51
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
52
|
Thomas CM, Peebles RS. Development and function of regulatory innate lymphoid cells. Front Immunol 2022; 13:1014774. [PMID: 36275689 PMCID: PMC9581395 DOI: 10.3389/fimmu.2022.1014774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a critical element of the innate immune system and are potent producers of pro-inflammatory cytokines. Recently, however, the production of the anti-inflammatory cytokine IL-10 has been observed in all ILC subtypes (ILC1s, ILC2s, and ILC3s) suggesting their ability to adopt a regulatory phenotype that serves to maintain lung and gut homeostasis. Other studies advocate a potential therapeutic role of these IL-10-expressing ILCs in allergic diseases such as asthma, colitis, and pancreatic islet allograft rejection. Herein, we review IL-10 producing ILCs, discussing their development, function, regulation, and immunotherapeutic potential through suppressing harmful inflammatory responses. Furthermore, we address inconsistencies in the literature regarding these regulatory IL-10 producing ILCs, as well as directions for future research.
Collapse
Affiliation(s)
- Christopher M. Thomas
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States,Research Service, Tennessee Valley Healthcare System, United States Department of Veterans Affairs, Nashville, TN, United States,*Correspondence: R. Stokes Peebles Jr,
| |
Collapse
|
53
|
Beckstette M, Lu CW, Herppich S, Diem EC, Ntalli A, Ochel A, Kruse F, Pietzsch B, Neumann K, Huehn J, Floess S, Lochner M. Profiling of epigenetic marker regions in murine ILCs under homeostatic and inflammatory conditions. J Exp Med 2022; 219:213389. [PMID: 35938981 PMCID: PMC9386974 DOI: 10.1084/jem.20210663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Epigenetic modifications such as DNA methylation play an essential role in imprinting specific transcriptional patterns in cells. We performed genome-wide DNA methylation profiling of murine lymph node–derived ILCs, which led to the identification of differentially methylated regions (DMRs) and the definition of epigenetic marker regions in ILCs. Marker regions were located in genes with a described function for ILCs, such as Tbx21, Gata3, or Il23r, but also in genes that have not been related to ILC biology. Methylation levels of the marker regions and expression of the associated genes were strongly correlated, indicating their functional relevance. Comparison with T helper cell methylomes revealed clear lineage differences, despite partial similarities in the methylation of specific ILC marker regions. IL-33–mediated challenge affected methylation of ILC2 epigenetic marker regions in the liver, while remaining relatively stable in the lung. In our study, we identified a set of epigenetic markers that can serve as a tool to study phenotypic and functional properties of ILCs.
Collapse
Affiliation(s)
- Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Bielefeld Institute for Bioinformatics Infrastructure, Department of Technology, Bielefeld University, Bielefeld, Germany
| | - Chia-Wen Lu
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Elia C Diem
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Anna Ntalli
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Kruse
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Beate Pietzsch
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Lochner
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
54
|
Ruiz-Cortes K, Villageliu DN, Samuelson DR. Innate lymphocytes: Role in alcohol-induced immune dysfunction. Front Immunol 2022; 13:934617. [PMID: 36105802 PMCID: PMC9464604 DOI: 10.3389/fimmu.2022.934617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use is known to alter the function of both innate and adaptive immune cells, such as neutrophils, macrophages, B cells, and T cells. Immune dysfunction has been associated with alcohol-induced end-organ damage. The role of innate lymphocytes in alcohol-associated pathogenesis has become a focus of research, as liver-resident natural killer (NK) cells were found to play an important role in alcohol-associated liver damage pathogenesis. Innate lymphocytes play a critical role in immunity and homeostasis; they are necessary for an optimal host response against insults including infections and cancer. However, the role of innate lymphocytes, including NK cells, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, gamma delta T cells, and innate lymphoid cells (ILCs) type 1–3, remains ill-defined in the context of alcohol-induced end-organ damage. Innate-like B lymphocytes including marginal zone B cells and B-1 cells have also been identified; however, this review will address the effects of alcohol misuse on innate T lymphocytes, as well as the consequences of innate T-lymphocyte dysfunction on alcohol-induced tissue damage.
Collapse
|
55
|
Miyazaki M, Miyazaki K. The E-Id Axis Specifies Adaptive and Innate Lymphoid Lineage Cell Fates. J Biochem 2022; 172:259-264. [PMID: 36000775 DOI: 10.1093/jb/mvac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Our bodies are constantly threatened with the invasion of pathogens, such as bacteria and virus. Immune responses against pathogens are evoked in collaboration with adaptive and innate immune systems. Adaptive immune cells including T and B cells recognize various antigens from pathogens through the antigen recognition receptors such as Immunoglobulin (Ig) and T cell receptor (TCR), and they evoke antigen-specific immune responses to eliminate the pathogens. This specific recognition of a variety of antigens relies on the V(D)J DNA recombination of Ig and TCR genes, which is generated by the Rag (recombination activation gene) 1/Rag2 protein complex. The expression of Rag1/2 genes are stringently controlled during the T and B cell development; Rag1/2 gene expression indicates the commitment towards adaptive lymphocyte lineages. In this review article, we will discuss the developmental bifurcation between adaptive and innate lymphoid cells, and the role of transcription factors, especially the E and Id proteins, upon the lineage commitment, and the regulation of Rag gene locus.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
56
|
Pankow A, Sun XH. The divergence between T cell and innate lymphoid cell fates controlled by E and Id proteins. Front Immunol 2022; 13:960444. [PMID: 36032069 PMCID: PMC9399370 DOI: 10.3389/fimmu.2022.960444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
T cells develop in the thymus from lymphoid primed multipotent progenitors or common lymphoid progenitors into αβ and γδ subsets. The basic helix-loop-helix transcription factors, E proteins, play pivotal roles at multiple stages from T cell commitment to maturation. Inhibitors of E proteins, Id2 and Id3, also regulate T cell development while promoting ILC differentiation. Recent findings suggest that the thymus can also produce innate lymphoid cells (ILCs). In this review, we present current findings that suggest the balance between E and Id proteins is likely to be critical for controlling the bifurcation of T cell and ILC fates at early stages of T cell development.
Collapse
Affiliation(s)
- Aneta Pankow
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiao-Hong Sun
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
57
|
Ren G, Lai B, Harly C, Baek S, Ding Y, Zheng M, Cao Y, Cui K, Yang Y, Zhu J, Hager GL, Bhandoola A, Zhao K. Transcription factors TCF-1 and GATA3 are key factors for the epigenetic priming of early innate lymphoid progenitors toward distinct cell fates. Immunity 2022; 55:1402-1413.e4. [PMID: 35882235 PMCID: PMC9393082 DOI: 10.1016/j.immuni.2022.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
The differentiation of innate lymphoid cells (ILCs) from hematopoietic stem cells needs to go through several multipotent progenitor stages. However, it remains unclear whether the fates of multipotent progenitors are predefined by epigenetic states. Here, we report the identification of distinct accessible chromatin regions in all lymphoid progenitors (ALPs), EILPs, and ILC precursors (ILCPs). Single-cell MNase-seq analyses revealed that EILPs contained distinct subpopulations epigenetically primed toward either dendritic cell lineages or ILC lineages. We found that TCF-1 and GATA3 co-bound to the lineage-defining sites for ILCs (LDS-Is), whereas PU.1 binding was enriched in the LDSs for alternative dendritic cells (LDS-As). TCF-1 and GATA3 were indispensable for the epigenetic priming of LDSs at the EILP stage. Our results suggest that the multipotency of progenitor cells is defined by the existence of a heterogeneous population of cells epigenetically primed for distinct downstream lineages, which are regulated by key transcription factors.
Collapse
Affiliation(s)
- Gang Ren
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Northwest Agriculture and Forest University, College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Binbin Lai
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Biomedical Engineering Department, Peking University, Beijing 100191, China; Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
| | - Christelle Harly
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Ding
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mingzhu Zheng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Microbiology and Immunology, School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yaqiang Cao
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Yu Yang
- Biomedical Engineering Department, Peking University, Beijing 100191, China; Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
58
|
Guo Y, Mei Z, Li D, Banerjee A, Khalil MA, Burke A, Ritter J, Lau C, Kreisel D, Gelman AE, Jacobsen E, Luzina IG, Atamas SP, Krupnick AS. Ischemia reperfusion injury facilitates lung allograft acceptance through IL-33-mediated activation of donor-derived IL-5 producing group 2 innate lymphoid cells. Am J Transplant 2022; 22:1963-1975. [PMID: 35510760 PMCID: PMC9357103 DOI: 10.1111/ajt.17084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 01/25/2023]
Abstract
Pathways regulating lung alloimmune responses differ from most other solid organs and remain poorly explored. Based on our recent work identifying the unique role of eosinophils in downregulating lung alloimmunity, we sought to define pathways contributing to eosinophil migration and homeostasis. Using a murine lung transplant model, we have uncovered that immunosuppression increases eosinophil infiltration into the allograft in an IL-5-dependent manner. IL-5 production depends on immunosuppression-mediated preservation of donor-derived group 2 innate lymphoid cells (ILC2). We further describe that ischemia reperfusion injury upregulates the expression of IL-33, which functions as the dominant and nonredundant mediator of IL-5 production by graft-resident ILC2. Our work thus identifies unique cellular mechanisms that contribute to lung allograft acceptance. Notably, ischemia reperfusion injury, widely considered to be solely deleterious to allograft survival, can also downregulate alloimmune responses by initiating unique pathways that promote IL-33/IL-5/eosinophil-mediated tolerance.
Collapse
Affiliation(s)
- Yizhan Guo
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Zhongcheng Mei
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Dongge Li
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Anirban Banerjee
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - May A. Khalil
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Allen Burke
- Department of Pathology, University of Maryland, Baltimore Maryland
| | - Jon Ritter
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
| | - Christine Lau
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Daniel Kreisel
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri
| | - Andrew E. Gelman
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri
| | - Elizabeth Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | - Irina G. Luzina
- Department of Medicine, University of Maryland, Baltimore Maryland
| | - Sergei P. Atamas
- Department of Surgery, University of Maryland, Baltimore Maryland
| | | |
Collapse
|
59
|
Thompson PK, Chen EL, de Pooter RF, Frelin C, Vogel WK, Lee CR, Venables T, Shah DK, Iscove NN, Leid M, Anderson MK, Zúñiga-Pflücker JC. Realization of the T Lineage Program Involves GATA-3 Induction of Bcl11b and Repression of Cdkn2b Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:77-92. [PMID: 35705252 PMCID: PMC9248976 DOI: 10.4049/jimmunol.2100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/28/2022] [Indexed: 01/03/2023]
Abstract
The zinc-finger transcription factor GATA-3 plays a crucial role during early T cell development and also dictates later T cell differentiation outcomes. However, its role and collaboration with the Notch signaling pathway in the induction of T lineage specification and commitment have not been fully elucidated. We show that GATA-3 deficiency in mouse hematopoietic progenitors results in an early block in T cell development despite the presence of Notch signals, with a failure to upregulate Bcl11b expression, leading to a diversion along a myeloid, but not a B cell, lineage fate. GATA-3 deficiency in the presence of Notch signaling results in the apoptosis of early T lineage cells, as seen with inhibition of CDK4/6 (cyclin-dependent kinases 4 and 6) function, and dysregulated cyclin-dependent kinase inhibitor 2b (Cdkn2b) expression. We also show that GATA-3 induces Bcl11b, and together with Bcl11b represses Cdkn2b expression; however, loss of Cdkn2b failed to rescue the developmental block of GATA-3-deficient T cell progenitor. Our findings provide a signaling and transcriptional network by which the T lineage program in response to Notch signals is realized.
Collapse
Affiliation(s)
- Patrycja K. Thompson
- Department of Immunology, University of Toronto, Toronto, ON;,Sunnybrook Research Institute, Toronto, ON
| | - Edward L.Y. Chen
- Department of Immunology, University of Toronto, Toronto, ON;,Sunnybrook Research Institute, Toronto, ON
| | - Renée F. de Pooter
- Department of Immunology, University of Toronto, Toronto, ON;,Sunnybrook Research Institute, Toronto, ON
| | - Catherine Frelin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON
| | - Walter K. Vogel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR
| | | | | | - Divya K. Shah
- Department of Immunology, University of Toronto, Toronto, ON;,Sunnybrook Research Institute, Toronto, ON
| | - Norman N. Iscove
- Department of Immunology, University of Toronto, Toronto, ON;,Princess Margaret Cancer Centre, University Health Network, Toronto, ON
| | - Mark Leid
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR
| | - Michele K. Anderson
- Department of Immunology, University of Toronto, Toronto, ON;,Sunnybrook Research Institute, Toronto, ON
| | | |
Collapse
|
60
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
61
|
Schroeder JH, Howard JK, Lord GM. Transcription factor-driven regulation of ILC1 and ILC3. Trends Immunol 2022; 43:564-579. [PMID: 35618586 PMCID: PMC10166716 DOI: 10.1016/j.it.2022.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Mammalian innate lymphoid cells (ILCs) have functional relevance under both homeostatic and disease settings, such as inflammatory bowel disease (IBD), particularly in the context of maintaining the integrity of mucosal surfaces. Early reports highlighted group 1 and 3 ILC regulatory transcription factors (TFs), T-box expressed in T cells (T-bet; Tbx21) and RAR-related orphan nuclear receptor γt (RORγt; Rorc), as key regulators of ILC biology. Since then, other canonical TFs have been shown to have a role in the development and function of ILC subsets. In this review, we focus on recent insights into the balance between mature ILC1 and ILC3 based on these TFs and how they interact with other key cell-intrinsic molecular pathways. We outline how this TF interplay might be explored to identify novel candidate therapeutic avenues for human diseases.
Collapse
|
62
|
Sugimura R, Wang CY. The Role of Innate Lymphoid Cells in Cancer Development and Immunotherapy. Front Cell Dev Biol 2022; 10:803563. [PMID: 35557940 PMCID: PMC9086356 DOI: 10.3389/fcell.2022.803563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Innate Lymphoid Cells (ILCs) are an elusive type of innate immune cell that was only discovered recently. Their tissue residency and dependency makes them a niche group of cells that bridge the adaptive and innate immune system. The nomenclature and classification of ILCs have been challenging due to their heterogeneity. The currently agreed ILC classification splits the cells into two categories including cytotoxic and helper ILCs. The tumour microenvironment is often hostile for immune cells. Remodeling the microenvironment and regulating other immune cells—achieved by ILCs-can enhance anti-tumor effects. How ILCs regulate other immune cells in the tumor microenvironment remains to be understood. Here we review current understanding of the role of ILCs in the tumor microenvironment. ILCs recruit CD8 positive T and memory T cells in PDAC, ILCs are also able to help CD108 positive B cells migrate toward tumour locations. In NSCLC, ILC3s are seen helping resident macrophages enhancing the mucus immunity to cancer cells. We then highlight the roles of cytokines and immune checkpoint pathways in ILCs and its implication in immunotherapy.
Collapse
|
63
|
Shi S, Ye L, Jin K, Xiao Z, Yu X, Wu W. Innate Lymphoid Cells: Emerging Players in Pancreatic Disease. Int J Mol Sci 2022; 23:3748. [PMID: 35409105 PMCID: PMC8998564 DOI: 10.3390/ijms23073748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Common pancreatic diseases have caused significant economic and social burdens worldwide. The interstitial microenvironment is involved in and plays a crucial part in the occurrence and progression of pancreatic diseases. Innate lymphoid cells (ILCs), an innate population of immune cells which have only gradually entered our visual field in the last 10 years, play an important role in maintaining tissue homeostasis, regulating metabolism, and participating in regeneration and repair. Recent evidence indicates that ILCs in the pancreas, as well as in other tissues, are also key players in pancreatic disease and health. Herein, we examined the possible functions of different ILC subsets in common pancreatic diseases, including diabetes mellitus, pancreatitis and pancreatic cancer, and discussed the potential practical implications of the relevant findings for future further treatment of these pancreatic diseases.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhiwen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
64
|
Whole-genome profiling of DNA methylation and hydroxymethylation identifies distinct regulatory programs among innate lymphocytes. Nat Immunol 2022; 23:619-631. [PMID: 35332328 PMCID: PMC8989654 DOI: 10.1038/s41590-022-01164-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/18/2022] [Indexed: 12/11/2022]
Abstract
Innate lymphocytes encompass a diverse array of phenotypic identities with specialized functions. DNA methylation and hydroxymethylation are essential for epigenetic fidelity and fate commitment. The landscapes of these modifications are unknown in innate lymphocytes. Here, we characterized the whole-genome distribution of methyl-CpG and 5-hydroxymethylcytosine in mouse ILC3, ILC2, and NK cells. We identified differentially methylated and hydroxymethylated DNA regions between ILC-NK subsets and correlated them with transcriptional signatures. We associated lineage-determining transcription factors with demethylation and demonstrated unique patterns of DNA methylation/hydroxymethylation in relationship to open chromatin regions, histone modifications, and transcription factor binding sites. We further discovered a novel association between hydroxymethylation and NK cell super-enhancers. Using mice lacking DNA hydroxymethylase TET2, we showed its requirement for optimal production of hallmark cytokines by ILC3 and IL-17A by inflammatory ILC2. These findings provide a powerful resource for studying innate lymphocyte epigenetic regulation and decode the regulatory logic governing their identity.
Collapse
|
65
|
Zheng M, Zhu J. Innate Lymphoid Cells and Intestinal Inflammatory Disorders. Int J Mol Sci 2022; 23:1856. [PMID: 35163778 PMCID: PMC8836863 DOI: 10.3390/ijms23031856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a population of lymphoid cells that do not express T cell or B cell antigen-specific receptors. They are largely tissue-resident and enriched at mucosal sites to play a protective role against pathogens. ILCs mimic the functions of CD4 T helper (Th) subsets. Type 1 innate lymphoid cells (ILC1s) are defined by the expression of signature cytokine IFN-γ and the master transcription factor T-bet, involving in the type 1 immune response; ILC2s are characterized by the expression of signature cytokine IL-5/IL-13 and the master transcription factor GATA3, participating in the type 2 immune response; ILC3s are RORγt-expressing cells and are capable of producing IL-22 and IL-17 to maintain intestinal homeostasis. The discovery and investigation of ILCs over the past decades extends our knowledge beyond classical adaptive and innate immunology. In this review, we will focus on the roles of ILCs in intestinal inflammation and related disorders.
Collapse
Affiliation(s)
- Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Microbiology and Immunology, Southeast University, Nanjing 210009, China
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
66
|
Huang J, Fu L, Huang J, Zhao J, Zhang X, Wang W, Liu Y, Sun B, Qiu J, Hu X, Liu Z, Guo X. Group 3 Innate Lymphoid Cells Protect the Host from the Uropathogenic Escherichia coli Infection in the Bladder. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103303. [PMID: 35018740 PMCID: PMC8867143 DOI: 10.1002/advs.202103303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/01/2021] [Indexed: 05/09/2023]
Abstract
Innate lymphoid cells (ILCs) are crucial in orchestrating immunity and maintaining tissue homeostasis in various barrier tissues, but whether ILCs influence immune responses in the urinary tract remains poorly understood. Here, bladder-resident ILCs are comprehensively explored and identified their unique phenotypic and developmental characteristics. Notably, bladder-resident ILCs rapidly respond to uropathogenic Escherichia coli (UPEC) infection. It is found that ILC3 is necessary for early protection against UPEC infection in the bladder. Mechanistically, UPEC infection leads to interleukin (IL)-1β production in the bladder via a MyD88-dependent pathway, which promotes ILC3 activation. ILC3-expressed IL-17A further recruits neutrophils and controls UPEC infection in the bladder. Together, these results demonstrate a critical role for bladder ILCs in the host defense against UPEC infection.
Collapse
Affiliation(s)
- Jiaoyan Huang
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Liuhui Fu
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Jida Huang
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Jie Zhao
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Xin Zhang
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Wenyan Wang
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Yeyang Liu
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Bowen Sun
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Xiaoyu Hu
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Zhihua Liu
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
| | - Xiaohuan Guo
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| |
Collapse
|
67
|
He J, Jiang G, Li X, Xiao Q, Chen Y, Xu H, Liu G, Lei A, Zhou P, Shi K, Yang Q, Zhao M, Yao Z, Zhou J. Bilirubin represents a negative regulator of ILC2 in allergic airway inflammation. Mucosal Immunol 2022; 15:314-326. [PMID: 34686839 DOI: 10.1038/s41385-021-00460-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) play an important role in allergic airway inflammation. Despite recent advances in defining molecular mechanisms that control ILC2 development and function, the role of endogenous metabolites in the regulation of ILC2s remains poorly understood. Herein, we demonstrated that bilirubin, an end product of heme catabolism, was a potent negative regulator of ILC2s. Bilirubin metabolism was found to be significantly induced during airway inflammation in mouse models. The administration of unconjugated bilirubin (UCB) dramatically suppressed ILC2 responses to interleukin (IL)-33 in mice, including cell proliferation and the production of effector cytokines. Furthermore, UCB significantly alleviated ILC2-driven airway inflammation, which was aggravated upon clearance of endogenous UCB. Mechanistic studies showed that the effects of bilirubin on ILC2s were associated with downregulation of ERK phosphorylation and GATA3 expression. Clinically, newborns with hyperbilirubinemia displayed significantly lower levels of ILC2 with impaired function and suppressed ERK signaling. Together, these findings indicate that bilirubin serves as an endogenous suppressor of ILC2s and might have potential therapeutic value in the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Juan He
- Joint Program in Immunology, Department of Internal Medicine, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guanmin Jiang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xing Li
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiang Xiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yingying Chen
- Joint Program in Immunology, Department of Internal Medicine, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haixu Xu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaoyu Liu
- Joint Program in Immunology, Department of Internal Medicine, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Aihua Lei
- Joint Program in Immunology, Department of Internal Medicine, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pan Zhou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Shi
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meng Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
68
|
Zhang L, Meng W, Chen X, Ning Y, Sun M, Wang R. MiR-150-5p regulates the functions of type 2 innate lymphoid cells via the ICAM-1/p38 MAPK axis in allergic rhinitis. Mol Cell Biochem 2022; 477:1009-1022. [PMID: 34988856 DOI: 10.1007/s11010-021-04346-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
Type 2 innate lymphoid cells (ILC2s) exert an increasingly important influence on the pathological process of allergic rhinitis (AR), which is affected by microRNAs-mediated post-transcriptional regulation. This study aims to investigate the function of miR-150-5p in AR patients and the mouse model of AR. The mouse model of AR was established using the OVA challenge. The expressions of miR-150-5p, ICAM-1, p-p38 and p-GATA-3 were evaluated via RT-qPCR and western blot analysis. The level of ILC2s was examined with flow cytometry. Concentrations of OVA-specific IgE, IL-13 and IL-5 in serum were evaluated using ELISA. Histopathological examination was conducted through H&E staining. The interplay between ICAM-1 and miR-150-5p was determined through the DLR assay. The decreased miR-150-5p expression and increased ICAM-1, p-p38 and p-GATA-3 expressions and ILC2s levels were detected in AR patients and AR mice compared with controls. Treatment with miR-150-5p lentivirus alleviated AR symptoms (sneezing, rubbing, mucosa inflammation, serum type 2 cytokines and OVA-specific IgE) and lowered the ILC2s level in AR mice. MiR-150-5p was found to directly bind to 3'-UTR of ICAM-1 and downregulate ICAM-1 expression, thereby descending the level of p-p38, p-GATA-3 and suppressing ILC2s function to alleviate AR symptoms. Treatment with Lenti-ICAM-1 counteracted these protective effects of miR-150-5p. Upregulation of miR-150-5p repressed the ICAM-1/p38 axis which was vital to ILC2s development and function, thereby alleviating allergic symptoms of AR.
Collapse
Affiliation(s)
- Lifeng Zhang
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Wei Meng
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Xiangjing Chen
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Yunhong Ning
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Meng Sun
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Renzhong Wang
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China.
| |
Collapse
|
69
|
ILC Differentiation in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:25-39. [DOI: 10.1007/978-981-16-8387-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
70
|
Fu L, Zhao J, Huang J, Li N, Dong X, He Y, Wang W, Wang Y, Qiu J, Guo X. A mitochondrial STAT3-methionine metabolism axis promotes ILC2-driven allergic lung inflammation. J Allergy Clin Immunol 2021; 149:2091-2104. [PMID: 34974065 DOI: 10.1016/j.jaci.2021.12.783] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s), the innate counterpart of T helper 2 cells (Th2), play a critical role in type 2 immune responses. However, the molecular regulatory mechanisms of ILC2s are still unclear. OBJECTIVE The aim of this study was to explore the importance of signal transducer and activator of transcription 3 (STAT3) to ILC2 function in allergic lung inflammation. METHODS Acute and chronic asthma models were established by intranasal administration of the protease allergen papain in VavicreStat3fl/fl, Il5tdtomato-creStat3fl/fl, and RorccreStat3fl/fl mice to verify the necessity of functional STAT3 for ILC2 allergic response. The intrinsic role of STAT3 in regulating ILC2 function was examined by generation of bone marrow chimera mice. The underlying mechanism was studied through confocal imaging, metabolomics analysis, and chromatin immunoprecipitation quantitative PCR. RESULTS STAT3 is essential for ILC2 effector function and promotes ILC2-driven allergic inflammation in the lung. Mechanistically, the alarmin cytokine interleukin (IL)-33 induces a non-canonical STAT3 phosphorylation at serine 727 in ILC2s, leading to translocation of STAT3 into the mitochondria. Mitochondrial STAT3 further facilitates adenosine triphosphate synthesis to fuel the methionine cycle and generation of S-adenosylmethionine, which supports the epigenetic reprogramming of type 2 cytokines in ILC2s. STAT3 deficiency, inhibition of STAT3 mitochondrial translocation, or blockade of methionine metabolism markedly dampened the ILC2 allergic response and ameliorated allergic lung inflammation. CONCLUSION The mitochondrial STAT3-methionine metabolism pathway is a key regulator that shapes ILC2 effector function through epigenetic regulation, and the related proteins or metabolites represent potential therapeutic targets for allergic lung inflammation.
Collapse
Affiliation(s)
- Liuhui Fu
- Institute for Immunology, Tsinghua University, Beijing; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing
| | - Jie Zhao
- Institute for Immunology, Tsinghua University, Beijing; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing
| | - Jiaoyan Huang
- Institute for Immunology, Tsinghua University, Beijing; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing
| | - Na Li
- Institute for Immunology, Tsinghua University, Beijing; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing
| | - Xin Dong
- Institute for Immunology, Tsinghua University, Beijing; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing
| | - Yao He
- Institute for Immunology, Tsinghua University, Beijing; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing
| | - Wenyan Wang
- Institute for Immunology, Tsinghua University, Beijing; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing.
| |
Collapse
|
71
|
Laurent P, Allard B, Manicki P, Jolivel V, Levionnois E, Jeljeli M, Henrot P, Izotte J, Leleu D, Groppi A, Seneschal J, Constans J, Chizzolini C, Richez C, Duffau P, Lazaro E, Forcade E, Schaeverbeke T, Pradeu T, Batteux F, Blanco P, Contin-Bordes C, Truchetet ME. TGFβ promotes low IL10-producing ILC2 with profibrotic ability involved in skin fibrosis in systemic sclerosis. Ann Rheum Dis 2021; 80:1594-1603. [PMID: 34285051 PMCID: PMC8600612 DOI: 10.1136/annrheumdis-2020-219748] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Innate lymphoid cells-2 (ILC2) were shown to be involved in the development of lung or hepatic fibrosis. We sought to explore the functional and phenotypic heterogeneity of ILC2 in skin fibrosis within systemic sclerosis (SSc). METHODS Blood samples and skin biopsies from healthy donor or patients with SSc were analysed by immunostaining techniques. The fibrotic role of sorted ILC2 was studied in vitro on dermal fibroblast and further explored by transcriptomic approach. Finally, the efficacy of a new treatment against fibrosis was assessed with a mouse model of SSc. RESULTS We found that ILC2 numbers were increased in the skin of patients with SSc and correlated with the extent of skin fibrosis. In SSc skin, KLRG1- ILC2 (natural ILC2) were dominating over KLRG1+ ILC2 (inflammatory ILC2). The cytokine transforming growth factor-β (TGFβ), whose activity is increased in SSc, favoured the expansion of KLRG1- ILC2 simultaneously decreasing their production of interleukin 10 (IL10), which regulates negatively collagen production by dermal fibroblasts. TGFβ-stimulated ILC2 also increased myofibroblast differentiation. Thus, human KLRG1- ILC2 had an enhanced profibrotic activity. In a mouse model of SSc, therapeutic intervention-combining pirfenidone with the administration of IL10 was required to reduce the numbers of skin infiltrating ILC2, enhancing their expression of KLRG1 and strongly alleviating skin fibrosis. CONCLUSION Our results demonstrate a novel role for natural ILC2 and highlight their inter-relationships with TGFβ and IL10 in the development of skin fibrosis, thereby opening up new therapeutic approaches in SSc.
Collapse
Affiliation(s)
- Paôline Laurent
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
| | - Benoit Allard
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
| | | | - Valérie Jolivel
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
| | | | - Mohamed Jeljeli
- Immunology Department, CHU Cochin Hospital, University of Paris Descartes Faculty of Medicine Paris Center, Paris, France
| | - Pauline Henrot
- Rheumatology Department, CHU de Bordeaux, Bordeaux, France
| | - Julien Izotte
- Animal Facility A2, University of Bordeaux, Talence, France
| | - Damien Leleu
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
| | - Alexis Groppi
- Centre de Bioinformatique de Bordeaux (CBiB), University of Bordeaux, Talence, France
- IBGC, CNRS, UMR 5095, University of Bordeaux, Talence, France
| | - Julien Seneschal
- Dermatology Department, CHU de Bordeaux, Bordeaux, France
- INSERM U1035, University of Bordeaux, Talence, France
| | - Joel Constans
- Vascular Medicine Department, CHU de Bordeaux, Bordeaux, France
| | - Carlo Chizzolini
- Immunology and Allergy, University of Geneva, Geneva, Switzerland
| | - Christophe Richez
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
- Rheumatology Department, CHU de Bordeaux, Bordeaux, France
| | - Pierre Duffau
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
- Internal Medicine, CHU de Bordeaux, Bordeaux, France
| | - Estibaliz Lazaro
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
- Internal Medicine, CHU de Bordeaux, Bordeaux, France
| | - Edouard Forcade
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
- Hematology, CHU de Bordeaux, Bordeaux, France
| | - Thierry Schaeverbeke
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
- Rheumatology Department, CHU de Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
| | - Frédéric Batteux
- Immunology Department, CHU Cochin Hospital, University of Paris Descartes Faculty of Medicine Paris Center, Paris, France
| | - Patrick Blanco
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
- Immunology department, CHU de Bordeaux, Bordeaux, France
| | - Cécile Contin-Bordes
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
- Immunology department, CHU de Bordeaux, Bordeaux, France
| | - Marie-Elise Truchetet
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
- Rheumatology Department, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
72
|
Sarkar MH, Yagi R, Endo Y, Koyama-Nasu R, Wang Y, Hasegawa I, Ito T, Junttila IS, Zhu J, Kimura MY, Nakayama T. IFNγ suppresses the expression of GFI1 and thereby inhibits Th2 cell proliferation. PLoS One 2021; 16:e0260204. [PMID: 34807911 PMCID: PMC8608330 DOI: 10.1371/journal.pone.0260204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
While IFNγ is a well-known cytokine that actively promotes the type I immune response, it is also known to suppress the type II response by inhibiting the differentiation and proliferation of Th2 cells. However, the mechanism by which IFNγ suppresses Th2 cell proliferation is still not fully understood. We found that IFNγ decreases the expression of growth factor independent-1 transcriptional repressor (GFI1) in Th2 cells, resulting in the inhibition of Th2 cell proliferation. The deletion of the Gfi1 gene in Th2 cells results in the failure of their proliferation, accompanied by an impaired cell cycle progression. In contrast, the enforced expression of GFI1 restores the defective Th2 cell proliferation, even in the presence of IFNγ. These results demonstrate that GFI1 is a key molecule in the IFNγ-mediated inhibition of Th2 cell proliferation.
Collapse
Affiliation(s)
- Murshed H. Sarkar
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Ryoji Yagi
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- * E-mail: (RY); (MYK)
| | - Yukihiro Endo
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Department of Experimental Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Ryo Koyama-Nasu
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Department of Experimental Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Yangsong Wang
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Department of Experimental Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Ichita Hasegawa
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Department of Experimental Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Toshihiro Ito
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Ilkka S. Junttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Motoko Y. Kimura
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Department of Experimental Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- * E-mail: (RY); (MYK)
| | - Toshinori Nakayama
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
73
|
Olguín-Martínez E, Ruiz-Medina BE, Licona-Limón P. Tissue-Specific Molecular Markers and Heterogeneity in Type 2 Innate Lymphoid Cells. Front Immunol 2021; 12:757967. [PMID: 34759931 PMCID: PMC8573327 DOI: 10.3389/fimmu.2021.757967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently described group of lymphoid subpopulations. These tissue-resident cells display a heterogeneity resembling that observed on different groups of T cells, hence their categorization as cytotoxic NK cells and helper ILCs type 1, 2 and 3. Each one of these groups is highly diverse and expresses different markers in a context-dependent manner. Type 2 innate lymphoid cells (ILC2s) are activated in response to helminth parasites and regulate the immune response. They are involved in the etiology of diseases associated with allergic responses as well as in the maintenance of tissue homeostasis. Markers associated with their identification differ depending on the tissue and model used, making the study and understanding of these cells a cumbersome task. This review compiles evidence for the heterogeneity of ILC2s as well as discussion and analyses of molecular markers associated with their identity, function, tissue-dependent expression, and how these markers contribute to the interaction of ILC2s with specific microenvironments to maintain homeostasis or respond to pathogenic challenges.
Collapse
Affiliation(s)
- Enrique Olguín-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Blanca E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
74
|
Schroeder JH, Roberts LB, Meissl K, Lo JW, Hromadová D, Hayes K, Zabinski T, Read E, Moreira Heliodoro C, Reis R, Howard JK, Grencis RK, Neves JF, Strobl B, Lord GM. Sustained Post-Developmental T-Bet Expression Is Critical for the Maintenance of Type One Innate Lymphoid Cells In Vivo. Front Immunol 2021; 12:760198. [PMID: 34795671 PMCID: PMC8594445 DOI: 10.3389/fimmu.2021.760198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILC) play a significant role in the intestinal immune response and T-bet+ CD127+ group 1 cells (ILC1) have been linked to the pathogenesis of human inflammatory bowel disease (IBD). However, the functional importance of ILC1 in the context of an intact adaptive immune response has been controversial. In this report we demonstrate that induced depletion of T-bet using a Rosa26-Cre-ERT2 model resulted in the loss of intestinal ILC1, pointing to a post-developmental requirement of T-bet expression for these cells. In contrast, neither colonic lamina propria (cLP) ILC2 nor cLP ILC3 abundance were altered upon induced deletion of T-bet. Mechanistically, we report that STAT1 or STAT4 are not required for intestinal ILC1 development and maintenance. Mice with induced deletion of T-bet and subsequent loss of ILC1 were protected from the induction of severe colitis in vivo. Hence, this study provides support for the clinical development of an IBD treatment based on ILC1 depletion via targeting T-bet or its downstream transcriptional targets.
Collapse
Affiliation(s)
- Jan-Hendrik Schroeder
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Luke B. Roberts
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Katrin Meissl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonathan W. Lo
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dominika Hromadová
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kelly Hayes
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Tomasz Zabinski
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Emily Read
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Wellcome Trust Cell Therapies and Regenerative Medicine PhD Programme, London, United Kingdom
| | | | - Rita Reis
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Jane K. Howard
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College, London, United Kingdom
| | - Richard K. Grencis
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Joana F. Neves
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Graham M. Lord
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
75
|
Hu B, Wang Y, Zheng G, Zhang H, Ni L. Effect of parasympathetic inhibition on expression of ILC2 cells in a mouse model of allergic rhinitis. World Allergy Organ J 2021; 14:100582. [PMID: 34659628 PMCID: PMC8496306 DOI: 10.1016/j.waojou.2021.100582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background We wanted to investigate whether parasympathetic inhibition affected the expression of type 2 innate lymphoid cells (ILC2s) in the nasal mucosa of a mouse model of allergic rhinitis (AR). Methods Thirty male C57BL/6 mice were randomly divided into 3 groups: control group, AR group, AR-treated group. AR nasal symptoms were assessed on a semi-quantitative scale according to the frequencies of nose rubbing and sneezing and the degree of rhinorrhea. The expression of cytokines protein in serum was detected by enzyme linked immunosorbent assay (ELISA). The number of ILC2s in nasal mucosa was detected by immunofluorescence double staining assay. Quantitative real-time Polymerase Chain Reaction (qPCR) was used to detect the expression of ILC2-associated factor in nasal mucosa. Results The symptom scores of the AR group were significantly higher than those of the control group and AR-treated group. The expression levels of mouse ovalbumin (OVA) specific IgE, IL4, IL5, and IL13 in the serum of AR group were significantly higher than those in the control group and AR-treated group. The number of ILC2s and the gene expression of ILC2s related factors GATA3, CD25 and CD90 (Thy1) in the nasal mucosa of the AR group were significantly higher than those of the control group and AR-treated group. Conclusions We found that parasympathetic inhibition relieved AR symptoms and inhibited immune response of AR mice. ILC2s play an important role in the occurrence and development of AR, and parasympathetic nerve inhibition reduced the number of ILC2s and inhibited the cytokines expression by ILC2s. Our data provide information on the mechanism of action of parasympathetic inhibition in AR.
Collapse
Affiliation(s)
- Binbin Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yan Wang
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Guotong Zheng
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310057, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Liyan Ni
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Taizhou Women and Children's Hospital, Taizhou, 318000, China
| |
Collapse
|
76
|
Fiancette R, Finlay CM, Willis C, Bevington SL, Soley J, Ng STH, Baker SM, Andrews S, Hepworth MR, Withers DR. Reciprocal transcription factor networks govern tissue-resident ILC3 subset function and identity. Nat Immunol 2021; 22:1245-1255. [PMID: 34556884 PMCID: PMC7611981 DOI: 10.1038/s41590-021-01024-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) are guardians of mucosal immunity, yet the transcriptional networks that support their function remain poorly understood. We used inducible combinatorial deletion of key transcription factors (TFs) required for ILC development (RORγt, RORα and T-bet) to determine their necessity in maintaining ILC3 identity and function. Both RORγt and RORα were required to preserve optimum effector functions; however, RORα was sufficient to support robust interleukin-22 production among the lymphoid tissue inducer (LTi)-like ILC3 subset, but not natural cytotoxicity receptor (NCR)+ ILC3s. Lymphoid tissue inducer-like ILC3s persisted with only selective loss of phenotype and effector functions even after the loss of both TFs. In contrast, continued RORγt expression was essential to restrain transcriptional networks associated with type 1 immunity within NCR+ ILC3s, which coexpress T-bet. Full differentiation to an ILC1-like population required the additional loss of RORα. Together, these data demonstrate how TF networks integrate within mature ILCs after development to sustain effector functions, imprint phenotype and restrict alternative differentiation programs.
Collapse
Affiliation(s)
- Rémi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Conor M Finlay
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sarah L Bevington
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jake Soley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sky T H Ng
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Syed Murtuza Baker
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Division of Informatics, Imaging & Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
77
|
Nabatanzi R, Bayigga L, Cose S, Canderan G, Rowland Jones S, Joloba M, Nakanjako D. Innate lymphoid cell dysfunction during long-term suppressive antiretroviral therapy in an African cohort. BMC Immunol 2021; 22:59. [PMID: 34445953 PMCID: PMC8390268 DOI: 10.1186/s12865-021-00450-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Innate lymphoid cells (ILC) are lymphoid lineage innate immune cells that do not mount antigen-specific responses due to their lack of B and T-cell receptors. ILCs are predominantly found at mucosal surfaces, as gatekeepers against invading infectious agents through rapid secretion of immune regulatory cytokines. HIV associated destruction of mucosal lymphoid tissue depletes ILCs, among other immune dysfunctions. Studies have described limited restoration of ILCs during the first three years of combined antiretroviral therapy (cART). Little is known about restoration of ILCs during long-term cART, particularly in sub-Saharan Africa which hosts increasing numbers of adults with at least a decade of cART. RESULTS We examined phenotypes and function of ILCs from peripheral blood mononuclear cells after 12 years of suppressive cART. We report that ILC1 frequencies (T-BET + CD127 + and CD161 +) were higher in cART-treated HIV-infected relative to age-matched health HIV-negative adults; P = 0.04 whereas ILC precursors (ILCP) were comparable in the two groups (P = 0.56). Interferon gamma (IFN-γ) secretion by ILC1 was higher among cART-treated HIV-infected relative to HIV-negative adults (P = 0.03). CONCLUSION HIV associated alteration of ILC persisted during cART and may likely affect the quality of host innate and adaptive immune responses during long-term cART.
Collapse
Affiliation(s)
- Rose Nabatanzi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lois Bayigga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Glenda Canderan
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| | | | - Moses Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Damalie Nakanjako
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
- Infectious Diseases Institute, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
78
|
Kasal DN, Liang Z, Hollinger MK, O'Leary CY, Lisicka W, Sperling AI, Bendelac A. A Gata3 enhancer necessary for ILC2 development and function. Proc Natl Acad Sci U S A 2021; 118:e2106311118. [PMID: 34353913 PMCID: PMC8364216 DOI: 10.1073/pnas.2106311118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type 2 helper effector program is driven by the master transcription factor GATA3 and can be expressed by subsets of both innate lymphoid cells (ILCs) and adaptive CD4+ T helper (Th) cells. While ILC2s and Th2 cells acquire their type 2 differentiation program under very different contexts, the distinct regulatory mechanisms governing this common program are only partially understood. Here we show that the differentiation of ILC2s, and their concomitant high level of GATA3 expression, are controlled by a Gata3 enhancer, Gata3 +674/762, that plays only a minimal role in Th2 cell differentiation. Mice lacking this enhancer exhibited defects in several but not all type 2 inflammatory responses, depending on the respective degree of ILC2 and Th2 cell involvement. Our study provides molecular insights into the different gene regulatory pathways leading to the acquisition of the GATA3-driven type 2 helper effector program in innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Zhitao Liang
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Maile K Hollinger
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL 60637
| | | | - Wioletta Lisicka
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637
| | - Anne I Sperling
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL 60637
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637;
- Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
79
|
Yuan X, Rasul F, Nashan B, Sun C. Innate lymphoid cells and cancer: Role in tumor progression and inhibition. Eur J Immunol 2021; 51:2188-2205. [PMID: 34189723 PMCID: PMC8457100 DOI: 10.1002/eji.202049033] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILCs), a critical component of the immune system, have recently been nominated as emerging players associated with tumor progression and inhibition. ILCs are classified into five groups: natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTis) cells. NK cells and ILC1s are mainly involved in antitumor activities due to their cytotoxic and cytokine production capabilities, respectively. The current understanding of the heterogeneous behavior of ILC2s and ILC3s in tumors is limited and incomplete. Mostly, their dual roles are modulated by their resident tissues, released cytokines, cancer types, and plasticity. Based on overlap RORγt and cytokine expression, the LTi cells were previously considered part of the ILC3s ontogeny, which are essential for the formation of the secondary lymphoid organs during embryogenesis. Indeed, these facts highlight the urgency in understanding the respective mechanisms that shape the phenotypes and responses of ILCs, either on the repressive or proliferative side in the tumor microenvironment (TME). This review aims to provide an updated view of ILCs biology with respect to tumorigenesis, including a description of ILC plasticity, their interaction with other immune cells and communication with components of the TME. Taken together, targeting ILCs for cancer immunotherapy could be a promising approach against tumors that needs to be further study.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Faiz Rasul
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Björn Nashan
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Cheng Sun
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
80
|
Zheng M, Mao K, Fang D, Li D, Lyu J, Peng D, Chen X, Cannon N, Hu G, Han J, Zhao K, Chen W, Zhu J. B cell residency but not T cell-independent IgA switching in the gut requires innate lymphoid cells. Proc Natl Acad Sci U S A 2021; 118:e2106754118. [PMID: 34187897 PMCID: PMC8271577 DOI: 10.1073/pnas.2106754118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunoglobulin A (IgA)-producing plasma cells derived from conventional B cells in the gut play an important role in maintaining the homeostasis of gut flora. Both T cell-dependent and T cell-independent IgA class switching occurs in the lymphoid structures in the gut, whose formation depends on lymphoid tissue inducers (LTis), a subset of innate lymphoid cells (ILCs). However, our knowledge on the functions of non-LTi helper-like ILCs, the innate counter parts of CD4 T helper cells, in promoting IgA production is still limited. By cell adoptive transfer and utilizing a unique mouse strain, we demonstrated that the generation of IgA-producing plasma cells from B cells in the gut occurred efficiently in the absence of both T cells and helper-like ILCs and without engaging TGF-β signaling. Nevertheless, B cell recruitment and/or retention in the gut required functional NKp46-CCR6+ LTis. Therefore, while CCR6+ LTis contribute to the accumulation of B cells in the gut through inducing lymphoid structure formation, helper-like ILCs are not essential for the T cell-independent generation of IgA-producing plasma cells.
Collapse
Affiliation(s)
- Mingzhu Zheng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Kairui Mao
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Difeng Fang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Dan Li
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Jun Lyu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
| | - Dingkang Peng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
- The Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China
| | - Xi Chen
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Nikki Cannon
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Gangqing Hu
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Jiajia Han
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892
| | - Keji Zhao
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Wanjun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892;
| |
Collapse
|
81
|
The Janus Face of IL-33 Signaling in Tumor Development and Immune Escape. Cancers (Basel) 2021; 13:cancers13133281. [PMID: 34209038 PMCID: PMC8268428 DOI: 10.3390/cancers13133281] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Interleukin-33 (IL-33) is often released from damaged cells, acting as a danger signal. IL-33 exerts its function by interacting with its receptor suppression of tumorigenicity 2 (ST2) that is constitutively expressed on most immune cells. Therefore, IL-33/ST2 signaling can modulate immune responses to participate actively in a variety of pathological conditions, such as cancer. Like a two-faced Janus, which faces opposite directions, IL-33/ST2 signaling may play contradictory roles on its impact on cancer progression through both immune and nonimmune cellular components. Accumulating evidence demonstrates both pro- and anti-tumorigenic properties of IL-33, depending on the complex nature of different tumor immune microenvironments. We summarize and discuss the most recent studies on the contradictory effects of IL-33 on cancer progression and treatment, with a goal to better understanding the various ways for IL-33 as a therapeutic target. Abstract Interleukin-33 (IL-33), a member of the IL-1 cytokine family, plays a critical role in maintaining tissue homeostasis as well as pathological conditions, such as allergy, infectious disease, and cancer, by promoting type 1 and 2 immune responses. Through its specific receptor ST2, IL-33 exerts multifaceted functions through the activation of diverse intracellular signaling pathways. ST2 is expressed in different types of immune cells, including Th2 cells, Th1 cells, CD8+ T cells, regulatory T cells (Treg), cytotoxic NK cells, group 2 innate lymphoid cells (ILC2s), and myeloid cells. During cancer initiation and progression, the aberrant regulation of the IL-33/ST2 axis in the tumor microenvironment (TME) extrinsically and intrinsically mediates immune editing via modulation of both innate and adaptive immune cell components. The summarized results in this review suggest that IL-33 exerts dual-functioning, pro- as well as anti-tumorigenic effects depending on the tumor type, expression levels, cellular context, and cytokine milieu. A better understanding of the distinct roles of IL-33 in epithelial, stromal, and immune cell compartments will benefit the development of a targeting strategy for this IL-33/ST2 axis for cancer immunotherapy.
Collapse
|
82
|
Jiang M, Cai R, Wang J, Li Z, Xu D, Jing J, Zhang F, Li F, Ding J. ILC2 Cells Promote Th2 Cell Differentiation in AECOPD Through Activated Notch-GATA3 Signaling Pathway. Front Immunol 2021; 12:685400. [PMID: 34354706 PMCID: PMC8329850 DOI: 10.3389/fimmu.2021.685400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
This study is to investigate the capacity of type 2 innate lymphoid cells (ILC2s) in regulating the Th2 type adaptive immune response of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The study enrolled healthy people, stable chronic obstructive pulmonary disease (COPD) patients, and AECOPD patients. Flow cytometry was used to detect Th2 and ILC2 cells in the peripheral blood. In addition, ILC2s from the peripheral blood of AECOPD patients were stimulated with PBS, IL-33, Jagged1, DAPT, IL-33+Jagged1, IL-33+DAPT, and IL-33+Jagged-1+DAP in vitro. The levels of cytokines in the culture supernatant were detected by ELISA and the culture supernatant was used to culture CD4 + T cells. The mRNA and protein levels of Notch1, hes1, GATA3, RORα, and NF-κB of ILC2s were detected by real-time PCR and Western blot. The proportion of Th2 and ILC2s was significantly increased in the peripheral blood of AECOPD patients, alone with the increased Notch1, hes1, and GATA3 mRNA levels. In vitro results showed that the mRNA and protein levels of Notch1, hes1, GATA3 and NF-κB were significantly increased after stimulation with Notch agonist, meanwhile, the level of type 2 cytokines were increased in the supernatant of cells stimulated with Notch agonist, and significantly promoted differentiation of Th2 cells in vitro. Disruption of Notch pathway weakened GATA3 expression and cytokine production, and ultimately affected the differentiation of Th2 cells. In conclusion, our results suggest that ILC2s can promote Th2 cell differentiation in AECOPD via activated Notch-GATA3 signal pathway.
Collapse
Affiliation(s)
- Min Jiang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Ren Cai
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Zheng Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Dan Xu
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Jing Jing
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fengsen Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
83
|
Kim J, Ryu S, Kim HY. Innate Lymphoid Cells in Tissue Homeostasis and Disease Pathogenesis. Mol Cells 2021; 44:301-309. [PMID: 33972473 PMCID: PMC8175152 DOI: 10.14348/molcells.2021.0053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. ILCs can be categorized into three groups on the basis of the transcription factors that direct their functions and the cytokines they produce. Notably, these functions parallel the effector functions of T lymphocytes. ILCs play a frontline role in host defense and tissue homeostasis by responding rapidly to environmental factors, conducting effector responses in a tissue-specific manner, and interacting with hematopoietic and non-hematopoietic cells throughout the body. Moreover, recent studies reveal that ILCs are involved in development of various inflammatory diseases, such as respiratory diseases, autoimmune diseases, or cancer. In this review, we discuss the recent findings regarding the biology of ILCs in health and inflammatory diseases.
Collapse
Affiliation(s)
- Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Seungwon Ryu
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
84
|
Watanabe-Asaka T, Hayashi M, Uemura S, Takai J, Suzuki A, Moriguchi T, Kawai Y. GATA2 participates in the recanalization of lymphatic vessels after surgical lymph node extirpation. Genes Cells 2021; 26:474-484. [PMID: 33864419 DOI: 10.1111/gtc.12852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
Lymphatic recanalization failure after lymphadenectomy constitutes a major risk of lymphedema in cancer surgery. It has been reported that GATA2, a zinc finger transcription factor, is expressed in lymphatic endothelial cells and is involved in the development of fetal lymphatic vessels. GATA3, another member of the GATA family of transcription factors, is required for the differentiation of lymphoid tissue inducer (LTi) cells and is essential for lymph node formation. However, how GATA2 and GATA3 function in recanalization after the surgical extirpation of lymphatic vessels has not been elucidated. Employing a new model of lymphatic recanalization, we examined the lymphatic reconnection process in Gata2 heterozygous deficient (Gata2+/- ) and Gata3 heterozygous deficient (Gata3+/- ) mice. We found that lymphatic recanalization was significantly impaired in Gata2+/- mice, while Gata3+/- mice rarely showed such abnormalities. Notably, the perturbed lymphatic recanalization in the Gata2+/- mice was partially restored by crossing with the Gata3+/- mice. Our results demonstrate for the first time that GATA2 participates in the regeneration of damaged lymphatic vessels and the unexpected suppressive activity of GATA3 against lymphatic recanalization processes.
Collapse
Affiliation(s)
| | - Moyuru Hayashi
- Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Satoshi Uemura
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akane Suzuki
- Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiko Kawai
- Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
85
|
Ghaedi M, Takei F. Innate lymphoid cell development. J Allergy Clin Immunol 2021; 147:1549-1560. [PMID: 33965092 DOI: 10.1016/j.jaci.2021.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Innate lymphoid cells (ILCs) mainly reside at barrier surfaces and regulate tissue homeostasis and immunity. ILCs are divided into 3 groups, group 1 ILCs, group 2 ILCs, and group 3 ILC3, on the basis of their similar effector programs to T cells. The development of ILCs from lymphoid progenitors in adult mouse bone marrow has been studied in detail, and multiple ILC progenitors have been characterized. ILCs are mostly tissue-resident cells that develop in the perinatal period. More recently, ILC progenitors have also been identified in peripheral tissues. In this review, we discuss the stepwise transcription factor-directed differentiation of mouse ILC progenitors into mature ILCs, the critical time windows in ILC development, and the contribution of bone marrow versus tissue ILC progenitors to the pool of mature ILCs in tissues.
Collapse
Affiliation(s)
- Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fumio Takei
- the Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada; Terry Fox Laboratory, B.C. Cancer, Vancouver, British Columbia, Canada.
| |
Collapse
|
86
|
Sakai R, Ito M, Komai K, Iizuka-Koga M, Matsuo K, Nakayama T, Yoshie O, Amano K, Nishimasu H, Nureki O, Kubo M, Yoshimura A. Kidney GATA3 + regulatory T cells play roles in the convalescence stage after antibody-mediated renal injury. Cell Mol Immunol 2021; 18:1249-1261. [PMID: 32917984 PMCID: PMC8093306 DOI: 10.1038/s41423-020-00547-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
FoxP3+ regulatory T cells (Tregs) play crucial roles in peripheral immune tolerance. In addition, Tregs that reside or accumulate in nonlymphoid tissues, called tissue Tregs, exhibit tissue-specific functions and contribute to the maintenance of tissue homeostasis and repair. In an experimental mouse model of crescentic glomerulonephritis induced by an anti-glomerular basement membrane antibody, Tregs started to accumulate in the kidney on day 10 of disease onset and remained at high levels (~30-35% of CD4+ T cells) during the late stage (days 21-90), which correlated with stable disease control. Treg depletion on day 21 resulted in the relapse of renal dysfunction and an increase in Th1 cells, suggesting that Tregs are essential for disease control during the convalescence stage. The Tregs that accumulated in the kidney showed tissue Treg phenotypes, including high expression of GATA3, ST2 (the IL33 receptor subunit), amphiregulin (Areg), and PPARγ. Although T-bet+ Tregs and RORγt+ Tregs were observed in the kidney, GATA3+ Tregs were predominant during the convalescence stage, and a PPARγ agonist enhanced the accumulation of GATA3+ Tregs in the kidney. To understand the function of specific genes in kidney Tregs, we developed a novel T cell transfer system to T cell-deficient mice. This experiment demonstrates that ST2, Areg, and CCR4 in Tregs play important roles in the accumulation of GATA3+ Tregs in the kidney and in the amelioration of renal injury. Our data suggest that GATA3 is important for the recruitment of Tregs into the kidney, which is necessary for convalescence after renal tissue destruction.
Collapse
Affiliation(s)
- Ryota Sakai
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, 350-8550, Japan.
| | - Minako Ito
- Medical Institute of Bioregulation Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kyoko Komai
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mana Iizuka-Koga
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-Osaka, 577-8502, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-Osaka, 577-8502, Japan
| | - Osamu Yoshie
- The Health and Kampo Institute, Sendai, Miyagi, 981-3205, Japan
| | - Koichi Amano
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, 350-8550, Japan
| | - Hiroshi Nishimasu
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masato Kubo
- Center for Animal Disease Models, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
87
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
88
|
NK cell and ILC heterogeneity in colorectal cancer. New perspectives from high dimensional data. Mol Aspects Med 2021; 80:100967. [PMID: 33941383 DOI: 10.1016/j.mam.2021.100967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Innate lymphoid cells (ILCs) and tissue-resident natural killer (NK) cells ensure immunity at environmental interfaces and help maintain barrier integrity of the intestinal tract. This wide range of innate lymphocytes is able to provide fast and potent inflammatory responses that, when deregulated, have been associated with pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). While the presence of tumor-infiltrating NK cells is generally associated with a favorable outcome in CRC patients, emerging evidence reveals distinct roles for ILCs in regulating CRC pathogenesis and progression. Advances in next generation sequencing technology, and in particular of single-cell RNA-seq approaches, along with multidimensional flow cytometry analysis, have helped to deconvolute the complexity and heterogeneity of the ILC system both in homeostatic and pathological contexts. In this review, we discuss the protective and detrimental roles of NK cells and ILCs in the pathogenesis of CRC, focusing on the phenotypic and transcriptional modifications these cells undergo during CRC development and progression.
Collapse
|
89
|
Rodriguez-Rodriguez N, Gogoi M, McKenzie AN. Group 2 Innate Lymphoid Cells: Team Players in Regulating Asthma. Annu Rev Immunol 2021; 39:167-198. [PMID: 33534604 PMCID: PMC7614118 DOI: 10.1146/annurev-immunol-110119-091711] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.
Collapse
Affiliation(s)
- Noe Rodriguez-Rodriguez
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Mayuri Gogoi
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Andrew N.J. McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK,Corresponding author:
| |
Collapse
|
90
|
Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12:673404. [PMID: 33959042 PMCID: PMC8093402 DOI: 10.3389/fphys.2021.673404] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
Collapse
Affiliation(s)
- Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Osvaldo Contreras
- Departamento de Biología Celular y Molecular, Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
91
|
Ebihara T, Tatematsu M, Fuchimukai A, Yamada T, Yamagata K, Takasuga S, Yamada T. Trained innate lymphoid cells in allergic diseases. Allergol Int 2021; 70:174-180. [PMID: 33328130 DOI: 10.1016/j.alit.2020.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) reside in peripheral tissues such as the lungs, skin, nasal cavity, and gut and provoke innate type 2 immunity against allergen exposure, parasitic worm infection, and respiratory virus infection by producing TH2 cytokines. Recent advances in understanding ILC2 biology revealed that ILC2s can be trained by IL-33 or allergic inflammation, are long-lived, and mount memory-like type 2 immune responses to any other allergens afterwards. In contrast, IL-33, together with retinoic acid, induces IL-10-producing immunosuppressive ILC2s. In this review, we discuss how the allergic cytokine milieu and other immune cells direct the generation of trained ILC2s with immunostimulatory or immunosuppressive recall capability in allergic diseases and infections associated with type 2 immunity. The molecular mechanisms of trained immunity by ILCs and the physiological relevance of trained ILC2s are also discussed.
Collapse
Affiliation(s)
- Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan.
| | - Megumi Tatematsu
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akane Fuchimukai
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Toshiki Yamada
- Department of Otorhinolaryngology, Head & Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenki Yamagata
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shunsuke Takasuga
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology, Head & Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
92
|
Fernando N, Sciumè G, O'Shea JJ, Shih HY. Multi-Dimensional Gene Regulation in Innate and Adaptive Lymphocytes: A View From Regulomes. Front Immunol 2021; 12:655590. [PMID: 33841440 PMCID: PMC8034253 DOI: 10.3389/fimmu.2021.655590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
The precise control of cytokine production by innate lymphoid cells (ILCs) and their T cell adaptive system counterparts is critical to mounting a proper host defense immune response without inducing collateral damage and autoimmunity. Unlike T cells that differentiate into functionally divergent subsets upon antigen recognition, ILCs are developmentally programmed to rapidly respond to environmental signals in a polarized manner, without the need of T cell receptor (TCR) signaling. The specification of cytokine production relies on dynamic regulation of cis-regulatory elements that involve multi-dimensional epigenetic mechanisms, including DNA methylation, transcription factor binding, histone modification and DNA-DNA interactions that form chromatin loops. How these different layers of gene regulation coordinate with each other to fine tune cytokine production, and whether ILCs and their T cell analogs utilize the same regulatory strategy, remain largely unknown. Herein, we review the molecular mechanisms that underlie cell identity and functionality of helper T cells and ILCs, focusing on networks of transcription factors and cis-regulatory elements. We discuss how higher-order chromatin architecture orchestrates these components to construct lineage- and state-specific regulomes that support ordered immunoregulation.
Collapse
Affiliation(s)
- Nilisha Fernando
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Giuseppe Sciumè
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
93
|
Miyazaki K, Miyazaki M. The Interplay Between Chromatin Architecture and Lineage-Specific Transcription Factors and the Regulation of Rag Gene Expression. Front Immunol 2021; 12:659761. [PMID: 33796120 PMCID: PMC8007930 DOI: 10.3389/fimmu.2021.659761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cell type-specific gene expression is driven through the interplay between lineage-specific transcription factors (TFs) and the chromatin architecture, such as topologically associating domains (TADs), and enhancer-promoter interactions. To elucidate the molecular mechanisms of the cell fate decisions and cell type-specific functions, it is important to understand the interplay between chromatin architectures and TFs. Among enhancers, super-enhancers (SEs) play key roles in establishing cell identity. Adaptive immunity depends on the RAG-mediated assembly of antigen recognition receptors. Hence, regulation of the Rag1 and Rag2 (Rag1/2) genes is a hallmark of adaptive lymphoid lineage commitment. Here, we review the current knowledge of 3D genome organization, SE formation, and Rag1/2 gene regulation during B cell and T cell differentiation.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medial Sciences, Kyoto University, Kyoto, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medial Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
94
|
Ge L, Zhang Y, Zhao X, Wang J, Zhang Y, Wang Q, Yu H, Zhang Y, You Y. EIF2AK2 selectively regulates the gene transcription in immune response and histones associated with systemic lupus erythematosus. Mol Immunol 2021; 132:132-141. [PMID: 33588244 DOI: 10.1016/j.molimm.2021.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
PKR, also known as EIF2AK2, is an IFN-stimulated gene (ISG) and shows a higher expression in probands with systemic lupus erythematosus (SLE), which is likely responsible for the impaired translational and proliferative responses to mitogens in T cells from SLE patients. In this study, we overexpressed EIF2AK2 in HeLa cells to study EIF2AK2-regulated genes using RNA-seq technology, followed by bioinformatic analysis of target genes of EIF2AK2-regulated transcriptional factors (TFs). Overexpression of EIF2AK2 promotes HeLa cell apoptosis. EIF2AK2 selectively represses the transcription of histone protein genes associated with SLE, immune response genes and TF genes, which was validated by RT-qPCR experiments. Analysis of motifs overrepresented in the promoter regions of EIF2AK2-regulated genes revealed eighteen EIF2AK2-regulated TFs involved in establishing the EIF2AK2 network. Eight out of these predicted EIF2AK2-regulated TFs were further verified by RT-qPCR selectively in both HeLa and Jurkat cells, and most such as HEY2, TFEC, BATF2, GATA3 and ATF3 and FOXO6 are known to regulate immune response. Our results suggest that the dsRNA-dependent kinase EIF2AK2 selectively regulates the transcription of immune response and SLE-associated histone protein genes, and such a selectivity is likely to be operated by EIF2AK2-targeted TFs. The EIF2AK2-TFs axis potentially offers new therapeutic targets for counteracting immunological disease in the future.
Collapse
Affiliation(s)
- Lan Ge
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yuhong Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Juan Wang
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yu Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Qi Wang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Han Yu
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi You
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
95
|
Michieletto MF, Henao-Mejia J. Ontogeny and heterogeneity of innate lymphoid cells and the noncoding genome. Immunol Rev 2021; 300:152-166. [PMID: 33559175 DOI: 10.1111/imr.12950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Since their discovery a decade ago, it has become evident that innate lymphoid cells (ILCs) play critical roles in protective immune responses against intracellular and extracellular pathogens but are also central regulators of epithelial barrier integrity and tissue homeostasis. ILCs populate almost every tissue in mammalian organisms; therefore, not surprisingly, dysregulation of their functions contributes to the development and progression of multiple inflammatory and metabolic diseases. Our knowledge of the transcriptional programs governing the development, differentiation, and functions of the different groups of ILCs has increased dramatically in the last ten years. However, with the advent of new technologies, an unprecedented level of heterogeneity, plasticity, and developmental complexity has started to be revealed. In this review, we highlight recent advances in our understanding of ILC development and their biological functions. In particular, we aim to emphasize how our increasing knowledge of the chromatin landscape and the noncoding genome of these innate lymphocytes is allowing us to better understand their development and functions in different contexts during homeostasis and inflammation. Moreover, we propose that the design of more refined genetic tools to study tissue-specific ILCs and their functions can be accomplished by leveraging our understanding of how specific noncoding elements of the genome regulate gene expression in ILCs.
Collapse
Affiliation(s)
- Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
96
|
Kang J, Loh K, Belyayev L, Cha P, Sadat M, Khan K, Gusev Y, Bhuvaneshwar K, Ressom H, Moturi S, Kaiser J, Hawksworth J, Robson SC, Matsumoto CS, Zasloff M, Fishbein TM, Kroemer A. Type 3 innate lymphoid cells are associated with a successful intestinal transplant. Am J Transplant 2021; 21:787-797. [PMID: 32594614 PMCID: PMC8049507 DOI: 10.1111/ajt.16163] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/25/2023]
Abstract
Although innate lymphoid cells (ILCs) play fundamental roles in mucosal barrier functionality and tissue homeostasis, ILC-related mechanisms underlying intestinal barrier function, homeostatic regulation, and graft rejection in intestinal transplantation (ITx) patients have yet to be thoroughly defined. We found protective type 3 NKp44+ ILCs (ILC3s) to be significantly diminished in newly transplanted allografts, compared to allografts at 6 months, whereas proinflammatory type 1 NKp44- ILCs (ILC1s) were higher. Moreover, serial immunomonitoring revealed that in healthy allografts, protective ILC3s repopulate by 2-4 weeks postoperatively, but in rejecting allografts they remain diminished. Intracellular cytokine staining confirmed that NKp44+ ILC3 produced protective interleukin-22 (IL-22), whereas ILC1s produced proinflammatory interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Our findings about the paucity of protective ILC3s immediately following transplant and their repopulation in healthy allografts during the first month following transplant were confirmed by RNA-sequencing analyses of serial ITx biopsies. Overall, our findings show that ILCs may play a key role in regulating ITx graft homeostasis and could serve as sentinels for early recognition of allograft rejection and be targets for future therapies.
Collapse
Affiliation(s)
- Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007
| | - Katrina Loh
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007,Children’s National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010
| | - Leonid Belyayev
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007,Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda MD, 20814
| | - Priscilla Cha
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007,Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda MD, 20814
| | - Mohammed Sadat
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington DC, 20007
| | - Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington DC, 20007
| | - Habtom Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 4000 Reservoir Road NW, Washington DC, 20007
| | - Sangeetha Moturi
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007
| | - Jason Kaiser
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007,Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda MD, 20814
| | - Jason Hawksworth
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007,Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda MD, 20814
| | - Simon C. Robson
- Departments of Anesthesiology and Medicine, CLS 612, 330 Brookline Avenue, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, 02115
| | - Cal S. Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007
| | - Michael Zasloff
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007
| | - Thomas M. Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington DC, 20007
| |
Collapse
|
97
|
Yuan F, Jiang L, Li Q, Sokulsky L, Wanyan Y, Wang L, Liu X, Zhou L, Tay HL, Zhang G, Yang M, Li F. A Selective α7 Nicotinic Acetylcholine Receptor Agonist, PNU-282987, Attenuates ILC2s Activation and Alternaria-Induced Airway Inflammation. Front Immunol 2021; 11:598165. [PMID: 33597946 PMCID: PMC7883686 DOI: 10.3389/fimmu.2020.598165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
Background The anti-inflammatory effect of an α7nAChR agonist, PNU-282987, has previously been explored in the context of inflammatory disease. However, the effects of PNU-282987 on type 2 innate lymphoid cells (ILC2s)-mediated allergic airway inflammation has not yet been established. Aims To determine the effects of PNU-282987 on the function of ILC2s in the context of IL-33– or Alternaria Alternata (AA)– induced airway inflammation. Methods PNU-282987 was administered to mice that received recombinant IL-33 or AA intranasal challenges. Lung histological analysis and flow cytometry were performed to determine airway inflammation and the infiltration and activation of ILC2s. The previously published α7nAChR agonist GTS-21 was employed as a comparable reagent. ILC2s were isolated from murine lung tissue and cultured in vitro in the presence of IL-33, IL-2, and IL-7 with/without either PNU-282987 or GTS-21. The expression of the transcription factors GATA3, IKK, and NF-κB were also determined. Results PNU-282987 and GTS-21 significantly reduced goblet cell hyperplasia in the airway, eosinophil infiltration, and ILC2s numbers in BALF, following IL-33 or AA challenge. In vitro IL-33 stimulation of isolated lung ILC2s showed a reduction of GATA3 and Ki67 in response to PNU-282987 or GTS-21 treatments. There was a significant reduction in IKK and NF-κB phosphorylation in the PNU-282987–treated group when compared to the GTS-21–treated ILC2s. Conclusion PNU-282987 inhibits ILC2-associated airway inflammation, where its effects were comparable to that of GTS-21.
Collapse
Affiliation(s)
- Fang Yuan
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Medical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Jiang
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianyang Li
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leon Sokulsky
- Priority Research Centre for Healthy Lungs, Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Yuanyuan Wanyan
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lingli Wang
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojie Liu
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lujia Zhou
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Yang
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Priority Research Centre for Healthy Lungs, Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Fuguang Li
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
98
|
RORα is a critical checkpoint for T cell and ILC2 commitment in the embryonic thymus. Nat Immunol 2021; 22:166-178. [PMID: 33432227 PMCID: PMC7116838 DOI: 10.1038/s41590-020-00833-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/03/2020] [Indexed: 01/30/2023]
Abstract
Type 2 innate lymphoid cells (ILC2) contribute to immune homeostasis, protective immunity and tissue repair. Here we demonstrate that functional ILC2 cells can arise in the embryonic thymus from shared T cell precursors, preceding the emergence of CD4+CD8+ (double-positive) T cells. Thymic ILC2 cells migrated to mucosal tissues, with colonization of the intestinal lamina propria. Expression of the transcription factor RORα repressed T cell development while promoting ILC2 development in the thymus. From RNA-seq, assay for transposase-accessible chromatin sequencing (ATAC-seq) and chromatin immunoprecipitation followed by sequencing (ChIP-seq) data, we propose a revised transcriptional circuit to explain the co-development of T cells and ILC2 cells from common progenitors in the thymus. When Notch signaling is present, BCL11B dampens Nfil3 and Id2 expression, permitting E protein-directed T cell commitment. However, concomitant expression of RORα overrides the repression of Nfil3 and Id2 repression, allowing ID2 to repress E proteins and promote ILC2 differentiation. Thus, we demonstrate that RORα expression represents a critical checkpoint at the bifurcation of the T cell and ILC2 lineages in the embryonic thymus.
Collapse
|
99
|
Deng Y, Chen H, Zeng Y, Wang K, Zhang H, Hu H. Leaving no one behind: tracing every human thymocyte by single-cell RNA-sequencing. Semin Immunopathol 2021; 43:29-43. [PMID: 33449155 DOI: 10.1007/s00281-020-00834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
Abstract
The thymus is the primary organ for T-cell development, providing an essential microenvironment consisting of the appropriate cytokine milieu and specialized stromal cells. Thymus-seeding progenitors from circulation immigrate into the thymus and undergo the stepwise T-cell specification, commitment, and selection processes. The transcriptional factors, epigenetic regulators, and signaling pathways involved in the T-cell development have been intensively studied using mouse models. Despite our growing knowledge of T-cell development, major questions remain unanswered regarding the ontogeny and early events of T-cell development at the fetal stage, especially in humans. The recently developed single-cell RNA-sequencing technique provides an ideal tool to investigate the heterogeneity of T-cell precursors and the molecular mechanisms underlying the divergent fates of certain T-cell precursors at the single-cell level. In this review, we aim to summarize the current progress of the study on human thymus organogenesis and thymocyte and thymic epithelial cell development, which is to shed new lights on developing novel strategies for in vitro T-cell regeneration and thymus rejuvenation.
Collapse
Affiliation(s)
- Yujun Deng
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong Chen
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.,State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Keyue Wang
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
100
|
Spinner CA, Lazarevic V. Transcriptional regulation of adaptive and innate lymphoid lineage specification. Immunol Rev 2020; 300:65-81. [PMID: 33615514 DOI: 10.1111/imr.12935] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022]
Abstract
Once alerted to the presence of a pathogen, activated CD4+ T cells initiate distinct gene expression programs that produce multiple functionally specialized T helper (Th) subsets. The cytokine milieu present at the time of antigen encounter instructs CD4+ T cells to differentiate into interferon-(IFN)-γ-producing Th1 cells, interleukin-(IL)-4-producing Th2 cells, IL-17-producing Th17 cells, follicular T helper (Tfh) cells, or regulatory T (Treg) cells. In each of these Th cell subsets, a single transcription factor has been identified as a critical regulator of its specialized differentiation program. In this context, the expression of the "master regulator" is necessary and sufficient to activate lineage-specific genes while restricting the gene expression program of alternative Th fates. Thus, the transcription factor T-bet controls Th1 differentiation program, while the development of Th2, Th17, Tfh, and Treg cells is dependent on transcription factors GATA3, RORγt, Bcl6, and Foxp3, respectively. Nevertheless, master regulators or, more precisely, lineage-defining transcription factors do not function in isolation. In fact, they interact with a complex network of transcription factors, orchestrating cell lineage specification programs. In this review, we discuss the concept of the combinatorial interactions of key transcription factors in determining helper T cell identity. Additionally, lineage-defining transcription factors have well-established functions beyond their role in CD4+ Th subsets. They play critically important functions at distinct stages during T cell development in the thymus and they control the development of innate lymphoid cells (ILCs) in the bone marrow. In tracking the journey of T cells traversing from the thymus to the periphery and during the immune response, we discuss in broad terms developmental stage and context-dependent functions of lineage-defining transcription factors in regulating specification programs of innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- Camille A Spinner
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|