51
|
Stencel J, Alai HR, Dhore-patil A, Urina-Jassir D, Le Jemtel TH. Obesity, Preserved Ejection Fraction Heart Failure, and Left Ventricular Remodeling. J Clin Med 2023; 12:3341. [PMID: 37176781 PMCID: PMC10179420 DOI: 10.3390/jcm12093341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Owing to the overwhelming obesity epidemic, preserved ejection fraction heart failure commonly ensues in patients with severe obesity and the obese phenotype of preserved ejection fraction heart failure is now commonplace in clinical practice. Severe obesity and preserved ejection fraction heart failure share congruent cardiovascular, immune, and renal derangements that make it difficult to ascertain whether the obese phenotype of preserved ejection fraction heart failure is the convergence of two highly prevalent conditions or severe obesity enables the development and progression of the syndrome of preserved ejection fraction heart failure. Nevertheless, the obese phenotype of preserved ejection fraction heart failure provides a unique opportunity to assess whether sustained and sizeable loss of excess body weight via metabolic bariatric surgery reverses the concentric left ventricular remodeling that patients with preserved ejection fraction heart failure commonly display.
Collapse
Affiliation(s)
- Jason Stencel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| | - Hamid R. Alai
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
- Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA 70119, USA
| | - Aneesh Dhore-patil
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| | - Daniela Urina-Jassir
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| | - Thierry H. Le Jemtel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| |
Collapse
|
52
|
Popovic D, Alogna A, Omar M, Sorimachi H, Omote K, Reddy YNV, Redfield MM, Burkhoff D, Borlaug BA. Ventricular stiffening and chamber contracture in heart failure with higher ejection fraction. Eur J Heart Fail 2023; 25:657-668. [PMID: 36994635 PMCID: PMC10330082 DOI: 10.1002/ejhf.2843] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/02/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
AIMS Ancillary analyses from clinical trials have suggested reduced efficacy for neurohormonal antagonists among patients with heart failure and preserved ejection fraction (HFpEF) and higher ranges of ejection fraction (EF). METHODS AND RESULTS A total of 621 patients with HFpEF were grouped into those with low-normal left ventricular EF (LVEF) (HFpEF<65% , n = 319, 50% ≤ LVEF <65%) or HFpEF≥65% (n = 302, LVEF ≥65%), and compared with 149 age-matched controls undergoing comprehensive echocardiography and invasive cardiopulmonary exercise testing. A sensitivity analysis was performed in a second non-invasive community-based cohort of patients with HFpEF (n = 244) and healthy controls without cardiovascular disease (n = 617). Patients with HFpEF≥65% had smaller left ventricular (LV) end-diastolic volume than HFpEF<65% , but LV systolic function assessed by preload recruitable stroke work and stroke work/end-diastolic volume was similarly impaired. Patients with HFpEF≥65% displayed an end-diastolic pressure-volume relationship (EDPVR) that was shifted leftward, with increased LV diastolic stiffness constant β, in both invasive and community-based cohorts. Cardiac filling pressures and pulmonary artery pressures at rest and during exercise were similarly abnormal in all EF subgroups. While patients HFpEF≥57% displayed leftward shifted EDPVR, those with HFpEF<57% had a rightward shifted EDPVR more typical of heart failure with reduced EF. CONCLUSION Most pathophysiologic differences in patients with HFpEF and higher EF are related to smaller heart size, increased LV diastolic stiffness, and leftward shift in the EDPVR. These findings may help to explain the absence of efficacy for neurohormonal antagonists in this group and raise a new hypothesis, that interventions to stimulate eccentric LV remodelling and enhance diastolic capacitance may be beneficial for patients with HFpEF and EF in the higher range.
Collapse
Affiliation(s)
- Dejana Popovic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alessio Alogna
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Massar Omar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiology, Odense University Hospital, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Hidemi Sorimachi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
53
|
Pugliese NR, De Biase N, Del Punta L, Balletti A, Armenia S, Buralli S, Mengozzi A, Taddei S, Metra M, Pagnesi M, Borlaug BA, Williams B, Masi S. Deep phenotype characterization of hypertensive response to exercise: implications on functional capacity and prognosis across the heart failure spectrum. Eur J Heart Fail 2023; 25:497-509. [PMID: 36992634 DOI: 10.1002/ejhf.2827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/31/2023] Open
Abstract
AIMS Limited evidence is available regarding the role of hypertensive response to exercise (HRE) in heart failure (HF). We evaluated the systolic blood pressure (SBP) to workload slope during exercise across the HF spectrum, investigating haemodynamic and prognostic correlates of HRE. METHODS AND RESULTS We prospectively enrolled 369 patients with HF Stage C (143 had preserved [HFpEF], and 226 reduced [HFrEF] ejection fraction), 201 subjects at risk of developing HF (HF Stages A-B), and 58 healthy controls. We performed a combined cardiopulmonary exercise stress echocardiography testing. We defined HRE as the highest sex-specific SBP/workload slope tertile in each HF stage. Median SBP/workload slope was 0.53 mmHg/W (interquartile range 0.36-0.72); the slope was 39% steeper in women than men (p < 0.0001). After adjusting for age and sex, SBP/workload slope in HFrEF (0.47, 0.30-0.63) was similar to controls (0.43, 0.35-0.57) but significantly lower than Stages A-B (0.61, 0.47-0.75) and HFpEF (0.63, 0.42-0.86). Patients with HRE showed significantly lower peak oxygen consumption and peripheral oxygen extraction. After a median follow-up of 16 months, HRE was independently associated with adverse outcomes (all-cause mortality and hospitalization for cardiovascular reasons: hazard ratio 2.05, 95% confidence interval 1.81-5.18), while rest and peak SBP were not. Kaplan-Meier analysis confirmed a worse survival probability in Stages A-B (p = 0.005) and HFpEF (p < 0.001), but not HFrEF. CONCLUSION A steeper SBP/workload slope is associated with impaired functional capacity across the HF spectrum and could be a more sensitive predictor of adverse events than absolute SBP values, mainly in patients in Stages A-B and HFpEF.
Collapse
Affiliation(s)
| | - Nicolò De Biase
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lavinia Del Punta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessio Balletti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Buralli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Matteo Pagnesi
- Institute of Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Barry A Borlaug
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bryan Williams
- Institute of Cardiovascular Science, University College London, and National Institute for Health Research University College London Biomedical Research Centre, London, UK
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Cardiovascular Science, University College London, and National Institute for Health Research University College London Biomedical Research Centre, London, UK
| |
Collapse
|
54
|
Wernhart S, Papathanasiou M, Rassaf T, Luedike P. The controversial role of beta-blockers in heart failure with preserved ejection fraction. Pharmacol Ther 2023; 243:108356. [PMID: 36750166 DOI: 10.1016/j.pharmthera.2023.108356] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Beta-blocker (BB) therapy is a main pillar in treating patients with heart failure and reduced ejection fraction and has shown a prognostic benefit. However, evidence for application of BB in heart failure with preserved ejection fraction (HFpEF), especially in the absence of coronary artery disease, atrial fibrillation or arterial hypertension, is scarce. HFpEF is characterized by elevations in left atrial pressure and reduced compliance of the left ventricle leading to a hampered increase of cardiac output (CO) during exercise, which results in exertional dyspnea. This may be due to either a limited increase in stroke volume or reduced chronotropy during physical activity. We critically discuss the pathophysiological background of HFpEF, current data on BB in heart failure therapy, as well as the potential benefits and harms of BB therapy in HFpEF. Furthermore, we argue that non-cardio selective BB with peripheral activity to reduce afterload may be more suitable in this population than cardio-selective BB. Although preliminary data on BB in HFpEF are available, multicenter prospective trials to assess a reduction of cardiovascular morbidity are warranted. Future trials need to focus on phenotyping HFpEF patients and assess who may benefit most from tailored BB therapy.
Collapse
Affiliation(s)
- Simon Wernhart
- University Hospital Essen, University Duisburg-Essen, West German Heart- and Vascular Center, Department of Cardiology and Vascular Medicine, Hufelandstrasse 55, 45147 Essen, Germany
| | - Maria Papathanasiou
- University Hospital Essen, University Duisburg-Essen, West German Heart- and Vascular Center, Department of Cardiology and Vascular Medicine, Hufelandstrasse 55, 45147 Essen, Germany
| | - Tienush Rassaf
- University Hospital Essen, University Duisburg-Essen, West German Heart- and Vascular Center, Department of Cardiology and Vascular Medicine, Hufelandstrasse 55, 45147 Essen, Germany
| | - Peter Luedike
- University Hospital Essen, University Duisburg-Essen, West German Heart- and Vascular Center, Department of Cardiology and Vascular Medicine, Hufelandstrasse 55, 45147 Essen, Germany.
| |
Collapse
|
55
|
Lv F, Zhang J, Tao Y. Efficacy and safety of inorganic nitrate/nitrite supplementary therapy in heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 10:1054666. [PMID: 36818337 PMCID: PMC9932197 DOI: 10.3389/fcvm.2023.1054666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Background Approximately half of patients with heart failure have a preserved ejection fraction (HFpEF). To date, only SGLT-2i, ARNi, and MRAs treatments have been shown to be effective for HFpEF. Exercise intolerance is the primary clinical feature of HFpEF. The aim of this meta-analysis was to explore the effect of inorganic nitrate/nitrite supplementary therapy on the exercise capacity of HFpEF patients. Methods We searched PubMed, Embase, Cochrane Library, OVID, and Web of Science for eligible studies for this meta-analysis. The primary outcomes were peak oxygen consumption (peak VO2), exercise time, and respiratory exchange ratio (RER) during exercise. The secondary outcomes were cardiac output, heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and systemic vascular resistance during rest and exercise, respectively. Results A total of eight randomized-controlled trials were enrolled for this meta-analysis. We found no benefit of inorganic nitrate/nitrite on exercise capacity in patients with HFpEF. Inorganic nitrate/nitrite compared to placebo, did not significantly increased peak VO2 (MD = 0.361, 95% CI = -0.17 to 0.89, p = 0.183), exercise time (MD = 9.74, 95% CI = -46.47 to 65.95, p = 0.734), and respiratory exchange ratio during exercise (MD = -0.003, 95% CI = -0.036 to 0.029, p = 0.834). Among the six diameters reflecting cardiac and artery hemodynamics, inorganic nitrate/nitrite can lower rest SBP, rest/exercise DBP, rest/exercise MAP, and exercise SVR, but has no effect in cardiac output and heart rate for HFpEF patients. Conclusion Our meta-analysis suggested that inorganic nitrate/nitrite supplementary therapy has no benefit in improving the exercise capacity of patients with HFpEF, but can yield a blood pressure lowering effect, especially during exercise.
Collapse
Affiliation(s)
- Feng Lv
- Department of Cardiology, Shengzhou People’s Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou City, Zhejiang Province, China
| | - Junyi Zhang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| | - Yuan Tao
- Department of Cardiology, Shengzhou People’s Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou City, Zhejiang Province, China,*Correspondence: Yuan Tao,
| |
Collapse
|
56
|
Pewowaruk RJ, Hein AJ, Hansen KM, Barnes JN, Chesler NC, Korcarz CE, Gepner AD. Exercise increases arterial stiffness independent of blood pressure in older Veterans. J Hypertens 2023; 41:316-325. [PMID: 36479879 PMCID: PMC9805522 DOI: 10.1097/hjh.0000000000003334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exercise-induced changes in arterial function could contribute to a hypertensive response to exercise (HRE) in older individuals. We performed the present analysis to define the acute arterial stiffness response to exercise in ambulatory older adults. METHODS Thirty-nine Veterans (>60 years old), without known cardiovascular disease, participated in this study, including 19 Veterans who were hypertensive (70.8 ± 6.8 years, 53% women) and 20 Veterans who were normotensive (72.0 ± 9.3 years, 40% women). Arterial stiffness parameters were measured locally with carotid artery ultrasound and regionally with carotid-femoral pulse wave velocity (cfPWV) before and during the 10 min after participants performed a Balke maximal exercise treadmill stress test. RESULTS The arterial stiffness response to exercise was similar for control and hypertensive participants. At 6 min postexercise, cfPWV was significantly increased (Δ1.5 ± 1.9 m/s, P = 0.004) despite mean blood pressure (BP) having returned to its baseline value (Δ1 ± 8 mmHg, P = 0.79). Arterial mechanics modeling also showed BP-independent increases in arterial stiffness with exercise ( P < 0.05). Postexercise cfPWV was correlated with postexercise SBP ( r = 0.50, P = 0.004) while baseline cfPWV ( r = 0.13, P = 1.00), and postexercise total peripheral resistance ( r = -0.18, P = 1.00) were not. CONCLUSION In older Veterans, exercise increases arterial stiffness independently of BP and the arterial stiffness increase with exercise is associated with increased postexercise SBP. BP-independent increases in arterial stiffness with exercise could contribute to a HRE in older adults.
Collapse
Affiliation(s)
- Ryan J Pewowaruk
- William S. Middleton Memorial Veterans Hospital
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health
| | - Amy J Hein
- William S. Middleton Memorial Veterans Hospital
| | - Kristin M Hansen
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health
| | - Jill N Barnes
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical Engineering, University of California - Irvine, California, USA
| | - Claudia E Korcarz
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health
| | - Adam D Gepner
- William S. Middleton Memorial Veterans Hospital
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health
| |
Collapse
|
57
|
Cai Z, Wu C, Xu Y, Cai J, Zhao M, Zu L. The NO-cGMP-PKG Axis in HFpEF: From Pathological Mechanisms to Potential Therapies. Aging Dis 2023; 14:46-62. [PMID: 36818566 PMCID: PMC9937694 DOI: 10.14336/ad.2022.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for almost half of all heart failure (HF) cases worldwide. Unfortunately, its incidence is expected to continue to rise, and effective therapy to improve clinical outcomes is lacking. Numerous efforts currently directed towards the pathophysiology of human HFpEF are uncovering signal transduction pathways and novel therapeutic targets. The nitric oxide-cyclic guanosine phosphate-protein kinase G (NO-cGMP-PKG) axis has been described as an important regulator of cardiac function. Suppression of the NO-cGMP-PKG signalling pathway is involved in the progression of HFpEF. Therefore, the NO-cGMP-PKG signalling pathway is a potential therapeutic target for HFpEF. In this review, we aim to explore the mechanism of NO-cGMP-PKG in the progression of HFpEF and to summarize potential therapeutic drugs that target this signalling pathway.
Collapse
Affiliation(s)
- Zhulan Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Cencen Wu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Yuan Xu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Jiageng Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Menglin Zhao
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Lingyun Zu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
58
|
Buber J, Robertson HT. Cardiopulmonary exercise testing for heart failure: pathophysiology and predictive markers. Heart 2023; 109:256-263. [PMID: 35410893 DOI: 10.1136/heartjnl-2021-319617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the numerous recent advancements in therapy, heart failure (HF) remains a principle cause of both morbidity and mortality. HF with preserved ejection fraction (HFpEF), a condition that shares the prevalence and adverse outcomes of HF with reduced ejection fraction, remains poorly recognised in its initial manifestations. Cardiopulmonary exercise testing (CPET), defined as a progressive work exercise test that includes non-invasive continuous measurement of cardiovascular and respiratory parameters, provides a reliable mode to evaluate for early features and for the assessment of prognostic features of both forms of HF. While CPET measurements are standard of care for advanced HF and transplant programmes, they merit a broader clinical application in the early diagnosis and assessment of patients with HFpEF. In this review, we provide an overview of the pathophysiology of exercise intolerance in HF and discuss key findings in CPETs used to evaluate both severity of impairment and the prognostic implications.
Collapse
Affiliation(s)
- Jonathan Buber
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - H Thomas Robertson
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
59
|
Li K, Cardoso C, Moctezuma-Ramirez A, Elgalad A, Perin E. Evaluation of large animal models for preclinical studies of heart failure with preserved ejection fraction using clinical score systems. Front Cardiovasc Med 2023; 10:1099453. [PMID: 37034319 PMCID: PMC10076838 DOI: 10.3389/fcvm.2023.1099453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a complex, heterogeneous spectrum of pathologic features combined with average left ventricular volume and diastolic dysfunction. HFpEF is a significant public health problem associated with high morbidity and mortality rates. Currently, effective treatments for HFpEF represent the greatest unmet need in cardiovascular medicine. A lack of an efficient preclinical model has hampered the development of new devices and medications for HFpEF. Because large animal models have similar physiologic traits as humans and appropriate organ sizes, they are the best option for limiting practical constraints. HFpEF is a highly integrated, multiorgan, systemic disorder requiring a multipronged investigative approach. Here, we review the large animal models of HFpEF reported to date and describe the methods that have been used to create HFpEF, including surgery-induced pressure overloading, medicine-induced pressure overloading, and diet-induced metabolic syndrome. In addition, for the first time to our knowledge, we use two established clinical HFpEF algorithms (HFA-PEFF and H2FPEF scores) to evaluate the currently available large animal models. We also discuss new technologies, such as continuous remote pressure monitors and inflatable aortic cuffs, as well as how the models could be improved. Based on current progress and our own experience, we believe an efficient large animal model of HFpEF should simultaneously encompass multiple pathophysiologic factors, along with multiorgan dysfunction. This could be fully evaluated through available methods (imaging, blood work). Although many models have been studied, only a few studies completely meet clinical score standards. Therefore, it is critical to address the deficiencies of each model and incorporate novel techniques to establish a more reliable model, which will help facilitate the understanding of HFpEF mechanisms and the development of a treatment.
Collapse
Affiliation(s)
- Ke Li
- Center for Preclinical Cardiovascular Research, The Texas Heart Institute, Houston, TX, United States
| | - Cristiano Cardoso
- Center for Preclinical Cardiovascular Research, The Texas Heart Institute, Houston, TX, United States
| | - Angel Moctezuma-Ramirez
- Center for Preclinical Cardiovascular Research, The Texas Heart Institute, Houston, TX, United States
| | - Abdelmotagaly Elgalad
- Center for Preclinical Cardiovascular Research, The Texas Heart Institute, Houston, TX, United States
- Correspondence: Abdelmotagaly Elgalad
| | - Emerson Perin
- Center for Clinical Research, The Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
60
|
Egbe AC, Miranda WR, Reddy YN, Anderson JH, Andi K, Goda A, Abozied O, Connolly HM, Borlaug BA. Prognostic Value of the H 2FPEF Score in Adults With Repaired Coarctation of Aorta. JACC. ADVANCES 2022; 1:100130. [PMID: 38939458 PMCID: PMC11198562 DOI: 10.1016/j.jacadv.2022.100130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/29/2024]
Abstract
Background Risk stratification is challenging in adults with repaired coarctation of aorta (COA) because of the complex interaction of multiple hemodynamic factors and differences in left ventricular adaptation to these factors. The H2FPEF score was originally developed for differentiating between heart failure with preserved ejection fraction and noncardiac dyspnea, but it has been shown to be useful for prognostication in other cardiovascular pathologies. Objectives The purpose of this study was to assess the prognostic role of the H2FPEF score in adults with repaired COA. Methods This is a retrospective cohort study of adults with repaired COA at the Mayo Clinic (2003-2019). The H2FPEF score was calculated at baseline and at 5-year follow-up. Cardiovascular events (heart failure hospitalization, transplant, or cardiovascular death) were ascertained from medical records. Results We identified 712 patients (age 33 years [range 21-45 years]; 419 [59%] males). The baseline H2FPEF score was 2.2 ± 1.4. There was a temporal increase in the H2FPEF score at 5 years (ΔH2FPEF score 0.34 ± 0.11) due to the increase in the prevalence of hypertension, obesity, and high filling pressures. The H2FPEF score correlated with left atrial volume (r = 0.73, P < 0.001), right atrial volume (r = 0.41, P < 0.001), right ventricular fractional area change (r = -0.46, P < 0.001), and left ventricular e' (r = -0.52, P < 0.001). Both the baseline H2FPEF score and ΔH2FPEF score were independently associated with cardiovascular events. Conclusions These results suggest that the H2FPEF score can be used for prognostication in patients with COA. The temporal increase in the H2FPEF score was due to factors such as hypertension, obesity, and high filling pressures, and hence, it provides potential therapeutic targets to improve outcomes in this population.
Collapse
Affiliation(s)
- Alexander C. Egbe
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - William R. Miranda
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yogesh N.V. Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason H. Anderson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kartik Andi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ahmed Goda
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Omar Abozied
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Heidi M. Connolly
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Barry A. Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
61
|
Omote K, Hsu S, Borlaug BA. Hemodynamic Assessment in Heart Failure with Preserved Ejection Fraction. Cardiol Clin 2022; 40:459-472. [PMID: 36210131 DOI: 10.1016/j.ccl.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is characterized by an inability of the heart to perfuse the body without pathologic increases in filling pressure at rest or during exertion. Right heart catheterization provides direct assessment for HF, providing the most robust and direct method to evaluate the central hemodynamic abnormalities, and serves as the gold standard to confirm or refute the presence of HFpEF. This article reviews current understanding of the best practices in the performance and interpretation of hemodynamic assessment, relates important pathophysiologic concepts to clinical care, and discusses current and evidence-based applications of hemodynamics in HFpEF.
Collapse
Affiliation(s)
- Kazunori Omote
- Department of Cardiovascular Medicine, Mayo Clinic and Foundation, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Steven Hsu
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 700 Rutland Avenue, Baltimore, MD 21205, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic and Foundation, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
62
|
Epidemiology, Diagnosis, Pathophysiology, and Initial Approach to Heart Failure with Preserved Ejection Fraction. Cardiol Clin 2022; 40:397-413. [DOI: 10.1016/j.ccl.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Safabakhsh S, Al-Shaheen A, Swiggum E, Mielniczuk L, Tremblay-Gravel M, Laksman Z. Arrhythmic Sudden Cardiac Death in Heart Failure With Preserved Ejection Fraction: Mechanisms, Genetics, and Future Directions. CJC Open 2022; 4:959-969. [PMID: 36444369 PMCID: PMC9700220 DOI: 10.1016/j.cjco.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an increasingly recognized disorder. Many clinical trials have failed to demonstrate benefit in patients with HFpEF but have recognized alarming rates of sudden cardiac death (SCD). Genetic testing has become standard in the workup of patients with otherwise unexplained cardiac arrest, but the genetic architecture of HFpEF, and the overlap of a genetic predisposition to HFpEF and arrhythmias, is poorly understood. An understanding of the genetics of HFpEF and related SCD has the potential to redefine and generate novel diagnostic, prognostic, and therapeutic tools. In this review, we examine recent pathophysiological and clinical advancements in our understanding of HFpEF, which reinforce the heterogeneity of the condition. We also discuss data describing SCD events in patients with HFpEF and review the current literature on genetic underpinnings of HFpEF. Mechanisms of arrhythmogenesis which may lead to SCD in this population are also explored. Lastly, we outline several areas of promise for experimentation and clinical trials that have the potential to further advance our understanding of and contribute to improved clinical care of this patient population.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Elizabeth Swiggum
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Mielniczuk
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Zachary Laksman
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
64
|
Eidizadeh A, Schnelle M, Leha A, Edelmann F, Nolte K, Werhahn SM, Binder L, Wachter R. Biomarker profiles in heart failure with preserved vs. reduced ejection fraction: results from the DIAST-CHF study. ESC Heart Fail 2022; 10:200-210. [PMID: 36184749 PMCID: PMC9871664 DOI: 10.1002/ehf2.14167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Chronic heart failure (HF) is a common disease and one of the leading causes of death worldwide. Heart failure with preserved ejection fraction (HFpEF) and with reduced ejection fraction (HFrEF) are different diseases with distinct as well as comparable pathophysiologies and diverse responses to therapeutic agents. We aimed to identify possible pathobiochemical signalling pathways and biomarkers in HFpEF and HFrEF by using a broad proteomic approach. METHODS AND RESULTS A total of 180 biomarkers in the plasma of a representative subgroup (71 years old) of HFpEF (70% female) with a left ventricular ejection fraction (LVEF) ≥ 50% and HFrEF (18% female) with an LVEF ≤ 40% patients (n = 127) from the Prevalence and Clinical Course of Diastolic Dysfunction and Diastolic Heart Failure (DIAST-CHF) trial were examined and compared with a healthy control group (n = 40; 48% female). We were able to identify 35 proteins that were expressed significantly different in both HF groups compared with the control group. We determine 29 unique proteins expressed in HFpEF and 33 unique proteins in HFrEF. Significantly up-regulated trefoil factor 3 (TFF3) and down-regulated contactin-1 could be identified as previously unknown biomarkers for HF. However, TFF3 is also a predictive factor for the occurrence of a cardiovascular event in HFpEF patients. In HFpEF, serine protease 27 was found at reduced levels for the first time, which could offer a new therapeutic target. Additionally, network analyses showed a special role of platelet-derived growth factor subunit A, Dickkopf-related protein 1, and tumour necrosis factor receptor superfamily member 6 in HFpEF patients, whereas perlecan and junctional adhesion molecule A stood out in the HFrEF group. Overall, signalling pathways of metabolic processes, cellular stress, and iron metabolism seemed to be important for HFrEF, whereas for HFpEF, oxygen stress, haemostasis, cell renewal, cell migration, and cell proliferation are in the foreground. CONCLUSIONS The identified proteins and signalling pathways offer new therapeutic and diagnostic approaches for patients with chronic HF.
Collapse
Affiliation(s)
- Abass Eidizadeh
- Institute for Clinical Chemistry/Interdisciplinary UMG LaboratoryUniversity Medical Center GöttingenGöttingenGermany
| | - Moritz Schnelle
- Institute for Clinical Chemistry/Interdisciplinary UMG LaboratoryUniversity Medical Center GöttingenGöttingenGermany,DZHK (German Centre for Cardiovascular Research), Partner Site GöttingenGöttingenGermany
| | - Andreas Leha
- DZHK (German Centre for Cardiovascular Research), Partner Site GöttingenGöttingenGermany,Department of Medical StatisticsUniversity Medical Center GöttingenGöttingenGermany
| | - Frank Edelmann
- Department of Internal Medicine and CardiologyCharité‐Universitätsmedizin Berlin, Campus Virchow KlinikumBerlinGermany,DZHK (German Centre for Cardiovascular Research), Partner Site BerlinBerlinGermany,Berlin Institute of HealthBerlinGermany
| | - Kathleen Nolte
- Clinic of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| | | | - Lutz Binder
- Institute for Clinical Chemistry/Interdisciplinary UMG LaboratoryUniversity Medical Center GöttingenGöttingenGermany,DZHK (German Centre for Cardiovascular Research), Partner Site GöttingenGöttingenGermany
| | - Rolf Wachter
- DZHK (German Centre for Cardiovascular Research), Partner Site GöttingenGöttingenGermany,Clinic of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany,Clinic and Policlinic for CardiologyUniversity Hospital LeipzigLeipzigGermany
| |
Collapse
|
65
|
Baratto C, Caravita S, Soranna D, Dewachter C, Bondue A, Zambon A, Badano LP, Parati G, Vachiéry J. Exercise haemodynamics in heart failure with preserved ejection fraction: a systematic review and meta-analysis. ESC Heart Fail 2022; 9:3079-3091. [PMID: 35748109 PMCID: PMC9715813 DOI: 10.1002/ehf2.13979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/08/2022] [Accepted: 05/08/2022] [Indexed: 11/08/2022] Open
Abstract
AIMS Exercise right heart catheterization (RHC) is considered the gold-standard test to diagnose heart failure with preserved ejection fraction (HFpEF). However, exercise RHC is an insufficiently standardized technique, and current haemodynamic thresholds to define HFpEF are not universally accepted. We sought to describe the exercise haemodynamics profile of HFpEF cohorts reported in literature, as compared with control subjects. METHODS AND RESULTS We performed a systematic literature review until December 2020. Studies reporting pulmonary artery wedge pressure (PAWP) at rest and peak exercise were extracted. Summary estimates of all haemodynamic variables were evaluated, stratified according to body position (supine/upright exercise). The PAWP/cardiac output (CO) slope during exercise was extrapolated. Twenty-seven studies were identified, providing data for 2180 HFpEF patients and 682 controls. At peak exercise, patients with HFpEF achieved higher PAWP (30 [29-31] vs. 16 [15-17] mmHg, P < 0.001) and mean right atrial pressure (P < 0.001) than controls. These differences persisted after adjustment for age, sex, body mass index, and body position. However, peak PAWP values were highly heterogeneous among the cohorts (I2 = 93%), with a relative overlap with controls. PAWP/CO slope was steeper in HFpEF than in controls (3.75 [3.20-4.28] vs. 0.95 [0.30-1.59] mmHg/L/min, P value < 0.0001), even after adjustment for covariates (P = 0.007). CONCLUSIONS Despite methodological heterogeneity, as well as heterogeneity of pooled haemodynamic estimates, the exercise haemodynamic profile of HFpEF patients is consistent across studies and characterized by a steep PAWP rise during exercise. More standardization of exercise haemodynamics may be advisable for a wider application in clinical practice.
Collapse
Affiliation(s)
- Claudia Baratto
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
- Department of CardiologyHopital Universitaire de Bruxelles, Hôpital Académique Erasme808 Route de Lennik1070BruxellesBelgium
| | - Sergio Caravita
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
- Department of Management, Information and Production EngineeringUniversity of BergamoDalmineItaly
| | - Davide Soranna
- Biostatistics UnitIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Céline Dewachter
- Department of CardiologyHopital Universitaire de Bruxelles, Hôpital Académique Erasme808 Route de Lennik1070BruxellesBelgium
| | - Antoine Bondue
- Department of CardiologyHopital Universitaire de Bruxelles, Hôpital Académique Erasme808 Route de Lennik1070BruxellesBelgium
| | - Antonella Zambon
- Biostatistics UnitIRCCS Istituto Auxologico ItalianoMilanItaly
- Department of Statistic and Quantitative MethodsUniversity of Milano‐BicoccaMilanItaly
| | - Luigi P. Badano
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Jean‐Luc Vachiéry
- Department of CardiologyHopital Universitaire de Bruxelles, Hôpital Académique Erasme808 Route de Lennik1070BruxellesBelgium
| |
Collapse
|
66
|
Iacovoni A, Palmieri VI, Abete R, Vecchi AL, Mortara A, Gori M, Tomasoni D, De Ponti R, Senni M. Right and left ventricular structures and functions in acute HFpEF: comparing the hypertensive pulmonary edema and worsening heart failure phenotypes. J Cardiovasc Med (Hagerstown) 2022; 23:663-671. [PMID: 36099073 DOI: 10.2459/jcm.0000000000001366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Limited data are available on right (RV) and left (LV) ventricular structures and functions in acute heart failure with preserved ejection fraction (AHF-pEF) presenting with hypertensive pulmonary edema (APE) versus predominant peripheral edema (peHF). METHODS AND RESULTS In a prospective study of consecutive patients with AHF-pEF, 80 patients met inclusion and not exclusion criteria, and underwent echocardiographic and laboratory examination in the emergency ward. The survived (94%) were re-evaluated at the discharge. At admission, systolic, diastolic, pulse blood pressure (BP), and high sensitivity troponin I were higher (all P < 0.05) with APE than with peHF while brain-type natriuretic peptide (BNP), hemoglobin and estimated glomerular filtration rate (eGFR) did not differ between the two phenotypes. LV volumes and EF were comparable between APE and peHF, but APE showed lower relative wall thickness (RWT), smaller left atrial (LA) volume, higher pulse pressure/stroke volume (PP/SV), and higher ratio between the peak velocities of the early diastolic waves sampled by traditional and tissue Doppler modality (mitral E/e', all P < 0.05). Right ventricular and atrial (RA) areas were smaller, tricuspid anular plane systolic excursion (TAPSE) and estimated pulmonary artery peak systolic pressure (sPAP) were higher with APE than with peHF (all P < 0.05) while averaged degree of severity of tricuspid insufficiency was greater with peHF than with APE. At discharge, PP/SV, mitral E/e', sPAP, RV sizes were reduced from admission in both phenotypes (all P < 0.05) and did not differ anymore between phenotypes, whereas LV EF and TAPSE did not show significant changes over time and treatments. CONCLUSION In AHF-pEF, at comparable BNP and LV EF, hypertensive APE showed eccentric LV geometry but smaller RV and RA sizes, and higher RV systolic function, increased LV ventricular filling and systemic arterial loads. AHF resolution abolished the differences in PP/SV and LV diastolic load between APE and peHF whereas APE remained associated with more eccentric RV and higher TAPSE.
Collapse
Affiliation(s)
- Attilio Iacovoni
- Cardiology Division, Cardiovascular Department, Azienda Ospedaliera Papa Giovanni XXIII Hospital, Bergamo
| | - VIttorio Palmieri
- Department of Cardiac Surgery and Transplantation, AORN dei Colli Monaldi-Cotugno-CTO Naples
| | - Raffaele Abete
- Cardiology Division, Cardiovascular Department, Azienda Ospedaliera Papa Giovanni XXIII Hospital, Bergamo
| | - Andrea Lorenzo Vecchi
- Department of Heart and Vessels, Ospedale di Circolo and Macchi Foundation, University of Insubria, Varese
| | - Andrea Mortara
- Department of Clinical Cardiology, Policlinico di Monza, Monza, Italy
| | - Mauro Gori
- Cardiology Division, Cardiovascular Department, Azienda Ospedaliera Papa Giovanni XXIII Hospital, Bergamo
| | - Daniela Tomasoni
- Cardiology, ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Roberto De Ponti
- Department of Cardiac Surgery and Transplantation, AORN dei Colli Monaldi-Cotugno-CTO Naples
| | - Michele Senni
- Cardiology Division, Cardiovascular Department, Azienda Ospedaliera Papa Giovanni XXIII Hospital, Bergamo
| |
Collapse
|
67
|
Ferroptosis: The Potential Target in Heart Failure with Preserved Ejection Fraction. Cells 2022; 11:cells11182842. [PMID: 36139417 PMCID: PMC9496758 DOI: 10.3390/cells11182842] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Ferroptosis is a recently identified cell death characterized by an excessive accumulation of iron-dependent reactive oxygen species (ROS) and lipid peroxides. Intracellular iron overload can not only cause damage to macrophages, endothelial cells, and cardiomyocytes through responses such as lipid peroxidation, oxidative stress, and inflammation, but can also affect cardiomyocyte Ca2+ handling, impair excitation–contraction coupling, and play an important role in the pathological process of heart failure with preserved ejection fraction (HFpEF). However, the mechanisms through which ferroptosis initiates the development and progression of HFpEF have not been established. This review explains the possible correlations between HFpEF and ferroptosis and provides a reliable theoretical basis for future studies on its mechanism.
Collapse
|
68
|
Zhao L, Zierath R, John JE, Claggett BL, Hall ME, Clark D, Butler KR, Correa A, Shah AM. Subclinical Risk Factors for Heart Failure With Preserved and Reduced Ejection Fraction Among Black Adults. JAMA Netw Open 2022; 5:e2231878. [PMID: 36107422 PMCID: PMC9478780 DOI: 10.1001/jamanetworkopen.2022.31878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Importance Sparse data exist regarding the contributions of subclinical impairments in cardiovascular and noncardiovascular function to incident heart failure (HF) with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF) among Black US residents, limiting understanding of the etiology of HF subtypes. Objectives To identify subclinical cardiovascular and noncardiovascular risk factors associated with HFrEF and HFpEF in Black US residents. Design, Setting, and Participants This cohort study used cross-sectional and time-to-event analysis with data from the community-based Jackson Heart Study (JHS), a longitudinal cohort study with baseline data collected from 2000 to 2004 (visit 1) and 10-year follow-up for incident HF. Black US residents from the Jackson, Mississippi, metropolitan area enrolled in JHS; those with prevalent HF, with moderate or greater aortic or mitral valve diseases on visit 1, who died before 2005, and who had missing HF status on follow-up were excluded. The analysis included 4361 participants and was performed between June 2020 to August 2021. Exposures Quantitative measures of cardiovascular (left ventricular mass index [LVMI], left ventricular ejection fraction [LVEF], left atrial [LA] diameter, and pulse pressure) and noncardiovascular (percent predicted forced expiration volume in 1 second [FEV1 (percent predicted)], estimated glomerular filtration rate (eGFR), waist circumference, and hemoglobin A1c [HbA1c] level) organ function. Main Outcomes and Measures Incident HF, HFrEF, and HFpEF over 10-year follow-up. Results The 4361 participants had a mean (SD) age of 54 (13); 2776 (64%) were women; and there were 163 HFpEF and 146 HFrEF events. In multivariable models incorporating measures reflecting each organ system, factors associated with incident HFpEF included greater LA diameter (hazard ratio [HR], 1.23; 95% CI, 1.03-1.47; P = .02), higher pulse pressure (HR, 1.23; 95% CI, 1.05-1.44; P = .009), lower FEV1 (percent predicted) (HR, 1.22; 95% CI, 1.04-1.43; P = .02), lower eGFR (HR, 1.43; 95% CI, 1.19-1.72; P < .001), higher HbA1c level (HR, 1.25; 95% CI, 1.07-1.45; P = .005), and higher waist circumference (HR, 1.41; 95% CI, 1.18-1.69; P < .001). Factors associated with incident HFrEF included greater LVMI (HR, 1.25; 1.07-1.46; P = .005), lower LVEF (HR, 1.65; 95% CI, 1.42-1.91; P < .001), lower FEV1 (percent predicted) (HR, 1.19; 95% CI, 1.00-1.42; P = .047), and lower eGFR (HR, 1.27; 95% CI, 1.04-1.55; P = .02). Conclusions and Relevance In this community-based cohort study of Black US residents, subclinical impairments in cardiovascular and noncardiovascular organ function were differentially associated with risk of incident HFpEF and HFrEF.
Collapse
Affiliation(s)
- Li Zhao
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Cardiovascular Medicine, the Sixth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Rani Zierath
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jenine E. John
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Brian Lee Claggett
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Donald Clark
- University of Mississippi Medical Center, Jackson
| | | | | | - Amil M. Shah
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
69
|
Kulej-Lyko K, Niewinski P, Tubek S, Krawczyk M, Kosmala W, Ponikowski P. Inhibition of peripheral chemoreceptors improves ventilatory efficiency during exercise in heart failure with preserved ejection fraction − a role of tonic activity and acute reflex response. Front Physiol 2022; 13:911636. [PMID: 36111161 PMCID: PMC9470150 DOI: 10.3389/fphys.2022.911636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral chemoreceptors (PChRs) play a significant role in maintaining adequate oxygenation in the bloodstream. PChRs functionality comprises two components: tonic activity (PChT) which regulates ventilation during normoxia and acute reflex response (peripheral chemosensitivity, PChS), which increases ventilation following a specific stimulus. There is a clear link between augmented PChS and exercise intolerance in patients with heart failure with reduced ejection fraction. It has been also shown that inhibition of PChRs leads to the improvement in exercise capacity. However, it has not been established yet: 1) whether similar mechanisms take part in heart failure with preserved ejection fraction (HFpEF) and 2) which component of PChRs functionality (PChT vs. PChS) is responsible for the benefit seen after the acute experimental blockade. To answer those questions we enrolled 12 stable patients with HFpEF. All participants underwent an assessment of PChT (attenuation of minute ventilation in response to low-dose dopamine infusion), PChS (enhancement of minute ventilation in response to hypoxia) and a symptom-limited cardiopulmonary exercise test on cycle ergometer. All tests were placebo-controlled, double-blinded and performed in a randomized order. Under resting conditions and at normoxia dopamine attenuated minute ventilation and systemic vascular resistance (p = 0.03 for both). These changes were not seen with placebo. Dopamine also decreased ventilatory and mean arterial pressure responses to hypoxia (p < 0.05 for both). Inhibition of PChRs led to a decrease in V˙E/V˙CO2 comparing to placebo (36 ± 3.6 vs. 34.3 ± 3.7, p = 0.04), with no effect on peak oxygen consumption. We found a significant relationship between PChT and the relative decrement of V˙E/V˙CO2 on dopamine comparing to placebo (R = 0.76, p = 0.005). There was a trend for correlation between PChS (on placebo) and V˙E/V˙CO2 during placebo infusion (R = 0.56, p = 0.059), but the relative improvement in V˙E/V˙CO2 was not related to the change in PChS (dopamine vs. placebo). We did not find a significant relationship between PChT and PChS. In conclusion, inhibition of PChRs in HFpEF population improves ventilatory efficiency during exercise. Increased PChS is associated with worse (higher) V˙E/V˙CO2, whereas PChT predicts an improvement in V˙E/V˙CO2 after PChRs inhibition. This results may be meaningful for patient selection in further clinical trials involving PChRs modulation.
Collapse
Affiliation(s)
- Katarzyna Kulej-Lyko
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
- *Correspondence: Katarzyna Kulej-Lyko,
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | | | - Wojciech Kosmala
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| |
Collapse
|
70
|
Schneider CA, Pfister R. Treatment of heart failure with preserved ejection fraction with SGLT2 inhibitors: new therapy standard? Herz 2022; 47:395-400. [PMID: 36018379 DOI: 10.1007/s00059-022-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a common and difficult-to-treat heart disease. Approximately half of patients with heart failure suffer from this form, and mortality is between 5% and 7% per year. Previous therapeutic trials for the treatment of HFpEF have been disappointing. However, recent data on therapy with sodium-glucose cotransporter‑2 (SGLT2) inhibitors in HFpEF are encouraging. In addition to numerous experimental studies showing improvement in diastolic dysfunction parameters, the EMPEROR-Preserved study demonstrated for the first time clinically that therapy with the SGLT2 inhibitor empagliflozin significantly reduced hospitalization for heart failure. By contrast, cardiovascular mortality was not affected. Differences for patients with and without type 2 diabetes mellitus were not observed. Thus, for the first time, there is an evidence-based treatment option to reduce hospitalization and improve quality of life in these patients. Further studies will show to what extent these beneficial effects will also lead to an improvement in the prognosis of these patients.
Collapse
Affiliation(s)
- Christian A Schneider
- Cardiology, PAN Klinik, Zeppelin Str. 1, 50667, Cologne, Germany. .,Clinic III for Internal Medicine, University of Cologne, Cologne, Germany.
| | - Roman Pfister
- Cardiology, PAN Klinik, Zeppelin Str. 1, 50667, Cologne, Germany.,Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
71
|
Larson KF, Malik A, Brozovich FV. Aging and Heart Failure with Preserved Ejection Fraction. Compr Physiol 2022; 12:3813-3822. [PMID: 35950652 DOI: 10.1002/cphy.c210035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heart failure is a clinical syndrome characterized by the inability of the cardiovascular system to provide adequate cardiac output at normal filling pressures. This results in a clinical syndrome characterized by dyspnea, edema, and decreased exertional tolerance. Heart failure with preserved ejection fraction (HFpEF) is an increasingly common disease, and the incidence of HFpEF increases with age. There are a variety of factors which contribute to the development of HFpEF, including the presence of hypertension, diabetes, obesity, and other pro-inflammatory states. These comorbid conditions result in changes at the biochemical and cell signaling level which ultimately lead to a disease with a great deal of phenotypic heterogeneity. In general, the physiologic dysfunction of HFpEF is characterized by vascular stiffness, increased cardiac filling pressures, pulmonary hypertension, and impaired volume management. The normal and abnormal processes associated with aging serve as an accelerant in this process, resulting in the hypothesis that HFpEF represents a form of presbycardia. In this article, we aim to review the processes importance of aging in the development of HFpEF by examining the disease and its causes from the biochemical to physiologic level. © 2022 American Physiological Society. Compr Physiol 12: 1-10, 2022.
Collapse
Affiliation(s)
- Kathryn F Larson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Awais Malik
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Frank V Brozovich
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
72
|
Harada K, Yamada S, Mamiya K, Higo S, Suzuki H, Teshima Y, Matsunaga S, Harada K, Nagao T, Shinoda N, Kato M, Marui N, Amano T, Murohara T. Cardiopulmonary exercise responses in patients with non-ischemic heart failure and a mildly reduced ejection fraction. Future Cardiol 2022; 18:627-634. [PMID: 35674279 DOI: 10.2217/fca-2021-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The cardiopulmonary response to exercise in patients with heart failure exhibiting a mildly reduced ejection fraction (41% ≤ EF ≤ 49%) remains unclear. Materials & methods: A total of 193 consecutive patients with heart failure (excluding those with coronary artery disease) who underwent cardiopulmonary exercise (CPX) tests were examined. CPX variables were compared among patients with reduced, mildly reduced, and preserved EF. Results: The CPX test responses of patients with mildly reduced EF were similar to those of patients with reduced or preserved EF; however, increases in systolic blood pressure during exercise differed significantly (32 ± 26, 50 ± 24, and 41 ± 31 mmHg, respectively; p = 0.016). Grip strength and an increase in systolic blood pressure during exercise were independently associated with peak oxygen uptake in patients with mildly reduced EF (β = 0.41, 0.35, respectively; p < 0.05). Conclusion: Measurements of grip strength and blood pressure during exercise are useful predictors of prognoses in patients with non-ischemic and mildly reduced EF.
Collapse
Affiliation(s)
- Ken Harada
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Sumio Yamada
- Department of Physical Therapy, School of Health Sciences, Nagoya University, Nagoya, 461-8673, Japan
| | - Kumiko Mamiya
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Sayaka Higo
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Hitomi Suzuki
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Yuto Teshima
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Shun Matsunaga
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Kazuhiro Harada
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Tomoyuki Nagao
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Norihiro Shinoda
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Masataka Kato
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Nobuyuki Marui
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, 455-8530, Japan
| | - Tetsuya Amano
- Department of Cardiology, Aichi Medical University Hospital, Nagakute, 480-1195, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| |
Collapse
|
73
|
Gong X, Hu M, Li M. Relationship of arterial tonometry and exercise in patients with chronic heart failure: a systematic review with meta-analysis and trial sequential analysis. BMC Cardiovasc Disord 2022; 22:345. [PMID: 35909113 PMCID: PMC9341099 DOI: 10.1186/s12872-022-02792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Arterial stiffness is a common characteristic in patients with chronic heart failure (CHF), and arterial tonometric technologies related to arterial stiffness are novel and effective methods and have an important value in the diagnosis and prognosis of CHF. In terms of ameliorating arterial stiffness in patients with CHF, exercise training is considered an adjuvant treatment and also an effective means in the diagnosis and judgment of prognosis. However, there are huge controversies and inconsistencies in these aspects. The objective of this meta-analysis was to systematically test the connection of arterial tonometry and exercise in patients with CHF. METHODS Databases, including MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, were accessed from inception to 7 March 2022. The meta-analysis was then conducted, and trial sequential analysis (TSA) was performed jointly to further verify our tests and reach more convincing conclusions by using RevMan version 5.4 software, STATA version 16.0 software, and TSA version 0.9.5.10 Beta software. RESULTS Eighteen articles were included, with a total of 876 participants satisfying the inclusion criteria. The pooling revealed that flow-mediated dilation (FMD) was lower in basal condition [standardized mean difference (SMD): - 2.28%, 95% confidence interval (CI) - 3.47 to - 1.08, P < 0.001] and improved significantly after exercise (SMD: 5.96%, 95% CI 2.81 to 9.05, P < 0.001) in patients with heart failure with reduced ejection fraction (HFrEF) compared with healthy participants. The high-intensity training exercise was more beneficial (SMD: 2.88%, 95% CI 1.78 to 3.97, P < 0.001) than the moderate-intensity training exercise to improve FMD in patients with CHF. For augmentation index (AIx), our study indicated no significant differences (SMD: 0.50%, 95% CI - 0.05 to 1.05, P = 0.074) in patients with heart failure with preserved ejection fraction (HFpEF) compared with healthy participants. However, other outcomes of our study were not identified after further verification using TSA, and more high-quality studies are needed to reach definitive conclusions in the future. CONCLUSIONS This review shows that FMD is lower in basal condition and improves significantly after exercise in patients with HFrEF compared with healthy population; high-intensity training exercise is more beneficial than moderate-intensity training exercise to improve FMD in patients with CHF; besides, there are no significant differences in AIx in patients with HFpEF compared with the healthy population. More high-quality studies on this topic are warranted.
Collapse
Affiliation(s)
- Xiaodan Gong
- Department of Cardiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Mengwen Hu
- Department of Experimental Surgery, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mei Li
- Institute of Physiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
74
|
Effects of Exercise on Heart Failure with Preserved Ejection Fraction: An Updated Review of Literature. J Cardiovasc Dev Dis 2022; 9:jcdd9080241. [PMID: 36005405 PMCID: PMC9409671 DOI: 10.3390/jcdd9080241] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents the most common HF phenotype of patients aged > 65 years, with an incidence and a prevalence that are constantly growing. The HFpEF cardinal symptom is exercise intolerance (EI), defined as the impaired ability to perform physical activity and to reach the predicted age-related level of exercise duration in the absence of symptoms—such as fatigue or dyspnea—and is associated with a poor quality of life, a higher number of hospitalizations, and poor outcomes. The evidence of the protective effect between exercise and adverse cardiovascular outcomes is numerous and long-established. Regular exercise is known to reduce cardiovascular events and overall mortality both in apparently healthy individuals and in patients with established cardiovascular disease, representing a cornerstone in the prevention and treatment of many cardio-metabolic conditions. Several studies have investigated the role of exercise in HFpEF patients. The present review aims to dwell upon the effects of exercise on HFpEF. For this purpose, the relevant data from a literature search (PubMed, EMBASE, and Medline) were reviewed. The analysis of these studies underlines the fact that exercise training programs improve the cardiorespiratory performance of HFpEF patients in terms of the increase in peak oxygen uptake, the 6 min walk test distance, and the ventilatory threshold; on the other hand, diastolic or systolic functions are generally unchanged or only partially modified by exercise, suggesting that multiple mechanisms contribute to the improvement of exercise tolerance in HFpEF patients. In conclusion, considering that exercise training programs are able to improve the cardiorespiratory performance of HFpEF patients, the prescription of exercise training programs should be encouraged in stable HFpEF patients, and further research is needed to better elucidate the pathophysiological mechanisms underpinning the beneficial effects described.
Collapse
|
75
|
Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current Understanding of Molecular Pathophysiology of Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:928232. [PMID: 35874547 PMCID: PMC9301384 DOI: 10.3389/fphys.2022.928232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Heart Failure (HF) is the most common cause of hospitalization in the Western societies. HF is a heterogeneous and complex syndrome that may result from any dysfunction of systolic or diastolic capacity. Abnormal diastolic left ventricular function with impaired relaxation and increased diastolic stiffness is characteristic of heart failure with preserved ejection fraction (HFpEF). HFpEF accounts for more than 50% of all cases of HF. The prevalence increases with age: from around 1% for those aged <55 years to >10% in those aged 70 years or over. Nearly 50% of HF patients have HFrEF and the other 50% have HFpEF/HFmrEF, mainly based on studies in hospitalized patients. The ESC Long-Term Registry, in the outpatient setting, reports that 60% have HFrEF, 24% have HFmrEF, and 16% have HFpEF. To some extent, more than 50% of HF patients are female. HFpEF is closely associated with co-morbidities, age, and gender. Epidemiological evidence suggests that HFpEF is highly represented in older obese women and proposed as 'obese female HFpEF phenotype'. While HFrEF phenotype is more a male phenotype. In addition, metabolic abnormalities and hemodynamic perturbations in obese HFpEF patients appear to have a greater impact in women then in men (Sorimachi et al., European J of Heart Fail, 2022, 22). To date, numerous clinical trials of HFpEF treatments have produced disappointing results. This outcome suggests that a "one size fits all" approach to HFpEF may be inappropriate and supports the use of tailored, personalized therapeutic strategies with specific treatments for distinct HFpEF phenotypes. The most important mediators of diastolic stiffness are the cardiomyocytes, endothelial cells, and extracellular matrix (ECM). The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of HFpEF pathologies. These signalling networks contribute to the development of the diseases. Inhibition and/or attenuation of these signalling networks also delays the onset of disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress and emphasize the nature of the contribution of most important cells to the development of HFpEF via increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
76
|
Wang S, Chen A, Duan X. Resting Cardiac Power Predicts Adverse Outcome in Heart Failure Patients With Preserved Ejection Fraction: A Prospective Study. Front Cardiovasc Med 2022; 9:915918. [PMID: 35865378 PMCID: PMC9294213 DOI: 10.3389/fcvm.2022.915918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND We sought to explore the significance of resting cardiac power/mass in predicting adverse outcome in patients with heart failure with preserved ejection fraction (HFpEF). METHODS This prospective cohort study included patients with HFpEF and without significant valve disease or right ventricular dysfunction. Cardiac power was normalized to left ventricular (LV) mass and expressed in W/100 g of LV myocardium. Multivariate Cox regression analysis was used to evaluate the association between resting cardiac power/mass and composite endpoint, which included all-cause mortality and heart failure (HF) hospitalization. RESULTS A total of 2,089 patients were included in this study. After an average follow-up of 4.4 years, 612 (29.30%) patients had composite endpoint, in which 331 (15.84%) died and 391 (18.72%) experienced HF hospitalization. In multivariate Cox regression analysis, resting power/mass < 0.7 W/m2 was independently associated with composite endpoint, all-cause mortality, cardiovascular mortality and HF hospitalization, with hazard ratios (HR) of 1.309 [95% confidence interval (CI): 1.108-1.546, P = 0.002], 1.697 (95%CI: 1.344-2.143, P < 0.001), 2.513 (95%CI: 1.711-3.689, P < 0.001), and 1.294 (95%CI: 1.052-1.592, P = 0.015), respectively. For composite endpoint, cardiovascular mortality and HF hospitalization, the C statistic increased significantly when incorporating resting cardiac power/mass into a model with established risk factors. For composite endpoint, the continuous net reclassification index after adding resting cardiac power/mass in the original model with N-terminal pro-brain natriuretic peptide was 13.1% (95%CI: 2.9-21.6%, P = 0.007), and the integrated discrimination index was 1.9% (95%CI: 0.8-3.2%, P < 0.001). CONCLUSION Resting cardiac power determined by non-invasive echocardiography is independently associated with the risk of adverse outcomes in HFpEF patients and provides incremental prognostic information.
Collapse
Affiliation(s)
- Shiqi Wang
- General Department of Zhengzhou First People’s Hospital, Zhengzhou, China
| | - Aiqi Chen
- Department of Cardiology, Hospital of Joint Logistic Support Force of the Chinese People’s Liberation Army, Zhengzhou, China
| | - Xiaokai Duan
- General Department of Zhengzhou First People’s Hospital, Zhengzhou, China
| |
Collapse
|
77
|
Bozkurt S, Ayten UE. ln silico simulation of the interaction among autoregulatory mechanisms regulating cerebral blood flow rate in the healthy and systolic heart failure conditions during exercise. Med Biol Eng Comput 2022; 60:1863-1879. [DOI: 10.1007/s11517-022-02585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
|
78
|
Lewis GA, Rosala-Hallas A, Dodd S, Schelbert EB, Williams SG, Cunnington C, McDonagh T, Miller CA. Predictors of myocardial fibrosis and response to anti-fibrotic therapy in heart failure with preserved ejection fraction. Int J Cardiovasc Imaging 2022; 38:1569-1578. [PMID: 35138474 PMCID: PMC9797453 DOI: 10.1007/s10554-022-02544-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/25/2022] [Indexed: 01/01/2023]
Abstract
Myocardial fibrosis, measured using magnetic resonance extracellular volume (ECV), associates with adverse outcome in heart failure with preserved ejection fraction (HFpEF). In the PIROUETTE (The Pirfenidone in Patients with Heart Failure and Preserved Left Ventricular Ejection Fraction) trial, the novel anti-fibrotic agent pirfenidone reduced myocardial fibrosis. We sought to identify baseline characteristics that associate with myocardial fibrotic burden, the change in myocardial fibrosis over a year, and predict response to pirfenidone in patients with HFpEF. Amongst patients enrolled in the PIROUETTE trial (n = 107), linear regression models were used to assess the relationship between baseline variables and baseline myocardial ECV, with change in myocardial ECV adjusting for treatment allocation, and to identify variables that modified the pirfenidone treatment effect. Body mass index, left atrial reservoir strain, haemoglobin and aortic distensibility were associated with baseline ECV in stepwise modelling, and systolic blood pressure, and log N-terminal pro B-type natriuretic peptide were associated with baseline ECV in clinically-guided modelling. QRS duration, left ventricular mass and presence of an infarct at baseline were associated with an increase in ECV from baseline to week 52. Whilst QRS duration, presence of an infarct, global longitudinal strain and left atrial strain modified the treatment effect of pirfenidone when considered individually, no variable modified treatment effect on multivariable modelling. Baseline characteristics were identified that associate with myocardial fibrosis and predict change in myocardial fibrosis. No variables that independently modify the treatment effect of pirfenidone were identified (PIROUETTE, NCT02932566).
Collapse
Affiliation(s)
- Gavin A Lewis
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, England
- Manchester University NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, England
| | - Anna Rosala-Hallas
- Liverpool Clinical Trials Centre, Clinical Directorate, Faculty of Health and Life Sciences, University of Liverpool (a member of Liverpool Health Partners), Alder Hey Children's NHS Foundation Trust, Liverpool, L12 2AP, England
| | - Susanna Dodd
- Department of Health Data Science, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool (a member of Liverpool Health Partners), Block F, Waterhouse Bld, 1-5 Brownlow Street, Liverpool, L69 3GL, England
| | - Erik B Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon G Williams
- Manchester University NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, England
| | - Colin Cunnington
- Manchester University NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, England
| | | | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, England.
- Manchester University NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, England.
- Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, M13 9PT, England.
| |
Collapse
|
79
|
Marco Guazzi M, Wilhelm M, Halle M, Van Craenenbroeck E, Kemps H, de Boer RA, Coats AJ, Lund L, Mancini D, Borlaug B, Filippatos G, Pieske B. Exercise Testing in HFpEF: an Appraisal Through Diagnosis, Pathophysiology and Therapy A Clinical Consensus Statement of the Heart Failure Association (HFA) and European Association of Preventive Cardiology (EAPC) of the European Society of Cardiology (ESC). Eur J Heart Fail 2022; 24:1327-1345. [PMID: 35775383 PMCID: PMC9542249 DOI: 10.1002/ejhf.2601] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/10/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) universally complain of exercise intolerance and dyspnoea as key clinical correlates. Cardiac as well as extracardiac components play a role for the limited exercise capacity, including an impaired cardiac and peripheral vascular reserve, a limitation in mechanical ventilation and/or gas exchange with reduced pulmonary vascular reserve, skeletal muscle dysfunction and iron deficiency/anaemia. Although most of these components can be differentiated and quantified through gas exchange analysis by cardiopulmonary exercise testing (CPET), the information provided by objective measures of exercise performance have not been systematically considered in the recent algorithms/scores for HFpEF diagnosis, neither by European nor US groups. The current Clinical Consensus Statement by the HFA and EAPC Association of the ESC aims at outlining the role of exercise testing and its pathophysiological, clinical and prognostic insights, addressing the implication of a thorough functional evaluation from the diagnostic algorithm to the pathophysiology and treatment perspectives of HFpEF. Along with these goals, we provide a specific analysis on the evidence that CPET is the standard for assessing, quantifying, and differentiating the origin of dyspnoea and exercise impairment and even more so when combined with echo and/or invasive hemodynamic evaluation is here provided. This will lead to improved quality of diagnosis when applying the proposed scores and may also help useful to implement the progressive characterization of the specific HFpEF phenotypes, a critical step toward the delivery of phenotype-specific treatments.
Collapse
Affiliation(s)
- M Marco Guazzi
- Division of Cardiology, University of Milano School of Medicine, San Paolo Hospital, Milano
| | - Matthias Wilhelm
- Department of Cardiology Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Martin Halle
- Department of Prevention and Sports Medicine, Faculty of Medicine, University Hospital 'Klinikum rechts der Isar', Technical University Munich, Munich, Germany; DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), partner site Munich, Munich Heart Alliance, Munich, Germany
| | - Emeline Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Hareld Kemps
- Department of Cardiology, Máxima Medical Center, Eindhoven, Netherlands; Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Rudolph A de Boer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | | | - Lars Lund
- Solna, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Donna Mancini
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Barry Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55902, United States
| | | | - Burkert Pieske
- Department of Cardiology, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany, German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany, German Heart Center, Berlin, Germany
| |
Collapse
|
80
|
Jimba T, Kohsaka S, Yamasaki M, Otsuka T, Harada K, Shiraishi Y, Koba S, Takei M, Kohno T, Matsushita K, Miyazaki T, Kodera S, Tsukamoto S, Iida K, Shindo A, Kitano D, Yamamoto T, Nagao K, Takayama M. Association of ambient temperature and acute heart failure with preserved and reduced ejection fraction. ESC Heart Fail 2022; 9:2899-2908. [PMID: 35719026 DOI: 10.1002/ehf2.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/07/2022] Open
Abstract
AIMS Evidence on the association between ambient temperature and the onset of acute heart failure (AHF) is scarce and mixed. We sought to investigate the incidence of AHF admissions based on ambient temperature change, with particular interest in detecting the difference between AHF with preserved (HFpEF), mildly reduced (HFmrEF), and reduced ejection fraction (HFrEF). METHODS AND RESULTS Individualized AHF admission data from January 2015 to December 2016 were obtained from a multicentre registry (Tokyo CCU Network Database). The primary event was the daily number of admissions. A linear regression model, using the lowest ambient temperature as the explanatory variable, was selected for the best-estimate model. We also applied the cubic spline model using five knots according to the percentiles of the distribution of the lowest ambient temperature. We divided the entire population into HFpEF + HFmrEF and HFrEF for comparison. In addition, the in-hospital treatment and mortality rates were obtained according to the interquartile ranges (IQRs) of the lowest ambient temperature (IQR1 <5.5°C; IQR25.5-13.3°C; IQR3 13.3-19.7°C; and IQR4 >19.7°C). The number of admissions for HFpEF, HFmrEF and HFrEF were 2736 (36%), 1539 (20%), and 3354 (44%), respectively. The lowest ambient temperature on the admission day was inversely correlated with the admission frequency for both HFpEF + HFmrEF and HFrEF patients, with a stronger correlation in patients with HFpEF + HFmrEF (R2 = 0.25 vs. 0.05, P < 0.001). In the sensitivity analysis, the decrease in the ambient temperature was associated with the greatest incremental increases in HFpEF, followed by HFmrEF and HFrEF patients (3.5% vs. 2.8% vs. 1.5% per -1°C, P < 0.001), with marked increase in admissions of hypertensive patients (systolic blood pressure >140 mmHg vs. 140-100 mmHg vs. <100 mmHg, 3.0% vs. 2.0% vs. 0.8% per -1°C, P for interaction <0.001). A mediator analysis indicated the presence of the mediator effect of systolic blood pressure. The in-hospital mortality rate (7.5%) did not significantly change according to ambient temperature (P = 0.62). CONCLUSIONS Lower ambient temperature was associated with higher frequency of AHF admissions, and the effect was more pronounced in HFpEF and HFmrEF patients than in those with HFrEF.
Collapse
Affiliation(s)
- Takahiro Jimba
- Tokyo CCU Network Scientific Committee/NTT Medical Center Tokyo, Tokyo, Japan
| | - Shun Kohsaka
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | - Masao Yamasaki
- Tokyo CCU Network Scientific Committee/NTT Medical Center Tokyo, Tokyo, Japan
| | - Toshiaki Otsuka
- Tokyo CCU Network Scientific Committee/Nippon Medical School, Tokyo, Japan
| | | | | | - Shinji Koba
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | - Makoto Takei
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | - Takashi Kohno
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | | | | | | | | | - Kiyoshi Iida
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | - Akito Shindo
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | | | | | - Ken Nagao
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | | | | |
Collapse
|
81
|
Fudim M, Kaye DM, Borlaug BA, Shah SJ, Rich S, Kapur NK, Costanzo MR, Brener MI, Sunagawa K, Burkhoff D. Venous Tone and Stressed Blood Volume in Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol 2022; 79:1858-1869. [PMID: 35512865 PMCID: PMC9097251 DOI: 10.1016/j.jacc.2022.02.050] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
A number of pathologic processes contribute to the elevation in cardiac filling pressures in heart failure (HF), including myocardial dysfunction and primary volume overload. In this review, we discuss the important role of the venous system and the concepts of stressed blood volume and unstressed blood volume. We review how regulation of venous tone modifies the distribution of blood between these 2 functional compartments, the physical distribution of blood between the pulmonary and systemic circulations, and how these relate to the hemodynamic abnormalities observed in HF. Finally, we review recently applied methods for estimating stressed blood volume and how they are being applied to the results of clinical studies to provide new insights into resting and exercise hemodynamics and therapeutics for HF.
Collapse
Affiliation(s)
- Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA.
| | - David M Kaye
- Department of Cardiology Alfred Hospital and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Sanjiv J Shah
- Division of Cardiology, Northwestern University, Chicago, Illinois, USA
| | - Stuart Rich
- Division of Cardiology, Northwestern University, Chicago, Illinois, USA
| | - Navin K Kapur
- The CardioVascular Center, Tufts Medical Center, Boston, Massachusetts, USA. https://twitter.com/NavinKapur4
| | | | - Michael I Brener
- Columbia University, Division of Cardiology, New York, New York, USA. https://twitter.com/BrenerMickey
| | - Kenji Sunagawa
- Circulatory System Research Foundation, Hongo, Tokyo, Japan
| | - Daniel Burkhoff
- Cardiovascular Research Foundation, New York, New York, USA.
| |
Collapse
|
82
|
Pugliese NR, Balletti A, Armenia S, De Biase N, Faita F, Mengozzi A, Paneni F, Ruschitzka F, Virdis A, Ghiadoni L, Taddei S, Williams B, Antonini-Canterin F, Masi S. Ventricular-Arterial Coupling Derived From Proximal Aortic Stiffness and Aerobic Capacity Across the Heart Failure Spectrum. JACC Cardiovasc Imaging 2022; 15:1545-1559. [DOI: 10.1016/j.jcmg.2022.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 12/27/2022]
|
83
|
Mannozzi J, Al-Hassan MH, Kaur J, Lessanework B, Alvarez A, Massoud L, Bhatti T, O’Leary DS. Ventricular-Vascular Uncoupling in Heart Failure: Effects of Arterial Baroreflex-Induced Sympathoexcitation at Rest and During Exercise. Front Physiol 2022; 13:835951. [PMID: 35450162 PMCID: PMC9016757 DOI: 10.3389/fphys.2022.835951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/18/2022] [Indexed: 01/19/2023] Open
Abstract
Autonomic alterations in blood pressure are primarily a result of arterial baroreflex modulation of systemic vascular resistance and cardiac output on a beat-by-beat basis. The combined central and peripheral control by the baroreflex likely acts to maintain efficient energy transfer from the heart to the systemic vasculature; termed ventricular-vascular coupling. This level of control is maintained whether at rest or during exercise in healthy subjects. During heart failure, the ventricular-vascular relationship is uncoupled and baroreflex dysfunction is apparent. We investigated if baroreflex dysfunction in heart failure exacerbated ventricular-vascular uncoupling at rest, and during exercise in response to baroreceptor unloading by performing bilateral carotid occlusions in chronically instrumented conscious canines. We observed in healthy subjects that baroreceptor unloading caused significant increases in effective arterial elastance (Ea) at rest (1.2 ± 0.3 mmHg/ml) and during exercise (1.3 ± 0.2 mmHg/ml) that coincided with significant increases in stroke work (SW) (1.5 ± 0.2 mmHg/ml) and (1.6 ± 0.2 mmHg/ml) suggesting maintained ventricular-vascular coupling. Heart Failure significantly increased the effect of baroreceptor unloading on Ea at rest (3.1 ± 0.7 mmHg/ml) and during exercise (2.3 ± 0.5 mmHg/ml) whereas no significant increases in stroke work occurred, thus signifying further ventricular-vascular uncoupling. We believe that the enhanced ventricular-vascular uncoupling observed during baroreceptor unloading only worsens the already challenged orthostatic and exercise tolerance and thereby contributes to poor exercise performance and quality of life for heart failure patients.
Collapse
Affiliation(s)
- Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Jasdeep Kaur
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, United States
| | - Beruk Lessanework
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alberto Alvarez
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Louis Massoud
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tauheed Bhatti
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Donal S. O’Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States,*Correspondence: Donal S. O’Leary,
| |
Collapse
|
84
|
Namasivayam M, Lau ES, Zern EK, Schoenike MW, Hardin KM, Sbarbaro JA, Cunningham TF, Farrell RM, Rouvina J, Kowal A, Bhat RR, Brooks LC, Nayor M, Shah RV, Ho JE, Malhotra R, Lewis GD. Exercise Blood Pressure in Heart Failure With Preserved and Reduced Ejection Fraction. JACC. HEART FAILURE 2022; 10:278-286. [PMID: 35361448 PMCID: PMC9730937 DOI: 10.1016/j.jchf.2022.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 05/02/2023]
Abstract
OBJECTIVES This study aimed to evaluate hemodynamic correlates of inducible blood pressure (BP) pulsatility with exercise in heart failure with preserved ejection fraction (HFpEF), to identify relationships to outcomes, and to compare this with heart failure with reduced ejection fraction (HFrEF). BACKGROUND In HFpEF, determinants and consequences of exercise BP pulsatility are not well understood. METHODS We measured exercise BP in 146 patients with HFpEF who underwent invasive cardiopulmonary exercise testing. Pulsatile BP was evaluated as proportionate pulse pressure (PrPP), the ratio of pulse pressure to systolic pressure. We measured pulmonary arterial catheter pressures, Fick cardiac output, respiratory gas exchange, and arterial stiffness. We correlated BP changes to central hemodynamics and cardiovascular outcome (nonelective cardiovascular hospitalization) and compared findings with 57 patients with HFrEF from the same referral population. RESULTS In HFpEF, only age (standardized beta = 0.593; P < 0.001), exercise stroke volume (standardized beta = 0.349; P < 0.001), and baseline arterial stiffness (standardized beta = 0.182; P = 0.02) were significant predictors of peak exercise PrPP in multivariable analysis (R = 0.661). In HFpEF, lower PrPP was associated with lower risk of cardiovascular events, despite adjustment for confounders (HR:0.53 for PrPP below median; 95% CI: 0.28-0.98; P = 0.043). In HFrEF, lower exercise PrPP was not associated with arterial stiffness but was associated with lower peak exercise stroke volume (P = 0.013) and higher risk of adverse cardiovascular outcomes (P = 0.004). CONCLUSIONS In HFpEF, greater inducible BP pulsatility measured using exercise PrPP reflects greater arterial stiffness and higher risk of adverse cardiovascular outcomes, in contrast to HFrEF where inducible exercise BP pulsatility relates to stroke volume reserve and favorable outcome.
Collapse
Affiliation(s)
- Mayooran Namasivayam
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily S Lau
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily K Zern
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark W Schoenike
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn M Hardin
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John A Sbarbaro
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas F Cunningham
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robyn M Farrell
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Rouvina
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alyssa Kowal
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rohan R Bhat
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liana C Brooks
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Nayor
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ravi V Shah
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer E Ho
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory D Lewis
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
85
|
Wenzel JP, Kellen RBD, Magnussen C, Blankenberg S, Schrage B, Schnabel R, Nikorowitsch J. Diastolic dysfunction in individuals with and without heart failure with preserved ejection fraction. Clin Res Cardiol 2022; 111:416-427. [PMID: 34269862 PMCID: PMC8971165 DOI: 10.1007/s00392-021-01907-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/07/2021] [Indexed: 12/01/2022]
Abstract
AIM Left ventricular diastolic dysfunction (DD), a common finding in the general population, is considered to be associated with heart failure with preserved ejection faction (HFpEF). Here we evaluate the prevalence and correlates of DD in subjects with and without HFpEF in a middle-aged sample of the general population. METHODS AND RESULTS From the first 10,000 participants of the population-based Hamburg City Health Study (HCHS), 5913 subjects (mean age 64.4 ± 8.3 years, 51.3% females), qualified for the current analysis. Diastolic dysfunction (DD) was identified in 753 (12.7%) participants. Of those, 11.2% showed DD without HFpEF (ALVDD) while 1.3% suffered from DD with HFpEF (DDwHFpEF). In multivariable regression analysis adjusted for major cardiovascular risk factors, ALVDD was associated with arterial hypertension (OR 2.0, p < 0.001) and HbA1c (OR 1.2, p = 0.007). Associations of both ALVDD and DDwHFpEF were: age (OR 1.7, p < 0.001; OR 2.7, p < 0.001), BMI (OR 1.2, p < 0.001; OR 1.6, p = 0.001), and left ventricular mass index (LVMI). In contrast, female sex (OR 2.5, p = 0.006), atrial fibrillation (OR 2.6, p = 0.024), CAD (OR 7.2, p < 0.001) COPD (OR 3.9, p < 0.001), and QRS duration (OR 1.4, p = 0.005) were strongly associated with DDwHFpEF but not with ALVDD. CONCLUSION The prevalence of DD in a sample from the first 10,000 participants of the population-based HCHS was 12.7% of whom 1.3% suffered from HFpEF. DD with and without HFpEF showed significant associations with different major cardiovascular risk factors and comorbidities warranting further research for their possible role in the formation of both ALVDD and DDwHFpEF.
Collapse
Affiliation(s)
- Jan-Per Wenzel
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Epidemiological Study Center, Hamburg, Germany
| | | | - Christina Magnussen
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Stefan Blankenberg
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
- Epidemiological Study Center, Hamburg, Germany
| | - Benedikt Schrage
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Renate Schnabel
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Julius Nikorowitsch
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| |
Collapse
|
86
|
Guazzi M. Shifting the Paradigm of Risk From Resting to Exercise-Induced Blood Pressure Changes in HFpEF. JACC. HEART FAILURE 2022; 10:287-289. [PMID: 35361449 DOI: 10.1016/j.jchf.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Marco Guazzi
- Cardiology Division, University of Milano School of Medicine, Department of Health Sciences, San Paolo Hospital, Milano, Italy.
| |
Collapse
|
87
|
Wolsk E, Jürgens M, Schou M, Ersbøll M, Hasbak P, Kjær A, Zerahn B, Brandt NH, Gæde PH, Rossing P, Faber J, Inzucchi SE, Kistorp CM, Gustafsson F. Randomized Controlled Trial of the Hemodynamic Effects of Empagliflozin in Patients With Type 2 Diabetes at High Cardiovascular Risk: The SIMPLE Trial. Diabetes 2022; 71:812-820. [PMID: 35061894 DOI: 10.2337/db21-0721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022]
Abstract
Treatment with the sodium-glucose cotransporter 2 inhibitor (SGLT-2i) empagliflozin significantly reduces cardiovascular events in patients with type 2 diabetes (T2D); however, the mechanisms behind the reduction in cardiovascular (CV) events are unknown. We investigated whether SGLT-2i treatment affected central hemodynamics during rest and exercise in 34 patients with diabetes in this investigator-initiated, randomized, placebo-controlled, double-blinded trial. The primary end point was change in pulmonary capillary wedge pressure (PCWP) at a submaximal ergometer workload (25 W) after 13 weeks of SGLT-2i treatment (25 mg once daily) compared with placebo. Secondary end points included changes in resting hemodynamics. Baseline and follow-up hemodynamic assessments were performed at rest, submaximal exercise (25 W), and peak exercise using right heart catheterization. Treatment with empagliflozin for 13 weeks in patients with T2D at high CV risk did not reduce left heart filling pressure more than placebo at submaximal exercise. At rest, we observed that empagliflozin reduced PCWP at a magnitude of clinical significance.
Collapse
Affiliation(s)
- Emil Wolsk
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Jürgens
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Mads Ersbøll
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster of Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster of Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Bo Zerahn
- Department of Clinical Physiology and Nuclear Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Copehagen, Denmark
| | - Niels Høgh Brandt
- Department of Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Copehagen, Denmark
| | - Peter Haulund Gæde
- Department of Cardiology and Endocrinology, Slagelse Hospital, Slagelse, Denmark
| | | | - Jens Faber
- Department of Medicine, Herlev Hospital, Herlev, Denmark
| | | | | | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
88
|
Harrison NE, Meram S, Li X, White MB, Henry S, Gupta S, Zhu D, Pang P, Levy P. Hemodynamic profiles by non-invasive monitoring of cardiac index and vascular tone in acute heart failure patients in the emergency department: External validation and clinical outcomes. PLoS One 2022; 17:e0265895. [PMID: 35358231 PMCID: PMC8970400 DOI: 10.1371/journal.pone.0265895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Non-invasive finger-cuff monitors measuring cardiac index and vascular tone (SVRI) classify emergency department (ED) patients with acute heart failure (AHF) into three otherwise-indistinguishable subgroups. Our goals were to validate these “hemodynamic profiles” in an external cohort and assess their association with clinical outcomes. Methods AHF patients (n = 257) from five EDs were prospectively enrolled in the validation cohort (VC). Cardiac index and SVRI were measured with a ClearSight finger-cuff monitor (formerly NexFin, Edwards Lifesciences) as in a previous study (derivation cohort, DC, n = 127). A control cohort (CC, n = 127) of ED patients with sepsis was drawn from the same study as the DC. K-means cluster analysis previously derived two-dimensional (cardiac index and SVRI) hemodynamic profiles in the DC and CC (k = 3 profiles each). The VC was subgrouped de novo into three analogous profiles by unsupervised K-means consensus clustering. PERMANOVA tested whether VC profiles 1–3 differed from profiles 1–3 in the DC and CC, by multivariate group composition of cardiac index and vascular tone. Profiles in the VC were compared by a primary outcome of 90-day mortality and a 30-day ranked composite secondary outcome (death, mechanical cardiac support, intubation, new/emergent dialysis, coronary intervention/surgery) as time-to-event (survival analysis) and binary events (odds ratio, OR). Descriptive statistics were used to compare profiles by two validated risk scores for the primary outcome, and one validated score for the secondary outcome. Results The VC had median age 60 years (interquartile range {49–67}), and was 45% (n = 116) female. Multivariate profile composition by cardiac index and vascular tone differed significantly between VC profiles 1–3 and CC profiles 1–3 (p = 0.001, R2 = 0.159). A difference was not detected between profiles in the VC vs. the DC (p = 0.59, R2 = 0.016). VC profile 3 had worse 90-day survival than profiles 1 or 2 (HR = 4.8, 95%CI 1.4–17.1). The ranked secondary outcome was more likely in profile 1 (OR = 10.0, 1.2–81.2) and profile 3 (12.8, 1.7–97.9) compared to profile 2. Diabetes prevalence and blood urea nitrogen were lower in the high-risk profile 3 (p<0.05). No significant differences between profiles were observed for other clinical variables or the 3 clinical risk scores. Conclusions Hemodynamic profiles in ED patients with AHF, by non-invasive finger-cuff monitoring of cardiac index and vascular tone, were replicated de novo in an external cohort. Profiles showed significantly different risks of clinically-important adverse patient outcomes.
Collapse
Affiliation(s)
- Nicholas Eric Harrison
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Sarah Meram
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Xiangrui Li
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Morgan B. White
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah Henry
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sushane Gupta
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dongxiao Zhu
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Peter Pang
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Phillip Levy
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
89
|
Mannozzi J, Kim JK, Sala-Mercado JA, Al-Hassan MH, Lessanework B, Alvarez A, Massoud L, Bhatti T, Aoun K, O’Leary DS. Arterial Baroreflex Inhibits Muscle Metaboreflex Induced Increases in Effective Arterial Elastance: Implications for Ventricular-Vascular Coupling. Front Physiol 2022; 13:841076. [PMID: 35399256 PMCID: PMC8990766 DOI: 10.3389/fphys.2022.841076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 01/19/2023] Open
Abstract
The ventricular-vascular relationship assesses the efficacy of energy transferred from the left ventricle to the systemic circulation and is quantified as the ratio of effective arterial elastance to maximal left ventricular elastance. This relationship is maintained during exercise via reflex increases in cardiovascular performance raising both arterial and ventricular elastance in parallel. These changes are, in part, due to reflexes engendered by activation of metabosensitive skeletal muscle afferents-termed the muscle metaboreflex. However, in heart failure, ventricular-vascular uncoupling is apparent and muscle metaboreflex activation worsens this relationship through enhanced systemic vasoconstriction markedly increasing effective arterial elastance which is unaccompanied by substantial increases in ventricular function. This enhanced arterial vasoconstriction is, in part, due to significant reductions in cardiac performance induced by heart failure causing over-stimulation of the metaboreflex due to under perfusion of active skeletal muscle, but also as a result of reduced baroreflex buffering of the muscle metaboreflex-induced peripheral sympatho-activation. To what extent the arterial baroreflex modifies the metaboreflex-induced changes in effective arterial elastance is unknown. We investigated in chronically instrumented conscious canines if removal of baroreflex input via sino-aortic baroreceptor denervation (SAD) would significantly enhance effective arterial elastance in normal animals and whether this would be amplified after induction of heart failure. We observed that effective arterial elastance (Ea), was significantly increased during muscle metaboreflex activation after SAD (0.4 ± 0.1 mmHg/mL to 1.4 ± 0.3 mmHg/mL). In heart failure, metaboreflex activation caused exaggerated increases in Ea and in this setting, SAD significantly increased the rise in Ea elicited by muscle metaboreflex activation (1.3 ± 0.3 mmHg/mL to 2.3 ± 0.3 mmHg/mL). Thus, we conclude that the arterial baroreflex does buffer muscle metaboreflex induced increases in Ea and this buffering likely has effects on the ventricular-vascular coupling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Donal S. O’Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
90
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
91
|
Del Torto A, Guaricci AI, Pomarico F, Guglielmo M, Fusini L, Monitillo F, Santoro D, Vannini M, Rossi A, Muscogiuri G, Baggiano A, Pontone G. Advances in Multimodality Cardiovascular Imaging in the Diagnosis of Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2022; 9:758975. [PMID: 35355965 PMCID: PMC8959466 DOI: 10.3389/fcvm.2022.758975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a syndrome defined by the presence of heart failure symptoms and increased levels of circulating natriuretic peptide (NP) in patients with preserved left ventricular ejection fraction and various degrees of diastolic dysfunction (DD). HFpEF is a complex condition that encompasses a wide range of different etiologies. Cardiovascular imaging plays a pivotal role in diagnosing HFpEF, in identifying specific underlying etiologies, in prognostic stratification, and in therapeutic individualization. Echocardiography is the first line imaging modality with its wide availability; it has high spatial and temporal resolution and can reliably assess systolic and diastolic function. Cardiovascular magnetic resonance (CMR) is the gold standard for cardiac morphology and function assessment, and has superior contrast resolution to look in depth into tissue changes and help to identify specific HFpEF etiologies. Differently, the most important role of nuclear imaging [i.e., planar scintigraphy and/or single photon emission CT (SPECT)] consists in the screening and diagnosis of cardiac transthyretin amyloidosis (ATTR) in patients with HFpEF. Cardiac CT can accurately evaluate coronary artery disease both from an anatomical and functional point of view, but tissue characterization methods have also been developed. The aim of this review is to critically summarize the current uses and future perspectives of echocardiography, nuclear imaging, CT, and CMR in patients with HFpEF.
Collapse
Affiliation(s)
- Alberico Del Torto
- Department of Emergency and Acute Cardiac Care, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | | | - Marco Guglielmo
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Fusini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Daniela Santoro
- University Cardiology Unit, Policlinic University Hospital, Bari, Italy
| | - Monica Vannini
- University Cardiology Unit, Policlinic University Hospital, Bari, Italy
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Giuseppe Muscogiuri
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy
- University Milano Bicocca, Milan, Italy
| | - Andrea Baggiano
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Pontone
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
- *Correspondence: Gianluca Pontone
| |
Collapse
|
92
|
Kagami K, Harada T, Yoshida K, Amanai S, Kato T, Wada N, Adachi T, Obokata M. Impaired Right Atrial Reserve Function in Heart Failure with Preserved Ejection Fraction. J Am Soc Echocardiogr 2022; 35:836-845. [DOI: 10.1016/j.echo.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
|
93
|
Arterial Hypertension and Cardiopulmonary Function: The Value of a Combined Cardiopulmonary and Echocardiography Stress Test. High Blood Press Cardiovasc Prev 2022; 29:145-154. [PMID: 35107808 PMCID: PMC8942964 DOI: 10.1007/s40292-021-00494-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022] Open
Abstract
Arterial hypertension (AH) is a global burden and the leading risk factor for mortality worldwide. Haemodynamic abnormalities, longstanding neurohormonal and inflammatory activation, which are commonly observed in patients with AH, promote cardiac structural remodeling ultimately leading to heart failure (HF) if blood pressure values remain uncontrolled. While several epidemiological studies have confirmed the strong link between AH and HF, the pathophysiological processes underlying this transition remain largely unclear. The combined cardiopulmonary-echocardiography stress test (CPET-ESE) represents a precious non-invasive aid to detect alterations in patients at the earliest stages of HF. The opportunity to study the response of the cardiovascular system to exercise, and to differentiate central from peripheral cardiovascular maladaptations, makes the CPET-ESE an ideal technique to gain insights into the mechanisms involved in the transition from AH to HF, by recognizing alterations that might be silent at rest but influence the response to exercise. Identifications of these subclinical alterations might allow for a better risk stratification in hypertensive patients, facilitating the recognition of those at higher risk of evolution towards established HF. This may also lead to the development of novel preventive strategies and help tailor medical treatment. The purpose of this review is to summarise the potential advantages of using CPET-ESE in the characterisation of hypertensive patients in the cardiovascular continuum.
Collapse
|
94
|
Harada T, Yamaguchi M, Omote K, Iwano H, Mizuguchi Y, Amanai S, Yoshida K, Kato T, Kurosawa K, Nagai T, Negishi K, Anzai T, Obokata M. Cardiac Power Output Is Independently and Incrementally Associated With Adverse Outcomes in Heart Failure With Preserved Ejection Fraction. Circ Cardiovasc Imaging 2022; 15:e013495. [PMID: 35144484 DOI: 10.1161/circimaging.121.013495] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cardiac power output is a measure of cardiac performance, and its prognostic significance has been shown in heart failure (HF) with reduced ejection fraction. Patients with HF with preserved ejection fraction may have altered cardiac performance, but the prognostic relevance of cardiac power output is unknown. This study sought to determine the association between cardiac power output and clinical outcomes in HF with preserved ejection fraction and to compare its prognostic effect to other measures of cardiac performance including ventricular-arterial coupling and mechanical efficiency. METHODS Cardiac power output normalized to left ventricular mass was assessed by echocardiography in 408 patients with HF with preserved ejection fraction. Load-independent contractility (end-systolic elastance), arterial elastance, its coupling (arterial elastance/end-systolic elastance), left ventricular global longitudinal strain, and mechanical efficiency (stroke work/pressure-volume area) were also estimated noninvasively. The primary end point was a composite of cardiovascular mortality or HF hospitalization. RESULTS The primary composite outcome occurred in 84 patients during a median follow-up of 19.4 months. There was a dose-dependent association between cardiac power output and the composite outcomes, in which patients with the lowest tertile of cardiac power output had >3-fold risk than those with the highest tertile (hazard ratio, 3.04 [95% CI, 1.66-5.57]; P=0.0003). In a multivariable model, lower cardiac power output was independently associated with adverse outcomes (hazard ratio, 0.70 per 1 SD [95% CI, 0.49-0.97]; P=0.03). In contrast, left ventricular size, end-systolic elastance, arterial elastance, arterial elastance/end-systolic elastance ratio, and left ventricular mechanical efficiency were not associated with outcomes. Cardiac power output provided an incremental prognostic effect over the model based on clinical (age, gender, diastolic blood pressure, and atrial fibrillation) and echocardiographic markers (left atrial size, pulmonary pressures, global longitudinal strain, and the ratio of early diastolic mitral inflow velocity to early diastolic mitral annular tissue velocity; P=0.03). CONCLUSIONS In patients with HF with preserved ejection fraction, cardiac power output was independently and incrementally associated with adverse outcomes whereas other markers of cardiac performance were not.
Collapse
Affiliation(s)
- Tomonari Harada
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan (T.H., M.Y., S.A., K.Y., T.K., M.O.)
| | - Miho Yamaguchi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan (T.H., M.Y., S.A., K.Y., T.K., M.O.)
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (K.O., H.I., Y.M., T.N., T.A.)
| | - Hiroyuki Iwano
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (K.O., H.I., Y.M., T.N., T.A.)
| | - Yoshifumi Mizuguchi
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (K.O., H.I., Y.M., T.N., T.A.)
| | - Shiro Amanai
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan (T.H., M.Y., S.A., K.Y., T.K., M.O.)
| | - Kuniko Yoshida
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan (T.H., M.Y., S.A., K.Y., T.K., M.O.)
| | - Toshimitsu Kato
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan (T.H., M.Y., S.A., K.Y., T.K., M.O.)
| | - Koji Kurosawa
- Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan (K.K.)
| | - Toshiyuki Nagai
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (K.O., H.I., Y.M., T.N., T.A.)
| | - Kazuaki Negishi
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Australia (K.N.)
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (K.O., H.I., Y.M., T.N., T.A.)
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan (T.H., M.Y., S.A., K.Y., T.K., M.O.)
| |
Collapse
|
95
|
Malhotra R, Nicholson CJ, Wang D, Bhambhani V, Paniagua S, Slocum C, Sigurslid HH, Cardenas CLL, Li R, Boerboom SL, Chen YC, Hwang SJ, Yao C, Ichinose F, Bloch DB, Lindsay ME, Lewis GD, Aragam JR, Hoffmann U, Mitchell GF, Hamburg NM, Vasan RS, Benjamin EJ, Larson MG, Zapol WM, Cheng S, Roh JD, O’Donnell CJ, Nguyen C, Levy D, Ho JE. Matrix Gla Protein Levels Are Associated With Arterial Stiffness and Incident Heart Failure With Preserved Ejection Fraction. Arterioscler Thromb Vasc Biol 2022; 42:e61-e73. [PMID: 34809448 PMCID: PMC8792238 DOI: 10.1161/atvbaha.121.316664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Arterial stiffness is a risk factor for cardiovascular disease, including heart failure with preserved ejection fraction (HFpEF). MGP (matrix Gla protein) is implicated in vascular calcification in animal models, and circulating levels of the uncarboxylated, inactive form of MGP (ucMGP) are associated with cardiovascular disease-related and all-cause mortality in human studies. However, the role of MGP in arterial stiffness is uncertain. Approach and Results: We examined the association of ucMGP levels with vascular calcification, arterial stiffness including carotid-femoral pulse wave velocity (PWV), and incident heart failure in community-dwelling adults from the Framingham Heart Study. To further investigate the link between MGP and arterial stiffness, we compared aortic PWV in age- and sex-matched young (4-month-old) and aged (10-month-old) wild-type and Mgp+/- mice. Among 7066 adults, we observed significant associations between higher levels of ucMGP and measures of arterial stiffness, including higher PWV and pulse pressure. Longitudinal analyses demonstrated an association between higher ucMGP levels and future increases in systolic blood pressure and incident HFpEF. Aortic PWV was increased in older, but not young, female Mgp+/- mice compared with wild-type mice, and this augmentation in PWV was associated with increased aortic elastin fiber fragmentation and collagen accumulation. CONCLUSIONS This translational study demonstrates an association between ucMGP levels and arterial stiffness and future HFpEF in a large observational study, findings that are substantiated by experimental studies showing that mice with Mgp heterozygosity develop arterial stiffness. Taken together, these complementary study designs suggest a potential role of therapeutically targeting MGP in HFpEF.
Collapse
Affiliation(s)
- Rajeev Malhotra
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Christopher J. Nicholson
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Dongyu Wang
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Vijeta Bhambhani
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Samantha Paniagua
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Charles Slocum
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Haakon H. Sigurslid
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Christian L. Lino Cardenas
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Rebecca Li
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Sophie L. Boerboom
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Yin-Ching Chen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA, and Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Chen Yao
- Framingham Heart Study, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Donald B. Bloch
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology; Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Mark E. Lindsay
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Gregory D. Lewis
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | | | - Naomi M. Hamburg
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Ramchandran S. Vasan
- Framingham Heart Study, Framingham, MA
- Department of Epidemiology, Boston University School of Public Health & Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Emelia J. Benjamin
- Framingham Heart Study, Framingham, MA
- Department of Epidemiology, Boston University School of Public Health & Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Martin G. Larson
- Framingham Heart Study, Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Warren M. Zapol
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Susan Cheng
- Framingham Heart Study, Framingham, MA
- Barbara Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jason D. Roh
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Christopher Nguyen
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA, and Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer E. Ho
- Cardiovascular Research Center and Corrigan Minehan Heart Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
96
|
Lau ES, Panah LG, Zern EK, Liu EE, Farrell R, Schoenike MW, Namasivayam M, Churchill TW, Curreri L, Malhotra R, Nayor M, Lewis GD, Ho JE. Arterial Stiffness and Vascular Load in HFpEF: Differences Among Women and Men. J Card Fail 2022; 28:202-211. [PMID: 34955334 PMCID: PMC8840989 DOI: 10.1016/j.cardfail.2021.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mechanisms underlying sex differences in heart failure with preserved ejection fraction (HFpEF) are poorly understood. We sought to examine sex differences in measures of arterial stiffness and the association of arterial stiffness measures with left ventricular hemodynamic responses to exercise in men and women. METHODS We studied 83 men (mean age 62 years) and 107 women (mean age 59 years) with HFpEF who underwent cardiopulmonary exercise testing with invasive hemodynamic monitoring and arterial stiffness measurement (augmentation pressure [AP], augmentation index [AIx], and aortic pulse pressure [AoPP]). Sex differences were compared using multivariable linear regression. We examined the association of arterial stiffness with abnormal left ventricular diastolic response to exercise, defined as a rise in pulmonary capillary wedge pressure relative to cardiac output (∆PCWP/∆CO) ≥ 2 mmHg/L/min by using logistic regression models. RESULTS Women with HFpEF had increased arterial stiffness compared with men. AP was nearly 10 mmHg higher, and AIx was more than 10% higher in women compared with men (P < 0.0001 for both). Arterial stiffness measures were associated with a greater pulmonary capillary wedge pressure response to exercise, particularly among women. A 1-standard deviation higher AP was associated with > 3-fold increased odds of abnormal diastolic exercise response (AP: OR 3.16, 95% CI 1.34-7.42; P = 0.008 [women] vs OR 2.07, 95% CI 0.95-5.49; P = 0.15 [men]) with similar findings for AIx and AoPP. CONCLUSIONS Arterial stiffness measures are significantly higher in women with HFpEF than in men and are associated with abnormally steep increases in pulmonary capillary wedge pressure with exercise, particularly in women. Arterial stiffness may preferentially contribute to abnormal diastolic function during exercise in women with HFpEF compared with men.
Collapse
Affiliation(s)
- Emily S Lau
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Lindsay G Panah
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennesee
| | - Emily K Zern
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth E Liu
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Robyn Farrell
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Schoenike
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Mayooran Namasivayam
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts; Department of Cardiology, St. Vincent's Hospital, Faculty of Medicine, University of New South Wales and Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | - Lisa Curreri
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Rajeev Malhotra
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts; Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew Nayor
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Gregory D Lewis
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer E Ho
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|
97
|
Omote K, Verbrugge FH, Borlaug BA. Heart Failure with Preserved Ejection Fraction: Mechanisms and Treatment Strategies. Annu Rev Med 2022; 73:321-337. [PMID: 34379445 PMCID: PMC9002335 DOI: 10.1146/annurev-med-042220-022745] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Approximately half of all patients with heart failure (HF) have a preserved ejection fraction, and the prevalence is growing rapidly given the aging population in many countries and the rising prevalence of obesity, diabetes, and hypertension. Functional capacity and quality of life are severely impaired in heart failure with preserved ejection fraction (HFpEF), and morbidity and mortality are high. In striking contrast to HF with reduced ejection fraction, there are few effective treatments currently identified for HFpEF, and these are limited to decongestion by diuretics, promotion of a healthy active lifestyle, and management of comorbidities. Improved phenotyping of subgroups within the overall HFpEF population might enhance individualization of treatment. This review focuses on the current understanding of the pathophysiologic mechanisms underlying HFpEF and treatment strategies for this complex syndrome.
Collapse
Affiliation(s)
- Kazunori Omote
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Frederik H. Verbrugge
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States;,Centre for Cardiovascular Diseases, University Hospital Brussels, Jette, Belgium;,Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Barry A. Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
98
|
Amanai S, Harada T, Kagami K, Yoshida K, Kato T, Wada N, Obokata M. The H 2FPEF and HFA-PEFF algorithms for predicting exercise intolerance and abnormal hemodynamics in heart failure with preserved ejection fraction. Sci Rep 2022; 12:13. [PMID: 34996984 PMCID: PMC8742061 DOI: 10.1038/s41598-021-03974-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise intolerance is a primary manifestation in patients with heart failure with preserved ejection fraction (HFpEF) and is associated with abnormal hemodynamics and a poor quality of life. Two multiparametric scoring systems have been proposed to diagnose HFpEF. This study sought to determine the performance of the H2FPEF and HFA-PEFF scores for predicting exercise capacity and echocardiographic findings of intracardiac pressures during exercise in subjects with dyspnea on exertion referred for bicycle stress echocardiography. In a subset, simultaneous expired gas analysis was performed to measure the peak oxygen consumption (VO2). Patients with HFpEF (n = 83) and controls without HF (n = 104) were enrolled. The H2FPEF score was obtainable for all patients while the HFA-PEFF score could not be calculated for 23 patients (feasibility 88%). Both H2FPEF and HFA-PEFF scores correlated with a higher E/e' ratio (r = 0.49 and r = 0.46), lower systolic tricuspid annular velocity (r = - 0.44 and = - 0.24), and lower cardiac output (r = - 0.28 and r = - 0.24) during peak exercise. Peak VO2 and exercise duration decreased with an increase in H2FPEF scores (r = - 0.40 and r = - 0.32). The H2FPEF score predicted a reduced aerobic capacity (AUC 0.71, p = 0.0005), but the HFA-PEFF score did not (p = 0.07). These data provide insights into the role of the H2FPEF and HFA-PEFF scores for predicting exercise intolerance and abnormal hemodynamics in patients presenting with exertional dyspnea.
Collapse
Affiliation(s)
- Shiro Amanai
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tomonari Harada
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazuki Kagami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Division of Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kuniko Yoshida
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Toshimitsu Kato
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Naoki Wada
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
99
|
Hsu S, Fang JC, Borlaug BA. Hemodynamics for the Heart Failure Clinician: A State-of-the-Art Review. J Card Fail 2022; 28:133-148. [PMID: 34389460 PMCID: PMC8748277 DOI: 10.1016/j.cardfail.2021.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
Heart failure (HF) fundamentally reflects an inability of the heart to provide adequate blood flow to the body without incurring the cost of increased cardiac filling pressures. This failure occurs first during the stressed state, but progresses until hemodynamic derangements become apparent at rest. As such, the measurement and interpretation of both resting and stressed hemodynamics serve an integral role in the practice of the HF clinician. In this review, we discuss conceptual and technical best practices in the performance and interpretation of both resting and invasive exercise hemodynamic catheterization, relate important pathophysiologic concepts to clinical care, and discuss updated, evidence-based applications of hemodynamics as they pertain to the full spectrum of HF conditions.
Collapse
Affiliation(s)
- Steven Hsu
- Division of Cardiology, Dept. of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - James C Fang
- Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, Utah.
| | - Barry A Borlaug
- Division of Cardiology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
100
|
Koepp KE, Reddy YNV, Obokata M, Sorimachi H, Verbrugge FH, Jain CC, Egbe AC, Redfield MM, Olson TP, Borlaug BA. Identification of Patients with Preclinical Heart Failure with preserved Ejection Fraction Using the H 2FPEF Score. NATURE CARDIOVASCULAR RESEARCH 2022; 1:59-66. [PMID: 35669933 PMCID: PMC9164289 DOI: 10.1038/s44161-021-00005-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a common disorder with few effective treatments. There is currently no evidence-based method to identify preclinical HFpEF. The H2FPEF score is a validated instrument to identify patients with overt HFpEF. Here we show the H2FPEF score can identify individuals with preclinical HFpEF. Among individuals where heart failure was excluded (n=160), increasing H2FPEF score was shown to be associated with greater left atrial dilation, left ventricular hypertrophy, and more severe diastolic dysfunction. Patients with increasing H2FPEF score displayed higher pulmonary artery pressures, higher left heart filling pressures, lower cardiac index, and more severely impaired aerobic capacity during exercise. In summary, we show that among adults without heart failure, higher H2FPEF score is associated with subclinical abnormalities that resemble those observed in HFpEF. These findings broaden the external validity of the H2FPEF score and suggest that this instrument may help identify patients positioned to benefit from preventive interventions.
Collapse
Affiliation(s)
- Katlyn E Koepp
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hidemi Sorimachi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Frederik H Verbrugge
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - C Charles Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Alexander C Egbe
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Margaret M Redfield
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|