51
|
Zewdu R, Risolino M, Barbulescu A, Ramalingam P, Butler JM, Selleri L. Spleen hypoplasia leads to abnormal stress hematopoiesis in mice with loss of Pbx homeoproteins in splenic mesenchyme. J Anat 2016; 229:153-69. [PMID: 27075259 PMCID: PMC5341595 DOI: 10.1111/joa.12479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 01/01/2023] Open
Abstract
The spleen plays critical roles in immunity and also provides a permissive microenvironment for hematopoiesis. Previous studies have reported that the TALE-class homeodomain transcription factor Pbx1 is essential in hematopoietic stem and progenitor cells (HSPCs) for stem cell maintenance and progenitor expansion. However, the role of Pbx1 in the hematopoietic niche has not been investigated. Here we explored the effects that genetic perturbation of the splenic mesenchymal niche has on hematopoiesis upon loss of members of the Pbx family of homeoproteins. Splenic mesenchyme-specific inactivation of Pbx1 (SKO) on a Pbx2- or Pbx3-deficient genetic background (DKO) resulted in abnormal development of the spleen, which is dysmorphic and severely hypoplastic. This phenotype, in turn, affected the number of HSPCs in the fetal and adult spleen at steady state, as well as markedly impairing the kinetics of hematopoietic regeneration in adult mice after sub-lethal and lethal myelosuppressive irradiation. Spleens of mice with compound Pyx deficiency 8 days following sublethal irradiation displayed significant downregulation of multiple cytokine-encoding genes, including KitL/SCF, Cxcl12/SDF-1, IL-3, IL-4, GM-CSF/Csf2 IL-10, and Igf-1, compared with controls. KitL/SCF and Cxcl12/SDF-1 were recently shown to play key roles in the splenic niche in response to various haematopoietic stresses such as myeloablation, blood loss, or pregnancy. Our results demonstrate that, in addition to their intrinsic roles in HSPCs, non-cell autonomous functions of Pbx factors within the splenic niche contribute to the regulation of hematopoiesis, at least in part via the control of KitL/SCF and Cxcl12/SDF-1. Furthermore, our study establishes that abnormal spleen development and hypoplasia have deleterious effects on the efficiency of hematopoietic recovery after bone marrow injury.
Collapse
Affiliation(s)
- Rediet Zewdu
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Present address: Huntsman Cancer Institute University of UtahSalt Lake CityUTUSA
| | - Maurizio Risolino
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Program in Craniofacial BiologyDepartment of Orofacial Sciences & Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | | - Jason M. Butler
- Department of Genetic MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Licia Selleri
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Program in Craniofacial BiologyDepartment of Orofacial Sciences & Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
52
|
Kranich J, Krautler NJ. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Front Immunol 2016; 7:225. [PMID: 27446069 PMCID: PMC4914831 DOI: 10.3389/fimmu.2016.00225] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in germinal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs and TLOs. In this review, we discuss recent findings that explain how this stromal cell type can arise in almost any tissue during TLO formation and, furthermore, focus on the mechanisms of antigen capture and retention involved in the generation of long-lasting antigen depots displayed on FDCs.
Collapse
Affiliation(s)
- Jan Kranich
- Institute for Immunology, Ludwig Maximilian University Munich, Munich, Germany
| | | |
Collapse
|
53
|
Lenti E, Farinello D, Yokoyama KK, Penkov D, Castagnaro L, Lavorgna G, Wuputra K, Sandell LL, Tjaden NEB, Bernassola F, Caridi N, De Antoni A, Wagner M, Kozinc K, Niederreither K, Blasi F, Pasini D, Majdic G, Tonon G, Trainor PA, Brendolan A. Transcription factor TLX1 controls retinoic acid signaling to ensure spleen development. J Clin Invest 2016; 126:2452-64. [PMID: 27214556 DOI: 10.1172/jci82956] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1. Herein, we have shown that TLX1-dependent regulation of retinoic acid (RA) metabolism is critical for spleen organogenesis. In a murine model, loss of Tlx1 during formation of the splenic anlage increased RA signaling by regulating several genes involved in RA metabolism. Uncontrolled RA activity resulted in premature differentiation of mesenchymal cells and reduced vasculogenesis of the splenic primordium. Pharmacological inhibition of RA signaling in Tlx1-deficient animals partially rescued the spleen defect. Finally, spleen growth was impaired in mice lacking either cytochrome P450 26B1 (Cyp26b1), which results in excess RA, or retinol dehydrogenase 10 (Rdh10), which results in RA deficiency. Together, these findings establish TLX1 as a critical regulator of RA metabolism and provide mechanistic insights into the molecular determinants of human congenital asplenia.
Collapse
|
54
|
Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling. Stem Cells Int 2016; 2016:8419104. [PMID: 27190524 PMCID: PMC4846763 DOI: 10.1155/2016/8419104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/20/2016] [Indexed: 12/28/2022] Open
Abstract
Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear.
Collapse
|
55
|
Nosenko MA, Drutskaya MS, Moisenovich MM, Nedospasov SA. Bioengineering of Artificial Lymphoid Organs. Acta Naturae 2016; 8:10-23. [PMID: 27437136 PMCID: PMC4947985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 11/28/2022] Open
Abstract
This review addresses the issue of bioengineering of artificial lymphoid organs.Progress in this field may help to better understand the nature of the structure-function relations that exist in immune organs. Artifical lymphoid organs may also be advantageous in the therapy or correction of immunodefficiencies, autoimmune diseases, and cancer. The structural organization, development, and function of lymphoid tissue are analyzed with a focus on the role of intercellular contacts and on the cytokine signaling pathways regulating these processes. We describe various polymeric materials, as scaffolds, for artificial tissue engineering. Finally, published studies in which artificial lymphoid organs were generated are reviewed and possible future directions in the field are discussed.
Collapse
Affiliation(s)
- M. A. Nosenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, 119991, Moscow, Russia
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bldg. 12, 119991, Moscow, Russia
- Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| | - M. S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, 119991, Moscow, Russia
| | - M. M. Moisenovich
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bldg. 12, 119991, Moscow, Russia
| | - S. A. Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, 119991, Moscow, Russia
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bldg. 12, 119991, Moscow, Russia
- Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
56
|
Milićević NM, Schmidt F, Kunz N, Kalies K, Milićević Ž, Schlosser A, Holmskov U, Sorensen GL, Westermann J. The role of microfibrillar-associated protein 4 (MFAP4) in the formation and function of splenic compartments during embryonic and adult life. Cell Tissue Res 2016; 365:135-45. [DOI: 10.1007/s00441-016-2374-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/01/2016] [Indexed: 11/24/2022]
|
57
|
Kellermayer Z, Hayasaka H, Kajtár B, Simon D, Robles EF, Martinez-Climent JA, Balogh P. Divergence of Vascular Specification in Visceral Lymphoid Organs-Genetic Determinants and Differentiation Checkpoints. Int Rev Immunol 2015; 35:489-502. [PMID: 26186200 DOI: 10.3109/08830185.2015.1059427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite their functional similarities, peripheral lymphoid tissues are remarkably different according to their developmental properties and structural characteristics, including their specified vasculature. Access of leukocytes to these organs critically depends on their interactions with the local endothelium, where endothelial cells are patterned to display a restricted set of adhesion molecules and other regulatory compounds necessary for extravasation. Recent advances in high throughput analyses of highly purified endothelial subsets in various lymphoid tissues as well as the expansion of various transgenic animal models have shed new light on the transcriptional complexities of lymphoid tissue vascular endothelium. This review is aimed at providing a comprehensive analysis linking the functional competence of spleen and intestinal lymphoid tissues with the developmental programming and functional divergence of their vascular specification, with particular emphasis on the transcriptional control of endothelial cells exerted by Nkx2.3 homeodomain transcription factor.
Collapse
Affiliation(s)
- Zoltán Kellermayer
- a Department of Immunology and Biotechnology.,b Lymphoid Organogenesis Research Group Szentágothai Research Center, University of Pécs , Pécs , Hungary
| | - Haruko Hayasaka
- c Laboratory of Immunoregulation, Osaka University Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University , Osaka , Japan
| | - Béla Kajtár
- d Department of Pathology , University of Pécs , Pécs , Hungary
| | - Diána Simon
- a Department of Immunology and Biotechnology
| | - Eloy F Robles
- e Centro de Investigación Médica Aplicada of the University of Navarra , Pamplona , Spain
| | | | - Péter Balogh
- a Department of Immunology and Biotechnology.,b Lymphoid Organogenesis Research Group Szentágothai Research Center, University of Pécs , Pécs , Hungary
| |
Collapse
|
58
|
Buckley CD, Barone F, Nayar S, Bénézech C, Caamaño J. Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation. Annu Rev Immunol 2015; 33:715-45. [DOI: 10.1146/annurev-immunol-032713-120252] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher D. Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Francesca Barone
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Saba Nayar
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Cecile Bénézech
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Jorge Caamaño
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
59
|
Gordon S, Plüddemann A, Mukhopadhyay S. Sinusoidal immunity: macrophages at the lymphohematopoietic interface. Cold Spring Harb Perspect Biol 2014; 7:a016378. [PMID: 25502514 DOI: 10.1101/cshperspect.a016378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophages are widely distributed throughout the body, performing vital homeostatic and defense functions after local and systemic perturbation within tissues. In concert with closely related dendritic cells and other myeloid and lymphoid cells, which mediate the innate and adaptive immune response, macrophages determine the outcome of the inflammatory and repair processes that accompany sterile and infectious injury and microbial invasion. This article will describe and compare the role of specialized macrophage populations at two critical interfaces between the resident host lymphohematopoietic system and circulating blood and lymph, the carriers of cells, humoral components, microorganisms, and their products. Sinusoidal macrophages in the marginal zone of the spleen and subcapsular sinus and medulla of secondary lymph nodes contribute to the innate and adaptive responses of the host in health and disease. Although historically recognized as major constituents of the reticuloendothelial system, it has only recently become apparent that these specialized macrophages in close proximity to B and T lymphocytes play an indispensable role in recognition and responses to exogenous and endogenous ligands, thus shaping the nature and quality of immunity and inflammation. We review current understanding of these macrophages and identify gaps in our knowledge for further investigation.
Collapse
Affiliation(s)
- Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Annette Plüddemann
- Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Subhankar Mukhopadhyay
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
60
|
Chong JJ, Forte E, Harvey RP. Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells. Stem Cell Res 2014; 13:592-614. [DOI: 10.1016/j.scr.2014.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 12/30/2022] Open
|
61
|
Nakahara R, Kawai Y, Oda A, Nishimura M, Murakami A, Azuma T, Kaifu T, Goitsuka R. Generation of a Tlx1(CreER-Venus) knock-in mouse strain for the study of spleen development. Genesis 2014; 52:916-23. [PMID: 25283275 DOI: 10.1002/dvg.22829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022]
Abstract
The spleen is a lymphoid organ that serves as a unique niche for immune reactions, extramedullary hematopoiesis, and the removal of aged erythrocytes from the circulation. While much is known about the immunological functions of the spleen, the mechanisms governing the development and organization of its stromal microenvironment remain poorly understood. Here we report the generation and analysis of a Tlx1(Cre) (ER) (-Venus) knock-in mouse strain engineered to simultaneously express tamoxifen-inducible CreER(T2) and Venus fluorescent protein under the control of regulatory elements of the Tlx1 gene, which encodes a transcription factor essential for spleen development. We demonstrated that Venus as well as CreER expression recapitulates endogenous Tlx1 transcription within the spleen microenvironment. When Tlx1(Cre) (ER) (-Venus) mice were crossed with the Cre-inducible reporter strain, Tlx1-expressing cells as well as their descendants were specifically labeled following tamoxifen administration. We also showed by cell lineage tracing that asplenia caused by Tlx1 deficiency is attributable to altered contribution of mesenchymal cells in the spleen anlage to the pancreatic mesenchyme. Thus, Tlx1(Cre) (ER) (-Venus) mice represent a new tool for lineage tracing and conditional gene manipulation of spleen mesenchymal cells, essential approaches for understanding the molecular mechanisms of spleen development.
Collapse
Affiliation(s)
- Ryo Nakahara
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A 2014; 111:12139-44. [PMID: 25092322 DOI: 10.1073/pnas.1412910111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fibroblastic reticular cells (FRCs), through their expression of CC chemokine ligand (CCL)19 and CCL21, attract and retain T cells in lymph nodes (LNs), but whether this function applies to both resting and activated T cells has not been examined. Here we describe a model for conditionally depleting FRCs from LNs based on their expression of the diphtheria toxin receptor (DTR) directed by the gene encoding fibroblast activation protein-α (FAP). As expected, depleting FAP(+) FRCs causes the loss of naïve T cells, B cells, and dendritic cells from LNs, and this loss decreases the magnitude of the B- and T-cell responses to a subsequent infection with influenza A virus. In contrast, depleting FAP(+) FRCs during an ongoing influenza infection does not diminish the number or continued response of activated T and B cells in the draining LNs, despite still resulting in the loss of naïve T cells. Therefore, different rules govern the LN trafficking of resting and activated T cells; once a T cell is engaged in antigen-specific clonal expansion, its retention no longer depends on FRCs or their chemokines, CCL19 and CCL21. Our findings suggest that activated T cells remain in the LN because they down-regulate the expression of the sphingosine-1 phosphate receptor-1, which mediates the exit of lymphocytes from secondary lymphoid organs. Therefore, LN retention of naïve lymphocytes and the initiation of an immune response depend on FRCs, but is an FRC independent and possibly cell-autonomous response of activated T cells, which allows the magnitude of clonal expansion to determine LN egress.
Collapse
|
63
|
Abstract
Follicular dendritic cells (FDCs) are essential for high-affinity antibody production and for the development of B cell memory. Historically, FDCs have been characterized as 'accessory' cells that passively support germinal centre (GC) responses. However, recent observations suggest that FDCs actively shape humoral immunity. In this Review, we discuss recent findings concerning the antigen acquisition and retention functions of FDCs, and relevant implications for protective immunity. Furthermore, we describe the roles of FDCs within GCs in secondary lymphoid organs and discuss FDC development within this dynamic environment. Finally, we discuss how a better understanding of FDCs could facilitate the design of next-generation vaccines.
Collapse
|
64
|
Tan JKH, Watanabe T. Murine spleen tissue regeneration from neonatal spleen capsule requires lymphotoxin priming of stromal cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:1194-203. [PMID: 24951816 DOI: 10.4049/jimmunol.1302115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spleen is a tissue with regenerative capacity, which allows autotransplantation of human spleen fragments to counteract the effects of splenectomy. We now reveal in a murine model that transplant of neonatal spleen capsule alone leads to the regeneration of full spleen tissue. This finding indicates that graft-derived spleen stromal cells, but not lymphocytes, are essential components of tissue neogenesis, a finding verified by transplant and regeneration of Rag1KO spleen capsules. We further demonstrate that lymphotoxin and lymphoid tissue inducer cells participate in two key elements of spleen neogenesis, bulk tissue regeneration and white pulp organization, identifying a lymphotoxin-dependent pathway for neonatal spleen regeneration that contrasts with previously defined lymphotoxin-independent embryonic spleen organogenesis.
Collapse
Affiliation(s)
- Jonathan K H Tan
- Astellas-Kyoto University (AK) Project, Graduate School of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Watanabe
- Astellas-Kyoto University (AK) Project, Graduate School of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
65
|
Jarjour M, Jorquera A, Mondor I, Wienert S, Narang P, Coles MC, Klauschen F, Bajénoff M. Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells. ACTA ACUST UNITED AC 2014; 211:1109-22. [PMID: 24863064 PMCID: PMC4042641 DOI: 10.1084/jem.20132409] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The lymph node follicular dendritic cell (FDC) network is derived from the expansion and differentiation of marginal reticular cells, as are the new FDCs generated during an immune response. Follicular dendritic cells (FDCs) regulate B cell function and development of high affinity antibody responses but little is known about their biology. FDCs associate in intricate cellular networks within secondary lymphoid organs. In vitro and ex vivo methods, therefore, allow only limited understanding of the genuine immunobiology of FDCs in their native habitat. Herein, we used various multicolor fate mapping systems to investigate the ontogeny and dynamics of lymph node (LN) FDCs in situ. We show that LN FDC networks arise from the clonal expansion and differentiation of marginal reticular cells (MRCs), a population of lymphoid stromal cells lining the LN subcapsular sinus. We further demonstrate that during an immune response, FDCs accumulate in germinal centers and that neither the recruitment of circulating progenitors nor the division of local mature FDCs significantly contributes to this accumulation. Rather, we provide evidence that newly generated FDCs also arise from the proliferation and differentiation of MRCs, thus unraveling a critical function of this poorly defined stromal cell population.
Collapse
Affiliation(s)
- Meryem Jarjour
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| | - Audrey Jorquera
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| | - Isabelle Mondor
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| | - Stephan Wienert
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Priyanka Narang
- Center for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, YO10 5DD York, England, UK
| | - Mark C Coles
- Center for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, YO10 5DD York, England, UK
| | - Frederick Klauschen
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| |
Collapse
|
66
|
Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, Barra CM, Comerma L, Chudnovskiy A, Gentile M, Llige D, Cols M, Serrano S, Aróstegui JI, Juan M, Yagüe J, Merad M, Fagarasan S, Cerutti A. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol 2014; 15:354-364. [PMID: 24562309 PMCID: PMC4005806 DOI: 10.1038/ni.2830] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
Innate lymphoid cells (ILCs) regulate stromal cells, epithelial cells and cells of the immune system, but their effect on B cells remains unclear. Here we identified RORγt(+) ILCs near the marginal zone (MZ), a splenic compartment that contains innate-like B cells highly responsive to circulating T cell-independent (TI) antigens. Splenic ILCs established bidirectional crosstalk with MAdCAM-1(+) marginal reticular cells by providing tumor-necrosis factor (TNF) and lymphotoxin, and they stimulated MZ B cells via B cell-activation factor (BAFF), the ligand of the costimulatory receptor CD40 (CD40L) and the Notch ligand Delta-like 1 (DLL1). Splenic ILCs further helped MZ B cells and their plasma-cell progeny by coopting neutrophils through release of the cytokine GM-CSF. Consequently, depletion of ILCs impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune system and circulatory system.
Collapse
Affiliation(s)
- Giuliana Magri
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Michio Miyajima
- Laboratory for Mucosal Immunity, RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama, Tsurumi, Yokohama, Japan
| | - Sabrina Bascones
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Arthur Mortha
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Irene Puga
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Linda Cassis
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Carolina M Barra
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Laura Comerma
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Aleksey Chudnovskiy
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maurizio Gentile
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - David Llige
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Montserrat Cols
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sergi Serrano
- Department of Pathology, Hospital del Mar, Universitat Autònoma de Barcelona and Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Manel Juan
- Immunology Service, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Jordi Yagüe
- Immunology Service, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Miriam Merad
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama, Tsurumi, Yokohama, Japan
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona, Spain
| |
Collapse
|
67
|
Lu TT, Browning JL. Role of the Lymphotoxin/LIGHT System in the Development and Maintenance of Reticular Networks and Vasculature in Lymphoid Tissues. Front Immunol 2014; 5:47. [PMID: 24575096 PMCID: PMC3920476 DOI: 10.3389/fimmu.2014.00047] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/27/2014] [Indexed: 01/08/2023] Open
Abstract
Lymphoid organs are meeting zones where lymphocytes come together and encounter antigens present in the blood and lymph or as delivered by cells migrating from the draining tissue bed. The exquisite efficiency of this process relies heavily on highly specialized anatomy to direct and position the various players. Gated entry and exit control access to these theaters and reticular networks and associated chemokines guide cells into the proper sections. Lymphoid tissues are remarkably plastic, being able to expand dramatically and then involute upon resolution of the danger. All of the reticular scaffolds and vascular and lymphatic components adapt accordingly. As such, the lymph node (LN) is a wonderful example of a physiologic remodeling process and is potentially a guide to study such elements in pathological settings such as fibrosis, chronic infection, and tumor metastasis. The lymphotoxin/LIGHT axis delivers critical differentiation signals that direct and hone differentiation of both reticular networks and the vasculature. Considerable progress has been made recently in understanding the mesenchymal differentiation pathways leading to these specialized networks and in the remodeling that occurs in reactive LNs. In this article, we will review some new advances in the area in terms of developmental, differentiation, and maintenance events mediated by this axis.
Collapse
Affiliation(s)
- Theresa T Lu
- Autoimmunity and Inflammation Program and Pediatric Rheumatology, Hospital for Special Surgery , New York, NY , USA ; Department of Microbiology and Immunology, Weill Cornell Medical College , New York, NY , USA
| | - Jeffrey L Browning
- Department of Microbiology and Section of Rheumatology, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
68
|
Aguzzi A, Kranich J, Krautler NJ. Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends Immunol 2013; 35:105-13. [PMID: 24315719 DOI: 10.1016/j.it.2013.11.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/31/2013] [Accepted: 11/07/2013] [Indexed: 01/15/2023]
Abstract
Follicular dendritic cells (FDCs) were originally identified by their specific morphology and by their ability to trap immune-complexed antigen in B cell follicles. By virtue of the latter as well as the provision of chemokines, adhesion molecules, and trophic factors, FDCs participate in the shaping of B cell responses. Importantly, FDCs also supply tingible body macrophages (TBMs) with the eat-me-signaling molecule milk fat globule-EGF factor 8 (Mfge8), thereby enabling the disposal of apoptotic B cells. Recent studies have provided fundamental insights into the multiple functions of FDCs in both physiological and pathophysiological contexts and into their origin. Here we review these findings, and discuss current concepts related to FDC histogenesis both in lymphoid organs and in inflammatory lymphoneogenesis.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Jan Kranich
- Institute for Immunology, Ludwig Maximilians University, Munich, Germany
| | - Nike Julia Krautler
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Sydney, Australia.
| |
Collapse
|
69
|
Abstract
The evolutionary emergence of vertebrates was accompanied by major morphological and functional innovations, including the development of an adaptive immune system. Vertebrate adaptive immunity is based on the clonal expression of somatically diversifying antigen receptors on lymphocytes. This is a common feature of both the jawless and jawed vertebrates , although these two groups of extant vertebrates employ structurally different types of antigen receptors and principal mechanisms for their somatic diversification . These observations suggest that the common vertebrate ancestor must have already possessed a complex immune system, including B- and T-like lymphocyte lineages and primary lymphoid organs, such as the thymus, but possibly lacked the facilities for somatic diversification of antigen receptors. Interestingly, memory formation, previously considered to be a defining feature of adaptive immunity, also occurs in the context of innate immune responses and can even be observed in unicellular organisms, attesting to the convergent evolutionary history of distinct aspects of adaptive immunity.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; ,
| | | |
Collapse
|
70
|
Ugarte F, Forsberg EC. Haematopoietic stem cell niches: new insights inspire new questions. EMBO J 2013; 32:2535-47. [PMID: 24022369 DOI: 10.1038/emboj.2013.201] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
Abstract
Haematopoietic stem cell (HSC) niches provide an environment essential for life-long HSC function. Intense investigation of HSC niches both feed off and drive technology development to increase our capability to assay functionally defined cells with high resolution. A major driving force behind the desire to understand the basic biology of HSC niches is the clear implications for clinical therapies. Here, with particular emphasis on cell type-specific deletion of SCL and CXCL12, we focus on unresolved issues on HSC niches, framed around some very recent advances and novel discoveries on the extrinsic regulation of HSC maintenance. We also provide ideas for possible paths forward, some of which are clearly within reach while others will require both novel tools and vision.
Collapse
Affiliation(s)
- Fernando Ugarte
- Department of Biomolecular Engineering, Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA, USA
| | | |
Collapse
|
71
|
Boehm T. Same Function, Different Origins: Multipotent Stromal Precursors in Lymphoid Tissues. Cell Stem Cell 2013; 12:501-3. [DOI: 10.1016/j.stem.2013.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|