51
|
Ma X, Fan X, Wang D, Li X, Wang X, Yang J, Qiu C, Liu X, Pang G, Abra R, Wang L. Study on preparation of chickpea peptide and its effect on blood glucose. Front Nutr 2022; 9:988628. [PMID: 36185665 PMCID: PMC9523602 DOI: 10.3389/fnut.2022.988628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chickpeas are the third largest bean in the world and are rich in protein. In this study, chickpea peptides were prepared by the enzyme-bacteria synergy method. Taking the peptide yield as the index, we first screened 8 strains suitable for the fermentation of chickpea peptides from 16 strains, carried out sodium dodecyl sulfate polyacrylamide gel electrophoresis, and then screened 4 strains with the best decomposition effect of chickpea protein. The molecular weight, amino acid content, and α-glucosidase inhibitory activity of the chickpea peptides fermented by these four strains were detected. Finally, the strains with the best α-glucosidase inhibitory activity were obtained, and the inhibitory activities of the different molecular weight components of the chickpea peptides fermented by the strains with the best α-glucosidase inhibitory were detected. It was found that Bifidobacterium species had the best fermentation effect, and the highest peptide yield was 52.99 ± 0.88%. Lactobacillus thermophilus had the worst fermentation effect, and the highest peptide yield was 43.22 ± 0.47%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that Bifidobacterium species, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Lactobacillus paracasei have a better effect on the decomposition of chickpea protein in the fermentation process, and the molecular weight of their fermented peptides is basically below 20 KDa. Among the four strains, the α-glycosidase inhibition of chickpea peptide fermented by Lactobacillus acidophilus was the best, which was 58.22 ± 1.10% when the peptide concentration was 5.0 mg/ml. In chickpea peptide fermented by Lactobacillus acidophilus, the influence of molecular weight on the inhibitory activity is not obvious when the molecular weight is <10 kD, and the molecular weight range of the best inhibitory effect is 3–10 kD, and the inhibitory rate of α-glucosidase is 37 ± 1.32% at 2.0 mg/ml. This study provides a theoretical basis for the study of a new preparation method for chickpea peptide and its hypoglycemic effect.
Collapse
Affiliation(s)
- Xuemei Ma
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xing Fan
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Deping Wang
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xianai Li
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
| | - Xiaoyun Wang
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
| | - Jiangyong Yang
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Chenggong Qiu
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaolu Liu
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Guangxian Pang
- Shenxin Science and Technology Cooperation Base Co. LTD, Urumqi, China
| | - Redili Abra
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
- Redili Abra
| | - Liang Wang
- College Life Science and Technology, Xinjiang University, Urumqi, China
- *Correspondence: Liang Wang
| |
Collapse
|
52
|
Xu R, Ming Y, Li Y, Li S, Zhu W, Wang H, Guo J, Shi Z, Shu S, Xiong C, Cheng X, Wang L, You J, Wan D. Full-Length Transcriptomic Sequencing and Temporal Transcriptome Expression Profiling Analyses Offer Insights into Terpenoid Biosynthesis in Artemisia argyi. Molecules 2022; 27:molecules27185948. [PMID: 36144681 PMCID: PMC9501300 DOI: 10.3390/molecules27185948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Artemisiae argyi Folium is a traditional herbal medicine used for moxibustion heat therapy in China. The volatile oils in A.argyi leaves are closely related to its medicinal value. Records suggest that the levels of these terpenoids components within the leaves vary as a function of harvest time, with June being the optimal time for A. argyi harvesting, owing to the high levels of active ingredients during this month. However, the molecular mechanisms governing terpenoid biosynthesis and the time-dependent changes in this activity remain unclear. In this study, GC–MS analysis revealed that volatile oil levels varied across four different harvest months (April, May, June, and July) in A. argyi leaves, and the primarily terpenoids components (including both monoterpenes and sesquiterpenes) reached peak levels in early June. Through single-molecule real-time (SMRT) sequencing, corrected by Illumina RNA-sequencing (RNA-Seq), 44 full-length transcripts potentially involved in terpenoid biosynthesis were identified in this study. Differentially expressed genes (DEGs) exhibiting time-dependent expression patterns were divided into 12 coexpression clusters. Integrated chemical and transcriptomic analyses revealed distinct time-specific transcriptomic patterns associated with terpenoid biosynthesis. Subsequent hierarchical clustering and correlation analyses ultimately identified six transcripts that were closely linked to the production of these two types of terpenoid within A. argyi leaves, revealing that the structural diversity of terpenoid is related to the generation of the diverse terpene skeletons by prenyltransferase (TPS) family of enzymes. These findings can guide further studies of the molecular mechanisms underlying the quality of A. argyi leaves, aiding in the selection of optimal timing for harvests of A. argyi.
Collapse
Affiliation(s)
- Ran Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (R.X.); (J.Y.); (D.W.)
| | - Yue Ming
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongchang Li
- College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, Joplin, MO 64804, USA
| | - Shaoting Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Guo
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Zhaohua Shi
- Key Laboratory of Chinese Medicine Resources and Compound Formula, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiang Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Limei Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingmao You
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Correspondence: (R.X.); (J.Y.); (D.W.)
| | - Dingrong Wan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (R.X.); (J.Y.); (D.W.)
| |
Collapse
|
53
|
Chen J, Chen F, Peng S, Ou Y, He B, Li Y, Lin Q. Effects of Artemisia argyi Powder on Egg Quality, Antioxidant Capacity, and Intestinal Development of Roman Laying Hens. Front Physiol 2022; 13:902568. [PMID: 36091402 PMCID: PMC9453390 DOI: 10.3389/fphys.2022.902568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to evaluate the effect of dietary supplementation with Artemisia argyi (A. argyi) on egg quality, serum biochemical, antioxidant capacity, and intestinal development in Roman laying hens. A total of 432 (34-week-old) Roman hens were randomly divided into control group and three experimental groups. The control group was fed a basal diet, and the experimental group was fed a basal diet with 1%, 2%, and 3% A. argyi powder, respectively. The results showed that dietary supplementation of 2% A. argyi to the diet increased egg weight and egg white weight, and the daturic acid (C17:0), stearic acid (C18:0), eicosadienoic acid (C20:2), docosahexaenoic acid (C22:6n-3), α-linolenic acid (C18:3n-3), linoleic acid (C18:2n-6c), and polyunsaturated fatty acid (PUFA) in egg yolk. Meanwhile, the addition of 1∼3% A. argyi decreased serum urea. Moreover, dietary supplementation of 1% A. argyi promoted the antioxidative capacity of the hens by increasing hepatic T-SOD and CAT activities, as well as GSH-Px content. However, the addition of 3% A. argyi to the diet significantly increased the content of malondialdehyde in serum and liver and destroyed the intestinal morphology by increasing duodenal crypt depth. In conclusion, the addition level of A. argyi promoting egg quality and antioxidant capacity was at 2% and 1%, respectively.
Collapse
Affiliation(s)
- Jiayi Chen
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Fengming Chen
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Simin Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yangjiang Ou
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Binsheng He
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
- *Correspondence: Binsheng He, ; Yinghui Li, ; Qian Lin,
| | - Yinghui Li
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Binsheng He, ; Yinghui Li, ; Qian Lin,
| | - Qian Lin
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Binsheng He, ; Yinghui Li, ; Qian Lin,
| |
Collapse
|
54
|
Ho TJ, Goswami D, Kuo WW, Kuo CH, Yen SC, Lin PY, Lin SZ, Hsieh DJY, Shibu MA, Huang CY. Artemisia argyi exhibits anti-aging effects through decreasing the senescence in aging stem cells. Aging (Albany NY) 2022; 14:6187-6201. [PMID: 35951373 PMCID: PMC9417221 DOI: 10.18632/aging.204210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Aging is accompanied by functional loss of many cellular pathways, creating an increased risk of many age-related complications (ARC). Aging causes stem cell exhaustion with a concomitant increase in cellular dysfunction. Recently, interest in senotherapeutics has been growing rapidly to promote healthy aging and as an intervention for ARCs. This research focused on screening the senomorphic properties of Artemisia argyi, as an emerging strategy for longevity, and prevention or treatment of ARCs. In this study, we aimed to find the clinical efficacy of daily consumption of Artemisia argyi water extract (AAW) on aging. In vitro 0.1μM Doxorubicin induced senescent human adipose derived mesenchymal stem cells was treated with different concentrations of AAW to show its anti-aging effect. 15 months old SHR rats (n=6) were treated with 7.9 mg/ml AAW for 4 weeks and anti-aging effect was evaluated. In vitro study showed the protective effect of AAW in telomere shortening and helps in maintaining a balance in the expression of anti-aging protein Klotho and TERT. AAW effectively reduced mitochondrial superoxide and also provided a protective shield against senescence markers like over-expression of p21 and formation of double strand breaks, which is known to cause premature aging. Moreover, animal studies indicated that AAW promoted the expression of Klotho in naturally aging rats. In addition, AAW successfully restored the decline cardiac function and improved the grip strength and memory of aging rat. These findings showed that therapeutic targeting of senescent stem cells by AAW restored stem cell homeostasis and improves overall health.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Debakshee Goswami
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei 111, Taiwan
| | - Shih Cheng Yen
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 41354, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|
55
|
Ma Q, Tan D, Gong X, Ji H, Wang K, Lei Q, Zhao G. An Extract of Artemisia argyi Leaves Rich in Organic Acids and Flavonoids Promotes Growth in BALB/c Mice by Regulating Intestinal Flora. Animals (Basel) 2022; 12:ani12121519. [PMID: 35739854 PMCID: PMC9219417 DOI: 10.3390/ani12121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary With the development of the economy, people are paying more attention to their health. Regular eating habits and quality ingredients are becoming increasingly popular. As an important human food source, the safety of animal products has received more attention. In China, there is a long history of research on Chinese herbal medicine. Many Chinese herbal medicines have been used in animal husbandry because of their naturally low toxicity and various active functions. Artemisia argyi (A. argyi) is a Chinese herbal medicine with a long history of use. It has antibacterial, anti-inflammatory and blood activating functions. In this study, A. argyi leaves extract was investigated to determine if it has positive regulatory effects on animal growth in order to develop its potential as a plant-derived feed additive. Abstract In the context of global restrictions on the use of antibiotics, there has been increased research on natural plant-based ingredients as additives. It has been proved that many natural active ingredients contained in plants have positive effects on animal growth regulation. Artemisia argyi (A. argyi) is a traditional Chinese herbal medicine, and its extracts have been reported to have a variety of biological activities. Therefore, in order to explore the potential of the active extract of Artemisia argyi leaves (ALE) as a plant source additive, mice were fed with ALE at different concentrations for 60 days. Finally, the effects of ALE were evaluated by the growth indexes, blood indexes, and intestinal microflora changes of the mice. It was found that a medium concentration of ALE (150 mg/kg) could promote growth, and especially improved the feed efficiency of the mice. However, high concentrations of ALE (300 mg/kg) had some negative effects on the growth of mice, especially liver damage, which significantly increased AST and ALT levels in the blood. Therefore, the 150 mg/kg ALE treatment group was selected for 16S rDNA analysis. It was found that ALE could play a positive role by regulating the proportion of Bacteroidetes and Firmicutes in the intestinal tract. In particular, it can significantly up-regulate the quantities of Akkermansia and Bifidobacterium. These results suggest that ALE at appropriate concentrations can positively regulate animal growth.
Collapse
|
56
|
Zhang K, Wang N, Gao X, Ma Q. Integrated metabolite profiling and transcriptome analysis reveals tissue-specific regulation of terpenoid biosynthesis in Artemisia argyi. Genomics 2022; 114:110388. [PMID: 35568110 DOI: 10.1016/j.ygeno.2022.110388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
Artemisia argyi L. is a widely distributed medicinal plant in China. The major bioactive substances of essential oils extracted from leaves are terpenoids. Although many researches have studied the pharmacological effects of the essential oils, the tissue-specific accumulation of terpenoid biosynthesis and the regulatory networks in A. argyi are poorly understood. This study conducted an integrated metabolomic and transcriptomic analysis of roots, stems, and leaves to investigate the tissue-specific regulatory network of terpenoid biosynthesis in A. argyi. We identified 77 unigenes putatively involved in terpenoid backbone biosynthesis. Three rate-determining enzyme genes (DXS, DXR, and HDR) of the methylerythritol phosphate pathway were predominantly expressed in leaves, and strongly co-expressed with eight transcription factors (2 MYBs, 4 WRKYs, and 2 AP2s). An metabolite-transcript correlation analysis revealed 26 putative cytochrome P450s related to terpenoid metabolism in leaves. These results provide a foundation for the future metabolic engineering of useful terpenoids in A. argyi.
Collapse
Affiliation(s)
- Kunpeng Zhang
- Anyang Institute of Technology, Anyang 455000, China; Anyang Institute of Technology, Postdoctoral Innovation Practice Base, Anyang 455000, China
| | - Nuohan Wang
- Anyang Institute of Technology, Anyang 455000, China; Anyang Institute of Technology, Postdoctoral Innovation Practice Base, Anyang 455000, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinqiang Gao
- Anyang Institute of Technology, Anyang 455000, China
| | - Qiang Ma
- Anyang Institute of Technology, Anyang 455000, China.
| |
Collapse
|
57
|
Cui Z, Li M, Han X, Liu H, Li C, Peng H, Liu D, Huang X, Zhang Z. Morphogenesis, ultrastructure, and chemical profiling of trichomes in Artemisia argyi H. Lév. & Vaniot (Asteraceae). PLANTA 2022; 255:102. [PMID: 35412154 DOI: 10.1007/s00425-022-03889-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Glandular trichomes of Artemisia argyi H. Lév. & Vaniot are the key tissues for the production of flavonoid and terpenoid metabolites. Artemisia argyi H. Lév. & Vaniot is an herbaceous perennial plant that has been widely used in traditional medicine for thousands of years. Glandular trichomes (GTs) and nonglandular trichomes (NGTs) have been reported on the leaf surface of A. argyi. The aim of this study was to elucidate the morphogenetic process and to analyze the metabolites of trichomes in A. argyi. The morphogenesis of GTs and NGTs was characterized using light, scanning, and transmission electron microscopy. The constituents of GTs were analyzed using laser microdissection combined with gas and liquid chromatography-mass spectrometry. Five developmental stages of two types of GTs and four developmental stages of one type of NGTs were observed. Two types of mature GT and one type of NGT were composed of 10, 5, and 4-6 cells, respectively. A large storage cavity was detected between the cuticle and cell walls in the first type of mature GT. Large nuclei, nucleoli, and mitochondria were observed in the basal and intermediate cells of the second type of GT. In addition, large vacuoles were observed in the basal and apical cells, and large nuclei were observed in the middle cells of NGTs. One monoterpene and seven flavonoids were identified in GTs of A. argyi. We suggest that GTs are the key tissues for the production of bioactive metabolites in A. argyi. This study provides an important theoretical basis and technical approach for clarifying the regulatory mechanisms for trichome development and bioactive metabolite biosynthesis in A. argyi.
Collapse
Affiliation(s)
- Zhanhu Cui
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengzhi Li
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Xiaojing Han
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Hongyan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Huasheng Peng
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dahui Liu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xianzhang Huang
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, 473004, China.
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
58
|
Shin JM, Son YJ, Ha IJ, Erdenebileg S, Jung DS, Song DG, Kim YS, Kim SM, Nho CW. Artemisia argyi extract alleviates inflammation in a DSS-induced colitis mouse model and enhances immunomodulatory effects in lymphoid tissues. BMC Complement Med Ther 2022; 22:64. [PMID: 35277165 PMCID: PMC8917695 DOI: 10.1186/s12906-022-03536-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The incidence of inflammatory bowel disease (IBD), an inflammatory disorder of the gastrointestinal system has increased. IBD, characterized by aberrant immune responses against antigens, is thought to be caused by the invasion of enterobacteria. The pathogenesis of IBD is complicated, hence novel effective therapeutic agents are warranted. Therefore, this study evaluates the potential of Artemisia argyi, a medicinal herb, in alleviating IBD.
Methods
The effectiveness of the A. argyi ethanol extract was verified both in vitro and in vivo. Inflammation was induced in RAW 264.7 cells by 1 μg/mL of lipopolysaccharide (LPS) and by 3% dextran sodium sulfate (DSS) in a DSS-induced colitis mouse model. During the ten-day colitis induction, 200 mg/kg of A. argyi ethanol extract was orally administered to the treatment group. Levels of inflammation-related proteins and genes were analyzed in the colon, serum, and lymphoid tissues, i.e., Peyer’s patches (PPs) and spleen. The chemical constituent of the A. argyi ethanol extract was identified using an ultra-high performance liquid chromatography mass spectrometry (UPLC-MS/MS) analysis.
Results
A. argyi ethanol extract treatment ameliorated IBD symptoms and reduced the expression of inflammation-related proteins and genes in the colon and serum samples. Furthermore, A. argyi treatment induced the activation of anti-oxidative associated proteins, such as nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1); and the treatment have also inhibited nuclear factor-κB (NF-κB), a central mediator of inflammatory responses. A. argyi enhanced the immunomodulatory effects in the PPs and spleen, which may stem from interleukin-10 (IL-10) upregulation. Chemical analysis identified a total of 28 chemical compounds, several of which have been reported to exert anti-inflammatory effects.
Conclusions
The effectiveness of the A. argyi ethanol extract in alleviating IBD was demonstrated; application of the extract successfully mitigated IBD symptoms, and enhanced immunomodulatory responses in lymphoid tissues. These findings suggest A. argyi as a promising herbal medicine for IBD treatment.
Collapse
|
59
|
Gu L, Wang X, Shao X, Ding Y, Li Y. Study on chemical constituents of Folium Artemisiae argyi Carbonisatum, toxicity evaluation on zebrafish and intestinal hemostasis. Saudi Pharm J 2022; 30:532-543. [PMID: 35693441 PMCID: PMC9177460 DOI: 10.1016/j.jsps.2022.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/27/2022] [Indexed: 01/08/2023] Open
Abstract
Folium Artemisiae argyi Carbonisatum (FAAC) is a traditional medicine widely used in clinic. It has the effect of hemostasis by warming meridians. In order to further explore the chemical composition and biological activity of FAAC, the methanol extract of FAAC was isolated and purified by open column and high- performance liquid chromatography. and the complete structure was characterized by nuclear magnetic resonance (NMR) and LREI-MS for the first time, namely rutin, quercetin and octacosanol respectively. Initially the toxic effect of methanol extract of FAAC on zebrafish was evaluated by observing the phenotypic characteristics, spontaneous twitch times, heart rate, hatching rate, the distance of SV-BA and cardiomyocyte apoptosis of zebrafish. The results showed that FAAC has embryonic development toxicity and cardiotoxicity when it was higher than 62.5 μg/mL. Meanwhile, the hemostatic effect of methanol extract of FAAC was compared with FAA (Folium Artemisia argyi) by zebrafish intestinal bleeding model originally. The results showed that the hemostatic effect of the medium and high concentration dose groups (3.0 and 30.0 μg/mL) was enhanced for both FAAC and FAA. This study provided an experimental basis for the clinical application of FAAC.
Collapse
|
60
|
Study on the Multitarget Mechanism and Active Compounds of Essential Oil from Artemisia argyi Treating Pressure Injuries Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1019289. [PMID: 35096100 PMCID: PMC8791709 DOI: 10.1155/2022/1019289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023]
Abstract
In order to comprehensively explore multitarget mechanism and key active compounds of Artemisia argyi essential oil (AAEO) in the treatment of pressure injuries (PIs), we analyzed the biological functions and pathways involved in the intersection targets of AAEO and PIs based on network pharmacology, and the affinity of AAEO active compounds and core targets was verified by molecular docking finally. In our study, we first screened 54 effective components according to the relative content and biological activity. In total, 103 targets related to active compounds of AAEO and 2760 targets associated with PIs were obtained, respectively, and 50 key targets were overlapped by Venny 2.1.0. The construction of key targets-compounds network was achieved by the STRING database and Cytoscape 3.7.2 software. GO analysis from Matespace shows that GO results are mainly enriched in biological processes, including adrenergic receptor activity, neurotransmitter clearance, and neurotransmitter metabolic process. KEGG analysis by the David and Kobas website shows that the key targets can achieve the treatment on PIs through a pathway in cancer, PI3K-Akt signaling pathway, human immunodeficiency virus 1 infection, MAPK signaling pathway, Wnt signaling pathway, etc. In addition, molecular docking results from the CB-Dock server indicated that active compounds of AAEO had good activity docking with the first 10 key targets. In conclusion, the potential targets and regulatory molecular mechanisms of AAEO in the treatment of PIs were analyzed by network pharmacology and molecular docking. AAEO can cure PIs through the synergistic effect of multicomponent, multitarget, and multipathway, providing a theoretical basis and new direction for further study.
Collapse
|
61
|
Yi X, Wang X, Wu L, Wang M, Yang L, Liu X, Chen S, Shi Y. Integrated Analysis of Basic Helix Loop Helix Transcription Factor Family and Targeted Terpenoids Reveals Candidate AarbHLH Genes Involved in Terpenoid Biosynthesis in Artemisia argyi. FRONTIERS IN PLANT SCIENCE 2022; 12:811166. [PMID: 35111184 PMCID: PMC8801783 DOI: 10.3389/fpls.2021.811166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
Artemisia argyi is a valuable traditional medicinal plant in Asia. The essential oil from its leaves is rich in terpenoids and has been used to enhance health and well-being. In China, the market scale of industries related to A. argyi has attained tens of billions of Chinese Yuan. The basic helix-loop-helix (bHLH) family is one of the largest transcription factors families in plants that plays crucial roles in diverse biological processes and is an essential regulatory component of terpenoid biosynthesis. However, the bHLH TFs and their regulatory roles in A. argyi remain unknown. Here, 53 AarbHLH genes were identified from the transcriptome of A. argyi and were classified into 15 subfamilies based on the classification of bHLH proteins in Arabidopsis thaliana. The MEME analysis showed that the conserved motif 1 and motif 2 constituted the most conserved bHLH domain and distributed in most AarbHLH proteins. Additionally, integrated analysis of the expression profiles of AarbHLH genes and the contents of targeted terpenoids in different tissues group and JA-treated group were performed. Eleven up-regulated AarbHLHs and one down-regulated AarbHLH were screened as candidate genes that may participate in the regulation of terpenoid biosynthesis (TPS-AarbHLHs). Correlation analysis between gene expression and terpenoid contents indicated that the gene expression of these 12 TPS-AarbHLHs was significantly correlated with the content changes of 1,8-cineole or β-caryophyllene. Protein-protein interaction networks further illustrated that these TPS-AarbHLHs might be involved in terpenoid biosynthesis in A. argyi. This finding provides a basis to further investigate the regulation mechanism of AarbHLH genes in terpenoid biosynthesis, and will be helpful to improve the quality of A. argyi.
Collapse
Affiliation(s)
- Xiaozhe Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liu Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
62
|
Ruan Y, Niu C, Zhang P, Qian Y, Li X, Wang L, Ma B. Acid-Catalyzed Water Extraction of Two Polysaccharides from Artemisia argyi and Their Physicochemical Properties and Antioxidant Activities. Gels 2021; 8:gels8010005. [PMID: 35049540 PMCID: PMC8774486 DOI: 10.3390/gels8010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, two purified polysaccharide fractions, Artp1 and Artp2, were obtained using acid-catalyzed water extraction, and then purified by DEAE-52 cellulose and Sephadex G-200 column chromatography from the crude polysaccharides of Artemisia argyi. Their physicochemical properties were investigated by gel permeation chromatography (GPC), high-performance anion exchange chromatography (HPAEC), Fourier transform infrared (FT-IR), scanning electron microscope (SEM), thermal analysis, and methylation analysis. The average molecular weight (Mw) of Artp1 and Artp2 were estimated to be 42.17 kDa and 175.22 kDa, respectively. Monosaccharide composition analysis revealed that the Rha, Gal, and GalA occupied main proportion in Artp1 with the molar ratio of 25.1:24.7:40.4, while the Rha, Gal, Xly, and GalA occupied the main proportion in Artp2 with the molar ratio of 16.7:13.5:12.8:38.7. Due to the high yield and the relatively high carbohydrate content, the Artp1 was determined by the methylation analysis and NMR. The results of Artp1 indicated that 1,4-GalpA and 1,2,4-Rhap formed the backbone with some 1,2-Rhap, 1,3-Galp, and 1,6-Galp in the backbone or the side chains. Artp1 and Artp2 exhibited effective antioxidant activities by DPPH radical scavenging assay and hydroxyl radical scavenging assay in a dose-dependent manner. These investigations of the polysaccharides from A. argyi. provide a scientific basis for the uses of Artp1 and Artp2 as ingredients in functional foods and medicines.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Wang
- Correspondence: (L.W.); (B.M.)
| | | |
Collapse
|
63
|
Gao S, Lu R, Zhang Y, Sun H, Li S, Zhang K, Li R. Odorant binding protein C12 is involved in the defense against eugenol in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104968. [PMID: 34802518 DOI: 10.1016/j.pestbp.2021.104968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Tribolium castaneum (T. castaneum) is a worldwide pest of stored grain that mainly harms flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. However, the mechanism of OBPs in insect defense against exogenous toxic substances is still unclear. In this study, biochemical analysis showed that eugenol, the active component of A. vulgaris essential oil, significantly induced the expression of the OBP gene OBPC12 from T. castaneum (TcOBPC12). The mortality of late larvae treated with eugenol was higher than that of the control group after RNA interference (RNAi) against TcOBPC12, which indicates that the OBP gene is involved in the eugenol defense mechanism and leads to a decrease in sensitivity to eugenol. Tissue expression profiling showed that the expression of TcOBPC12 in the epidermis, hemolymph, and intestine was higher than in other larval tissues, and TcOBPC12 was expressed mainly in the epidermis, head, and fat body of adults. The developmental expression profile showed that the expression of TcOBPC12 in late eggs, early and late larval stages, and late adult stages was higher than in other developmental stages. These data suggest that TcOBPC12 may be involved in the absorption of exogenous toxic substances by the larvae from T. castaneum. Our results provide a theoretical basis for the metabolism and degradation mechanism of exogenous toxic substances and help explore more potential target genes of insect pests.
Collapse
Affiliation(s)
- Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Yonglei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Siying Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China.
| |
Collapse
|
64
|
Chen P, Bai Q, Wu Y, Zeng Q, Song X, Guo Y, Zhou P, Wang Y, Liao X, Wang Q, Ren Z, Wang Y. The Essential Oil of Artemisia argyi H.Lév. and Vaniot Attenuates NLRP3 Inflammasome Activation in THP-1 Cells. Front Pharmacol 2021; 12:712907. [PMID: 34603026 PMCID: PMC8481632 DOI: 10.3389/fphar.2021.712907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.
Collapse
Affiliation(s)
- Pengxiao Chen
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China.,Biology Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Qi Bai
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| | - Qiongzhen Zeng
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| | - Yuying Guo
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pengjun Zhou
- The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Guangzhou, China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xiaofeng Liao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiaoli Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| |
Collapse
|
65
|
Hou MZ, Chen LL, Chang C, Zan JF, Du SM. Pharmacokinetic and tissue distribution study of eight volatile constituents in rats orally administrated with the essential oil of Artemisiae argyi Folium by GC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1181:122904. [PMID: 34479182 DOI: 10.1016/j.jchromb.2021.122904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Artemisia argyi is commonly used as a remedy for gynecological and respiratory disease in traditional Chinese medicine. The essential oil is considered as the major active ingredients of A. argyi, mainly composed of eucalyptol, α-thujone, camphor, borneol, bornyl acetate, eugenol, β-caryophyllene, and caryophyllene oxide, while limited study addresses the in vivo disposition of these volatile ingredients. In present study, a rapid, sensitive and selective GC-MS/MS method has been developed and validated for the quantification of the eight volatile constituents in rat plasma and tissues after orally dosing with the essential oil of Artemisiae Argyi Folium (AAEO) using naphthalene as an internal standard (IS). The analytes were extracted from biosamples by liquid-liquid extraction with hexane/ethyl acetate. The GC separation was achieved on a TG-5SILMS column (30 m × 0.25 mm, 0.25 μm film thickness) and MS detection was performed on selective reaction monitoring (SRM) mode. The assay had a lower limit of quantification (LLOQ) less than 2 ng/ml for the analytes with good linearity (r ≥ 0.9907). Their disposition profile in rat plasma and tissues was characterized after orally giving AAEO, and the data revealed the analytes underwent rapid absorption from GI tract and were mainly transferred to the liver, heart, kidney, lung, and spleen with prompt elimination. The results provided a meaningful basis for guiding the pharmacodynamic study and clinical applications of this herbal medicine.
Collapse
Affiliation(s)
- Ming-Zhu Hou
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lin-Lin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jun-Feng Zan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shi-Ming Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
66
|
Li Y, Tian Y, Zhong W, Wang N, Wang Y, Zhang Y, Zhang Z, Li J, Ma F, Zhao Z, Peng Y. Artemisia argyi Essential Oil Inhibits Hepatocellular Carcinoma Metastasis via Suppression of DEPDC1 Dependent Wnt/β-Catenin Signaling Pathway. Front Cell Dev Biol 2021; 9:664791. [PMID: 34268303 PMCID: PMC8276134 DOI: 10.3389/fcell.2021.664791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
The tumor metastasis is the major hurdle for the treatment of advanced hepatocellular carcinoma (HCC), due in part to the lack of effective systemic treatments. DEPDC1, a novel oncoantigen upregulated in HCC, is thought to be a molecular-target for novel therapeutic drugs. Artemisia argyi is a traditional Chinese medicine with anti-inflammatory and anti-tumor activities. This study investigated the potential therapeutic benefits of Artemisia argyi essential oil (AAEO) in suppressing metastasis of HCC by targeting DEPDC1. Assessment of AAEO cytotoxicity was performed by MTT assay. Anti-metastatic effects of AAEO were investigated in vitro using wound healing and transwell assays. The HepG2 cells were transduced with lentiviral vector containing luciferase (Luc). A metastasis model of nude mice was established by tail vein injection of HepG2-Luc cells. The nude mice were treated with AAEO (57.5, 115, and 230 mg/kg) or sorafenib (40 mg/kg). Metastasis of HCC cells was monitored via in vivo bioluminescence imaging. After treatment for 21 days, tissues were collected for histological examination and immunohistochemistry analysis. Gene and protein levels were determined by real-time quantitative PCR and western blotting. The results revealed that AAEO significantly inhibits the migration and invasion in vitro in a concentration-dependent manner. In vivo assays further confirmed that AAEO markedly inhibits HCC metastasis into lung, brain, and femur tissues and exhibits low toxicity. Our results suggested that AAEO significantly downregulates the mRNA and protein expression of DEPDC1. Also, AAEO attenuated Wnt/β-catenin signaling through reduction of Wnt1 and β-catenin production. Moreover, AAEO prevented epithelial-mesenchymal transition (EMT) by downregulation of vimentin and upregulation of E-cadherin. Furthermore, we found that DEPDC1 promoted HCC migration and invasion via Wnt/β-catenin signaling pathway and EMT. These results demonstrate that AAEO effectively inhibits HCC metastasis via attenuating Wnt/β-catenin signaling and inhibiting EMT by suppressing DEPDC1 expression. Thus, AAEO likely acts as a novel inhibitor of the DEPDC1 dependent Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yanli Li
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Tian
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Zhong
- Department of Stomatology, People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Ning Wang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yafeng Wang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhuangli Zhang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianbo Li
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fang Ma
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhihong Zhao
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
67
|
Li C, Cui ZH, Li Z, Gao L, Zhang CY, Li DX, Zhang ZM, Huang XZ. Determination of Mineral Elements in Nanyang Mugwort (Artemisia argyi) Leaves Harvested from Different Crops by Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma Atomic Emission Spectrometry. Chem Pharm Bull (Tokyo) 2021; 69:411-413. [PMID: 33518581 DOI: 10.1248/cpb.c20-00875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to high need for medical purposes, multiple harvests of mugwort (Artemisia argyi) have been extensively applied in China for the increase of mugwort yield recently. However, the investigation on the mineral elements in different crops, which are significantly related to mugwort growth and the clinical efficacy of this medicinal herb, has not been conducted. This study provided an analytical method and quality evaluation for mineral elements in Nanyang mugwort leaves harvested from three different crops. The contents of 35 mineral elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). ANOVA, principal component analysis and factor analysis were applied to evaluate the results. Four principal components were identified and their comprehensive evaluation function was as follows: F = 0.7008Fl + 0.1236F2 + 0.0936F3 + 0.0321F4. The comprehensive scores of the mugwort leaves from different crops were ranked as follows: 3rd crop > 2nd crop ≈ 1st crop. These findings can provide a reference for the quality control and clinical use of mugwort leaves, and a guidance of differential nourishing strategies for different crops.
Collapse
Affiliation(s)
- Chao Li
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| | - Zhan-Hu Cui
- College of Agriculture, Fujian Agriculture and Forestry University
| | - Zhe Li
- Tang-ai Ecological Agriculture Development Limited Liability Company
| | - Li Gao
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| | - Chao-Yun Zhang
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| | - Dan-Xia Li
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| | - Zhong-Ming Zhang
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| | - Xian-Zhang Huang
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| |
Collapse
|
68
|
Zhong JL, Muhammad N, Chen SQ, Guo LW, Li JS. Pilot-scale supercritical CO2 extraction coupled molecular distillation and hydrodistillation for the separation of essential oils from artemisia argyi Lévl. et Vant. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1875239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jia-Lun Zhong
- Guangdong Key Laboratory of Membrane Materials and Separation Technologies, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, China
| | - Nadeem Muhammad
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, Guangzhou, China
| | - Shun-Quan Chen
- Guangdong Key Laboratory of Membrane Materials and Separation Technologies, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, China
| | - Li-Wei Guo
- Guangdong Key Laboratory of Membrane Materials and Separation Technologies, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, China
| | - Jia-Sheng Li
- Guangdong Key Laboratory of Membrane Materials and Separation Technologies, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
69
|
Shi XS, Song YP, Meng LH, Yang SQ, Wang DJ, Zhou XW, Ji NY, Wang BG, Li XM. Isolation and Characterization of Antibacterial Carotane Sesquiterpenes from Artemisia argyi Associated Endophytic Trichoderma virens QA-8. Antibiotics (Basel) 2021; 10:antibiotics10020213. [PMID: 33672705 PMCID: PMC7924333 DOI: 10.3390/antibiotics10020213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 01/30/2023] Open
Abstract
Carotane sesquiterpenes are commonly found in plants but are infrequently reported in the fungal kingdom. Chemical investigation of Trichoderma virens QA-8, an endophytic fungus associated with the inner root tissue of the grown medicinal herb Artemisia argyi H. Lév. and Vaniot, resulted in the isolation and characterization of five new carotane sesquiterpenes trichocarotins I-M (1-5), which have diverse substitution patterns, and seven known related analogues (6-12). The structures of these compounds were established on the basis of a detailed interpretation of their NMR and mass spectroscopic data, and the structures including the relative and absolute configurations of compounds 1-3, 5, 9, and 10 were confirmed by X-ray crystallographic analysis. In the antibacterial assays, all isolates exhibited potent activity against Escherichia coli EMBLC-1, with MIC values ranging from 0.5 to 32 µg/mL, while 7β-hydroxy CAF-603 (7) strongly inhibited Micrococcus luteus QDIO-3 (MIC = 0.5 µg/mL). Structure-activity relationships of these compounds were discussed. The results from this study demonstrate that the endophytic fungus T. virens QA-8 from the planted medicinal herb A. argyi is a rich source of antibacterial carotane sesquiterpenes, and some of them might be interesting for further study to be developed as novel antibacterial agents.
Collapse
Affiliation(s)
- Xiao-Shan Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, China; (X.-S.S.); (L.-H.M.); (S.-Q.Y.)
| | - Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.-P.S.); (N.-Y.J.)
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, China; (X.-S.S.); (L.-H.M.); (S.-Q.Y.)
| | - Sui-Qun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, China; (X.-S.S.); (L.-H.M.); (S.-Q.Y.)
| | - Dun-Jia Wang
- College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi 435002, China; (D.-J.W.); (X.-W.Z.)
| | - Xing-Wang Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi 435002, China; (D.-J.W.); (X.-W.Z.)
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.-P.S.); (N.-Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, China; (X.-S.S.); (L.-H.M.); (S.-Q.Y.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Correspondence: (B.-G.W.); (X.-M.L.)
| | - Xiao-Ming Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, China; (X.-S.S.); (L.-H.M.); (S.-Q.Y.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Correspondence: (B.-G.W.); (X.-M.L.)
| |
Collapse
|
70
|
Shin MS, Lee J, Lee JW, Park SH, Lee IK, Choi JA, Lee JS, Kang KS. Anti-Inflammatory Effect of Artemisia argyi on Ethanol-Induced Gastric Ulcer: Analytical, In Vitro and In Vivo Studies for the Identification of Action Mechanism and Active Compounds. PLANTS (BASEL, SWITZERLAND) 2021; 10:332. [PMID: 33572173 PMCID: PMC7914715 DOI: 10.3390/plants10020332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
Artemisia argyi is widely used as traditional medicine in East Asia. However, its effects against inflammation and gastric ulcers have not been reported yet. We analyzed anti-inflammatory activity and its molecular mechanisms of A. argyi using RAW264.7 cells line, then evaluated the curative efficacy in rats with acute gastric ulcers. Nitric oxide and IL-6 production was measured using Griess reagent and an ELISA kit. Inducible nitric oxide synthase (iNOS), interleukin (IL)-6, and mucin (MUC)1, MUC5AC, and MUC6 mRNA were determined by SYBR Green or Taqman qRT-PCR methods. The phosphorylation of ERK, JNK, p38, and c-Jun protein were detected by western blotting. RW0117 inhibited LPS-induced NO and IL-6 production. The mRNA levels of iNOS and IL-6 were strongly suppressed. The phosphorylation of ERK, JNK, and c-Jun decreased by treatment with RW0117. Oral administration of RW0117 recovered the amount of mucin mRNA and protein level that was decreased due to gastric ulcers by HCl-EtOH. A. argyi exhibited strong anti-inflammatory effects and contributed to the modulation of HCl-EtOH-induced gastric ulcer in rats.
Collapse
Affiliation(s)
- Myoung-Sook Shin
- Korean Medicine, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea; (M.-S.S.); (J.L.)
| | - Jaemin Lee
- Korean Medicine, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea; (M.-S.S.); (J.L.)
| | - Jin Woo Lee
- Research & Development Center, Richwood Pharmaceuticals, 1, Gwanak-gu, Seoul 08826, Korea; (J.W.L.); (S.H.P.); (I.K.L.); (J.A.C.); (J.S.L.)
| | - Se Hoon Park
- Research & Development Center, Richwood Pharmaceuticals, 1, Gwanak-gu, Seoul 08826, Korea; (J.W.L.); (S.H.P.); (I.K.L.); (J.A.C.); (J.S.L.)
| | - Il Kyun Lee
- Research & Development Center, Richwood Pharmaceuticals, 1, Gwanak-gu, Seoul 08826, Korea; (J.W.L.); (S.H.P.); (I.K.L.); (J.A.C.); (J.S.L.)
| | - Jung A. Choi
- Research & Development Center, Richwood Pharmaceuticals, 1, Gwanak-gu, Seoul 08826, Korea; (J.W.L.); (S.H.P.); (I.K.L.); (J.A.C.); (J.S.L.)
| | - Jung Suk Lee
- Research & Development Center, Richwood Pharmaceuticals, 1, Gwanak-gu, Seoul 08826, Korea; (J.W.L.); (S.H.P.); (I.K.L.); (J.A.C.); (J.S.L.)
| | - Ki Sung Kang
- Korean Medicine, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea; (M.-S.S.); (J.L.)
| |
Collapse
|
71
|
Kong J, Wang Y, Xia K, Zang N, Zhang H, Liang X. New insights into the antibacterial and quorum sensing inhibition mechanism of Artemisia argyi leaf extracts towards Pseudomonas aeruginosa PAO1. 3 Biotech 2021; 11:97. [PMID: 33520583 DOI: 10.1007/s13205-021-02663-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate the anti-quorum sensing (QS) activity of Artemisia argyi leaf extracts (AALE) towards Pseudomonas aeruginosa PAO1 as well as the underlying molecular mechanisms. Using a biosensor Chromobacterium violaceum CV026, AALE were found to have anti-QS activity as AALE treatment significantly inhibited the violacein production of C. violaceum CV026 while produced little effect on the cell growth. Beyond that a higher dosage of AALE inhibited cell growth, sub-MIC of AALE significantly reduced the production of QS-regulated virulence factors (pyocyanin, elastase, and rhamnolipid), biofilm formation, and the swarming and swimming motility in P. aeruginosa PAO1 with a dosage-dependent manner. Quantitative real-time PCR (qRT-PCR) analysis did not detect the direct inhibitory effect of AALE on the expression of QS genes (lasI, lasR, rhlI, and rhlR). By iTRAQ-based quantitative proteomic analysis, 129 proteins were found to be differentially expressed upon AALE treatment, with 85 upregulated and 44 downregulated proteins, respectively. Functional enrichment analysis of the differential proteins revealed that AALE exerted anti-QS activity towards P. aeruginosa PAO1 by upregulating the expression of the global regulator CsrA, inducing oxidative stress, and perturbing protein homeostasis. Moreover, the inhibitory effect of AALE on the virulence of P. aeruginosa PAO1 was likely to be achieved by attenuating the expression of QS-regulated genes instead of QS genes. Collectively, the results of this study provide a basis for the future use of AALE as a preservative in controlling food spoilage caused by P. aeruginosa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02663-5.
Collapse
Affiliation(s)
- Junhao Kong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
- Institute of Tea Research, CHINA COOP, Hangzhou, 310018 China
| | - Yanan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Ning Zang
- Medical Scientific Research Center, Guangxi Medical University, Nanning, 530021 China
| | - Hong Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| |
Collapse
|
72
|
Trendafilova A, Moujir LM, Sousa PMC, Seca AML. Research Advances on Health Effects of Edible Artemisia Species and Some Sesquiterpene Lactones Constituents. Foods 2020; 10:E65. [PMID: 33396790 PMCID: PMC7823681 DOI: 10.3390/foods10010065] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The genus Artemisia, often known collectively as "wormwood", has aroused great interest in the scientific community, pharmaceutical and food industries, generating many studies on the most varied aspects of these plants. In this review, the most recent evidence on health effects of edible Artemisia species and some of its constituents are presented and discussed, based on studies published until 2020, available in the Scopus, Web of Sciences and PubMed databases, related to food applications, nutritional and sesquiterpene lactones composition, and their therapeutic effects supported by in vivo and clinical studies. The analysis of more than 300 selected articles highlights the beneficial effect on health and the high clinical relevance of several Artemisia species besides some sesquiterpene lactones constituents and their derivatives. From an integrated perspective, as it includes therapeutic and nutritional properties, without ignoring some adverse effects described in the literature, this review shows the great potential of Artemisia plants and some of their constituents as dietary supplements, functional foods and as the source of new, more efficient, and safe medicines. Despite all the benefits demonstrated, some gaps need to be filled, mainly related to the use of raw Artemisia extracts, such as its standardization and clinical trials on adverse effects and its health care efficacy.
Collapse
Affiliation(s)
- Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Laila M. Moujir
- Department of Biochemistry, Microbiology, Genetics and Cell Biology, Facultad de Farmacia, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain;
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9500-321 Ponta Delgada, Portugal;
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9500-321 Ponta Delgada, Portugal
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
73
|
Al Sarayrah AK, Al Tarawneh RZ, Nasr M, Ebada SS. Comparative Study of the Efficacy of Different Artemisia Cina Extracts and their Nanoparticulated Forms against A549 Lung Cancer Cell Line. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Cytotoxic sesquiterpenoids against hepatic stellate cell line LX2 from Artemisia lavandulaefolia. Bioorg Chem 2020; 103:104107. [DOI: 10.1016/j.bioorg.2020.104107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
|
75
|
Xiong Y, Long C. An ethnoveterinary study on medicinal plants used by the Buyi people in Southwest Guizhou, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2020; 16:46. [PMID: 32807192 PMCID: PMC7433110 DOI: 10.1186/s13002-020-00396-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The Buyi (Bouyei) people in Qianxinan Buyi and Miao Autonomous Prefecture, Southwest Guizhou, China, have used medicinal plants and traditional remedies for ethnoveterinary practices, such as treating domestic animals during livestock breeding, since ancient times. However, the unique ethnoveterinary practices of the Buyi have rarely been recorded. This study aimed to identify the plants used in their traditional ethnoveterinary practices, and to propose suggestions for future conservation and sustainable use of this knowledge. METHODS Ethnobotanical fieldwork was conducted in 19 villages/townships in Qianxinan Prefecture between 2017 and 2018. Data were collected from the local Buyi people through semi-structured interviews and participatory observations. The informant consensus factor (FIC) and use reports (URs) were utilized to evaluate the consent of the current ethnoveterinary practices among the local communities, and 83 informants were interviewed during the field investigations. Plant samples and voucher specimens were collected for taxonomic identification. RESULTS A total of 122 plant species, belonging to 60 families and 114 genera, were recorded as being used in ethnoveterinary practices by the Buyi people. The most used ethnoveterinary medicinal plant (EMP) parts included the roots, whole plant, and bulb, and the most common preparation methods included decoction, crushing, and boiling. Some EMPs, such as Quisqualis indica and Paris polyphylla, have special preparation methods. The informant consensus factor (FIC) and use reports (URs) of the EMP species were analyzed. Twenty EMP species with the highest URs were noted as having particular importance in the daily lives of Buyi people in Qianxinan Prefecture. CONCLUSION In this study, we identified traditional ethnoveterinary knowledge of the medicinal plants among the Buyi communities in Qianxinan Prefecture. This knowledge has previously been limited to local vets, herders, and aged community members. Plants with important medicinal uses need to be validated phytochemically and pharmacologically in the future, to develop new alternative drugs for veterinary purposes.
Collapse
Affiliation(s)
- Yong Xiong
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education of China, Minzu University of China, Beijing, 100081, China
- School of Ethnomedicine & Ethnopharmacy, Yunnan Minzu University, Kunming, 650500, China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Key Laboratory of Ethnomedicine, Ministry of Education of China, Minzu University of China, Beijing, 100081, China.
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
76
|
Zhang L, Nie X, Chang J, Wang F, Lü J. Nitric Oxide Production Inhibitory Eudesmane‐Type Sesquiterpenoids from
Artemisia argyi. Chem Biodivers 2020; 17:e2000238. [DOI: 10.1002/cbdv.202000238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/24/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Lai‐Bin Zhang
- School of PharmacyXinxiang Medical University Xinxiang 453003 P. R. China
| | - Xiao‐Na Nie
- School of PharmacyXinxiang Medical University Xinxiang 453003 P. R. China
| | - Jia‐Jing Chang
- School of PharmacyXinxiang Medical University Xinxiang 453003 P. R. China
| | - Feng‐Long Wang
- School of PharmacyXinxiang Medical University Xinxiang 453003 P. R. China
| | - Jie‐Li Lü
- School of PharmacyXinxiang Medical University Xinxiang 453003 P. R. China
| |
Collapse
|
77
|
Anti-Apoptotic and Antioxidant Effects of 3- Epi-Iso -Seco-Tanapartholide Isolated from Artemisia Argyi Against Iodixanol-Induced Kidney Epithelial Cell Death. Biomolecules 2020; 10:biom10060867. [PMID: 32517090 PMCID: PMC7356648 DOI: 10.3390/biom10060867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Iodixanol is a non-ionic iso-osmolar contrast agent, but it is a risk factor for kidney damage and increases morbidity and mortality. In this study, we investigated the effect of 9 sesquiterpenes isolated from mugwort (Artemisia argyi) in contrast agent-induced cytotoxicity in LLC-PK1 cells. Cells were exposed to nine sesquiterpene compounds for 2 h, followed by incubation with iodixanol for 3 h. Cell viability was assessed using the Ez-Cytox assay. The level of reactive oxygen species was measured using 2′,7′-dichlorodihydrofluorescein diacetate staining. Apoptotic cell death was detected using annexin V/PI staining. In addition, immunofluorescence staining and western blotting were performed using antibodies against proteins related to apoptosis, oxidative stress, and MAPK pathways. The most effective 3-epi-iso-seco-tanapartholide (compound 8) among the 9 sesquiterpene compounds protected LLC-PK1 cells from iodixanol-induced cytotoxicity, oxidative stress, and apoptotic cell death. Pretreatment with compound 8 reversed iodixanol-induced increases in the expression of JNK, ERK, p38, Bax, caspase-3, and caspase-9. It also reversed the iodixanol-induced decrease in Bcl-2 expression. Furthermore, pretreatment with compound 8 caused nuclear translocation of Nrf2 and upregulated HO-1 via the Nrf2 pathway in iodixanol-treated LLC-PK1 cells. Thus, we demonstrated here that compound 8 isolated from A. argyi has the potential to effectively prevent iodixanol-induced kidney epithelial cell death via the caspase-3/MAPK pathways and HO-1 via the Nrf2 pathway.
Collapse
|
78
|
Artemilavanolides A and B, two sesquiterpenoids with a 6-oxabicyclo[3.2.1]octane scaffold from Artemisia lavandulaefolia. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
79
|
Xue GM, Xue JF, Zhao CG, Zhao ZZ, Sun YJ, Du K, Li HW, Feng WS. Sesquiterpenoids from Artemisia argyi and their NO production inhibitory activity in RAW264.7 cells. Nat Prod Res 2019; 35:2887-2894. [PMID: 31674834 DOI: 10.1080/14786419.2019.1680665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Investigation into the chemical diversity of Artemisia argyi led to the discovery of two new (1, 4) and four known (2-3, 5-6) sesquiterpenoids. The new structures were determined via extensive spectroscopic data, including IR, UV, MS, and NMR, and the absolute configurations of these compounds were elucidated by calculated ECD method. All isolates were tested for their inhibitory activity against NO production in RAW 264.7 macrophages, and the isolated sesquiterpenoids exhibited NO production inhibitory activity with IC50 values ranging from 1.91 to 36.52 μM.
Collapse
Affiliation(s)
- Gui-Min Xue
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jin-Feng Xue
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Chen-Guang Zhao
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Zhen-Zhu Zhao
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yan-Jun Sun
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Kun Du
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Han-Wei Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, China
| |
Collapse
|
80
|
Xia JX, Zhao BB, Zan JF, Wang P, Chen LL. Simultaneous determination of phenolic acids and flavonoids in Artemisiae Argyi Folium by HPLC-MS/MS and discovery of antioxidant ingredients based on relevance analysis. J Pharm Biomed Anal 2019; 175:112734. [DOI: 10.1016/j.jpba.2019.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 01/08/2023]
|