51
|
Xu X, Holmes TC, Luo MH, Beier KT, Horwitz GD, Zhao F, Zeng W, Hui M, Semler BL, Sandri-Goldin RM. Viral Vectors for Neural Circuit Mapping and Recent Advances in Trans-synaptic Anterograde Tracers. Neuron 2020; 107:1029-1047. [PMID: 32755550 DOI: 10.1016/j.neuron.2020.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
Abstract
Viral tracers are important tools for neuroanatomical mapping and genetic payload delivery. Genetically modified viruses allow for cell-type-specific targeting and overcome many limitations of non-viral tracers. Here, we summarize the viruses that have been developed for neural circuit mapping, and we provide a primer on currently applied anterograde and retrograde viral tracers with practical guidance on experimental uses. We also discuss and highlight key technical and conceptual considerations for developing new safer and more effective anterograde trans-synaptic viral vectors for neural circuit analysis in multiple species.
Collapse
Affiliation(s)
- Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA.
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, CAS Center for Excellence in Brain Science, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Gregory D Horwitz
- The Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 102206, China; Chinese Institute for Brain Research (CIBR), Beijing 102206, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, Wuhan Institute of Virology, CAS Center for Excellence in Brain Science, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
52
|
Kondoh K. [Use of Transsynaptic Viral Tracers for Observing Neural Circuit Control of Physiological Responses]. YAKUGAKU ZASSHI 2020; 140:985-992. [PMID: 32741872 DOI: 10.1248/yakushi.20-00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central neural circuits in the brain receive and integrate environmental and internal information to enable the animals to execute appropriate behaviors and physiological responses. Communication between the brain and peripheral organs via peripheral neural circuits maintains energy homeostasis in the body. Therefore it is important to investigate the anatomical organization of central and peripheral neural circuits for elucidating the mechanisms of energy homeostasis. Transsynaptic viral tracers can travel through connected neurons via synaptic connections and have been used to delineate the anatomical organization of neural circuits with specific functions. Herein, I review our recent studies investigating neural circuits and their involvement in physiological changes using transsynaptic tracers.
Collapse
Affiliation(s)
- Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences.,Basic Sciences Division, Fred Hutchinson Cancer Research Center.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
53
|
Chen Y, Zhang ZK, He Y, Zhou C. A Large-Scale High-Density Weighted Structural Connectome of the Macaque Brain Acquired by Predicting Missing Links. Cereb Cortex 2020; 30:4771-4789. [PMID: 32313935 PMCID: PMC7391281 DOI: 10.1093/cercor/bhaa060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 01/21/2023] Open
Abstract
As a substrate for function, large-scale brain structural networks are crucial for fundamental and systems-level understanding of primate brains. However, it is challenging to acquire a complete primate whole-brain structural connectome using track tracing techniques. Here, we acquired a weighted brain structural network across 91 cortical regions of a whole macaque brain hemisphere with a connectivity density of 59% by predicting missing links from the CoCoMac-based binary network with a low density of 26.3%. The prediction model combines three factors, including spatial proximity, topological similarity, and cytoarchitectural similarity-to predict missing links and assign connection weights. The model was tested on a recently obtained high connectivity density yet partial-coverage experimental weighted network connecting 91 sources to 29 target regions; the model showed a prediction sensitivity of 74.1% in the predicted network. This predicted macaque hemisphere-wide weighted network has module segregation closely matching functional domains. Interestingly, the areas that act as integrators linking the segregated modules are mainly distributed in the frontoparietal network and correspond to the regions with large wiring costs in the predicted weighted network. This predicted weighted network provides a high-density structural dataset for further exploration of relationships between structure, function, and metabolism in the primate brain.
Collapse
Affiliation(s)
- Yuhan Chen
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
| | - Zi-Ke Zhang
- College of Media and International Culture, Zhejiang University, Hangzhou 310058, China
- Alibaba Research Center for Complex Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
- Department of Physics, Zhejiang University, Hangzhou 310027, China
- Research Centre, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China
| |
Collapse
|
54
|
Fujita H, Kodama T, du Lac S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife 2020; 9:e58613. [PMID: 32639229 PMCID: PMC7438114 DOI: 10.7554/elife.58613] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The cerebellar vermis, long associated with axial motor control, has been implicated in a surprising range of neuropsychiatric disorders and cognitive and affective functions. Remarkably little is known, however, about the specific cell types and neural circuits responsible for these diverse functions. Here, using single-cell gene expression profiling and anatomical circuit analyses of vermis output neurons in the mouse fastigial (medial cerebellar) nucleus, we identify five major classes of glutamatergic projection neurons distinguished by gene expression, morphology, distribution, and input-output connectivity. Each fastigial cell type is connected with a specific set of Purkinje cells and inferior olive neurons and in turn innervates a distinct collection of downstream targets. Transsynaptic tracing indicates extensive disynaptic links with cognitive, affective, and motor forebrain circuits. These results indicate that diverse cerebellar vermis functions could be mediated by modular synaptic connections of distinct fastigial cell types with posturomotor, oromotor, positional-autonomic, orienting, and vigilance circuits.
Collapse
Affiliation(s)
- Hirofumi Fujita
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Takashi Kodama
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Sascha du Lac
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neurology, Johns Hopkins Medical InstituteBaltimoreUnited States
| |
Collapse
|
55
|
Oh JY, Han JH, Lee H, Han YE, Rah JC, Park H. Labeling Dual Presynaptic Inputs using cFork Anterograde Tracing System. Exp Neurobiol 2020; 29:219-229. [PMID: 32624506 PMCID: PMC7344376 DOI: 10.5607/en20006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/03/2023] Open
Abstract
Understanding brain function-related neural circuit connectivity is essential for investigating how cognitive functions are decoded in neural circuits. Trans-synaptic viral vectors are useful for identifying neural synaptic connectivity because of their ability to be transferred from transduced cells to synaptically connected cells. However, concurrent labeling of multisynaptic inputs to postsynaptic neurons is impossible with currently available trans-synaptic viral vectors. Here, we report a neural circuit tracing system that can simultaneously label postsynaptic neurons with two different markers, the expression of which is defined by presynaptic input connectivity. This system, called “cFork (see fork)”, includes delivering serotype 1-packaged AAV vectors (AAV1s) containing Cre or flippase recombinase (FlpO) into two different presynaptic brain areas, and AAV5 with a dual gene expression cassette in postsynaptic neurons. Our in vitro and in vivo tests showed that selective expression of two different fluorescence proteins, EGFP and mScarlet, in postsynaptic neurons could be achieved by AAV1-mediated anterograde trans-synaptic transfer of Cre or FlpO constructs. When this tracing system was applied to the somatosensory barrel field cortex (S1BF) or striatum innervated by multiple presynaptic inputs, postsynaptic neurons defined by presynaptic inputs were simultaneously labeled with EGFP or mScarlet. Our new anterograde tracing tool may be useful for elucidating the complex multisynaptic connectivity of postsynaptic neurons regulating diverse brain functions.
Collapse
Affiliation(s)
- Jun-Young Oh
- Multi-institutional Collaborative Research Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jeong-Ho Han
- Molecular Neurobiology Lab, Research Group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Hyoeun Lee
- Molecular Neurobiology Lab, Research Group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Young-Eun Han
- Multi-institutional Collaborative Research Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jong Cheol Rah
- Multi-institutional Collaborative Research Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu 41062, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Hyungju Park
- Multi-institutional Collaborative Research Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu 41062, Korea.,Molecular Neurobiology Lab, Research Group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu 41062, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| |
Collapse
|
56
|
Hildebrand S, Schueth A, Wangenheim KV, Mattheyer C, Pampaloni F, Bratzke H, Roebroeck AF, Galuske RAW. hFRUIT: An optimized agent for optical clearing of DiI-stained adult human brain tissue. Sci Rep 2020; 10:9950. [PMID: 32561795 PMCID: PMC7305111 DOI: 10.1038/s41598-020-66999-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 05/28/2020] [Indexed: 11/09/2022] Open
Abstract
Here, we describe a new immersion-based clearing method suitable for optical clearing of thick adult human brain samples while preserving its lipids and lipophilic labels such as 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). This clearing procedure is simple, easy to implement, and allowed for clearing of 5 mm thick human brain tissue samples within 12 days. Furthermore, we show for the first time the advantageous effect of the Periodate-Lysine-Paraformaldehyde (PLP) fixation as compared to the more commonly used 4% paraformaldehyde (PFA) on clearing performance.
Collapse
Affiliation(s)
- Sven Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, 6229 EV, Maastricht, the Netherlands.
| | - Anna Schueth
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, 6229 EV, Maastricht, the Netherlands
| | - Klaus von Wangenheim
- Department of Systemic Neurophysiology, Technische Universität Darmstadt, Schnittspahnstraße 3, Darmstadt, 64287, Germany
| | - Christian Mattheyer
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Faculty 15 Biological Sciences, Institute for Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Francesco Pampaloni
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Faculty 15 Biological Sciences, Institute for Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Hansjürgen Bratzke
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Institute for Forensic Medicine, Kennedy Allee 104, 60596, Frankfurt am Main, Germany
| | - Alard F Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, 6229 EV, Maastricht, the Netherlands
| | - Ralf A W Galuske
- Department of Systemic Neurophysiology, Technische Universität Darmstadt, Schnittspahnstraße 3, Darmstadt, 64287, Germany.
| |
Collapse
|
57
|
Pneumonia-induced endothelial amyloids reduce dendritic spine density in brain neurons. Sci Rep 2020; 10:9327. [PMID: 32518286 PMCID: PMC7283224 DOI: 10.1038/s41598-020-66321-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa pneumonia elicits endothelial cell release of cytotoxic amyloids that can be recovered from the bronchoalveolar lavage and cerebrospinal fluids of critically ill patients. Introduction of these cytotoxic amyloids into the lateral ventricle impairs learning and memory in mice. However, it is unclear whether the amyloids of lung origin (1) are neurotropic, and (2) cause structural remodeling of hippocampal dendrites. Thus, we used electrophysiological studies in brain slices and structural analysis of post-mortem tissues obtained from animals exposed to endothelium-derived amyloids to assess these issues. The amyloids were administered via three different routes, by intracerebroventricular, intratracheal, and intraperitoneal injections. Synaptic long-term potentiation was abolished following intracerebroventricular amyloid injection. Fluorescence dialysis or Golgi-impregnation labeling showed reduced dendritic spine density and destabilized spines of hippocampal pyramidal neurons 4 weeks after intracerebroventricular amyloid injection. In comparison, endothelial amyloids introduced to the airway caused the most prominent dendritic spine density reduction, yet intraperitoneal injection of these amyloids did not affect spine density. Our findings indicate that infection-elicited lung endothelial amyloids are neurotropic and reduce neuronal dendritic spine density in vivo. Amyloids applied into the trachea may either be disseminated through the circulation and cross the blood-brain barrier to access the brain, initiate feed-forward amyloid transmissibility among cells of the blood-brain barrier or access the brain in other ways. Nevertheless, lung-derived amyloids suppress hippocampal signaling and cause injury to neuronal structure.
Collapse
|
58
|
Lanciego JL, Wouterlood FG. Neuroanatomical tract-tracing techniques that did go viral. Brain Struct Funct 2020; 225:1193-1224. [PMID: 32062721 PMCID: PMC7271020 DOI: 10.1007/s00429-020-02041-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing methods remain fundamental for elucidating the complexity of brain circuits. During the past decades, the technical arsenal at our disposal has been greatly enriched, with a steady supply of fresh arrivals. This paper provides a landscape view of classical and modern tools for tract-tracing purposes. Focus is placed on methods that have gone viral, i.e., became most widespread used and fully reliable. To keep an historical perspective, we start by reviewing one-dimensional, standalone transport-tracing tools; these including today's two most favorite anterograde neuroanatomical tracers such as Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine. Next, emphasis is placed on several classical tools widely used for retrograde neuroanatomical tracing purposes, where Fluoro-Gold in our opinion represents the best example. Furthermore, it is worth noting that multi-dimensional paradigms can be designed by combining different tracers or by applying a given tracer together with detecting one or more neurochemical substances, as illustrated here with several examples. Finally, it is without any doubt that we are currently witnessing the unstoppable and spectacular rise of modern molecular-genetic techniques based on the use of modified viruses as delivery vehicles for genetic material, therefore, pushing the tract-tracing field forward into a new era. In summary, here, we aim to provide neuroscientists with the advice and background required when facing a choice on which neuroanatomical tracer-or combination thereof-might be best suited for addressing a given experimental design.
Collapse
Affiliation(s)
- Jose L Lanciego
- Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Floris G Wouterlood
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Location VUmc, Neuroscience Campus Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
59
|
Tracing the retina to analyze the integrity and phagocytic capacity of the retinal pigment epithelium. Sci Rep 2020; 10:7273. [PMID: 32350384 PMCID: PMC7190639 DOI: 10.1038/s41598-020-64131-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
We have developed a new technique to study the integrity, morphology and functionality of the retinal neurons and the retinal pigment epithelium (RPE). Young and old control albino (Sprague-Dawley) and pigmented (Piebald Virol Glaxo) rats, and dystrophic albino (P23H-1) and pigmented (Royal College of Surgeons) rats received a single intravitreal injection of 3% Fluorogold (FG) and their retinas were analyzed from 5 minutes to 30 days later. Retinas were imaged in vivo with SD-OCT and ex vivo in flat-mounts and in cross-sections. Fifteen minutes and 24 hours after intravitreal administration of FG retinal neurons and the RPE, but no glial cells, were labeled with FG-filled vesicles. The tracer reached the RPE 15 minutes after FG administration, and this labeling remained up to 30 days. Tracing for 15 minutes or 24 hours did not cause oxidative stress. Intraretinal tracing delineated the pathological retinal remodelling occurring in the dystrophic strains. The RPE of the P23H-1 strain was highly altered in aged animals, while the RPE of the RCS strain, which is unable to phagocytose, did not accumulate the tracer even at young ages when the retinal neural circuit is still preserved. In both dystrophic strains, the RPE cells were pleomorphic and polymegathic.
Collapse
|
60
|
Saleeba C, Dempsey B, Le S, Goodchild A, McMullan S. Corrigendum: A Student's Guide to Neural Circuit Tracing. Front Neurosci 2020; 14:177. [PMID: 32210751 PMCID: PMC7076267 DOI: 10.3389/fnins.2020.00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christine Saleeba
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- The School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bowen Dempsey
- CNRS, Hindbrain Integrative Neurobiology Laboratory, Neuroscience Paris-Saclay Institute (Neuro-PSI), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sheng Le
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ann Goodchild
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Simon McMullan
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Simon McMullan
| |
Collapse
|
61
|
Neuronal Network Dissection with Neurotropic Virus Tracing. Neurosci Bull 2020; 36:199-201. [PMID: 32065368 DOI: 10.1007/s12264-020-00472-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/17/2020] [Indexed: 01/21/2023] Open
|
62
|
Cong W, Shi Y, Qi Y, Wu J, Gong L, He M. Viral approaches to study the mammalian brain: Lineage tracing, circuit dissection and therapeutic applications. J Neurosci Methods 2020; 335:108629. [PMID: 32045571 DOI: 10.1016/j.jneumeth.2020.108629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/09/2023]
Abstract
Viral vectors are widely used to study the development, function and pathology of neural circuits in the mammalian brain. Their flexible payloads with customizable choices of tool genes allow versatile applications ranging from lineage tracing, circuit mapping and functional interrogation, to translational and therapeutic applications. Different applications have distinct technological requirements, therefore, often utilize different types of virus. This review introduces the most commonly used viruses for these applications and some recent advances in improving the resolution and throughput of lineage tracing, the efficacy and selectivity of circuit tracing and the specificity of cell type targeting.
Collapse
Affiliation(s)
- Wei Cong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanqing Qi
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
63
|
Klepukov A, Apryshko VP. Optimizing techniques for injecting DiI into the brain nuclei of neonatal mice P6 - C57Bl6/CBA. J Neurosci Methods 2019; 326:108364. [PMID: 31351097 DOI: 10.1016/j.jneumeth.2019.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/28/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
Abstract
DiI (1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate) is a lipophilic dye used to research the intracerebral connections of neonatal animals. This dye is most frequently used in the form of dry crystals, but injections of the marker in this state into the mouse brain nuclei, such as MHb (2 cases), LHbM (2 cases), LPA (3 cases) and TS (1 case), clearly revealed excessive lateral diffusion marker into the tissue. Eventually, all the investigated cases except the LPA gave a false positive result. To find the optimal method of marker injection,DiI-kerosene liquid films (3 cases in the MHb); DiI-kerosene gelatinous paste (3 cases in the MHb); injections of insoluble DiI crystals from a solution of 99% dmso (3 cases in the MHb) and 70% ethanol (3 cases in the MHb, 2 cases in the LHbM, 4 cases in the TS) were tested. Injections of DiI in the form of undissolved crystals from a 70% ethanol solution gave a minimal level of side diffusion in all the studied cases. This method of injection is optimal and recommended for use.
Collapse
Affiliation(s)
- A Klepukov
- IVF-clinic Altra Vita, 4A, Nagornaya st., Moscow, 117186, Russia.
| | - V P Apryshko
- IVF-clinic Altra Vita, 4A, Nagornaya st., Moscow, 117186, Russia; Faculty of Moscow State University, Russia
| |
Collapse
|
64
|
Takemura H, Pestilli F, Weiner KS. Comparative neuroanatomy: Integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neurosci Res 2019; 146:1-12. [PMID: 30389574 PMCID: PMC6491271 DOI: 10.1016/j.neures.2018.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Comparative neuroanatomy studies improve understanding of brain structure and function and provide insight regarding brain development, evolution, and also what features of the brain are uniquely human. With modern methods such as diffusion MRI (dMRI) and quantitative MRI (qMRI), we are able to measure structural features of the brain with the same methods across human and non-human primates. In this review article, we discuss how recent dMRI measurements of vertical occipital connections in humans and macaques can be compared with previous findings from invasive anatomical studies that examined connectivity, including relatively forgotten classic strychnine neuronography studies. We then review recent progress in understanding the neuroanatomy of vertical connections within the occipitotemporal cortex by combining modern quantitative MRI and classical histological measurements in human and macaque. Finally, we a) discuss current limitations of dMRI and tractography and b) consider potential paths for future investigations using dMRI and tractography for comparative neuroanatomical studies of white matter tracts between species. While we focus on vertical association connections in visual cortex in the present paper, this same approach can be applied to other white matter tracts. Similar efforts are likely to continue to advance our understanding of the neuroanatomical features of the brain that are shared across species, as well as to distinguish the features that are uniquely human.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Franco Pestilli
- Departments of Psychological and Brain Sciences, Computer Science and Intelligent Systems Engineering, Programs in Neuroscience and Cognitive Science, School of Optometry, Indiana University, Bloomington, IN, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
65
|
Saleeba C, Dempsey B, Le S, Goodchild A, McMullan S. A Student's Guide to Neural Circuit Tracing. Front Neurosci 2019; 13:897. [PMID: 31507369 PMCID: PMC6718611 DOI: 10.3389/fnins.2019.00897] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian nervous system is comprised of a seemingly infinitely complex network of specialized synaptic connections that coordinate the flow of information through it. The field of connectomics seeks to map the structure that underlies brain function at resolutions that range from the ultrastructural, which examines the organization of individual synapses that impinge upon a neuron, to the macroscopic, which examines gross connectivity between large brain regions. At the mesoscopic level, distant and local connections between neuronal populations are identified, providing insights into circuit-level architecture. Although neural tract tracing techniques have been available to experimental neuroscientists for many decades, considerable methodological advances have been made in the last 20 years due to synergies between the fields of molecular biology, virology, microscopy, computer science and genetics. As a consequence, investigators now enjoy an unprecedented toolbox of reagents that can be directed against selected subpopulations of neurons to identify their efferent and afferent connectomes. Unfortunately, the intersectional nature of this progress presents newcomers to the field with a daunting array of technologies that have emerged from disciplines they may not be familiar with. This review outlines the current state of mesoscale connectomic approaches, from data collection to analysis, written for the novice to this field. A brief history of neuroanatomy is followed by an assessment of the techniques used by contemporary neuroscientists to resolve mesoscale organization, such as conventional and viral tracers, and methods of selecting for sub-populations of neurons. We consider some weaknesses and bottlenecks of the most widely used approaches for the analysis and dissemination of tracing data and explore the trajectories that rapidly developing neuroanatomy technologies are likely to take.
Collapse
Affiliation(s)
- Christine Saleeba
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- The School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bowen Dempsey
- CNRS, Hindbrain Integrative Neurobiology Laboratory, Neuroscience Paris-Saclay Institute (Neuro-PSI), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sheng Le
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ann Goodchild
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Simon McMullan
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
66
|
Pushchin I. Retinal ganglion cell topography and spatial resolution estimation in the Japanese tree frog Hyla japonica (Günther, 1859). J Anat 2019; 235:1114-1124. [PMID: 31418464 DOI: 10.1111/joa.13075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2019] [Indexed: 11/29/2022] Open
Abstract
Tree frogs are an interesting and diverse group of frogs. They display a number of unique adaptations to life in the arboreal environment. Vision plays a crucial role in their ecology. The topography of retinal ganglion cells (GCs) is closely related to a species' visual behavior. Despite a large amount of research addressing GC topography in vertebrates, there is scarce data on this subject in tree frogs. I studied the topography of GCs in the retina of the Japanese tree frog Hyla japonica. The GC density distribution was locally fairly homogeneous, with spatial density increasing gradually from the dorsal and ventral periphery towards the equator. A moderately pronounced visual streak was found close to the equator in the dorsal hemiretina, with a distinct area retinae temporalis in the dorsotemporal quadrant potentially subserving binocular vision. The minimum GC density (mean ± SEM, n = 5) was 3060 ± 60 and the maximum 12 800 ± 170 cells/mm2 . The total number of GCs was 292 ± 7 × 103 . The theoretical anatomical spatial resolution estimated from GC densities and eye optics was lowest in the ventral periphery (ca. 0.9 and 1.3 cycles/degree in air and water, respectively) and highest in the area retinae temporalis (ca. 2.1 and 2.8 cycles/degree). The relatively high GC density and presence of specialized retinal regions in Hyla japonica are consistent with its highly visual behavior. The present findings contribute to our understanding of the relative role of common ancestry and environmental pressure in GC topography variation within Anura.
Collapse
Affiliation(s)
- Igor Pushchin
- Laboratory of Physiology, National Scientific Center of Marine Biology , Far Eastern Branch Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
67
|
Zheng T, Feng Z, Wang X, Jiang T, Jin R, Zhao P, Luo T, Gong H, Luo Q, Yuan J. Review of micro-optical sectioning tomography (MOST): technology and applications for whole-brain optical imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:4075-4096. [PMID: 31452996 PMCID: PMC6701528 DOI: 10.1364/boe.10.004075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 05/14/2023]
Abstract
Elucidating connectivity and functionality at the whole-brain level is one of the most challenging research goals in neuroscience. Various whole-brain optical imaging technologies with submicron lateral resolution have been developed to reveal the fine structures of brain-wide neural and vascular networks at the mesoscopic level. Among them, micro-optical sectioning tomography (MOST) is attracting increasing attention, as a variety of technological variations and solutions tailored toward different biological applications have been optimized. Here, we summarize the recent development of MOST technology in whole-brain imaging and anticipate future improvements.
Collapse
Affiliation(s)
- Ting Zheng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Equal contribution
| | - Zhao Feng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Equal contribution
| | - Xiaojun Wang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao Jiang
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Rui Jin
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peilin Zhao
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ting Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Qingming Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Jing Yuan
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| |
Collapse
|
68
|
Panesar SS, Fernandez-Miranda J. Commentary: The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification. Front Neuroanat 2019; 13:61. [PMID: 31244620 PMCID: PMC6580230 DOI: 10.3389/fnana.2019.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/24/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- Sandip S Panesar
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | | |
Collapse
|
69
|
Caspers S, Axer M. Decoding the microstructural correlate of diffusion MRI. NMR IN BIOMEDICINE 2019; 32:e3779. [PMID: 28858413 DOI: 10.1002/nbm.3779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Diffusion imaging has evolved considerably over the past decade. While it provides valuable information about the structural connectivity at the macro- and mesoscopic scale, bridging the gap to the microstructure at the level of single nerve fibers poses an enormous challenge. This is particularly true for the human brain with its large size, its large white-matter volume and availability of histological techniques for studying human whole-brain sections and subsequent 3D reconstruction. Classic post-mortem techniques for studying the fiber architecture of the brain, such as myeloarchitectonic staining or dye tracing, are complemented by novel histological approaches, such as 3D polarized light imaging or optical coherence tomography, enabling unique insight into the fiber architecture from large fiber bundles within deep white matter to single nerve fibers in the cortex. The present review discusses the benefits and challenges of these latest developments in comparison with the classic techniques, with particular focus on the mutual exchange between in vivo and post-mortem diffusion imaging and post-mortem microstructural approaches for understanding the wiring of the brain across different scales.
Collapse
Affiliation(s)
- Svenja Caspers
- C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
70
|
|
71
|
MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chem Biol 2019; 26:600-614.e7. [PMID: 30745238 DOI: 10.1016/j.chembiol.2019.01.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
The proper staining of the plasma membrane (PM) is critical in bioimaging as it delimits the cell. Herein, we developed MemBright, a family of six cyanine-based fluorescent turn-on PM probes that emit from orange to near infrared when reaching the PM, and enable homogeneous and selective PM staining with excellent contrast in mono- and two-photon microscopy. These probes are compatible with long-term live-cell imaging and immunostaining. Moreover, MemBright label neurons in a brighter manner than surrounding cells, allowing identification of neurons in acute brain tissue sections and neuromuscular junctions without any use of transfection or transgenic animals. In addition, MemBright probes were used in super-resolution imaging to unravel the neck of dendritic spines. 3D multicolor dSTORM in combination with immunostaining revealed en-passant synapse displaying endogenous glutamate receptors clustered at the axonal-dendritic contact site. MemBright probes thus constitute a universal toolkit for cell biology and neuroscience biomembrane imaging with a variety of microscopy techniques. VIDEO ABSTRACT.
Collapse
|
72
|
Shen K, Goulas A, Grayson DS, Eusebio J, Gati JS, Menon RS, McIntosh AR, Everling S. Exploring the limits of network topology estimation using diffusion-based tractography and tracer studies in the macaque cortex. Neuroimage 2019; 191:81-92. [PMID: 30739059 DOI: 10.1016/j.neuroimage.2019.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Reconstructing the anatomical pathways of the brain to study the human connectome has become an important endeavour for understanding brain function and dynamics. Reconstruction of the cortico-cortical connectivity matrix in vivo often relies on noninvasive diffusion-weighted imaging (DWI) techniques but the extent to which they can accurately represent the topological characteristics of structural connectomes remains unknown. We addressed this question by constructing connectomes using DWI data collected from macaque monkeys in vivo and with data from published invasive tracer studies. We found the strength of fiber tracts was well estimated from DWI and topological properties like degree and modularity were captured by tractography-based connectomes. Rich-club/core-periphery type architecture could also be detected but the classification of hubs using betweenness centrality, participation coefficient and core-periphery identification techniques was inaccurate. Our findings indicate that certain aspects of cortical topology can be faithfully represented in noninvasively-obtained connectomes while other network analytic measures warrant cautionary interpretations.
Collapse
Affiliation(s)
- Kelly Shen
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.
| | - Alexandros Goulas
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | | | - John Eusebio
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Joseph S Gati
- The Centre for Functional and Metabolic Mapping, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- The Centre for Functional and Metabolic Mapping, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Stefan Everling
- The Centre for Functional and Metabolic Mapping, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
73
|
Fan H, Liu X, Shen Y, Chen S, Huan Y, Shan J, Zhou C, Wu S, Zhang Z, Wang Y. In Vivo Genetic Strategies for the Specific Lineage Tracing of Stem Cells. Curr Stem Cell Res Ther 2019; 14:230-238. [PMID: 30047336 DOI: 10.2174/1574888x13666180726110138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/04/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Characterization of the fate changes of stem cells is essential to understand the roles of certain stem cells both during development and in diseases, such as cancer. In the past two decades, more and more importance has been paid to the studies of in vivo lineage tracing, because they could authentically reveal the differentiation, migration and even proliferation of stem cells. However, specific genetic tools have only been developed until recently. OBJECTIVE To summarize the progresses of genetic tools for specific lineage tracing with emphasis on their applications in investigating the stem cell niche signals. RESULTS Three major genetic strategies have been reviewed according to the development of technique, particularly the advantages and disadvantages of individual methods. CONCLUSION In vivo specific lineage tracing of stem cells could be achieved by comprehensive application of multiple genetic tools.
Collapse
Affiliation(s)
- Hong Fan
- Department of Neurobiology, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China
| | - Xinyu Liu
- Cadet team of undergraduate, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yahui Shen
- Cadet team of undergraduate, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Siwei Chen
- Cadet team of undergraduate, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yu Huan
- Cadet team of undergraduate, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Junjia Shan
- Cadet team of undergraduate, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Chengji Zhou
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine, University of California-Davis, 2425 Stockton Blvd, Sacramento, CA 95817, United States
| | - Shengxi Wu
- Department of Neurobiology, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China
| | - Zifeng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yazhou Wang
- Department of Neurobiology, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China
| |
Collapse
|
74
|
Liu Y, Liu J, Zhang J, Li X, Lin F, Zhou N, Yang B, Lu L. A brand-new generation of fluorescent nano-neural tracers: biotinylated dextran amine conjugated carbonized polymer dots. Biomater Sci 2019; 7:1574-1583. [PMID: 30688953 DOI: 10.1039/c8bm01295d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We develop a novel fluorescent nano-neural tracer: BDA–CPDs, which can be anterogradely transported within the peripheral nervous system of rats.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hand Surgery
- The First Hospital of Jilin University
- Changchun
- China
| | - Junjun Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Jiayi Zhang
- Department of Hand Surgery
- The First Hospital of Jilin University
- Changchun
- China
| | - Xiucun Li
- Department of Hand Surgery
- The First Hospital of Jilin University
- Changchun
- China
| | - Fangsiyu Lin
- Department of Hand Surgery
- The First Hospital of Jilin University
- Changchun
- China
| | - Nan Zhou
- Department of Orthopedics
- First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Laijin Lu
- Department of Hand Surgery
- The First Hospital of Jilin University
- Changchun
- China
| |
Collapse
|
75
|
Yao F, Zhang E, Gao Z, Ji H, Marmouri M, Xia X. Did you choose appropriate tracer for retrograde tracing of retinal ganglion cells? The differences between cholera toxin subunit B and Fluorogold. PLoS One 2018; 13:e0205133. [PMID: 30289890 PMCID: PMC6173421 DOI: 10.1371/journal.pone.0205133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Cholera toxin subunit B (CTB) and Fluorogold(FG) are two widely utilized retrograde tracers to assess the number and function of retinal ganglion cells (RGCs). However, the relative advantages and disadvantages of these tracers remain unclear, which may lead to their inappropriate application. In this study, we compared these tracers by separately injecting the tracer into the superior Colliculi (SC) in rats, one or 2 weeks later, the rats were sacrificed, and their retinas, brains, and optic nerves were collected. From the first to second week, FG displayed a greater number of labeled RGCs and a larger diffusion area in the SC than CTB; The number of CTB labeled RGCs and the diffusion area of CTB in the SC increased significantly, but there was no distinction between FG; Furthermore, CTB exhibited more labeled RGC neurites and longer neurites than FG, but no difference was evident between the same trace; The optic nerves labeled using CTB were much clearer than those labeled using FG. In conclusion, both CTB and FG can be used for the retrograde labeling of RGCs in rats at 1 or 2 weeks. FG achieves retrograde labeling of a greater number of RGCs than CTB, whereas CTB better delineates the morphology of RGCs. Furthermore, CTB seems more suitable for retrograde labeling of some small, non-image forming nuclei in the brain to which certain RGC subtypes project their axons.
Collapse
Affiliation(s)
- Fei Yao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Endong Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaolin Gao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Ji
- Department of Ophthalmology, The People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Mahmoud Marmouri
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
76
|
Wang J, Cui J, She C, Xu D, Zhang Z, Wang H, Bai W. Differential innervation of tissues located at traditional acupuncture points in the rat forehead and face. Acupunct Med 2018; 36:408-414. [PMID: 30158109 DOI: 10.1136/acupmed-2017-011595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To compare the neural pathways associated with the tissues located at different traditional acupuncture points in the rat forehead and face using the cholera toxin B subunit (CTB) neural tracing technique. METHODS After injection of CTB into the tissues at GB14, ST2 and ST6 in the rat, the neural labelling associated with each acupuncture point was revealed by fluorescent immunohistochemistry of the nervous system, including the trigeminal ganglion (TRG), cervical dorsal root ganglia (DRG), spinal cord and brain. RESULTS The CTB labelling included sensory neurons and their transganglionic axonal terminals, as well as motor neurons. The labelled sensory neurons associated with GB14, ST2 and ST6 were distributed in both the TRG and cervical DRG, and their centrally projected axons terminated in an orderly fashion at their corresponding targets in the spinal trigeminal nucleus and cervical spinal dorsal horn. In addition, labelled motor neurons were observed in the facial motor nucleus, trigeminal motor nucleus and cervical spinal ventral horn, in which facial motor neurons projected to the tissues located at all three acupuncture points. Trigeminal motor neurons innervated both ST2 and ST6, while spinal motor neurons only correlated with ST6. CONCLUSIONS These results indicate that the tissues located at each of these three traditional acupuncture points in the rat forehead and face has its own sensory and motor connection with the nervous system in a region-specific pattern through distinct neural pathways. Understanding the neuroanatomical characteristics of acupuncture points from the peripheral nervous system to the central nervous system should help inform acupuncture point selection according to the demands of the clinical situation.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen She
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyun Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
77
|
Aristovich K, Donegá M, Blochet C, Avery J, Hannan S, Chew DJ, Holder D. Imaging fast neural traffic at fascicular level with electrical impedance tomography: proof of principle in rat sciatic nerve. J Neural Eng 2018; 15:056025. [DOI: 10.1088/1741-2552/aad78e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
78
|
Kawai Y. Differential Ascending Projections From the Male Rat Caudal Nucleus of the Tractus Solitarius: An Interface Between Local Microcircuits and Global Macrocircuits. Front Neuroanat 2018; 12:63. [PMID: 30087599 PMCID: PMC6066510 DOI: 10.3389/fnana.2018.00063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
To integrate and broadcast neural information, local microcircuits and global macrocircuits interact within certain specific nuclei of the central nervous system. The structural and functional architecture of this interaction was determined for the caudal nucleus of the tractus solitarius (NTS) at the level of the area postrema (AP), a relay station of peripheral viscerosensory information that is processed and conveyed to brain regions concerned with autonomic-affective and other interoceptive reflexive functions. Axon collaterals of most small NTS cells (soma <150 μm2) establish excitatory or inhibitory local microcircuits likely to control the activity of nearby NTS cells and to transfer peripheral signals to efferent projection neurons. At least two types of cells that constitute efferent pathways from the caudal NTS (cNTS) were distinguished: (1) a greater numbers of small cells, seemingly forming local excitatory microcircuits via recurrent axon collaterals, that project specifically and unidirectionally to the lateral parabrachial nucleus; and (2) a much smaller numbers of cells likely to establish multiple global connections, mostly via the medial forebrain bundle (MFB) or the dorsal longitudinal fascicle (DLF), with a wide range of brain regions, including the ventrolateral medulla (VLM), hypothalamus, central nucleus of the amygdala (ACe), bed nucleus of the stria terminalis (BNST), spinal cord dorsal horn, brainstem reticular formation, locus coeruleus (LC), periaqueductal gray (PAG) and periventricular diencephalon (including the epithalamus). The evidence presented here suggests that distinct cNTS cell types distinguished by projection pattern and related structural and functional features participate differentially in the computation of viscerosensory information and coordination of global macro-networks in a highly organized manner.
Collapse
Affiliation(s)
- Yoshinori Kawai
- Department of Anatomy, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
79
|
Song SY, Zhang LC. The Establishment of a CSF-Contacting Nucleus "Knockout" Model Animal. Front Neuroanat 2018; 12:22. [PMID: 29636668 PMCID: PMC5881085 DOI: 10.3389/fnana.2018.00022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
To establish an entirely cerebrospinal fluid (CSF)-contacting nucleus-deficient model animal, we used cholera toxin B subunit (CB)- saporin (SAP), which is an analog of CB-HRP that specifically labels the CSF-contacting nucleus, to exclusively damage the nucleus. The effectiveness and specificity of the ablation were evaluated upon days 1-10 after CB-SAP microinjection into the brain ventricular system. The vital status, survival, and common physiological parameters of the model animals were also assessed during the experimental period. The results demonstrated that CB-SAP damaged only the CSF-contacting nucleus, but not other functional structures, in the brain. The complete ablation occurred by day 7 after CB-SAP microinjection. A model animal that had no CSF-contacting nucleus was established after survival beyond that time point. No obvious effects were observed in the vital status of the model animals, and their survival was ensured. The common physiological parameters of model animals were stable. The present study provides a method to establish a CSF-contacting nucleus "knockout" model animal, which is similar to a gene knockout model animal for studying this particular nucleus in vivo.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
80
|
Sharma SK, Seven ES, Micic M, Li S, Leblanc RM. Surface Chemistry and Spectroscopic Study of a Cholera Toxin B Langmuir Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2557-2564. [PMID: 29378405 DOI: 10.1021/acs.langmuir.7b04252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this article, we explored the surface chemistry properties of a cholera toxin B (CTB) monolayer at the air-subphase interface and investigated the change in interfacial properties through in situ spectroscopy. The study showed that the impact of the blue shift was negligible, suggesting that the CTB molecules were minimally affected by the subphase molecules. The stability of the CTB monolayer was studied by maintaining the constant surface pressure for a long time and also by using the compression-decompression cycle experiments. The high stability of the Langmuir monolayer of CTB clearly showed that the driving force of CTB going to the amphiphilic membrane was its amphiphilic nature. In addition, no major change was detected in the various in situ spectroscopy results (such as UV-vis, fluorescence, and IR ER) of the CTB Langmuir monolayer with the increase in surface pressure. This indicates that no aggregation occurs in the Langmuir monolayer of CTB.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Elif S Seven
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Miodrag Micic
- MP Biomedicals LLC, 3 Hutton Center, Santa Ana, California 92707, United States
- Department of Engineering Design Technology, Cerritos College , 11110 Alondra Boulevard, Norwalk, California 90650, United States
| | - Shanghao Li
- MP Biomedicals LLC, 3 Hutton Center, Santa Ana, California 92707, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
81
|
Heizmann S, Kilias A, Ruther P, Egert U, Asplund M. Active Control of Dye Release for Neuronal Tracing Using PEDOT-PSS Coated Electrodes. IEEE Trans Neural Syst Rehabil Eng 2018; 26:299-306. [DOI: 10.1109/tnsre.2016.2606559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
82
|
Guidolin D, Marcoli M, Maura G, Agnati LF. New dimensions of connectomics and network plasticity in the central nervous system. Rev Neurosci 2018; 28:113-132. [PMID: 28030363 DOI: 10.1515/revneuro-2016-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Abstract
Cellular network architecture plays a crucial role as the structural substrate for the brain functions. Therefore, it represents the main rationale for the emerging field of connectomics, defined as the comprehensive study of all aspects of central nervous system connectivity. Accordingly, in the present paper the main emphasis will be on the communication processes in the brain, namely wiring transmission (WT), i.e. the mapping of the communication channels made by cell components such as axons and synapses, and volume transmission (VT), i.e. the chemical signal diffusion along the interstitial brain fluid pathways. Considering both processes can further expand the connectomics concept, since both WT-connectomics and VT-connectomics contribute to the structure of the brain connectome. A consensus exists that such a structure follows a hierarchical or nested architecture, and macro-, meso- and microscales have been defined. In this respect, however, several lines of evidence indicate that a nanoscale (nano-connectomics) should also be considered to capture direct protein-protein allosteric interactions such as those occurring, for example, in receptor-receptor interactions at the plasma membrane level. In addition, emerging evidence points to novel mechanisms likely playing a significant role in the modulation of intercellular connectivity, increasing the plasticity of the system and adding complexity to its structure. In particular, the roamer type of VT (i.e. the intercellular transfer of RNA, proteins and receptors by extracellular vesicles) will be discussed since it allowed us to introduce a new concept of 'transient changes of cell phenotype', that is the transient acquisition of new signal release capabilities and/or new recognition/decoding apparatuses.
Collapse
|
83
|
Crish SD, Schofield BR. Anterograde Tract Tracing for Assaying Axonopathy and Transport Deficits in Glaucoma. Methods Mol Biol 2018; 1695:171-185. [PMID: 29190027 DOI: 10.1007/978-1-4939-7407-8_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Whether to stage degeneration or investigate early pathology in glaucoma, examination of axonal structure and function is essential. There are a wide variety of methods available to investigators using animal models of glaucoma, with varying utilities depending on the questions asked. Here, we describe the use of anterograde neuronal tract tracing using cholera toxin B (CTB) for the determination of axon transport integrity of the retinofugal projection. This method reveals the structure of the retinal axons as well as the functional integrity of anterograde transport systems.
Collapse
Affiliation(s)
- Samuel D Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, RGE-135, 4209 St. Rt. 44, Rootstown, OH, 44272, USA.
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| |
Collapse
|
84
|
Chen X, Zhang X, Zhong Q, Sun Q, Peng J, Gong H, Yuan J. Simultaneous acquisition of neuronal morphology and cytoarchitecture in the same Golgi-stained brain. BIOMEDICAL OPTICS EXPRESS 2018; 9:230-244. [PMID: 29359099 PMCID: PMC5772577 DOI: 10.1364/boe.9.000230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 05/14/2023]
Abstract
Acquiring an accurate orientation reference is a prerequisite for precisely analysing the morphological features of Golgi-stained neurons in the whole brain. However, the same reflective imaging contrast of Golgi staining for morphology and Nissl staining for cytoarchitecture leads to the failure of distinguishing soma morphology and simultaneously co-locate cytoarchitecture. Here, we developed the dual-mode micro-optical sectioning tomography (dMOST) method to simultaneously image the reflective and fluorescent signals in three dimensions. We evaluated the feasibility of real-time fluorescent counterstaining on Golgi-stained brain tissue. With our system, we acquired whole-brain data sets of physiological and pathological Golgi-stained mouse model brains with fluorescence-labelled anatomical annotation at single-neuron resolution. We also obtained the neuronal morphology of macaque monkey brain tissue using this method. The results show that real-time acquisition of the co-located cytoarchitecture reference in the same brain greatly facilitates the precise morphological analysis of Golgi-stained neurons.
Collapse
Affiliation(s)
- Xiao Chen
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoyu Zhang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qiuyuan Zhong
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingtao Sun
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jie Peng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jing Yuan
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
85
|
Son AI, Opfermann JD, McCue C, Ziobro J, Abrahams JH, Jones K, Morton PD, Ishii S, Oluigbo C, Krieger A, Liu JS, Hashimoto-Torii K, Torii M. An Implantable Micro-Caged Device for Direct Local Delivery of Agents. Sci Rep 2017; 7:17624. [PMID: 29247175 PMCID: PMC5732160 DOI: 10.1038/s41598-017-17912-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/04/2017] [Indexed: 11/08/2022] Open
Abstract
Local and controlled delivery of therapeutic agents directly into focally afflicted tissues is the ideal for the treatment of diseases that require direct interventions. However, current options are obtrusive, difficult to implement, and limited in their scope of utilization; the optimal solution requires a method that may be optimized for available therapies and is designed for exact delivery. To address these needs, we propose the Biocage, a customizable implantable local drug delivery platform. The device is a needle-sized porous container capable of encasing therapeutic molecules and matrices of interest to be eluted into the region of interest over time. The Biocage was fabricated using the Nanoscribe Photonic Professional GT 3D laser lithography system, a two-photon polymerization (2PP) 3D printer capable of micron-level precision on a millimeter scale. We demonstrate the build consistency and features of the fabricated device; its ability to release molecules; and a method for its accurate, stable delivery in mouse brain tissue. The Biocage provides a powerful tool for customizable and precise delivery of therapeutic agents into target tissues.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA
| | - Justin D Opfermann
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, 20010, USA
| | - Caroline McCue
- Terrapin Works, School of Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Julie Ziobro
- Department of Neurology, Children's National Medical Center, Washington, DC, 20010, USA
| | - John H Abrahams
- Nanocenter FabLab, University of Maryland, College Park, MD, 20742, USA
| | - Katherine Jones
- Terrapin Works, School of Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Seiji Ishii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, 20010, USA
| | - Axel Krieger
- Department of Mechanical Engineering, A. James Clark School of Engineering, University of Maryland, College Mark, MD, 20742, USA
| | - Judy S Liu
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA
- Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA.
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA.
- Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
86
|
Paramagnetic Quantum Dots as Multimodal Probes for Potential Applications in Nervous System Imaging. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0766-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
87
|
Stephan KE, Petzschner FH, Kasper L, Bayer J, Wellstein KV, Stefanics G, Pruessmann KP, Heinzle J. Laminar fMRI and computational theories of brain function. Neuroimage 2017; 197:699-706. [PMID: 29104148 DOI: 10.1016/j.neuroimage.2017.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing.
Collapse
Affiliation(s)
- K E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK.
| | - F H Petzschner
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| | - L Kasper
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - J Bayer
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - K V Wellstein
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| | - G Stefanics
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Laboratory for Social and Neural Systems Research (SNS), Dept. of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - K P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - J Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
88
|
Kennedy T, Broadie K. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons. J Neurosci 2017; 37:9844-9858. [PMID: 28887386 PMCID: PMC5637114 DOI: 10.1523/jneurosci.0723-17.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 01/29/2023] Open
Abstract
Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function.SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural circuit, we discovered that neurons lacking FMRP take up dramatically more current-injected small dye. After examining many neuronal properties, we determined that this dye defect is cytoplasmic and occurs due to a highly elevated dye iontophoresis rate. We also report several new factors affecting neuron dye uptake. Understanding how FMRP regulates iontophoresis should reveal new molecular factors underpinning FXS dysfunction.
Collapse
Affiliation(s)
| | - Kendal Broadie
- Department of Biological Sciences,
- Department of Cell and Developmental Biology, and
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
89
|
Reberger R, Dall'Oglio A, Jung CR, Rasia-Filho AA. Structure and diversity of human dendritic spines evidenced by a new three-dimensional reconstruction procedure for Golgi staining and light microscopy. J Neurosci Methods 2017; 293:27-36. [PMID: 28887132 DOI: 10.1016/j.jneumeth.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Different approaches aim to unravel detailed morphological features of neural cells. Dendritic spines are multifunctional units that reflect cellular connectivity, synaptic strength and plasticity. NEW METHOD A novel three-dimensional (3D) reconstruction procedure is introduced for visualization of dendritic spines from human postmortem brain tissue using brightfield microscopy. The segmentation model was based on thresholding the intensity values of the dendritic spine image along 'z' stacks. We used median filtering and removed false positives. Fine adjustments during image processing confirmed that the reconstructed image of the spines corresponded to the actual original data. RESULTS Examples are shown for the cortical amygdaloid nucleus and the CA3 hippocampal area. Structure of spine heads and necks was evaluated at different angles. Our 3D reconstruction images display dendritic spines either isolated or in clusters, in a continuum of shapes and sizes, from simple to more elaborated forms, including the presence of spinule and complex 'thorny excrescences'. COMPARISON WITH EXISTING METHODS The procedure has the advantages already described for the adapted "single-section" Golgi method, since it provides suitable results using human brains fixed in formalin for long time, is relatively easy, requires minimal equipment, and uses an algorithm for 3D reconstruction that provides high quality images and more precise morphological data. CONCLUSION The procedure described here allows the reliable visualization and study of human dendritic spines with broad applications for normal controls and pathological studies.
Collapse
Affiliation(s)
- Roman Reberger
- Friedrich Alexander Universität Erlangen-Nürnberg, Medical Engineering Program, Erlangen, Germany; Federal University of Rio Grande do Sul, Institute of Informatics, Porto Alegre, Brazil
| | - Aline Dall'Oglio
- Federal University of Health Sciences, Department of Basic Sciences/Physiology, Porto Alegre, Brazil
| | - Claudio R Jung
- Federal University of Rio Grande do Sul, Institute of Informatics, Porto Alegre, Brazil
| | - Alberto A Rasia-Filho
- Federal University of Health Sciences, Department of Basic Sciences/Physiology, Porto Alegre, Brazil; Federal University of Rio Grande do Sul, Neuroscience Program, Porto Alegre, Brazil.
| |
Collapse
|
90
|
Abstract
Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain.
Collapse
Affiliation(s)
- Hei Ming Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Wai-Lung Ng
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Steve M Gentleman
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Joint Laboratory of Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
91
|
Liu W, Gu R, Zhu Q, Xiao C, Huang L, Zhuang X, Zhang J, Liu L, Ma B, Yang H, Ma J, Hu Z, Tang C, Zhao S, Chen X. Rapid fluorescence imaging of spinal cord following epidural administration of a nerve-highlighting fluorophore. Am J Cancer Res 2017. [PMID: 28638473 PMCID: PMC5479274 DOI: 10.7150/thno.18962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Iatrogenic spinal cord injury (SCI) is the most devastating complication of spine surgery, which usually results in permanent and serious disabilities of patients. Improvement of the visualization and discrimination of the spinal cord is critical for accuracy and safety during surgery; however, to date, there is no suitable technology to fulfill this clinical need. Here, we first show an efficient and rapid fluorescence imaging of the spinal cord in rabbit by epidural administration of a nerve-highlighting fluorophore, i.e. (E, E)-1,4-bis(p-aminostryl)-2-methoxy benzene (BMB). The BMB is firstly encapsulated into polymeric micelles to form a BMB-micelle (BMB-m) formulation with well-dispersion in normal saline solution. After epidural administration of BMB-m, BMB is transported by the flow of cerebrospinal fluid (CSF) and binds to the peripheral region of the white matter thus facilitating rapid staining of the spinal cord. Furthermore, this BMB imaging technology also holds great potential for visually monitoring the integrity of the spinal cord in real time and promptly identifying acute SCI during spine surgery.
Collapse
|
92
|
Mapping brain structure and function: cellular resolution, global perspective. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:245-264. [PMID: 28341866 DOI: 10.1007/s00359-017-1163-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022]
Abstract
A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism's behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.
Collapse
|
93
|
Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. J Neurosci 2017; 37:4128-4144. [PMID: 28283558 DOI: 10.1523/jneurosci.3193-16.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/06/2017] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits.SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits.
Collapse
|
94
|
Radtke C, Kocsis JD, Baumgärtner W, Vogt PM. Fluoro-Ruby as a reliable marker for regenerating fiber tracts. Innov Surg Sci 2017; 2:9-13. [PMID: 31579728 PMCID: PMC6754006 DOI: 10.1515/iss-2016-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/04/2017] [Indexed: 11/15/2022] Open
Abstract
Axon visualization techniques are important in assessing the efficacy of interventional approaches to stimulate neural regeneration. Whereas the labeling of descending tracts in the spinal cord has been well established using the intracortical injection of biotin dextran amine (BDA), the labeling of ascending sensory fibers of the dorsal funiculus is more problematic. Fluoro-Ruby (FR; dextran tetramethylrhodamine; MW 10,000) is a bidirectional permanent tracer, but the retrograde tracing of fibers is particularly prominent, and FR is a highly sensitive tracer that can be applied in discrete injection sites. In the present report, we used FR to efficiently label ascending fibers in the dorsal columns of the rat spinal cord. After transplantation of olfactory ensheathing cells into the transected dorsal funiculus, the application of FR was able to detect regenerating ascending fibers in the spinal cord. Regenerated fibers crossing the injury site were labeled and easily identified. It is likely that the tracer was taken up by damaged fibers. As additional advantages, the labeling is resistant to photobleaching and no additional tissue processing is necessary for visualization. It can be used for in vivo as well as in vitro injections. The findings indicate that FR can be used as a reliable fluorescent marker to study ascending regenerated fibers in the spinal cord axonal regeneration.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria,.,Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Neuroscience Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jeffery D Kocsis
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Neuroscience Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany.,Center of Systems Neuroscience, 30559 Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
95
|
A Single Vector Platform for High-Level Gene Transduction of Central Neurons: Adeno-Associated Virus Vector Equipped with the Tet-Off System. PLoS One 2017; 12:e0169611. [PMID: 28060929 PMCID: PMC5217859 DOI: 10.1371/journal.pone.0169611] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Visualization of neurons is indispensable for the investigation of neuronal circuits in the central nervous system. Virus vectors have been widely used for labeling particular subsets of neurons, and the adeno-associated virus (AAV) vector has gained popularity as a tool for gene transfer. Here, we developed a single AAV vector Tet-Off platform, AAV-SynTetOff, to improve the gene-transduction efficiency, specifically in neurons. The platform is composed of regulator and response elements in a single AAV genome. After infection of Neuro-2a cells with the AAV-SynTetOff vector, the transduction efficiency of green fluorescent protein (GFP) was increased by approximately 2- and 15-fold relative to the conventional AAV vector with the human cytomegalovirus (CMV) or human synapsin I (SYN) promoter, respectively. We then injected the AAV vectors into the mouse neostriatum. GFP expression in the neostriatal neurons infected with the AAV-SynTetOff vector was approximately 40-times higher than that with the CMV or SYN promoter. By adding a membrane-targeting signal to GFP, the axon fibers of neostriatal neurons were clearly visualized. In contrast, by attaching somatodendritic membrane-targeting signals to GFP, axon fiber labeling was mostly suppressed. Furthermore, we prepared the AAV-SynTetOff vector, which simultaneously expressed somatodendritic membrane-targeted GFP and membrane-targeted red fluorescent protein (RFP). After injection of the vector into the neostriatum, the cell bodies and dendrites of neostriatal neurons were labeled with both GFP and RFP, whereas the axons in the projection sites were labeled only with RFP. Finally, we applied this vector to vasoactive intestinal polypeptide-positive (VIP+) neocortical neurons, one of the subclasses of inhibitory neurons in the neocortex, in layer 2/3 of the mouse primary somatosensory cortex. The results revealed the differential distribution of the somatodendritic and axonal structures at the population level. The AAV-SynTetOff vector developed in the present study exhibits strong fluorescence labeling and has promising applications in neuronal imaging.
Collapse
|
96
|
Hinne M, Meijers A, Bakker R, Tiesinga PHE, Mørup M, van Gerven MAJ. The missing link: Predicting connectomes from noisy and partially observed tract tracing data. PLoS Comput Biol 2017; 13:e1005374. [PMID: 28141820 PMCID: PMC5308841 DOI: 10.1371/journal.pcbi.1005374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/14/2017] [Accepted: 01/23/2017] [Indexed: 12/23/2022] Open
Abstract
Our understanding of the wiring map of the brain, known as the connectome, has increased greatly in the last decade, mostly due to technological advancements in neuroimaging techniques and improvements in computational tools to interpret the vast amount of available data. Despite this, with the exception of the C. elegans roundworm, no definitive connectome has been established for any species. In order to obtain this, tracer studies are particularly appealing, as these have proven highly reliable. The downside of tract tracing is that it is costly to perform, and can only be applied ex vivo. In this paper, we suggest that instead of probing all possible connections, hitherto unknown connections may be predicted from the data that is already available. Our approach uses a 'latent space model' that embeds the connectivity in an abstract physical space. Regions that are close in the latent space have a high chance of being connected, while regions far apart are most likely disconnected in the connectome. After learning the latent embedding from the connections that we did observe, the latent space allows us to predict connections that have not been probed previously. We apply the methodology to two connectivity data sets of the macaque, where we demonstrate that the latent space model is successful in predicting unobserved connectivity, outperforming two baselines and an alternative model in nearly all cases. Furthermore, we show how the latent spatial embedding may be used to integrate multimodal observations (i.e. anterograde and retrograde tracers) for the mouse neocortex. Finally, our probabilistic approach enables us to make explicit which connections are easy to predict and which prove difficult, allowing for informed follow-up studies.
Collapse
Affiliation(s)
- Max Hinne
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Annet Meijers
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Rembrandt Bakker
- Institute of Neuroscience and Medicine, Institute for Advanced Simulation and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Paul H. E. Tiesinga
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Morten Mørup
- Technical University of Denmark, DTU Compute, Kgs. Lyngby, Denmark
| | - Marcel A. J. van Gerven
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
97
|
Cazemier JL, Clascá F, Tiesinga PHE. Connectomic Analysis of Brain Networks: Novel Techniques and Future Directions. Front Neuroanat 2016; 10:110. [PMID: 27881953 PMCID: PMC5101213 DOI: 10.3389/fnana.2016.00110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022] Open
Abstract
Brain networks, localized or brain-wide, exist only at the cellular level, i.e., between specific pre- and post-synaptic neurons, which are connected through functionally diverse synapses located at specific points of their cell membranes. "Connectomics" is the emerging subfield of neuroanatomy explicitly aimed at elucidating the wiring of brain networks with cellular resolution and a quantified accuracy. Such data are indispensable for realistic modeling of brain circuitry and function. A connectomic analysis, therefore, needs to identify and measure the soma, dendrites, axonal path, and branching patterns together with the synapses and gap junctions of the neurons involved in any given brain circuit or network. However, because of the submicron caliber, 3D complexity, and high packing density of most such structures, as well as the fact that axons frequently extend over long distances to make synapses in remote brain regions, creating connectomic maps is technically challenging and requires multi-scale approaches, Such approaches involve the combination of the most sensitive cell labeling and analysis methods available, as well as the development of new ones able to resolve individual cells and synapses with increasing high-throughput. In this review, we provide an overview of recently introduced high-resolution methods, which researchers wanting to enter the field of connectomics may consider. It includes several molecular labeling tools, some of which specifically label synapses, and covers a number of novel imaging tools such as brain clearing protocols and microscopy approaches. Apart from describing the tools, we also provide an assessment of their qualities. The criteria we use assess the qualities that tools need in order to contribute to deciphering the key levels of circuit organization. We conclude with a brief future outlook for neuroanatomic research, computational methods, and network modeling, where we also point out several outstanding issues like structure-function relations and the complexity of neural models.
Collapse
Affiliation(s)
- J Leonie Cazemier
- Department of Neuroinformatics, Donders Institute, Radboud UniversityNijmegen, Netherlands; Department of Cortical Structure and Function, Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| | - Francisco Clascá
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autónoma University Madrid, Spain
| | - Paul H E Tiesinga
- Department of Neuroinformatics, Donders Institute, Radboud University Nijmegen, Netherlands
| |
Collapse
|
98
|
Martens MB, Houweling AR, E Tiesinga PH. Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks. J Comput Neurosci 2016; 42:87-106. [PMID: 27812835 PMCID: PMC5250670 DOI: 10.1007/s10827-016-0629-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/10/2023]
Abstract
Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.
Collapse
Affiliation(s)
- Marijn B Martens
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Arthur R Houweling
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Paul H E Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
99
|
Jensen KHR, Berg RW. CLARITY-compatible lipophilic dyes for electrode marking and neuronal tracing. Sci Rep 2016; 6:32674. [PMID: 27597115 PMCID: PMC5011694 DOI: 10.1038/srep32674] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/10/2016] [Indexed: 12/21/2022] Open
Abstract
Fluorescent lipophilic dyes, such as DiI, stain cellular membranes and are used extensively for retrograde/anterograde labeling of neurons as well as for marking the position of extracellular electrodes after electrophysiology. Convenient histological clearing techniques, such as CLARITY, enable immunostaining and imaging of large volumes for 3D-reconstruction. However, such clearing works by removing lipids and, as an unintended consequence, also removes lipophilic dyes. To remedy this wash-out, the molecular structure of the dye can be altered to adhere to both membranes and proteins so the dye remains in the tissue after lipid–clearing. Nevertheless, the capacity of such modified dyes to remain in tissue has not yet been tested. Here, we test dyes with molecular modifications that make them aldehyde-fixable to proteins. We use three Dil–analogue dyes, CM-DiI, SP-DiI and FM 1–43FX that are modified to be CLARITY-compatible candidates. We use the challenging adult, myelin-rich spinal cord tissue, which requires prolonged lipid–clearing, of rats and mice. All three dyes remained in the tissue after lipid–clearing, but CM-DiI had the sharpest and FM 1–43FX the strongest fluorescent signal.
Collapse
Affiliation(s)
- Kristian H R Jensen
- University of Copenhagen, Department of Neuroscience and Pharmacology, Copenhagen, DK-2200, Denmark
| | - Rune W Berg
- University of Copenhagen, Department of Neuroscience and Pharmacology, Copenhagen, DK-2200, Denmark
| |
Collapse
|
100
|
Vergani F, Martino J, Morris C, Attems J, Ashkan K, DellʼAcqua F. Anatomic Connections of the Subgenual Cingulate Region. Neurosurgery 2016; 79:465-72. [DOI: 10.1227/neu.0000000000001315] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|