51
|
Huang Y, Deng X, Liang J. Review of the Application of Nanovesicles and the Human Interstitial Fluid in Gastrointestinal Premalignant Lesion Detection, Diagnosis, Prognosis and Therapy. Int J Nanomedicine 2019; 14:9469-9482. [PMID: 31819444 PMCID: PMC6896916 DOI: 10.2147/ijn.s208559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Premalignant lesions arise from cells that abnormally proliferate and have a tendency to become cancerous. Developing methods to specifically target and remove these premalignant lesions is imperative to the prevention of malignant progression into gastrointestinal (GI) tumors. However, accurate detection and diagnosis of GI precancerous lesions is challenging, as these lesions show little or no structural change. Thus, this prevents early intervention and reduces the success rate of therapy. In this review, we performed a systematic analysis of the technological advancements in the combined application of nanovesicles (NVs) and the human interstitial fluid (HIF) to specifically target GI premalignant lesions. NVs, which include quantum dots (QDs), are small membranous vehicles of a nanometer diameter that are widely used as drug delivery vectors, therapeutic effectors and diagnostic sensors. HIF is the fluid that is present in human interstitial tissues (HITs) in which signaling molecules and agents travel and can be found throughout the body. HIF is exploited by tumor cells for their invasion, migration and spread. Because the HITs span the entire submucosa of the gastrointestinal tract, they have been increasingly targeted in GI tumor therapy. The challenges involved in the combined application of NVs and HIF in the detection, diagnosis, prognosis and therapy of GI premalignant lesions are also discussed.
Collapse
Affiliation(s)
- Yu Huang
- Liuzhou Traditional Chinese Medical Hospital, Liuzhou 545001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Deng
- Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, People's Republic of China.,Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jian Liang
- Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
52
|
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
|
53
|
Potential clinical applications of the personalized, disease-specific protein corona on nanoparticles. Clin Chim Acta 2019; 501:102-111. [PMID: 31678275 DOI: 10.1016/j.cca.2019.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Nanoscale objects lose their original identity once in contact with biological fluids and get a new biological identity, referred to as a protein corona (PC). The PC modifies many of the physicochemical properties of nanoparticles (NPs), including surface charge, size, and aggregation state. These changes, in turn, affect the biological fate of NPs, including their biodistribution, pharmacokinetics, and therapeutic efficacy. It is well known that even small differences in the composition of a protein source (e.g., plasma and serum) can considerably change the composition of the corona formed on the surface of the same NPs. Recently, it has been shown that the PC is intensely affected by the patient's specific disease. Consequently, the same nanomaterial incubated with proteins of biological fluids belonging to patients with different pathologies adsorbs protein coronas with different compositions, giving rise to the concept of the personalized protein corona (PPC). Herein, we review recent advances on the topic of PPC, with a particular focus on their clinical significance.
Collapse
|
54
|
Ferjaoui Z, Jamal Al Dine E, Kulmukhamedova A, Bezdetnaya L, Soon Chang C, Schneider R, Mutelet F, Mertz D, Begin-Colin S, Quilès F, Gaffet E, Alem H. Doxorubicin-Loaded Thermoresponsive Superparamagnetic Nanocarriers for Controlled Drug Delivery and Magnetic Hyperthermia Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30610-30620. [PMID: 31359758 DOI: 10.1021/acsami.9b10444] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study reports on the development of thermoresponsive core/shell magnetic nanoparticles (MNPs) based on an iron oxide core and a thermoresponsive copolymer shell composed of 2-(2-methoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol)methacrylate (OEGMA) moieties. These smart nano-objects combine the magnetic properties of the core and the drug carrier properties of the polymeric shell. Loading the anticancer drug doxorubicin (DOX) in the thermoresponsive MNPs via supramolecular interactions provides advanced features to the delivery of DOX with spatial and temporal controls. The so coated iron oxide MNPs exhibit superparamagnetic behavior with a saturation magnetization of around 30 emu g-1. Drug release experiments confirmed that only a small amount of DOX was released at room temperature, while almost 100% drug release was achieved after 52 h at 42 °C with Fe3-δO4@P(MEO2MA60OEGMA40), which grafted polymer chains displaying a low critical solution temperature of 41 °C. Moreover, the MNPs exhibit magnetic hyperthermia properties as shown by specific absorption rate measurements. Finally, the cytotoxicity of the core/shell MNPs toward human ovary cancer SKOV-3 cells was tested. The results showed that the polymer-capped MNPs exhibited almost no toxicity at concentrations up to 12 μg mL-1, whereas when loaded with DOX, an increase in cytotoxicity and a decrease of SKOV-3 cell viability were observed. From these results, we conclude that these smart superparamagnetic nanocarriers with stealth properties are able to deliver drugs to tumor and are promising for applications in multimodal cancer therapy.
Collapse
Affiliation(s)
- Zied Ferjaoui
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Enaam Jamal Al Dine
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Aigul Kulmukhamedova
- Centre de Recherche en Automatique de Nancy (CRAN, UMR 7039) , Université de Lorraine, CNRS , F-54506 Vandœuvre-lès-Nancy , France
- Research Department , Institut de Cancérologie de Lorraine , 6 avenue de Bourgogne, CS 30519 , F-54519 Vandœuvre-lès-Nancy Cedex, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy (CRAN, UMR 7039) , Université de Lorraine, CNRS , F-54506 Vandœuvre-lès-Nancy , France
- Research Department , Institut de Cancérologie de Lorraine , 6 avenue de Bourgogne, CS 30519 , F-54519 Vandœuvre-lès-Nancy Cedex, France
| | - Crosby Soon Chang
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés, (LRGP, UMR 7274) , Université de Lorraine, CNRS , F-54000 Nancy , France
| | - Fabrice Mutelet
- Laboratoire Réactions et Génie des Procédés, (LRGP, UMR 7274) , Université de Lorraine, CNRS , F-54000 Nancy , France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, UMR 7504) , Université de Strasbourg, CNRS, UMR 7504 , F-67034 Strasbourg , France
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, UMR 7504) , Université de Strasbourg, CNRS, UMR 7504 , F-67034 Strasbourg , France
| | - Fabienne Quilès
- Laboratoire de Chimie Physique et Microbiologie et Materiaux pour l'Environnement (LCPME, UMR 7564) , Université de Lorraine, CNRS , F-54600 Villers-lès-Nancy , France
| | - Eric Gaffet
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Halima Alem
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| |
Collapse
|
55
|
Brain-targeted drug delivery by manipulating protein corona functions. Nat Commun 2019; 10:3561. [PMID: 31395892 PMCID: PMC6687821 DOI: 10.1038/s41467-019-11593-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Protein corona presents a major obstacle to bench-to-bedside translation of targeted drug delivery systems, severely affecting targeting yields and directing unfavorable biodistribution. Corona-mediated targeting provides a new impetus for specific drug delivery by precisely manipulating interaction modes of functional plasma proteins on nano-surface. Here bio-inspired liposomes (SP-sLip) were developed by modifying liposomal surface with a short nontoxic peptide derived from Aβ1-42 that specifically interacts with the lipid-binding domain of exchangeable apolipoproteins. SP-sLip absorb plasma apolipoproteins A1, E and J, consequently exposing receptor-binding domain of apolipoproteins to achieve brain-targeted delivery. Doxorubicin loaded SP-sLip (SP-sLip/DOX) show significant enhancement of brain distribution and anti-brain cancer effect in comparison to doxorubicin loaded plain liposomes. SP-sLip preserve functions of the absorbed human plasma ApoE, and the corona-mediated targeting strategy works in SP modified PLGA nanoparticles. The present study may pave a new avenue to facilitate clinical translation of targeted drug delivery systems. Plasma proteins may severely affect the in vivo performance of liposomes. Here, the authors develop bio-inspired liposomes that specifically absorb brain-targeted apolipoproteins and preserve their bioactivities, thereby achieving efficient brain targeting with minor influence on immunocompatibility of liposomes.
Collapse
|
56
|
Kristensen K, Engel TB, Stensballe A, Simonsen JB, Andresen TL. The hard protein corona of stealth liposomes is sparse. J Control Release 2019; 307:1-15. [DOI: 10.1016/j.jconrel.2019.05.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
|
57
|
Berardi A, Baldelli Bombelli F. Oral delivery of nanoparticles - let's not forget about the protein corona. Expert Opin Drug Deliv 2019; 16:563-566. [PMID: 31001991 DOI: 10.1080/17425247.2019.1610384] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alberto Berardi
- a Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy , Applied Science Private University , Amman , Jordan
| | - Francesca Baldelli Bombelli
- b Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), Department of Chemistry , Materials and Chemical Engineering , Milano , Italy
| |
Collapse
|
58
|
Rezaei G, Daghighi SM, Haririan I, Yousefi I, Raoufi M, Rezaee F, Dinarvand R. Protein corona variation in nanoparticles revisited: A dynamic grouping strategy. Colloids Surf B Biointerfaces 2019; 179:505-516. [PMID: 31009853 DOI: 10.1016/j.colsurfb.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
Abstract
Bio-nano interface investigation models are mainly based on the type of proteins present on corona, bio-nano interaction responses and the evaluation of final outcomes. Due to the extensive diversity in correlative models for investigation of nanoparticles biological responses, a comprehensive model considering different aspects of bio-nano interface from nanoparticles properties to protein corona fingerprints appeared to be essential and cannot be ignored. In order to minimize divergence in studies in the era of bio-nano interface and protein corona with following therapeutic implications, a useful investigation model on the basis of RADAR concept is suggested. The contents of RADAR concept consist of five modules: 1- Reshape of our strategy for synthesis of nanoparticles (NPs), 2- Application of NPs selected based on human fluid, 3- Delivery strategy of NPs selected based on target tissue, 4- Analysis of proteins present on corona using correct procedures and 5- Risk assessment and risk reduction upon the collection and analysis of results to increase drug delivery efficiency and drug efficacy. RADAR grouping strategy for revisiting protein corona phenomenon as a key of success will be discussed with respect to the current state of knowledge.
Collapse
Affiliation(s)
- Ghassem Rezaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Seyed Mojtaba Daghighi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ismael Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Yousefi
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
59
|
Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Adv Drug Deliv Rev 2019; 143:22-36. [PMID: 31158406 DOI: 10.1016/j.addr.2019.05.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticles modified with ligands for specific targeting towards receptors expressed on the surface of target cells are discussed in literature towards improved delivery strategies. In such concepts the ligand density on the surface of the nanoparticles plays an important role. How many ligands per nanoparticle are best for the most efficient delivery? Importantly, this number may be different for in vitro and in vivo scenarios. In this review first viruses as "biological" nanoparticles are analyzed towards their ligand density, which is then compared to the ligand density of engineered nanoparticles. Then, experiments are reviewed in which in vitro and in vivo nanoparticle delivery has been analyzed in terms of ligand density. These results help to understand which ligand densities should be attempted for better targeting. Finally synthetic methods for controlling the ligand density of nanoparticles are described.
Collapse
|
60
|
Capriotti AL, Cavaliere C, Piovesana S. Liposome protein corona characterization as a new approach in nanomedicine. Anal Bioanal Chem 2019; 411:4313-4326. [DOI: 10.1007/s00216-019-01656-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 11/27/2022]
|
61
|
Hadjidemetriou M, McAdam S, Garner G, Thackeray C, Knight D, Smith D, Al-Ahmady Z, Mazza M, Rogan J, Clamp A, Kostarelos K. The Human In Vivo Biomolecule Corona onto PEGylated Liposomes: A Proof-of-Concept Clinical Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803335. [PMID: 30488990 DOI: 10.1002/adma.201803335] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/28/2018] [Indexed: 05/20/2023]
Abstract
The self-assembled layered adsorption of proteins onto nanoparticle (NP) surfaces, once in contact with biological fluids, is termed the "protein corona" and it is gradually seen as a determinant factor for the overall biological behavior of NPs. Here, the previously unreported in vivo protein corona formed in human systemic circulation is described. The human-derived protein corona formed onto PEGylated doxorubicin-encapsulated liposomes (Caelyx) is thoroughly characterized following the recovery of liposomes from the blood circulation of ovarian carcinoma patients. In agreement with previous investigations in mice, the in vivo corona is found to be molecularly richer in comparison to its counterpart ex vivo corona. The intravenously infused liposomes are able to scavenge the blood pool and surface-capture low-molecular-weight, low-abundance plasma proteins that cannot be detected by conventional plasma proteomic analysis. This study describes the previously elusive or postulated formation of protein corona around nanoparticles in vivo in humans and illustrates that it can potentially be used as a novel tool to analyze the blood circulation proteome.
Collapse
Affiliation(s)
- Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Sarah McAdam
- Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, CRUK Manchester Institute, Manchester, M20 4BX, UK
| | - Grace Garner
- Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, CRUK Manchester Institute, Manchester, M20 4BX, UK
| | - Chelsey Thackeray
- Institute of Cancer Sciences and The Christie NHS Foundation Trust, Manchester Cancer Research Centre (MCRC), University of Manchester, Manchester, M20 4GJ, UK
| | - David Knight
- Bio-MS Facility, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Duncan Smith
- CRUK Manchester Institute, The University of Manchester, Manchester, SK10 4TG, UK
| | - Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Mariarosa Mazza
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Jane Rogan
- Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, CRUK Manchester Institute, Manchester, M20 4BX, UK
| | - Andrew Clamp
- Institute of Cancer Sciences and The Christie NHS Foundation Trust, Manchester Cancer Research Centre (MCRC), University of Manchester, Manchester, M20 4GJ, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| |
Collapse
|
62
|
Hadjidemetriou M, Al-Ahmady Z, Buggio M, Swift J, Kostarelos K. A novel scavenging tool for cancer biomarker discovery based on the blood-circulating nanoparticle protein corona. Biomaterials 2019; 188:118-129. [PMID: 30343255 DOI: 10.1016/j.biomaterials.2018.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
The prominent discrepancy between the significant investment towards plasma biomarker discovery and the very low number of biomarkers currently in clinical use stresses the need for discovery technologies. The discovery of protein biomarkers present in human blood by proteomics is tremendously challenging, owing to the large dynamic concentration range of blood proteins. Here, we describe the use of blood-circulating lipid-based nanoparticles (NPs) as a scavenging tool to comprehensively analyse the blood proteome. We aimed to exploit the spontaneous interaction of NPs with plasma proteins once injected in the bloodstream, known as 'protein corona', in order to facilitate the capture of tumor-specific molecules. We employed two different tumor models, a subcutaneous melanoma model (B16-F10) and human lung carcinoma xenograft model (A549) and comprehensively compared by mass spectrometry the in vivo protein coronas formed onto clinically used liposomes, intravenously administered in healthy and tumor-bearing mice. The results obtained demonstrated that blood-circulating liposomes surface-capture and amplify a wide range of different proteins including low molecular weight (MW) and low abundant tumor specific proteins (intracellular products of tissue leakage) that could not be detected by plasma analysis, performed in comparison. Most strikingly, the NP (liposomal) corona formed in the xenograft model was found to consist of murine host response proteins, as well as human proteins released from the inoculated and growing human cancer cells. This study offers direct evidence that the in vivo NP protein corona could be deemed as a valuable tool to enrich the blood proteomic analysis and to allow the discovery of potential biomarkers in experimental disease models.
Collapse
Affiliation(s)
- Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Maurizio Buggio
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Joe Swift
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, Biological, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|