51
|
Tan Y, Zi Y, Peng J, Shi C, Zheng Y, Zhong J. Gelatin as a bioactive nanodelivery system for functional food applications. Food Chem 2023; 423:136265. [PMID: 37167667 DOI: 10.1016/j.foodchem.2023.136265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Gelatin has long been used as an encapsulant agent in the pharmaceutical and biomedical industries because of its low cost, wide availability, biocompatibility, and degradability. However, the exploitation of gelatin for nanodelivery application is not fully achieved in the functional food filed. In this review article, we highlight the latest work being performed for gelatin-based nanocarriers, including polyelectrolyte complexes, nanoemulsions, nanoliposomes, nanogels, and nanofibers. Specifically, we discuss the applications and challenges of these nanocarriers for stabilization and controlled release of bioactive compounds. To achieve better efficacy, gelatin is frequently used in combination with other biomaterials such as polysaccharides. The fabrication and synergistic effects of the newly developed gelatin composite nanocarriers are also present.
Collapse
Affiliation(s)
- Yang Tan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiawei Peng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yulu Zheng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
52
|
Jia B, Li G, Cao E, Luo J, Zhao X, Huang H. Recent progress of antibacterial hydrogels in wound dressings. Mater Today Bio 2023; 19:100582. [PMID: 36896416 PMCID: PMC9988584 DOI: 10.1016/j.mtbio.2023.100582] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Hydrogels are essential biomaterials due to their favorable biocompatibility, mechanical properties similar to human soft tissue extracellular matrix, and tissue repair properties. In skin wound repair, hydrogels with antibacterial functions are especially suitable for dressing applications, so novel antibacterial hydrogel wound dressings have attracted widespread attention, including the design of components, optimization of preparation methods, strategies to reduce bacterial resistance, etc. In this review, we discuss the fabrication of antibacterial hydrogel wound dressings and the challenges associated with the crosslinking methods and chemistry of the materials. We have investigated the advantages and limitations (antibacterial effects and antibacterial mechanisms) of different antibacterial components in the hydrogels to achieve good antibacterial properties, and the response of hydrogels to stimuli such as light, sound, and electricity to reduce bacterial resistance. Conclusively, we provide a systematic summary of antibacterial hydrogel wound dressings findings (crosslinking methods, antibacterial components, antibacterial methods) and an outlook on long-lasting antibacterial effects, a broader antibacterial spectrum, diversified hydrogel forms, and the future development prospects of the field.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Guowei Li
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ertai Cao
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518063, China
| |
Collapse
|
53
|
Loukelis K, Machla F, Bakopoulou A, Chatzinikolaidou M. Kappa-Carrageenan/Chitosan/Gelatin Scaffolds Provide a Biomimetic Microenvironment for Dentin-Pulp Regeneration. Int J Mol Sci 2023; 24:ijms24076465. [PMID: 37047438 PMCID: PMC10094618 DOI: 10.3390/ijms24076465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
This study aims to investigate the impact of kappa-carrageenan on dental pulp stem cells (DPSCs) behavior in terms of biocompatibility and odontogenic differentiation potential when it is utilized as a component for the production of 3D sponge-like scaffolds. For this purpose, we prepared three types of scaffolds by freeze-drying (i) kappa-carrageenan/chitosan/gelatin enriched with KCl (KCG-KCl) as a physical crosslinker for the sulfate groups of kappa-carrageenan, (ii) kappa-carrageenan/chitosan/gelatin (KCG) and (iii) chitosan/gelatin (CG) scaffolds as a control. The mechanical analysis illustrated a significantly higher elastic modulus of the cell-laden scaffolds compared to the cell-free ones after 14 and 28 days with values ranging from 25 to 40 kPa, showing an increase of 27-36%, with the KCG-KCl scaffolds indicating the highest and CG the lowest values. Cell viability data showed a significant increase from days 3 to 7 and up to day 14 for all scaffold compositions. Significantly increasing alkaline phosphatase (ALP) activity has been observed over time in all three scaffold compositions, while the KCG-KCl scaffolds indicated significantly higher calcium production after 21 and 28 days compared to the CG control. The gene expression analysis of the odontogenic markers DSPP, ALP and RunX2 revealed a two-fold higher upregulation of DSPP in KCG-KCl scaffolds at day 14 compared to the other two compositions. A significant increase of the RunX2 expression between days 7 and 14 was observed for all scaffolds, with a significantly higher increase of at least twelve-fold for the kappa-carrageenan containing scaffolds, which exhibited an earlier ALP gene expression compared to the CG. Our results demonstrate that the integration of kappa-carrageenan in scaffolds significantly enhanced the odontogenic potential of DPSCs and supports dentin-pulp regeneration.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
| | - Foteini Machla
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Foundation for Research and Technology Hellas-Institute of Electronic Structure and Laser (FORTH-IESL), 70013 Heraklion, Greece
| |
Collapse
|
54
|
Raj S, Unsworth LD. Targeting active sites of inflammation using inherent properties of tissue-resident mast cells. Acta Biomater 2023; 159:21-37. [PMID: 36657696 DOI: 10.1016/j.actbio.2023.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Mast cells play a pivotal role in initiating and directing host's immune response. They reside in tissues that primarily interface with the external environment. Activated mast cells respond to environmental cues throughout acute and chronic inflammation through releasing immune mediators via rapid degranulation, or long-term de novo expression. Mast cell activation results in the rapid release of a variety of unique enzymes and reactive oxygen species. Furthermore, the increased density of mast cell unique receptors like mas related G protein-coupled receptor X2 also characterizes the inflamed tissues. The presence of these molecules (either released mediators or surface receptors) are particular to the sites of active inflammation, and are a result of mast cell activation. Herein, the molecular design principles for capitalizing on these novel mast cell properties is discussed with the goal of manipulating localized inflammation. STATEMENT OF SIGNIFICANCE: Mast cells are immune regulating cells that play a crucial role in both innate and adaptive immune responses. The activation of mast cells causes the release of multiple unique profiles of biomolecules, which are specific to both tissue and disease. These unique characteristics are tightly regulated and afford a localized stimulus for targeting inflammatory diseases. Herein, these important mast cell attributes are discussed in the frame of highlighting strategies for the design of bioresponsive functional materials to target regions of inflammations.
Collapse
Affiliation(s)
- Shammy Raj
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, University of Alberta, Edmonton, AB, T6G1H9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, University of Alberta, Edmonton, AB, T6G1H9, Canada.
| |
Collapse
|
55
|
Chen S, Li H, Bai Y, Zhang J, Ikoma T, Huang D, Li X, Chen W. Hierarchical and urchin-like chitosan/hydroxyapatite microspheres as drug-laden cell carriers. Int J Biol Macromol 2023; 238:124039. [PMID: 36921830 DOI: 10.1016/j.ijbiomac.2023.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Biopolymer/hydroxyapatite (HAp) composites are one type of the most promising materials for a variety of biomedical applications. In this study, hierarchical and urchin-like chitosan/HAp nanowire (HU-CS/HAp NW) microspheres were for the first time synthesized by in situ hydrothermal treatment of chitosan/HAp (CS/HAp) microspheres in the acetic acid solution. The results indicate that HU-CS/HAp NW microspheres were spherical in morphology with a diameter of 100-300 μm. Their surface was mainly constructed by numerous HAp NWs with the diameter of 80-120 nm and showed a hierarchical and urchin-like nanofibrous architecture. It was found that the acidic hydrothermal treatment caused an in situ conversion of HAp NPs to HAp NWs. In vitro biocompatible evaluation indicates that HU-CS/HAp NW microspheres showed an enhanced cell attachment and proliferation due to the presence of hierarchical and urchin-like architecture. Furthermore, HU-CS/HAp NW microspheres showed a good adsorption capacity for tetracycline hydrochloride (model drug, one of the most representative antibiotics) with a higher adsorption capacity than CS/HAp microspheres and well maintained their antibacterial efficacy to inhibit the growth of bacteria: Escherichia coli and Staphylococcus aureus. Thus, the present HU-CS/HAp NW microspheres would be applicable as novel drug-laden cell carriers.
Collapse
Affiliation(s)
- Song Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Hao Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yajia Bai
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jianan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Di Huang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
56
|
Shi M, Xu Y, Li S, Wang L, Gu J, Zhang YX. The Development of a Polysaccharide-Based Hydrogel Encapsulating Tobramycin-Loaded Gelatine Microspheres as an Antibacterial System. Gels 2023; 9:219. [PMID: 36975668 PMCID: PMC10048335 DOI: 10.3390/gels9030219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Bacterial infection contributes to the bioburden of wounds, which is an essential factor in determining whether a wound can heal. Wound dressings with antibacterial properties that can promote wound-healing are highly desired for the treatment of chronic wound infections. Herein, we fabricated a simple polysaccharide-based hydrogel dressing encapsulating tobramycin-loaded gelatine microspheres with good antibacterial activity and biocompatibility. We first synthesised long-chain quaternary ammonium salts (QAS) by the reaction of tertiary amines with epichlorohydrin. The amino groups of carboxymethyl chitosan were then conjugated with QAS through the ring-opening reaction and QAS-modified chitosan (CMCS) was obtained. The antibacterial analysis showed that both QAS and CMCS could kill E. coli and S. aureus at relatively low concentrations. QAS with 16 carbon atoms has a MIC of 16 μg/mL for E. coli and 2 μg/mL for S. aureus. A series of formulations of tobramycin-loaded gelatine microspheres (TOB-G) were generated and the best formulation was selected by comparing the characters of the microspheres. The microsphere fabricated by 0.1 mL GTA was selected as the optimal candidate. We then used CMCS, TOB-G, and sodium alginate (SA) to prepare physically crosslinking hydrogels using CaCl2 and investigated the mechanical properties, antibacterial activity, and biocompatibility of the hydrogels. In summary, the hydrogel dressing we produced can be used as an ideal alternative for the management of bacteria-infected wounds.
Collapse
Affiliation(s)
- Mingsheng Shi
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
- Woundhealing (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310018, China
| | - Yongmeng Xu
- Woundhealing (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310018, China
| | - Shuai Li
- Woundhealing (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310018, China
| | - Lifeng Wang
- Shenyang Yaoda Leiyunshang Pharmaceutical Co., Ltd., Benxi 114004, China
| | - Junyao Gu
- Shenyang Yaoda Leiyunshang Pharmaceutical Co., Ltd., Benxi 114004, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
57
|
Nezamoleslami S, Fattahi A, Nemati H, Bagrezaie F, Pourmanouchehri Z, Kiaie SH. Electrospun sandwich-structured of polycaprolactone/gelatin-based nanofibers with controlled release of ceftazidime for wound dressing. Int J Biol Macromol 2023; 236:123819. [PMID: 36870631 DOI: 10.1016/j.ijbiomac.2023.123819] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/24/2022] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
In the present work, sandwich-like polycaprolactone/gelatin/polycaprolactone electrospun multilayered mats were implemented to control the release of ceftazidime (CTZ). The outer layers were made from polycaprolactone nanofibers (NFs), and CTZ-loaded gelatin provided an internal layer. The release profile of CTZ from mats was compared with monolayer gelatin mats and chemically cross-linked GEL mats. All the constructs were characterized using scanning electron microscopy (SEM), mechanical properties, viscosity, electrical conductivity, X-ray diffraction (XRD), and Fourier transform-infrared spectroscopy (FT-IR). In vitro cytotoxicity against normal fibroblasts as well as antibacterial activity of CTZ-loaded sandwich-like NFs were investigated by the MTT assay. The results showed that the drug release rate from the polycaprolactone/gelatin/polycaprolactone mat was slower than that of gelatin monolayer NFs, and the rate of release can be adjusted by changing the thickness of hydrophobic layers. The NFs exhibited high activity against Pseudomonas aeruginosa and Staphylococcus aureus, while no significant cytotoxicity was observed against human normal cells. Altogether, the final mat as a predominant antibacterial scaffold can be used for controlled drug release of antibacterial drugs as the wound healing dressings in tissue engineering.
Collapse
Affiliation(s)
- Sadaf Nezamoleslami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Houshang Nemati
- Fertility & Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Bagrezaie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Zahra Pourmanouchehri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Hossein Kiaie
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
58
|
Rizwan A, Gulfam M, Jo SH, Seo JW, Ali I, Thang Vu T, Joo SB, Park SH, Taek Lim K. Gelatin-based NIR and reduction-responsive injectable hydrogels cross-linked through IEDDA click chemistry for drug delivery application. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
59
|
Fabrication of 3D Bioprinted Bi-Phasic Scaffold for Bone–Cartilage Interface Regeneration. Biomimetics (Basel) 2023; 8:biomimetics8010087. [PMID: 36975317 PMCID: PMC10046269 DOI: 10.3390/biomimetics8010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Treatments for osteochondral defects (OCDs) are mainly palliative and, with the increase in this pathology seen among both young and elderly people, an alternative treatment modality is sought. Many tissue-engineered strategies have been explored for regenerating the cartilage–bone interface; however, they generally fall short of being ideal. Although cell-laden hydrogel scaffolds are a common approach for bone and cartilage tissue regeneration, they usually lack homogenous cell dispersion and patient specificity. In this study, a biphasic 3D bioprinted composite scaffold was fabricated for cartilage–bone interface regeneration. To overcome the shortcoming of both materials, alginate–gelatin (A–G) hydrogel was used to confer a naturally occurring environment for the cells and polycaprolactone (PCL) was used to enhance mechanical stability, thus maximizing the overall performance. Hydroxyapatite fillers were added to the PCL in the bone phase of the scaffold to improve its bioactivity. Physical and biological evaluation of scaffolds in both phases was assessed. The scaffolds demonstrated a desirable biological response both singly and in the combined PCL/A-G scaffolds, in both the short term and longer term, showing promise as an interfacial material between cartilage and bone.
Collapse
|
60
|
Mikhailov OV. Gelatin as It Is: History and Modernity. Int J Mol Sci 2023; 24:ijms24043583. [PMID: 36834993 PMCID: PMC9963746 DOI: 10.3390/ijms24043583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The data concerning the synthesis and physicochemical characteristics of one of the practically important proteins-gelatin, as well as the possibilities of its practical application, are systematized and discussed. When considering the latter, emphasis is placed on the use of gelatin in those areas of science and technology that are associated with the specifics of the spatial/molecular structure of this high-molecular compound, namely, as a binder for the silver halide photographic process, immobilized matrix systems with a nano-level organization of an immobilized substance, matrices for creating pharmaceutical/dosage forms and protein-based nanosystems. It was concluded that the use of this protein is promising in the future.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
61
|
Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers (Basel) 2023; 15:polym15040836. [PMID: 36850121 PMCID: PMC9964340 DOI: 10.3390/polym15040836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Proteins-derived polymeric micelles have gained attention and revolutionized the biomedical field. Proteins are considered a favorable choice for developing micelles because of their biocompatibility, harmlessness, greater blood circulation and solubilization of poorly soluble drugs. They exhibit great potential in drug delivery systems as capable of controlled loading, distribution and function of loaded agents to the targeted sites within the body. Protein micelles successfully cross biological barriers and can be incorporated into various formulation designs employed in biomedical applications. This review emphasizes the recent advances of protein-based polymeric micelles for drug delivery to targeted sites of various diseases. Most studied protein-based micelles such as soy, gelatin, casein and collagen are discussed in detail, and their applications are highlighted. Finally, the future perspectives and forthcoming challenges for protein-based polymeric micelles have been reviewed with anticipated further advances.
Collapse
|
62
|
Recent Developments in Biopolymer-Based Hydrogels for Tissue Engineering Applications. Biomolecules 2023; 13:biom13020280. [PMID: 36830649 PMCID: PMC9953003 DOI: 10.3390/biom13020280] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Hydrogels are being investigated for their application in inducing the regeneration of various tissues, and suitable conditions for each tissue are becoming more apparent. Conditions such as the mechanical properties, degradation period, degradation mechanism, and cell affinity can be tailored by changing the molecular structure, especially in the case of polymers. Furthermore, many high-functional hydrogels with drug delivery systems (DDSs), in which drugs or bioactive substances are contained in controlled hydrogels, have been reported. This review focuses on the molecular design and function of biopolymer-based hydrogels and introduces recent developments in functional hydrogels for clinical applications.
Collapse
|
63
|
Yu Q, Shen C, Wang X, Wang Z, Liu L, Zhang J. Graphene Oxide/Gelatin Nanofibrous Scaffolds Loaded with N-Acetyl Cysteine for Promoting Wound Healing. Int J Nanomedicine 2023; 18:563-578. [PMID: 36756050 PMCID: PMC9900644 DOI: 10.2147/ijn.s392782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose We aimed to develop an antioxidant dressing material with pro-angiogenic potential that could promote wound healing. Gelatin (Gel) was selected to improve the biocompatibility of the scaffolds, while graphene oxide (GO) was added to enhance their mechanical property. The loaded N-Acetyl cysteine (NAC) was performing the effect of scavenging reactive oxygen species (ROS) at the wound site. Materials and Methods The physicochemical and mechanical properties, NAC releases, and biocompatibility of the NAC-GO-Gel scaffolds were evaluated in vitro. The regeneration capability of the scaffolds was systemically investigated in vivo using the excisional wound-splinting model in mice. Results The NAC-GO-Gel scaffold had a stronger mechanical property and sustainer NAC release ability than the single Gel scaffold, which resulted in a better capacity for cell proliferation and migration. Mice wound-splinting models revealed that the NAC-GO-Gel scaffold effectively accelerated wound healing, promoted re-epithelialization, enhanced neovascularization, and reduced scar formation. Conclusion The NAC-GO-Gel scaffold not only promotes wound healing but also reduces scar formation, showing a great potential application for the repair of skin defects.
Collapse
Affiliation(s)
- Qian Yu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, People’s Republic of China
| | - Chentao Shen
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiangsheng Wang
- Department of Plastic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Lu Liu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China,Correspondence: Jufang Zhang; Lu Liu, Tel +86-18800293916; +86-13476226821, Fax +86-571-87914773; +86-27-83662640, Email ;
| |
Collapse
|
64
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
65
|
Jaya Prakash N, Wang X, Kandasubramanian B. Regenerated silk fibroin loaded with natural additives: a sustainable approach towards health care. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-38. [PMID: 36648394 DOI: 10.1080/09205063.2023.2170137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to World Health Organization (WHO), on average, 0.5 Kg of hazardous waste is generated per bed every day in high-income countries. The adverse effects imposed by synthetic materials and chemicals on the environment and humankind have urged researchers to explore greener technologies and materials. Amidst of all the natural fibers, silk fibroin (SF), by virtue of its superior toughness (6 × 104∼16 × 104 J/kg), tensile strength (47.2-67.7 MPa), tunable biodegradability, excellent Young's modulus (1.9-3.9 GPa), presence of functional groups, ease of processing, and biocompatibility has garnered an enormous amount of scientific interests. The use of silk fibroin conjoint with purely natural materials can be an excellent solution for the adverse effects of chemical-based treatment techniques. Considering this noteworthiness, vigorous research is going on in silk-based biomaterials, and it is opening up new vistas of opportunities. This review enswathes the structural aspects of silk fibroin along with its potency to form composites with other natural materials, such as curcumin, keratin, alginate, hydroxyapatite, hyaluronic acid, and cellulose, that can replace the conventionally used synthetic materials, providing a sustainable pathway to biomedical engineering. It was observed that a large amount of polar functional moieties present on the silk fibroin surface enables them to compatibilize easily with the natural additives. The conjunction of silk with natural additives initiates synergistic interactions that mitigate the limitations offered by individual units as well as enhance the applicability of materials. Further the current status and challenges in the commercialization of silk-based biomedical devices are discussed.
Collapse
Affiliation(s)
- Niranjana Jaya Prakash
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| | - Xungai Wang
- Fiber Science and Technology, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| |
Collapse
|
66
|
Assani KD, Nosoudi N, Ramirez-Vick JE, Singh SP. M1 to M2 induction in macrophages using a retinoic acid-releasing mesenchymal stem cell scaffold. Biomed Mater Eng 2023; 34:143-157. [PMID: 35871316 DOI: 10.3233/bme-221410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Modulation of macrophage polarization is required for effective tissue repair and regenerative therapies. Therapeutic modulation of macrophages from an inflammatory M1 to a fibrotic M2 phenotype could help in diseases, such as chronic wounds, which are stalled in a prolonged and heightened inflammatory stage within the wound healing process. OBJECTIVE This study evaluates the efficiency of a pullulan/gelatin nanofiber scaffold loaded with retinoic acid (RA) and adipose-derived mesenchymal stem cells (ASCs) to modulate M1 to M2 anti-inflammatory transition. METHODS Scaffolds were fabricated by electrospinning, and crosslinked using ethylene glycol diglycidyl ether (EGDE). Exposure of RA and/or ASCs to cultured macrophages have been shown to promote M1 to M2 transition. Pullulan was chosen as a scaffold material due to its ability to quench reactive oxygen species, key signaling molecules that play an important role in the progression of inflammation, as well as for its excellent mechanical properties. Gelatin was chosen as an additional scaffold component due to the presence of cell-binding motifs and its biocompatibility. Scaffold compositions examined were 75:25 and 50:50, pullulan:gelatin. The scaffolds were crosslinked in 1:70 and 1:50 EGDE:EtOH. The scaffold composition was determined via FTIR. For the present study, the 75:25 pullulan:gelatin crosslinked with 1:70 EGDE:EtOH, forming nanofibers 328 ± 47.9 nm (mean ± SD) in diameter, was chosen as the scaffold composition due to its lower degradation and release rate, which allows a sustained delivery of RA. RESULTS The scaffold composition degraded to approximately 80% after 14 days, with approximately 38% of the drug released after 7 days. THP-1 monocytic cells were induced into a M1 macrophage phenotype through stimulation with lipopolysaccharide (LPS) and gamma interferon (IFN-γ). These M1 macrophages were the exposed to scaffolds loaded with RA and ASCs, to induce differentiation to an M2 phenotype. CONCLUSION Gene expression quantitation by qPCR showed a reduction of M1 biomarkers, tumor necrosis factor alpha (TNFα) and interleukin 1β (IL1β), and an increase of M2 biomarker CCL22 after 2 days of exposure, suggesting successful M1 to M2 transition.
Collapse
Affiliation(s)
- Kaivon D Assani
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH, USA
| | - Nasim Nosoudi
- Department of Biomedical Engineering, College of Engineering and Computer Sciences, Marshall University, Huntington, WV, USA
| | - Jaime E Ramirez-Vick
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH, USA
| | - Surinder P Singh
- CSIR-National Physical Laboratory, Dr. K. S. Krishanan Marg, New Delhi, India
| |
Collapse
|
67
|
Cell delivery devices for cancer immunotherapy. J Control Release 2023; 353:875-888. [PMID: 36442617 DOI: 10.1016/j.jconrel.2022.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Adoptive cell therapy (ACT) that leverages allogeneic or autologous immune cells holds vast promise in targeted cancer therapy. Despite the tremendous success of ACT in treating hematopoietic malignancies, its efficacy is limited in eradicating solid tumors via intravenous infusion of immune cells. With the extending technology of cancer immunotherapy, novel delivery strategies have been explored to improve the therapeutic potency of adoptively transferred cells for solid tumor treatment by innovating the administration route, maintaining the cell viability, and normalizing the tumor microenvironment. In this review, a variety of devices for cell delivery are summarized. Perspectives and challenges of cell delivery devices for cancer immunotherapy are also discussed.
Collapse
|
68
|
An efficient and biodegradable alginate-gelatin hydrogel beads as bait against Aedes aegypti and Aedes albopictus. Int J Biol Macromol 2022; 224:1460-1470. [DOI: 10.1016/j.ijbiomac.2022.10.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
69
|
Ionogels Derived from Fluorinated Ionic Liquids to Enhance Aqueous Drug Solubility for Local Drug Administration. Gels 2022; 8:gels8090594. [PMID: 36135306 PMCID: PMC9498591 DOI: 10.3390/gels8090594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
Gelatin is a popular biopolymer for biomedical applications due to its harmless impact with a negligible inflammatory response in the host organism. Gelatin interacts with soluble molecules in aqueous media as ionic counterparts such as ionic liquids (ILs) to be used as cosolvents to generate the so-called Ionogels. The perfluorinated IL (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate, has been selected as co-hydrosolvent for fish gelatin due to its low cytotoxicity and hydrophobicity aprotic polar structure to improve the drug aqueous solubility. A series of FIL/water emulsions with different FIL content and their corresponding shark gelatin/FIL Ionogel has been designed to enhance the drug solubility whilst retaining the mechanical structure and their nanostructure was probed by simultaneous SAXS/WAXS, FTIR and Raman spectroscopy, DSC and rheological experiments. Likewise, the FIL assisted the solubility of the antitumoural Doxorubicin whilst retaining the performing mechanical properties of the drug delivery system network for the drug storage as well as the local administration by a syringe. In addition, the different controlled release mechanisms of two different antitumoral such as Doxorubicin and Mithramycin from two different Ionogels formulations were compared to previous gelatin hydrogels which proved the key structure correlation required to attain specific therapeutic dosages.
Collapse
|
70
|
Chen Y, Cao X, Chen Q, Ye X, Zeng Q, Yuan Y, Dong L, Huang F, Su D. Hydrogel With the Network Structure Fabricated by Anthocyanin‐Gelatin Crosslinking and Improved Mineral Encapsulation Ability. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yun Chen
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Xuejiao Cao
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Qiqi Chen
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Xueying Ye
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Lihong Dong
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing Guangzhou 510610 China
| | - Fei Huang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing Guangzhou 510610 China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| |
Collapse
|
71
|
Oxidation-mediated scaffold engineering of hyaluronic acid-based microcarriers enhances corneal stromal regeneration. Carbohydr Polym 2022; 292:119668. [DOI: 10.1016/j.carbpol.2022.119668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
72
|
Patrick MD, Annamalai RT. Licensing microgels prolong the immunomodulatory phenotype of mesenchymal stromal cells. Front Immunol 2022; 13:987032. [PMID: 36059508 PMCID: PMC9433901 DOI: 10.3389/fimmu.2022.987032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are sensors of inflammation, and they exert immunomodulatory properties through the secretion of cytokines and exosomes and direct cell-cell interactions. MSC are routinely used in clinical trials and effectively resolve inflammatory conditions. Nevertheless, inconsistent clinical outcomes necessitate the need for more robust therapeutic phenotypes. The immunomodulatory properties of MSC can be enhanced and protracted by priming (aka licensing) them with IFNγ and TNFα. Yet these enhanced properties rapidly diminish, and prolonged stimulation could tolerize their response. Hence a balanced approach is needed to enhance the therapeutic potential of the MSC for consistent clinical performance. Here, we investigated the concentration-dependent effects of IFNγ and TNFα and developed gelatin-based microgels to sustain a licensed MSC phenotype. We show that IFNγ treatment is more beneficial than TNFα in promoting an immunomodulatory MSC phenotype. We also show that the microgels possess integrin-binding sites to support adipose tissue-derived MSC (AD-MSC) attachment and a net positive charge to sequester the licensing cytokines electrostatically. Microgels are enzymatically degradable, and the rate is dependent on the enzyme concentration and matrix density. Our studies show that one milligram of microgels by dry mass can sequester up to 641 ± 81 ng of IFNγ. Upon enzymatic degradation, microgels exhibited a sustained release of IFNγ that linearly correlated with their degradation rate. The AD-MSC cultured on the IFNγ sequestered microgels displayed efficient licensing potential comparable to or exceeding the effects of bolus IFNγ treatment. When cultured with proinflammatory M1-like macrophages, the AD-MSC-seeded on licensing microgel showed an enhanced immunomodulatory potential compared to untreated AD-MSC and AD-MSC treated with bolus IFNγ treatment. Specifically, the AD-MSC seeded on licensing microgels significantly upregulated Arg1, Mrc1, and Igf1, and downregulated Tnfα in M1-like macrophages compared to other treatment conditions. These licensing microgels are a potent immunomodulatory approach that shows substantial promise in elevating the efficacy of current MSC therapies and may find utility in treating chronic inflammatory conditions.
Collapse
|
73
|
Nasiri G, Ahmadi S, Shahbazi MA, Nosrati V, Fatahi Y, Dinarvand R, Rabiee M, Haftlang F, Kim HS, Rabiee N. 3D printing of bioactive materials for drug delivery applications. Expert Opin Drug Deliv 2022; 19:1061-1080. [PMID: 35953890 DOI: 10.1080/17425247.2022.2112944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Three-dimensional (3D) printing, also known as additive manufacturing (AM), is a modern technique/technology, which makes it possible to construct 3D objects from computer-aided design (CAD) digital models. This technology can be used in the progress of drug delivery systems, where porosity has played important role in attaining an acceptable level of biocompatibility and biodegradability with improved therapeutic effects. 3D printing may also provide the user possibility to control the dosage of each ingredient in order to a specific purpose, and makes it probable to improve the formulation of drug delivery systems. AREAS COVERED This article covers the 3D printing technologies, bioactive materials including natural and synthetic polymers as well as some ceramics and minerals and their roles in drug delivery systems. EXPERT OPINION This technology is feasible to fabricate drug products by incorporating multiple drugs in different parts in such a mode that these drugs can release from the section at a predetermined rate. Furthermore, this 3D printing technology has the possible to transform personalized therapy to various age-groups by design flexibility and precise dosing. In recent years, the potential use of this technology can be realized in a clinical situation where patients will acquire individualized medicine as per their require.
Collapse
Affiliation(s)
- Golara Nasiri
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Ali Shahbazi
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Vahideh Nosrati
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farahnaz Haftlang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Center for High Entropy Alloys, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyoung Seop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Center for High Entropy Alloys, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
74
|
Novel In Situ-Cross-Linked Electrospun Gelatin/Hydroxyapatite Nonwoven Scaffolds Prove Suitable for Periodontal Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061286. [PMID: 35745858 PMCID: PMC9230656 DOI: 10.3390/pharmaceutics14061286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Periodontal diseases affect millions of people worldwide and can result in tooth loss. Regenerative treatment options for clinical use are thus needed. We aimed at developing new nonwoven-based scaffolds for periodontal tissue engineering. Nonwovens of 16% gelatin/5% hydroxyapatite were produced by electrospinning and in situ glyoxal cross-linking. In a subset of scaffolds, additional porosity was incorporated via extractable polyethylene glycol fibers. Cell colonization and penetration by human mesenchymal stem cells (hMSCs), periodontal ligament fibroblasts (PDLFs), or cocultures of both were visualized by scanning electron microscopy and 4′,6-diamidin-2-phenylindole (DAPI) staining. Metabolic activity was assessed via Alamar Blue® staining. Cell type and differentiation were analyzed by immunocytochemical staining of Oct4, osteopontin, and periostin. The electrospun nonwovens were efficiently populated by both hMSCs and PDLFs, while scaffolds with additional porosity harbored significantly more cells. The metabolic activity was higher for cocultures of hMSCs and PDLFs, or for PDLF-seeded scaffolds. Periostin and osteopontin expression was more pronounced in cocultures of hMSCs and PDLFs, whereas Oct4 staining was limited to hMSCs. These novel in situ-cross-linked electrospun nonwoven scaffolds allow for efficient adhesion and survival of hMSCs and PDLFs. Coordinated expression of differentiation markers was observed, which rendered this platform an interesting candidate for periodontal tissue engineering.
Collapse
|
75
|
Kara A, Distler T, Polley C, Schneidereit D, Seitz H, Friedrich O, Tihminlioglu F, Boccaccini AR. 3D printed gelatin/decellularized bone composite scaffolds for bone tissue engineering: Fabrication, characterization and cytocompatibility study. Mater Today Bio 2022; 15:100309. [PMID: 35757025 PMCID: PMC9213825 DOI: 10.1016/j.mtbio.2022.100309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Three-dimensional (3D) printing technology enables the design of personalized scaffolds with tunable pore size and composition. Combining decellularization and 3D printing techniques provides the opportunity to fabricate scaffolds with high potential to mimic native tissue. The aim of this study is to produce novel decellularized bone extracellular matrix (dbECM)-reinforced composite-scaffold that can be used as a biomaterial for bone tissue engineering. Decellularized bone particles (dbPTs, ∼100 μm diameter) were obtained from rabbit femur and used as a reinforcement agent by mixing with gelatin (GEL) in different concentrations. 3D scaffolds were fabricated by using an extrusion-based bioprinter and crosslinking with microbial transglutaminase (mTG) enzyme, followed by freeze-drying to obtain porous structures. Fabricated 3D scaffolds were characterized morphologically, mechanically, and chemically. Furthermore, MC3T3-E1 mouse pre-osteoblast cells were seeded on the dbPTs reinforced GEL scaffolds (GEL/dbPTs) and cultured for 21 days to assess cytocompatibility and cell attachment. We demonstrate the 3D-printability of dbPTs-reinforced GEL hydrogels and the achievement of homogenous distribution of the dbPTs in the whole scaffold structure, as well as bioactivity and cytocompatibility of GEL/dbPTs scaffolds. It was shown that Young's modulus and degradation rate of scaffolds were enhanced with increasing dbPTs content. Multiphoton microscopy imaging displayed the interaction of cells with dbPTs, indicating attachment and proliferation of cells around the particles as well as into the GEL-particle hydrogels. Our results demonstrate that GEL/dbPTs hydrogel formulations have potential for bone tissue engineering.
Collapse
Affiliation(s)
- Aylin Kara
- İzmir Institute of Technology, Department of Bioengineering, İzmir, 35433, Turkey
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Thomas Distler
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Christian Polley
- Microfluidics, Department of Mechanical Engineering, University of Rostock, Rostock, 18059, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91052, Germany
| | - Hermann Seitz
- Microfluidics, Department of Mechanical Engineering, University of Rostock, Rostock, 18059, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91052, Germany
| | - Funda Tihminlioglu
- İzmir Institute of Technology, Department of Chemical Engineering, İzmir, 35433, Turkey
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
76
|
Zha S, Wong K, All AH. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv Healthc Mater 2022; 11:e2102610. [PMID: 35166052 DOI: 10.1002/adhm.202102610] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Intravenous delivery of nanomaterials containing therapeutic agents and various cargos for treating neurological disorders is often constrained by low delivery efficacy due to difficulties in passing the blood-brain barrier (BBB). Nanoparticles (NPs) administered intranasally can move along olfactory and trigeminal nerves so that they do not need to pass through the BBB, allowing non-invasive, direct access to selective neural pathways within the brain. Hence, intranasal (IN) administration of NPs can effectively deliver drugs and genes into targeted regions of the brain, holding potential for efficacious disease treatment in the central nervous system (CNS). In this review, current methods for delivering conjugated NPs to the brain are primarily discussed. Distinctive potential mechanisms of therapeutic nanocomposites delivered via IN pathways to the brain are then discussed. Recent progress in developing functional NPs for applications in multimodal bioimaging, drug delivery, diagnostics, and therapeutics is also reviewed. This review is then concluded by discussing existing challenges, new directions, and future perspectives in IN delivery of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zha
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR 000000 P. R. China
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| | - Angelo H. All
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| |
Collapse
|
77
|
O'Shea DG, Curtin CM, O'Brien FJ. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomater Sci 2022; 10:2462-2483. [PMID: 35355029 PMCID: PMC9113059 DOI: 10.1039/d1bm01540k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
In the human body, articular cartilage facilitates the frictionless movement of synovial joints. However, due to its avascular and aneural nature, it has a limited ability to self-repair when damaged due to injury or wear and tear over time. Current surgical treatment options for cartilage defects often lead to the formation of fibrous, non-durable tissue and thus a new solution is required. Nature is the best innovator and so recent advances in the field of tissue engineering have aimed to recreate the microenvironment of native articular cartilage using biomaterial scaffolds. However, the inability to mirror the complexity of native tissue has hindered the clinical translation of many products thus far. Fortunately, the advent of 3D printing has provided a potential solution. 3D printed scaffolds, fabricated using biomimetic biomaterials, can be designed to mimic the complex zonal architecture and composition of articular cartilage. The bioinks used to fabricate these scaffolds can also be further functionalised with cells and/or bioactive factors or gene therapeutics to mirror the cellular composition of the native tissue. Thus, this review investigates how the architecture and composition of native articular cartilage is inspiring the design of biomimetic bioinks for 3D printing of scaffolds for cartilage repair. Subsequently, we discuss how these 3D printed scaffolds can be further functionalised with cells and bioactive factors, as well as looking at future prospects in this field.
Collapse
Affiliation(s)
- Donagh G O'Shea
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
78
|
Galateanu B, Hudita A, Biru EI, Iovu H, Zaharia C, Simsensohn E, Costache M, Petca RC, Jinga V. Applications of Polymers for Organ-on-Chip Technology in Urology. Polymers (Basel) 2022; 14:1668. [PMID: 35566836 PMCID: PMC9105302 DOI: 10.3390/polym14091668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Organ-on-chips (OOCs) are microfluidic devices used for creating physiological organ biomimetic systems. OOC technology brings numerous advantages in the current landscape of preclinical models, capable of recapitulating the multicellular assemblage, tissue-tissue interaction, and replicating numerous human pathologies. Moreover, in cancer research, OOCs emulate the 3D hierarchical complexity of in vivo tumors and mimic the tumor microenvironment, being a practical cost-efficient solution for tumor-growth investigation and anticancer drug screening. OOCs are compact and easy-to-use microphysiological functional units that recapitulate the native function and the mechanical strain that the cells experience in the human bodies, allowing the development of a wide range of applications such as disease modeling or even the development of diagnostic devices. In this context, the current work aims to review the scientific literature in the field of microfluidic devices designed for urology applications in terms of OOC fabrication (principles of manufacture and materials used), development of kidney-on-chip models for drug-toxicity screening and kidney tumors modeling, bladder-on-chip models for urinary tract infections and bladder cancer modeling and prostate-on-chip models for prostate cancer modeling.
Collapse
Affiliation(s)
- Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Elena Iuliana Biru
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
| | - Horia Iovu
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
- Academy of Romanian Scientists, Ilfov Street, 50044 Bucharest, Romania
| | - Catalin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
| | - Eliza Simsensohn
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Razvan-Cosmin Petca
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| | - Viorel Jinga
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| |
Collapse
|
79
|
Zashikhina N, Levit M, Dobrodumov A, Gladnev S, Lavrentieva A, Tennikova T, Korzhikova-Vlakh E. Biocompatible Nanoparticles Based on Amphiphilic Random Polypeptides and Glycopolymers as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14091677. [PMID: 35566847 PMCID: PMC9104652 DOI: 10.3390/polym14091677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
In this research, the development and investigation of novel nanoobjects based on biodegradable random polypeptides and synthetic non-degradable glycopolymer poly(2-deoxy-2-methacrylamido-d-glucose) were proposed as drug delivery systems. Two different approaches have been applied for preparation of such nanomaterials. The first one includes the synthesis of block-random copolymers consisting of polypeptide and glycopolymer and capable of self-assembly into polymer particles. The synthesis of copolymers was performed using sequential reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerization (ROP) techniques. Amphiphilic poly(2-deoxy-2-methacrylamido-d-glucose)-b-poly(l-lysine-co-l-phenylalanine) (PMAG-b-P(Lys-co-Phe)) copolymers were then used for preparation of self-assembled nanoparticles. Another approach for the formation of polypeptide-glycopolymer particles was based on the post-modification of preformed polypeptide particles with an oxidized glycopolymer. The conjugation of the polysaccharide on the surface of the particles was achieved by the interaction of the aldehyde groups of the oxidized glycopolymer with the amino groups of the polymer on particle surface, followed by the reduction of the formed Schiff base with sodium borohydride. A comparative study of polymer nanoparticles developed with its cationic analogues based on random P(Lys-co-d-Phe), as well as an anionic one—P(Lys-co-d-Phe) covered with heparin––was carried out. In vitro antitumor activity of novel paclitaxel-loaded PMAG-b-P(Lys-co-Phe)-based particles towards A549 (human lung carcinoma) and MCF-7 (human breast adenocarcinoma) cells was comparable to the commercially available Paclitaxel-LANS.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Anatoliy Dobrodumov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Sergey Gladnev
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia; (S.G.); (T.T.)
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, 30167 Hannover, Germany;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia; (S.G.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
- Correspondence:
| |
Collapse
|
80
|
Shi M, Gao Y, Lee L, Song T, Zhou J, Yan L, Li Y. Adaptive Gelatin Microspheres Enhanced Stem Cell Delivery and Integration With Diabetic Wounds to Activate Skin Tissue Regeneration. Front Bioeng Biotechnol 2022; 10:813805. [PMID: 35433645 PMCID: PMC9011108 DOI: 10.3389/fbioe.2022.813805] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
The delayed and complicated diabetic wound healing raises clinical and social concerns. The application of stem cells along with hydrogels is an attractive therapeutic approach. However, low cell retention and integration hindered the performance. Herein, gelatin microspheres were fabricated for local delivery of adipose-derived stem cells (from rats, rADSCs), and the effect of rADSCs with microspheres on diabetic wound healing was examined. Uniform, well-dispersed microspheres were fabricated using the microfluidic technique. Due to geometry differences, the proteinase degradation rate for microspheres was four times that of the bulk hydrogel. The obtained gelatin microspheres supported cell's adhesion and proliferation and provided a suitable microenvironment for rADSC survival. For in vivo animal tests, rADSCs were labeled with CM-Dil for tracking purposes. Microspheres were well embedded in the regenerated tissue and demonstrated good biocompatibility and an adaptive biodegradation rate. Histological examination revealed rADSC-loaded gelatin microspheres that significantly accelerated wound healing via promoting M2 macrophage polarization, collagen deposition, angiogenesis associated with peripheral nerve recovery, and hair follicle formation. Notably, the relative fluorescence intensity around the hair follicle was 17-fold higher than that of the blank group, indicating rADSC participated in the healing process via exosomes. Taken together, the rADSC-laden gelatin microspheres provided a promising strategy for local stem cell delivery to improve diabetic wound healing.
Collapse
Affiliation(s)
- Ming Shi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
- Department of Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yunfen Gao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Lim Lee
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Ling Yan
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yan Li,
| |
Collapse
|
81
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|
82
|
Yang S, Zheng L, Chen Z, Jiao Z, Liu T, Nie Y, Kang Y, Pan B, Song K. Decellularized Pig Kidney with a Micro-Nano Secondary Structure Contributes to Tumor Progression in 3D Tumor Model. MATERIALS 2022; 15:ma15051935. [PMID: 35269166 PMCID: PMC8911967 DOI: 10.3390/ma15051935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
In spite of many anti-cancer drugs utilized in clinical treatment, cancer is still one of the diseases with the highest morbidity and mortality worldwide, owing to the complexity and heterogeneity of the tumor microenvironment. Compared with conventional 2D tumor models, 3D scaffolds could provide structures and a microenvironment which stimulate native tumor tissues more accurately. The extracellular matrix (ECM) is the main component of the cell in the microenvironment that is mainly composed of three-dimensional nanofibers, which can form nanoscale fiber networks, while the decellularized extracellular matrix (dECM) has been widely applied to engineered scaffolds. In this study, pig kidney was used as the source material to prepare dECM scaffolds. A chemical crosslinking method was used to improve the mechanical properties and other physical characteristics of the decellularized pig kidney-derived scaffold. Furthermore, a human breast cancer cell line (MCF-7) was used to further investigate the biocompatibility of the scaffold to fabricate a tumor model. The results showed that the existence of nanostructures in the scaffold plays an important role in cell adhesion, proliferation, and differentiation. Therefore, the pig kidney-derived matrix scaffold prepared by decellularization could provide more cell attachment sites, which is conducive to cell adhesion and proliferation, physiological activities, and tumor model construction.
Collapse
Affiliation(s)
- Shuangjia Yang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Le Zheng
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Zilong Chen
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Zeren Jiao
- Artie McFerrin Department of Chemical Engineering, College Station, Texas A&M University, Texas, TX 77843-3122, USA;
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian 116023, China
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| |
Collapse
|
83
|
Cell Membrane-Cloaked Nanotherapeutics for Targeted Drug Delivery. Int J Mol Sci 2022; 23:ijms23042223. [PMID: 35216342 PMCID: PMC8879543 DOI: 10.3390/ijms23042223] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Cell membrane cloaking technique is bioinspired nanotechnology that takes advantage of naturally derived design cues for surface modification of nanoparticles. Unlike modification with synthetic materials, cell membranes can replicate complex physicochemical properties and biomimetic functions of the parent cell source. This technique indeed has the potential to greatly augment existing nanotherapeutic platforms. Here, we provide a comprehensive overview of engineered cell membrane-based nanotherapeutics for targeted drug delivery and biomedical applications and discuss the challenges and opportunities of cell membrane cloaking techniques for clinical translation.
Collapse
|
84
|
Tarrahi R, Khataee A, Karimi A, Yoon Y. The latest achievements in plant cellulose-based biomaterials for tissue engineering focusing on skin repair. CHEMOSPHERE 2022; 288:132529. [PMID: 34637866 DOI: 10.1016/j.chemosphere.2021.132529] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The present work reviews recent developments in plant cellulose-based biomaterial design and applications, properties, characterizations, and synthesis for skin tissue engineering and wound healing. Cellulose-based biomaterials are promising materials for their remarkable adaptability with three-dimensional polymeric structure. They are capable of mimicking tissue properties, which plays a key role in tissue engineering. Besides, concerns for environmental issues have motivated scientists to move toward eco-friendly materials and natural polymer-based materials for applications in the tissue engineering field these days. Therefore, cellulose as an appropriate substitute for common polymers based on crude coal, animal, and human-derived biomolecules is greatly considered for various applications in biomedical fields. Generally, natural biomaterials lack good mechanical properties for skin tissue engineering. But using modified cellulose-based biopolymers tackles these restrictions and prevents immunogenic responses. Moreover, tissue engineering is a quick promoting field focusing on the generation of novel biomaterials with modified characteristics to improve scaffold function through physical, biochemical, and chemical tailoring. Also, nanocellulose with a broad range of applications, particularly in tissue engineering, advanced wound dressing, and as a material for coupling with drugs and sensorics, has been reviewed here. Moreover, the potential cytotoxicity and immunogenicity of cellulose-based biomaterials are addressed in this review.
Collapse
Affiliation(s)
- Roshanak Tarrahi
- Health Promotion Research Center, Iran University of Medical Sciences, 14496-14535, Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Afzal Karimi
- Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
85
|
Correa-Paz C, Navarro Poupard MF, Polo E, Rodríguez-Pérez M, Migliavacca M, Iglesias-Rey R, Ouro A, Maqueda E, Hervella P, Sobrino T, Castillo J, del Pino P, Pelaz B, Campos F. Sonosensitive capsules for brain thrombolysis increase ischemic damage in a stroke model. J Nanobiotechnology 2022; 20:46. [PMID: 35062954 PMCID: PMC8780814 DOI: 10.1186/s12951-022-01252-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ischemic stroke is the most common cerebrovascular disease and is caused by interruption of blood supply to the brain. To date, recombinant tissue plasminogen activator (rtPA) has been the main pharmacological treatment in the acute phase. However, this treatment has some drawbacks, such as a short half-life, low reperfusion rate, risk of hemorrhagic transformations, and neurotoxic effects. To overcome the limitations of rtPA and improve its effectiveness, we recently designed sonosensitive sub-micrometric capsules (SCs) loaded with rtPA with a size of approximately 600 nm, synthesized using the layer-by-layer (LbL) technique, and coated with gelatine for clot targeting. In this study, we evaluated the rtPA release of ultrasound (US)-responsive SCs in healthy mice and the therapeutic effect in a thromboembolic stroke model.
Results
In healthy mice, SCs loaded with rtPA 1 mg/kg responded properly to external US exposure, extending the half-life of the drug in the blood stream more than the group treated with free rtPA solution. The gelatine coating also contributed to stabilizing the encapsulation and maintaining the response to US. When the same particles were administered in the stroke model, these SCs appeared to aggregate in the ischemic brain region, probably generating secondary embolisms and limiting the thrombolytic effect of rtPA. Despite the promising results of these thrombolytic particles, at least under the dose and size conditions used in this study, the administration of these capsules represents a risk factor for stroke.
Conclusions
This is the first study to report the aggregation risk of a drug carrier in neurological pathologies such as stroke. Biocompatibility analysis related to the use of nano-and microparticles should be deeply studied to anticipate the limitations and orientate the design of new nanoparticles for translation to humans.
Graphical Abstract
Collapse
|
86
|
Hu CH, Veneziano R. Controlled Release in Hydrogels Using DNA Nanotechnology. Biomedicines 2022; 10:213. [PMID: 35203423 PMCID: PMC8869372 DOI: 10.3390/biomedicines10020213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/22/2022] Open
Abstract
Gelatin is a biopolymer widely used to synthesize hydrogels for biomedical applications, such as tissue engineering and bioinks for 3D bioprinting. However, as with other biopolymer-based hydrogels, gelatin-hydrogels do not allow precise temporal control of the biomolecule distribution to mimic biological signals involved in biological mechanisms. Leveraging DNA nanotechnology tools to develop a responsive controlled release system via strand displacement has demonstrated the ability to encode logic process, which would enable a more sophisticated design for controlled release. However, this unique and dynamic system has not yet been incorporated within any hydrogels to create a complete release circuit mechanism that closely resembles the sequential distribution of biomolecules observed in the native environment. Here, we designed and synthesized versatile multi-arm DNA motifs that can be easily conjugated within a gelatin hydrogel via click chemistry to incorporate a strand displacement circuit. After validating the incorporation and showing the increased stability of DNA motifs against degradation once embedded in the hydrogel, we demonstrated the ability of our system to release multiple model cargos with temporal specificity by the addition of the trigger strands specific to each cargo. Additionally, we were able to modulate the rate and quantity of cargo release by tuning the sequence of the trigger strands.
Collapse
Affiliation(s)
| | - Remi Veneziano
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, USA;
| |
Collapse
|
87
|
Wu Y, Zhang X, Tan B, Shan Y, Zhao X, Liao J. Near-infrared light control of GelMA/PMMA/PDA hydrogel with mild photothermal therapy for skull regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112641. [PMID: 35034819 DOI: 10.1016/j.msec.2022.112641] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 01/02/2022] [Indexed: 02/05/2023]
Abstract
The development of bone tissue engineering indicates some new paths for bone defect repair. Mild photothermal therapy (PTT) is flourishing as an exciting potential method for bone regeneration. Polydopamine nanoparticles exhibit good absorption at infrared wavelengths and can be used as a viable option for the application of mild PTT to bone defects. Herein, a gelatin-methacryloyl/poly(methyl methacrylate)/polydopamine (GelMA/PMMA/PDA) hydrogel was formulated and assessed in terms of mechanical and biological features. We observed that the addition of methacryloyl groups into gelatin and the introduction of PMMA improved the mechanical properties of the hydrogel and ensure the biosecurity. The GelMA/PMMA/PDA hydrogel demonstrated favorable photothermal ability, biocompatibility, and osteogenic effect. In the rat skull defect model, the GelMA/PMMA/PDA hydrogel with mild PTT possesses better bone repair compared with hydrogel-only and control groups. Thus, this mild photothermal hydrogel platform has a beneficial osteogenic ability and provides a novel approach to treat bone defects.
Collapse
Affiliation(s)
- Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yue Shan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xin Zhao
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
88
|
Ryu SB, Park KM, Park KD. In situ graphene oxide-gelatin hydrogels with enhanced mechanical property for tissue adhesive and regeneration. Biochem Biophys Res Commun 2022; 592:24-30. [PMID: 35016148 DOI: 10.1016/j.bbrc.2022.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/01/2022]
Abstract
Extracellular matrix (ECM) is playing a critical role which is component of mammalian tissue that provide structural support to cells. In addition, ECM act as a local depot for growth factors that control cell phenotype and differentiation. In this regard, scaffold that mimicking the ECM structure is important to growth or wound healing process. Gelatin is natural polymer and derived from collagen which is a major component of ECM. Using gelatin as an ECM mimicking structure has advantage of providing three-dimensional growth or supporting to regulate the cell behavior, proliferation, migration, cell survival, and differentiation. In this study, we developed enzyme-mediated crosslinking gelatin-based hydrogels with robust mechanical property to mimicking ECM and effectively attach to the surrounding tissue with high adhesive property. The effect of different concentration of graphene oxide (GO) on the physico-chemical properties of gelatin hydrogels were investigated, particularly tissue adhesion strength. In vitro proteolytic degradation behavior and human dermal fibroblast proliferation study confirmed the hydrogels were biodegradable and promote cell proliferation. Overall, we suggest that GO incorporated gelatin hydrogels with additional interfacial interactions, showing a promising potential as an injectable tissue adhesive.
Collapse
Affiliation(s)
- Seung Bae Ryu
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, South Korea
| | - Kyung Min Park
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, South Korea.
| |
Collapse
|
89
|
Wang JH, Tseng CL, Lin FL, Chen J, Hsieh EH, Lama S, Chuang YF, Kumar S, Zhu L, McGuinness MB, Hernandez J, Tu L, Wang PY, Liu GS. Topical application of TAK1 inhibitor encapsulated by gelatin particle alleviates corneal neovascularization. Theranostics 2022; 12:657-674. [PMID: 34976206 PMCID: PMC8692906 DOI: 10.7150/thno.65098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Rationale: Corneal neovascularization (CoNV) is a severe complication of various types of corneal diseases, that leads to permanent visual impairment. Current treatments for CoNV, such as steroids or anti-vascular endothelial growth factor agents, are argued over their therapeutic efficacy and adverse effects. Here, we demonstrate that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) plays an important role in the pathogenesis of CoNV. Methods: Angiogenic activities were assessed in ex vivo and in vitro models subjected to TAK1 inhibition by 5Z-7-oxozeaenol, a selective inhibitor of TAK1. RNA-Seq was used to examine pathways that could be potentially affected by TAK1 inhibition. A gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol was developed as the eyedrop to treat CoNV in a rodent model. Results: We showed that 5Z-7-oxozeaenol reduced angiogenic processes through impeding cell proliferation. Transcriptome analysis suggested 5Z-7-oxozeaenol principally suppresses cell cycle and DNA replication, thereby restraining cell proliferation. In addition, inhibition of TAK1 by 5Z-7-oxozeaenol blocked TNFα-mediated NFκB signalling, and its downstream genes related to angiogenesis and inflammation. 5Z-7-oxozeaenol also ameliorated pro-angiogenic activity, including endothelial migration and tube formation. Furthermore, topical administration of the gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol led to significantly greater suppression of CoNV in a mouse model compared to the free form of 5Z-7-oxozeaenol, likely due to extended retention of 5Z-7-oxozeaenol in the cornea. Conclusion: Our study shows the potential of TAK1 as a therapeutic target for pathological angiogenesis, and the gelatin nanoparticle coupled with 5Z-7-oxozeaenol as a promising new eyedrop administration model in treatment of CoNV.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinying Chen
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Suraj Lama
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yu-Fan Chuang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Satheesh Kumar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Linxin Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Myra B. McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Jessika Hernandez
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Leilei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- Aier Eye Institute, Changsha, Hunan, China
| |
Collapse
|
90
|
Basu T, Bhutani U, Majumdar S. Cross-linker Free Sodium Alginate and Gelatin Hydrogel: Multiscale Biomaterial Design Framework. J Mater Chem B 2022; 10:3614-3623. [DOI: 10.1039/d2tb00028h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface functionalization and cross-linking have been adopted extensively by researchers to customize hydrogel properties, especially in the last decade. The clinical translation of such biomaterials is in a poor state...
Collapse
|
91
|
Terranova L, Louvrier A, Hébraud A, Meyer C, Rolin G, Schlatter G, Meyer F. Highly Structured 3D Electrospun Conical Scaffold: A Tool for Dental Pulp Regeneration. ACS Biomater Sci Eng 2021; 7:5775-5787. [PMID: 34846849 DOI: 10.1021/acsbiomaterials.1c00900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New procedures envisioned for dental pulp regeneration after pulpectomy include cell homing strategy. It involves host endogenous stem cell recruitment and activation. To meet this cell-free approach, we need to design a relevant scaffold to support cell migration from tissues surrounding the dental root canal. A composite membrane made of electrospun poly(lactic acid) nanofibers and electrosprayed polycaprolactone with tannic acid (TA) microparticles which mimics the architecture of the extracellular matrix was first fabricated. After rolling the membrane in the form of a 3D conical scaffold and subsequently coating it with gelatin, it can be directly inserted into the root canal. The porous morphology of the construct was characterized by SEM at different length scales. It was shown that TA was released from the 3D conical scaffold after 2 days in PBS at 37 °C. Biocompatibility studies were first assessed by seeding human dental pulp stem cells (DPSCs) on planar membranes coated or not coated with gelatin to compare the surfaces. After 24 h, the results highlighted that the gelatin-coating increased the membrane biocompatibility and cell viability. Similar DPSC morphology and proliferation on both membrane surfaces were observed. The culture of DPSCs on conical scaffolds showed cell colonization in the whole cone volume, proving that the architecture of the conical scaffold was suitable for cell migration.
Collapse
Affiliation(s)
- Lisa Terranova
- Biomaterials and Bioengineering, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1121, Strasbourg 67000, France.,Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Aurélien Louvrier
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon F-25000, France.,Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon F-25000, France
| | - Anne Hébraud
- Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Christophe Meyer
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon F-25000, France
| | - Gwenaël Rolin
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon F-25000, France.,Inserm CIC-1431, CHU Besançon, Besançon F-25000, France
| | - Guy Schlatter
- Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Florent Meyer
- Biomaterials and Bioengineering, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1121, Strasbourg 67000, France.,Pôle de médecine et chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| |
Collapse
|
92
|
Liang W, Dong Y, Shen H, Shao R, Wu X, Huang X, Sun B, Zeng B, Zhang S, Xu F. Materials science and design principles of therapeutic materials in orthopedic and bone tissue engineering. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Yongqiang Dong
- Department of Orthopedics Xinchang People's Hospital Shaoxing China
| | - Hailiang Shen
- Department of Orthopedics Affiliated Hospital of Shaoxing University Shaoxing China
| | - Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| |
Collapse
|
93
|
Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv 2021; 28:2392-2414. [PMID: 34755579 PMCID: PMC8583938 DOI: 10.1080/10717544.2021.1998246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic osteomyelitis is a challenging disease due to its serious rates of mortality and morbidity while the currently available treatment strategies are suboptimal. In contrast to the adopted systemic treatment approaches after surgical debridement in chronic osteomyelitis, local drug delivery systems are receiving great attention in the recent decades. Local drug delivery systems using special carriers have the pros of enhancing the feasibility of penetration of antimicrobial agents to bone tissues, providing sustained release and localized concentrations of the antimicrobial agents in the infected area while avoiding the systemic side effects and toxicity. Most important, the incorporation of osteoinductive and osteoconductive materials in these systems assists bones proliferation and differentiation, hence the generation of new bone materials is enhanced. Some of these systems can also provide mechanical support for the long bones during the healing process. Most important, if the local systems are designed to be injectable to the affected site and biodegradable, they will reduce the level of invasion required for implantation and can win the patients’ compliance and reduce the healing period. They will also allow multiple injections during the course of therapy to guard against the side effect of the long-term systemic therapy. The current review presents different available approaches for delivering antimicrobial agents for the treatment of osteomyelitis focusing on the recent advances in researches for local delivery of antibiotics.HIGHLIGHTS Chronic osteomyelitis is a challenging disease due to its serious mortality and morbidity rates and limited effective treatment options. Local drug delivery systems are receiving great attention in the recent decades. Osteoinductive and osteoconductive materials in the local systems assists bones proliferation and differentiation Local systems can be designed to provide mechanical support for the long bones during the healing process. Designing the local system to be injectable to the affected site and biodegradable will reduces the level of invasion and win the patients’ compliance.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Maha Elkayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
94
|
Gelli R, Mugnaini G, Bolognesi T, Bonini M. Cross-linked Porous Gelatin Microparticles with Tunable Shape, Size, and Porosity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12781-12789. [PMID: 34706538 DOI: 10.1021/acs.langmuir.1c01508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gelatin particles are relevant to many applications in the biomedical field due to their excellent biocompatibility and versatility. When prepared by double emulsion methods, porous microparticles with different architectures can be obtained. Controlling the shape, size, porosity, swelling, and stability against dissolution is fundamental toward their application under physiological conditions. We prepared porous gelatin microparticles from oil-in-water-in-oil emulsions, modifying the gelatin/surfactant ratio and the stirring speed. The effect on structural properties, including surface and inner porosities, was thoroughly assessed by multiple microscopy techniques (optical, electron, and confocal Raman). Selected samples were cross-linked with glutaraldehyde or glyceraldehyde, and their swelling properties and stability against dissolution were evaluated, while the influence of the cross-linking at the nanoscale was studied by scattering of X-rays. Depending on the preparation protocol, we obtained particles with different shapes (irregular or spherical), radii within ∼40 to 90 μm, and porosities up to 10 μm. The cross-linking extends the stability in water from a few minutes up to several days while the swelling ability and the mesh size at the nanoscale of the gelatin network are preserved. The analysis of the experimental results as a function of the preparation parameters demonstrates that microparticles with tunable features can be designed.
Collapse
Affiliation(s)
- Rita Gelli
- CSGI & Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Giulia Mugnaini
- CSGI & Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Tessa Bolognesi
- CSGI & Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Massimo Bonini
- CSGI & Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
95
|
Ahmady A, Abu Samah NH. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. Int J Pharm 2021; 608:121037. [PMID: 34438009 DOI: 10.1016/j.ijpharm.2021.121037] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
Bioadhesive polymers offer versatility to medical and pharmaceutical inventions. The incorporation of such materials to conventional dosage forms or medical devices may confer or improve the adhesivity of the bioadhesive systems, subsequently prolonging their residence time at the site of absorption or action and providing sustained release of actives with improved bioavailability and therapeutic outcomes. For decades, much focus has been put on scientific works to replace synthetic polymers with biopolymers with desirable functional properties. Gelatine has been considered one of the most promising biopolymers. Despite its biodegradability, biocompatibility and unique biological properties, gelatine exhibits poor mechanical and adhesive properties, limiting its end-use applications. The chemical modification and blending of gelatine with other biomaterials are strategies proposed to improve its bioadhesivity. Here we discuss the classical approaches involving a variety of polymer blends and composite systems containing gelatine, and gelatine modifications via thiolation, methacrylation, catechol conjugation, amination and other newly devised strategies. We highlight several of the latest studies on these strategies and their relevant findings.
Collapse
Affiliation(s)
- Amina Ahmady
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Malaysia
| | - Nor Hayati Abu Samah
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Malaysia.
| |
Collapse
|
96
|
Farzin A, Hassan S, Teixeira LSM, Gurian M, Crispim JF, Manhas V, Carlier A, Bae H, Geris L, Noshadi I, Shin SR, Leijten J. Self-Oxygenation of Tissues Orchestrates Full-Thickness Vascularization of Living Implants. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2100850. [PMID: 34924912 PMCID: PMC8680410 DOI: 10.1002/adfm.202100850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 05/13/2023]
Abstract
Bioengineering of tissues and organs has the potential to generate functional replacement organs. However, achieving the full-thickness vascularization that is required for long-term survival of living implants has remained a grand challenge, especially for clinically sized implants. During the pre-vascular phase, implanted engineered tissues are forced to metabolically rely on the diffusion of nutrients from adjacent host-tissue, which for larger living implants results in anoxia, cell death, and ultimately implant failure. Here it is reported that this challenge can be addressed by engineering self-oxygenating tissues, which is achieved via the incorporation of hydrophobic oxygen-generating micromaterials into engineered tissues. Self-oxygenation of tissues transforms anoxic stresses into hypoxic stimulation in a homogenous and tissue size-independent manner. The in situ elevation of oxygen tension enables the sustained production of high quantities of angiogenic factors by implanted cells, which are offered a metabolically protected pro-angiogenic microenvironment. Numerical simulations predict that self-oxygenation of living tissues will effectively orchestrate rapid full-thickness vascularization of implanted tissues, which is empirically confirmed via in vivo experimentation. Self-oxygenation of tissues thus represents a novel, effective, and widely applicable strategy to enable the vascularization living implants, which is expected to advance organ transplantation and regenerative medicine applications.
Collapse
Affiliation(s)
- Ali Farzin
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge, MA 02139, USA
| | - Liliana S Moreira Teixeira
- Department of Developmental BioEngineering Technical Medical Centre University of Twente Enschede, The Netherlands
| | - Melvin Gurian
- Department of Developmental BioEngineering Technical Medical Centre University of Twente Enschede, The Netherlands
| | - João F Crispim
- Department of Developmental BioEngineering Technical Medical CentreUniversity of Twente Enschede, The Netherlands
| | - Varun Manhas
- Biomechanics Research Unit GIGA In Silico Medicine University of Liège Chemin des Chevreuils 1, B52/3, Liège 4000, Belgium
| | - Aurélie Carlier
- Laboratory for Cell Biology-Inspired Tissue Engineering MERLN Institute University of Maastricht Maastricht, The Netherlands
| | - Hojae Bae
- KU Convergence Science and Technology Institute Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul 05029, Republic of Korea
| | - Liesbet Geris
- Biomechanics Research Unit GIGA In Silico Medicine University of Liège Chemin des Chevreuils 1, B52/3, Liège 4000, Belgium
| | - Iman Noshadi
- Department of Bioengineering University of California Riverside, CA 92521, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge, MA 02139, USA
| | - Jeroen Leijten
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge, MA 02139, USA
| |
Collapse
|
97
|
Cheng YH, Cheng SJ, Chen HH, Hsu WC. Development of injectable graphene oxide/laponite/gelatin hydrogel containing Wharton's jelly mesenchymal stem cells for treatment of oxidative stress-damaged cardiomyocytes. Colloids Surf B Biointerfaces 2021; 209:112150. [PMID: 34656814 DOI: 10.1016/j.colsurfb.2021.112150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/13/2021] [Accepted: 10/03/2021] [Indexed: 11/08/2022]
Abstract
In the initial stage of myocardial infarction (MI), cardiomyocyte necrosis activates aninflammatory response and increases the reactive oxygen species (ROS) content. Graphene oxide (GO) possesses potential antioxidant properties and can provide the adequate mechanical support for cell growth. The clinical studies showed that direct injection of Wharton's jelly mesenchymal stem cells (WJ-MSCs) into infarcted areas of myocardium can reduce apoptosis and fibrosis. Gelatin is a natural polymer and can promote cell attachment. Nanoclay laponite with shear-thinning properties can be injected and gelled in-situ without chemical triggers. In the study, injectable GO/laponite/gelatin (GO-LG) hydrogel was developed and characterized. The results of cell viability showed that the optimal concentration of GO flasks (200 to 300 nm) to treat cells was 100 μg/ml. Addition of nanosized GO to the laponite/gelatin (LG) hydrogel could increase the mechanical strength and have both hemocompatibility and cytocompatibility. The release of GO from LG hydrogel could inhibit the H2O2-induced oxidative stress. The GO-LG hydrogel containing WJ-MSCs could decrease inflammation and apoptosis level and increase the cell viability of cardiomyocytes under oxidative stress. We believe that utilizing this newly developed GO-LG hydrogel containing WJ-MSCs may have potential applications in the future for treatment of MI.
Collapse
Affiliation(s)
- Yung-Hsin Cheng
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Shih-Jen Cheng
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsin-Ho Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wei-Chia Hsu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
98
|
Xie X, Li D, Chen Y, Shen Y, Yu F, Wang W, Yuan Z, Morsi Y, Wu J, Mo X. Conjugate Electrospun 3D Gelatin Nanofiber Sponge for Rapid Hemostasis. Adv Healthc Mater 2021; 10:e2100918. [PMID: 34235873 DOI: 10.1002/adhm.202100918] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Indexed: 12/15/2022]
Abstract
Developing an excellent hemostatic material with good biocompatibility and high blood absorption capacity for rapid hemostasis of deep non-compressible hemorrhage remains a significant challenge. Herein, a novel conjugate electrospinning strategy to prepare an ultralight 3D gelatin sponge consisting of continuous interconnected nanofibers. This unique fluffy nanofiber structure endows the sponge with low density, high surface area, compressibility, and ultrastrong liquid absorption capacity. In vitro assessments show the gelatin nanofiber sponge has good cytocompatibility, high cell permeability, and low hemolysis ratio. The rat subcutaneous implantation studies demonstrate good biocompatibility and biodegradability of gelatin nanofiber sponge. Gelatin nanofiber sponge aggregates and activates platelets in large quantities to accelerate the formation of platelet embolism, and simultaneously escalates other extrinsic and intrinsic coagulation pathways, which collectively contribute to its superior hemostatic capacity. In vivo studies on an ear artery injury model and a liver trauma model of rabbits demonstrate that the gelatin nanofiber sponge rapidly induce stable blood clots with least blood loss compared to gelatin nanofiber membrane, medical gauze, and commercial gelatin hemostatic sponge. Hence, the gelatin nanofiber sponge holds great potential as an absorbable hemostatic agent for rapid hemostasis.
Collapse
Affiliation(s)
- Xianrui Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Dan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Fan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Wei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences Swinburne University of Technology Boroondara VIC 3122 Australia
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
99
|
Troy E, Tilbury MA, Power AM, Wall JG. Nature-Based Biomaterials and Their Application in Biomedicine. Polymers (Basel) 2021; 13:3321. [PMID: 34641137 PMCID: PMC8513057 DOI: 10.3390/polym13193321] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Natural polymers, based on proteins or polysaccharides, have attracted increasing interest in recent years due to their broad potential uses in biomedicine. The chemical stability, structural versatility, biocompatibility and high availability of these materials lend them to diverse applications in areas such as tissue engineering, drug delivery and wound healing. Biomaterials purified from animal or plant sources have also been engineered to improve their structural properties or promote interactions with surrounding cells and tissues for improved in vivo performance, leading to novel applications as implantable devices, in controlled drug release and as surface coatings. This review describes biomaterials derived from and inspired by natural proteins and polysaccharides and highlights their promise across diverse biomedical fields. We outline current therapeutic applications of these nature-based materials and consider expected future developments in identifying and utilising innovative biomaterials in new biomedical applications.
Collapse
Affiliation(s)
- Eoin Troy
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
| | - Maura A. Tilbury
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| | - Anne Marie Power
- Zoology, School of Natural Sciences, NUI Galway, H91 TK33 Galway, Ireland;
| | - J. Gerard Wall
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
100
|
Sreedurgalakshmi K, Srikar R, Harikrishnan K, Srinivasan L, Rajkumari R. Cetuximab-siRNA Conjugate Linked Through Cationized Gelatin Knocks Down KRAS G12C Mutation in NSCLC Sensitizing the Cells Toward Gefitinib. Technol Cancer Res Treat 2021; 20:15330338211041453. [PMID: 34542333 PMCID: PMC8461128 DOI: 10.1177/15330338211041453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Delivery of small-interfering RNA (siRNA) has been of great interest in the past decade for effective gene silencing. To overcome synthetic and regulatory challenges posed by nanoparticle-mediated siRNA delivery, antibody–siRNA conjugate (ARC) platform is emerging as a potential siRNA delivery system suitable for clinical translation. Herein, we have developed a delivery technology based on the ARC platform for stable delivery of siRNA called as Gelatin-Antibody Delivery System (GADS). In GADS, positively charged gelatin acts as a linker between antibody–siRNA and enables the endosomal escape of siRNA for gene silencing postcellular internalization. For proof of concept, we synthesized a scalable GADS conjugate comprising of Cetuximab (CTB), cationized gelatin (cGel) and NSCLC KRASG12C-specific siRNA. CTB was chemically conjugated to cGel through an amide link to form the CTB–cGel complex. Thereafter, siRNA was chemically conjugated to the cGel moiety of the complex through the thioether link to form CTB–cGel–siRNA conjugate. RP-HPLC analysis was used to monitor the reaction while gel retardation assay was used to determine siRNA loading capacity. SPR analysis showed the preservation of ligand binding affinity of antibody conjugates with KD of ∼0.3 nM. Furthermore, cellular internalization study using florescent microscopy revealed receptor-mediated endocytosis. The conjugate targeted EGFR receptor of KRAS mutant NSCLC to specifically knockdown G12C mutation. The oncogene knockdown sensitized the cells toward small molecule inhibitor—Gefitinib causing ∼70% loss in cell viability. Western blot analysis revealed significant downregulation for various RAS downstream proteins postoncogene knockdown. Comparison of the efficiency of GADS vis-à-vis positive siRNA control and CRISPR–Cas9-based knockout of KRAS Exon 2 in the NCI-H23 NSCLC cell line suggests GADS as a potential technology for clinical translation of gene therapy.
Collapse
Affiliation(s)
- K. Sreedurgalakshmi
- Vellore Institute of Technology, Vellore, Tamil Nadu, India
- R&D, Levim Biotech LLP, Chennai, Tamil Nadu, India
| | - R. Srikar
- R&D, Levim Biotech LLP, Chennai, Tamil Nadu, India
- R. Srikar, Division of Biosimilars and Gene Therapy, R&D,
Levim Biotech LLP, Chennai, Tamil Nadu, India.
Reena Rajkumari, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India.
| | | | | | | |
Collapse
|