Zhang X, Dawar FU, Guo J, Gao C, Wang M. Isolation and functional identification of three cuticle protein genes during metamorphosis of the beet armyworm, Spodoptera exigua. Sci Rep 2017; 7:16061. [PMID: 29167522 PMCID: PMC5700046 DOI: 10.1038/s41598-017-16435-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022] Open
Abstract
The beet armyworm, Spodoptera exigua (Hubner), is one of the major crop pests and is a target for current pest control approaches using insecticides. In this study three cuticular protein genes CPG316, CPG860 and CPG4855 have been cloned from 0 h pupal integument of S. exigua through race PCR Strategy. The deduced amino acid sequences were found to contain the RR-2 consensus region of other insect cuticular proteins and construct phylogenetic trees for each protein. Using quantitative RT-PCR, the developmental expression of the three genes through several larval and the early pupal stages was studied. All three genes contribute to the endocuticle although CPG316 may have a different role from the other two genes. All three newly isolated genes were analyzed and their functions were determined by using direct injection of the dsRNA into early 5th instar larvae. All genes are expressed in the larvae and early pupae but in different patterns. Furthermore, phenotypic results show that these genes have differing effects on the development of cuticle, its flexibility and a big role in metamorphosis in both larval and pupal stages.
Collapse
Affiliation(s)
- Saad Jan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Sisi Liu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Muhammad Hafeez
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xiangmei Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Farman Ullah Dawar
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Jiyun Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Chao Gao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Mo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
84
|
Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides. Int J Mol Sci 2017; 18:ijms18112445. [PMID: 29149030 PMCID: PMC5713412 DOI: 10.3390/ijms18112445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/28/2022] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is the most important pest of Chinese chive. Insecticides are used widely and frequently to control B. odoriphaga in China. However, the performance of the insecticides chlorpyrifos and clothianidin in controlling the Chinese chive maggot is quite different. Using next generation sequencing technology, different expression unigenes (DEUs) in B. odoriphaga were detected after treatment with chlorpyrifos and clothianidin for 6 and 48 h in comparison with control. The number of DEUs ranged between 703 and 1161 after insecticide treatment. In these DEUs, 370–863 unigenes can be classified into 41–46 categories of gene ontology (GO), and 354–658 DEUs can be mapped into 987–1623 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expressions of DEUs related to insecticide-metabolism-related genes were analyzed. The cytochrome P450-like unigene group was the largest group in DEUs. Most glutathione S-transferase-like unigenes were down-regulated and most sodium channel-like unigenes were up-regulated after insecticide treatment. Finally, 14 insecticide-metabolism-related unigenes were chosen to confirm the relative expression in each treatment by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). The results of qRT-PCR and RNA Sequencing (RNA-Seq) are fairly well-established. Our results demonstrate that a next-generation sequencing tool facilitates the identification of insecticide-metabolism-related genes and the illustration of the insecticide mechanisms of chlorpyrifos and clothianidin.
Collapse
|
85
|
Li K, Zhang X, Zuo Y, Liu W, Zhang J, Moussian B. Timed Knickkopf function is essential for wing cuticle formation in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 89:1-10. [PMID: 28821399 DOI: 10.1016/j.ibmb.2017.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
The insect cuticle is an extracellular matrix that consists of the polysaccharide chitin, proteins, lipids and organic molecules that are arranged in distinct horizontal layers. In Drosophila melanogaster, these layers are not formed sequentially, but, at least partially, at the same time. Timing of the underlying molecular mechanisms is conceivably crucial for cuticle formation. To study this issue, we determined the time period during which the function of Knickkopf (Knk), a key factor of chitin organization, is required for wing cuticle differentiation in D. melanogaster. Although knk is expressed throughout metamorphosis, we demonstrate that its expression 30 h prior and 48 h after pupariation is essential for correct wing cuticle formation. In other words, expression beyond this period is futile. Importantly, manipulation of Knk expression during this time causes wing bending suggesting an effect of Knk amounts on the physical properties of the wing cuticle. Manipulation of Knk expression also interferes with the structure and function of the cuticle surface. First, we show that the shape of surface nano-structures depends on the expression levels of knk. Second, we find that cuticle impermeability is compromised in wings with reduced knk expression. In summary, despite the extended supply of Knk during metamorphosis, controlled amounts of Knk are important for correct wing cuticle differentiation and function in a concise period of time.
Collapse
Affiliation(s)
- Kaixia Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China; College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xubo Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China
| | - Ying Zuo
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China.
| | - Bernard Moussian
- Institute of Biology Valrose, University of Nice, France & Applied Zoology, TU Dresden, Germany.
| |
Collapse
|
86
|
Wang P, Bi S, Wu F, Xu P, Shen X, Zhao Q. Differentially expressed genes in the head of the 2nd instar pre-molting larvae of the nm2 mutant of the silkworm, Bombyx mori. PLoS One 2017; 12:e0180160. [PMID: 28727825 PMCID: PMC5519023 DOI: 10.1371/journal.pone.0180160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/10/2017] [Indexed: 12/20/2022] Open
Abstract
Molting is an important physiological process in the larval stage of Bombyx mori and is controlled by various hormones and peptides. The silkworm mutant that exhibits the phenotype of non-molting in the 2nd instar (nm2) is incapable of molting in the 2nd instar and dies after seven or more days. The ecdysone titer in the nm2 mutant is lower than that in the wildtype, and the mutant can be rescued by feeding with 20E and cholesterol. The results of positional cloning indicated that structural alteration of BmCPG10 is responsible for the phenotype of the nm2 mutant. To explore the possible relationship between BmCPG10 and the ecdysone titer as well as the genes affected by BmCPG10, digital gene expression (DGE) profile analysis was conducted in the nm2 mutant, with the wildtype strain C603 serving as the control. The results revealed 1727 differentially expressed genes, among which 651 genes were upregulated and 1076 were downregulated in nm2. BLASTGO analysis showed that these differentially expressed genes were involved in various biological processes, cellular components and molecular functions. KEGG analysis indicated an enrichment of these differentially expressed genes in 240 pathways, including metabolic pathways, pancreatic secretion, protein digestion and absorption, fat digestion and absorption and glycerolipid metabolism. To verify the accuracy of the DGE results, quantitative reverse transcription PCR (qRT-PCR) was performed, focusing on key genes in several related pathways, and the results were highly consistent with the DGE results. Our findings indicated significant differences in cuticular protein genes, ecdysone biosynthesis genes and ecdysone-related nuclear receptors genes, but no significant difference in juvenile hormone and chitin biosynthesis genes was detected. Our research findings lay the foundation for further research on the formation mechanism of the nm2 mutant.
Collapse
Affiliation(s)
- Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Simin Bi
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pingzhen Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Xingjia Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
- * E-mail:
| |
Collapse
|
87
|
Dong X, Armstrong SD, Xia D, Makepeace BL, Darby AC, Kadowaki T. Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history. Gigascience 2017; 6:1-17. [PMID: 28327890 PMCID: PMC5467014 DOI: 10.1093/gigascience/gix008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/01/2017] [Indexed: 01/09/2023] Open
Abstract
The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. We sequenced the genome of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia, and predicted 15 190 protein-coding genes that were well supported by the mite transcriptomes and proteomic data. Although amino acid substitutions have been accelerated within the conserved core genes of two mites, T. mercedesae and Metaseiulus occidentalis, T. mercedesae has undergone the least gene family expansion and contraction between the seven arthropods we tested. The number of sensory system genes has been dramatically reduced, but T. mercedesae contains all gene sets required to detoxify xenobiotics. T. mercedesae is closely associated with a symbiotic bacterium (Rickettsiella grylli-like) and Deformed Wing Virus, the most prevalent honey bee virus. T. mercedesae has a very specialized life history and habitat as the ectoparasitic mite strictly depends on the honey bee inside a stable colony. Thus, comparison of the genome and transcriptome sequences with those of a tick and free-living mites has revealed the specific features of the genome shaped by interaction with the honey bee and colony environment. Genome and transcriptome sequences of T. mercedesae, as well as Varroa destructor (another globally prevalent ectoparasitic mite of honey bee), not only provide insights into the mite biology, but may also help to develop measures to control the most serious pests of the honey bee.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, China
| | - Stuart D Armstrong
- Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Dong Xia
- Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Benjamin L Makepeace
- Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, China
| |
Collapse
|
88
|
Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4142-4157. [PMID: 28355071 PMCID: PMC6135102 DOI: 10.1021/acs.est.7b00480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molting is critical for growth, development, reproduction, and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting chemicals (EDCs). Based on several known ED mechanisms, a wide range of pesticides has been developed to combat unwanted organisms in food production activities such as agriculture and aquaculture. Meanwhile, these chemicals may also pose hazards to nontarget species by causing molting defects, and thus potentially affecting the health of the ecosystems. The present review summarizes the available knowledge on molting-related endocrine regulation and chemically mediated disruption in arthropods (with special focus on insects and crustaceans), to identify research gaps and develop a mechanistic model for assessing environmental hazards of these compounds. Based on the review, multiple targets of EDCs in the molting processes were identified and the link between mode of action (MoA) and adverse effects characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and subjected to weight of evidence considerations by evolved Bradford Hill Criteria. This review proposes the first invertebrate ED AOP and may serve as a knowledge foundation for future environmental studies and AOP development.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| | | | - Kenji Toyota
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV). P.O. Box 5003, N-1432 Ås, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| |
Collapse
|
89
|
Yang CH, Yang PC, Zhang SF, Shi ZY, Kang L, Zhang AB. Identification, expression pattern, and feature analysis of cuticular protein genes in the pine moth Dendrolimus punctatus (Lepidoptera: Lasiocampidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:94-106. [PMID: 28284855 DOI: 10.1016/j.ibmb.2017.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/19/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Cuticular proteins (CPs) are vital components of the insects' cuticle that support movement and protect insect from adverse environmental conditions. The CPs exist in a large number and diversiform structures, thus, the accurate annotation is the first step to interpreting their roles in insect growth. The rapid development of sequencing technology has simplified the access to the information on protein sequences, especially for non-model species. Dendrolimus punctatus is a Lepidopteran defoliator, and its periodic outbreaks cause severe damage to the coniferous forests. The transcriptome of D. punctatus integrating the whole developmental periods are available for the potential investigation of CPs. In this study, we identified 216 CPs from D. punctatus, including 147 from CPR family, 4 from TWDL family, 3 from CPF/CPFL families, 22 from CPAP families, 8 low complexity proteins, 1 CPCPC and 31 from other CP families. The putative CPs were compared with homologs in other species such as Bombyx mori, Manduca sexta and Drosophila melanogaster. We further identified five co-orthologous groups have highly similar sequences of CRPs in nine lepidopteran species, which exclusively presented in RR-2 subfamily rather than RR-1. We inferred that in Lepidoptera the difference in RR-2 numbers was maintained by homologs in co-orthologous groups, coincided with observation in Drosophila and Anopheles that gene cluster was the model and source for the expansion of RR-2 genes. In combination with the variation of members in each CP family among different species, these results indicated the evolution of CPs was highly correlated to the adaptation of insect to environment. Furthermore, we compared the amino acid composition of the different types CPRs, and examined the expression patterns of CP genes in various developmental stages. The comprehensive overview of CPs from our study provides an insight into their evolution and the association between them and insect development.
Collapse
Affiliation(s)
- Cong-Hui Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Peng-Cheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Su-Fang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, 100091, China
| | - Zhi-Yong Shi
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ai-Bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
90
|
Giraudo M, Douville M, Cottin G, Houde M. Transcriptomic, cellular and life-history responses of Daphnia magna chronically exposed to benzotriazoles: Endocrine-disrupting potential and molting effects. PLoS One 2017; 12:e0171763. [PMID: 28196088 PMCID: PMC5308779 DOI: 10.1371/journal.pone.0171763] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Benzotriazoles (BZTs) are ubiquitous aquatic contaminants used in a wide range of industrial and domestic applications from aircraft deicers to dishwasher tablets. Acute toxicity has been reported in aquatic organisms for some of the BZTs but their mode of action remains unknown. The objectives of this study were to evaluate the transcriptomic response of D. magna exposed to sublethal doses of 1H-benzotriazole (BTR), 5-methyl-1H-benzotriazole (5MeBTR) and 5-chloro-1H-benzotriazole (5ClBTR) using RNA-sequencing and quantitative real-time PCR. Cellular and life-history endpoints (survival, number of neonates, growth) were also investigated. Significant effects on the molting frequency were observed after 21-d exposure to 5MeBTR and 5ClBTR. No effects on molting frequency were observed for BTR but RNA-seq results indicated that this BZT induced the up-regulation of genes coding for cuticular proteins, which could have compensated the molting disruption. Molting in cladocerans is actively controlled by ecdysteroid hormones. Complementary short-term temporal analysis (4- and 8-d exposure) of the transcription of genes related to molting and hormone-mediated processes indicated that the three compounds had specific modes of action. BTR induced the transcription of genes involved in 20-hydroxyecdysone synthesis, which suggests pro-ecdysteroid properties. 5ClBTR exposure induced protein activity and transcriptional levels of chitinase enzymes, associated with an impact on ecdysteroid signaling pathways, which could explain the decrease in molt frequency. Finally, 5MeBTR seemed to increase molt frequency through epigenetic processes. Overall, results suggested that molting effects observed at the physiological level could be linked to endocrine regulation impacts of BZTs at the molecular level.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| | - Guillaume Cottin
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
- Université Paris Descartes, Paris, France
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| |
Collapse
|
91
|
Tajiri R. Cuticle itself as a central and dynamic player in shaping cuticle. CURRENT OPINION IN INSECT SCIENCE 2017; 19:30-35. [PMID: 28521940 DOI: 10.1016/j.cois.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 06/07/2023]
Abstract
The wide variety of external morphologies has underlain the evolutionary success of insects. The insect exoskeleton, or cuticle, which covers the entire body and constitutes the external morphology, is extracellular matrix produced by the epidermis. How is cuticle shaped during development? Past studies have mainly focused on patterning, differentiation and morphogenesis of the epidermis. Recently, however, it is becoming clear that cuticle itself plays important and active roles in regulation of cuticle shape. Studies in the past several years show that pre-existing cuticle can influence shaping of new cuticle, and cuticle can sculpt its own shape through its material property. In this review, I summarize recent advances and discuss future prospects.
Collapse
Affiliation(s)
- Reiko Tajiri
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 501, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8562, Japan.
| |
Collapse
|
92
|
Uchida M, Hirano M, Ishibashi H, Kobayashi J, Kagami Y, Koyanagi A, Kusano T, Koga M, Arizono K. Transcriptional response of mysid crustacean, Americamysis bahia, is affected by subchronic exposure to nonylphenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:360-365. [PMID: 27497080 DOI: 10.1016/j.ecoenv.2016.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Nonylphenol (NP) has been classified as an endocrine-disrupting chemical. In this study, we conducted mysid DNA microarray analysis with which has 2240 oligo DNA probes to observe differential gene expressions in mysid crustacean (Americamysis bahia) exposed to 1, 3, 10 and 30 μg/l of NP for 14 days. As a result, we found 31, 27, 39 and 68 genes were differentially expressed in the respective concentrations. Among these genes, the expressions of five particular genes were regulated in a similar manner at all concentrations of the NP exposure. So, we focused on one gene encoding cuticle protein, and another encoding cuticular protein analogous to peritrophins 1-H precursor. These genes were down-regulated by NP exposure in a dose-dependent manner, and it suggested that they were related in a reduction of the number of molting in mysids. Thus, they might become useful molecular biomarker candidates to evaluate molting inhibition in mysids.
Collapse
Affiliation(s)
- Masaya Uchida
- Mizuki biotech, Co., Ltd., 1-1 Hyakunenkouen, Kurume, Fukuoka 839-0864, Japan
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto 866-8501, Japan
| | - Hiroshi Ishibashi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Jun Kobayashi
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto 862-8502, Japan
| | - Yoshihiro Kagami
- Mizuki biotech, Co., Ltd., 1-1 Hyakunenkouen, Kurume, Fukuoka 839-0864, Japan
| | - Akiko Koyanagi
- Mizuki biotech, Co., Ltd., 1-1 Hyakunenkouen, Kurume, Fukuoka 839-0864, Japan
| | - Teruhiko Kusano
- Mizuki biotech, Co., Ltd., 1-1 Hyakunenkouen, Kurume, Fukuoka 839-0864, Japan
| | - Minoru Koga
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto 862-8502, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto 862-8502, Japan.
| |
Collapse
|
93
|
Houde M, Douville M, Giraudo M, Jean K, Lépine M, Spencer C, De Silva AO. Endocrine-disruption potential of perfluoroethylcyclohexane sulfonate (PFECHS) in chronically exposed Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:950-956. [PMID: 27554979 DOI: 10.1016/j.envpol.2016.08.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Perfluoroethylcyclohexane sulfonate (PFECHS), mainly used in hydraulic fluids in aircrafts, is a member of the perfluoroalkyl sulfonate family which includes the regulated perfluorooctane sulfonate (PFOS). PFECHS has been reported in environmental samples but its toxicity to aquatic organisms is unknown. The objectives of this study were to identify biological pathways altered by sublethal exposure (12 d) of D. magna to PFECHS (0.06, 0.6, and 6 mg/L) using microarray and quantitative real-time PCR and to identify potential biomarkers to link transcriptomic to phenotypic responses. PFECHS was also quantified in surface water samples (1.04-1.38 ng/L) collected from the St. Lawrence River, Canada. Transcriptomic analyses indicated the under-regulation of vitellogenin-related genes (VTG1) in PFECHS-exposed groups. PFECHS exposure also led to the up-regulation of genes related to cuticle. VTG was selected as a potential cellular marker and identified in D. magna using an immuno-specific assay and quantified using Western blot and LC/MS/MS. Results indicated a decrease of VTG content in exposed D. magna which was in concordance with the transcription of VTG-related genes. No effects were observed on survival, molting, or reproduction at the individual/population levels. Overall, results suggest endocrine disruption potential for PFECHS in D. magna at concentrations higher than levels reported in the aquatic environment.
Collapse
Affiliation(s)
- Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada.
| | - Mélanie Douville
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Keven Jean
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Mélanie Lépine
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Christine Spencer
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada
| |
Collapse
|
94
|
Guo J, Jiang F, Yi J, Liu X, Zhang G. Transcriptome characterization and gene expression analysis related to sexual dimorphism in the ghost moth, Thitarodes pui, a host of Ophiocordyceps sinensis. Gene 2016; 588:134-40. [PMID: 27182053 DOI: 10.1016/j.gene.2016.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
Abstract
Thitarodes pui is one of the host species of the Chinese caterpillar fungus Ophiocordyceps sinensis as a traditional Chinese medicine with economic and medical importance. The pupal and adult stages of T. pui are sexually dimorphic. In order to elucidate the molecular mechanisms involved in the sexually dimorphic development of T. pui, we compared the transcriptomes of female and male pupae and adults. We obtained 15,881,734, 16,962,086, 17,514,743, and 17,770,904 clean reads from female pupae, male pupae, female adults, and male adults, respectively. The reads obtained from the four samples were pooled and assembled into 65,165 unigenes, 23,597 of which were annotated. Candidate genes involved in sexual development were identified and analysed. Gene expression analysis revealed that 1406 genes were differentially expressed in male and female pupae, 448 of which were up-regulated in males and 958 were up-regulated in females. A total of 2025 genes were differentially expressed in male and females adults, 1304 of which were up-regulated in males and 721 were up-regulated in females. The functional enrichment of the differentially expressed genes indicated that reproduction and cuticle synthesis were regulated differently between the sexes. The transcriptome data obtained provide significant information regarding the genes involved in sexually dimorphic development, which will improve our understanding of the molecular mechanisms related to sexual dimorphism and helpful for the moth mass rearing which would provide enough host insects for the sustainable utilization of O. sinensis.
Collapse
Affiliation(s)
- Jixing Guo
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Xingangxi Road 135, Guangzhou 510275, PR China
| | - Fengze Jiang
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Xingangxi Road 135, Guangzhou 510275, PR China
| | - Jiequn Yi
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Xingangxi Road 135, Guangzhou 510275, PR China
| | - Xin Liu
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Xingangxi Road 135, Guangzhou 510275, PR China
| | - Guren Zhang
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Xingangxi Road 135, Guangzhou 510275, PR China.
| |
Collapse
|
95
|
Qi L, Fang Q, Zhao L, Xia H, Zhou Y, Xiao J, Li K, Ye G. De Novo Assembly and Developmental Transcriptome Analysis of the Small White Butterfly Pieris rapae. PLoS One 2016; 11:e0159258. [PMID: 27428371 PMCID: PMC4948883 DOI: 10.1371/journal.pone.0159258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
The small white butterfly Pieris rapae is one of the most destructive pests of Brassicaceae. Yet little is understood about its genes involved in development. To facilitate research on P. rapae, we sequenced the transcriptome of P. rapae during six developmental stages, including the egg, three larval stages, the pupa, and the adult. In total, 240 million high-quality reads were obtained. De novo assembly generated 96,069 unigenes with an average length of 1353 nt. Of these, 31,629 unigenes had homologs as determined by a blastx search against the NR database with a cut-off e-value of 10−5. Clusters of Orthologous Groups of proteins (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to functionally annotate those genes. Then, 849 genes involved in seven canonical development signaling pathway were identified, including dozens of key genes such as Hippo, Notch, and JAK2. A total of 21,883 differentially expressed (cut-off of 2-fold) unigenes were detected across the developmental stages, most of which were found between the egg and first larval stages. Interestingly, only 34 differentially expressed unigenes, most of which are cuticle protein related genes, were detected with a cut-off of 210-fold. Furthermore, we identified 32 heat shock protein (Hsp) genes that were expressed with complete open reading frames. Based on phylogenetic trees of the Hsp genes, we found that Hsp genes with close evolutionary relationships had similar expression pattern. Additionally, partial pattern recognition receptors genes were found to be developmental regulated. This study provides comprehensive sequence resources for P. rapae and numerous differential expressed genes, and these findings will lay the foundation for future functional genomics studies on this species.
Collapse
Affiliation(s)
- Lixing Qi
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lei Zhao
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Hao Xia
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yuxun Zhou
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
96
|
Regna K, Kurshan PT, Harwood BN, Jenkins AM, Lai CQ, Muskavitch MAT, Kopin AS, Draper I. A critical role for the Drosophila dopamine D1-like receptor Dop1R2 at the onset of metamorphosis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:15. [PMID: 27184815 PMCID: PMC4868058 DOI: 10.1186/s12861-016-0115-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/08/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Insect metamorphosis relies on temporal and spatial cues that are precisely controlled. Previous studies in Drosophila have shown that untimely activation of genes that are essential to metamorphosis results in growth defects, developmental delay and death. Multiple factors exist that safeguard these genes against dysregulated expression. The list of identified negative regulators that play such a role in Drosophila development continues to expand. RESULTS By using RNAi transgene-induced gene silencing coupled to spatio/temporal assessment, we have unraveled an important role for the Drosophila dopamine 1-like receptor, Dop1R2, in development. We show that Dop1R2 knockdown leads to pre-adult lethality. In adults that escape death, abnormal wing expansion and/or melanization defects occur. Furthermore we show that salivary gland expression of this GPCR during the late larval/prepupal stage is essential for the flies to survive through adulthood. In addition to RNAi-induced effects, treatment of larvae with the high affinity D1-like receptor antagonist flupenthixol, also results in developmental arrest, and in morphological defects comparable to those seen in Dop1R2 RNAi flies. To examine the basis for pupal lethality in Dop1R2 RNAi flies, we carried out transcriptome analysis. These studies revealed up-regulation of genes that respond to ecdysone, regulate morphogenesis and/or modulate defense/immunity. CONCLUSION Taken together our findings suggest a role for Dop1R2 in the repression of genes that coordinate metamorphosis. Premature release of this inhibition is not tolerated by the developing fly.
Collapse
Affiliation(s)
- Kimberly Regna
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Peri T Kurshan
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Present Address: Department of Biology, Stanford University, California, 94305, USA
| | - Benjamin N Harwood
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Adam M Jenkins
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Marc A T Muskavitch
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.,Discovery Research, Biogen Idec, Cambridge, MA, 02142, USA
| | - Alan S Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Isabelle Draper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
97
|
Mutation of a Cuticle Protein Gene, BmCPG10, Is Responsible for Silkworm Non-Moulting in the 2nd Instar Mutant. PLoS One 2016; 11:e0153549. [PMID: 27096617 PMCID: PMC4838254 DOI: 10.1371/journal.pone.0153549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/31/2016] [Indexed: 01/27/2023] Open
Abstract
In the silkworm, metamorphosis and moulting are regulated by ecdysone hormone and juvenile hormone. The subject in the present study is a silkworm mutant that does not moult in the 2nd instar (nm2). Genetic analysis indicated that the nm2 mutation is controlled by a recessive gene and is homozygous lethal. Based on positional cloning, nm2 was located in a region approximately 275 kb on the 5th linkage group by eleven SSR polymorphism markers. In this specific range, according to the transcriptional expression of thirteen genes and cloning, the relative expression level of the BmCPG10 gene that encodes a cuticle protein was lower than the expression level of the wild-type gene. Moreover, this gene’s structure differs from that of the wild-type gene: there is a deletion of 217 bp in its open reading frame, which resulted in a change in the protein it encoded. The BmCPG10 mRNA was detectable throughout silkworm development from the egg to the moth. This mRNA was low in the pre-moulting and moulting stages of each instar but was high in the gluttonous stage and in newly exuviated larvae. The BmCPG10 mRNA showed high expression levels in the epidermis, head and trachea, while the expression levels were low in the midgut, Malpighian tubule, prothoracic gland, haemolymph and ventral nerve cord. The ecdysone titre was determined by ELISA, and the results demonstrated that the ecdysone titre of nm2 larvae was lower than that of the wild-type larvae. The nm2 mutant could be rescued by feeding 20-hydroxyecdysone, cholesterol and 7—dehydrocholesterol (7dC), but the rescued nm2 only developed to the 4th instar and subsequently died. The moulting time of silkworms could be delayed by BmCPG10 RNAi. Thus, we speculated that the mutation of BmCPG10 was responsible for the silkworm mutant that did not moult in the 2nd instar.
Collapse
|
98
|
Shahin R, Iwanaga M, Kawasaki H. Cuticular protein and transcription factor genes expressed during prepupal-pupal transition and by ecdysone pulse treatment in wing discs of Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:138-152. [PMID: 26748620 DOI: 10.1111/imb.12207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We aimed to understand the underlying mechanism that regulates successively expressed cuticular protein (CP) genes around pupation in Bombyx mori. Quantitative PCR was conducted to clarify the expression profile of CP genes and ecdysone-responsive transcription factor (ERTF) genes around pupation. Ecdysone pulse treatment was also conducted to compare the developmental profiles and the ecdysone induction of the CP and ERTF genes. Fifty-two CP genes (RR-1 13, RR-2 18, CPG 8, CPT 3, CPFL 2, CPH 8) in wing discs of B. mori were examined. Different expression profiles were found, which suggests the existence of a mechanism that regulates CP genes. We divided the genes into five groups according to their peak stages of expression. RR-2 genes were expressed until the day of pupation and RR-1 genes were expressed before and after pupation and for longer than RR-2 genes; this suggests different construction of exo- and endocuticular layers. CPG, CPT, CPFL and CPH genes were expressed before and after pupation, which implies their involvement in both cuticular layers. Expression profiles of ERTFs corresponded with previous reports. Ecdysone pulse treatment showed that the induction of CP and ERTF genes in vitro reflected developmental expression, from which we speculated that ERTFs regulate CP gene expression around pupation.
Collapse
Affiliation(s)
- R Shahin
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - M Iwanaga
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - H Kawasaki
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| |
Collapse
|
99
|
Chandran R, Williams L, Hung A, Nowlin K, LaJeunesse D. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron 2015; 82:74-85. [PMID: 26774746 DOI: 10.1016/j.micron.2015.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/18/2023]
Abstract
The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine the chitin organizations in the fruit fly, Drosophila melanogaster, and the Atlantic brown shrimp, Farfantepenaeus aztecus. Interestingly many of the homologous anatomical structures from diverse arthropods exhibit similar patterns of chitin organization suggesting that a common set of parameters, govern chitin organization.
Collapse
Affiliation(s)
- Rakkiyappan Chandran
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Lee Williams
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Albert Hung
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Kyle Nowlin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Dennis LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States.
| |
Collapse
|
100
|
Sugime Y, Ogawa K, Watanabe D, Shimoji H, Koshikawa S, Miura T. Expansion of presoldier cuticle contributes to head elongation during soldier differentiation in termites. Naturwissenschaften 2015; 102:71. [DOI: 10.1007/s00114-015-1322-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 11/28/2022]
|