51
|
Prion disease susceptibility is affected by beta-structure folding propensity and local side-chain interactions in PrP. Proc Natl Acad Sci U S A 2010; 107:19808-13. [PMID: 21041683 DOI: 10.1073/pnas.1005267107] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prion diseases occur when the normally α-helical prion protein (PrP) converts to a pathological β-structured state with prion infectivity (PrP(Sc)). Exposure to PrP(Sc) from other mammals can catalyze this conversion. Evidence from experimental and accidental transmission of prions suggests that mammals vary in their prion disease susceptibility: Hamsters and mice show relatively high susceptibility, whereas rabbits, horses, and dogs show low susceptibility. Using a novel approach to quantify conformational states of PrP by circular dichroism (CD), we find that prion susceptibility tracks with the intrinsic propensity of mammalian PrP to convert from the native, α-helical state to a cytotoxic β-structured state, which exists in a monomer-octamer equilibrium. It has been controversial whether β-structured monomers exist at acidic pH; sedimentation equilibrium and dual-wavelength CD evidence is presented for an equilibrium between a β-structured monomer and octamer in some acidic pH conditions. Our X-ray crystallographic structure of rabbit PrP has identified a key helix-capping motif implicated in the low prion disease susceptibility of rabbits. Removal of this capping motif increases the β-structure folding propensity of rabbit PrP to match that of PrP from mouse, a species more susceptible to prion disease.
Collapse
|
52
|
Chen W, van der Kamp MW, Daggett V. Diverse effects on the native β-sheet of the human prion protein due to disease-associated mutations. Biochemistry 2010; 49:9874-81. [PMID: 20949975 DOI: 10.1021/bi101449f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders that involve the conversion of the normal cellular form of the prion protein (PrP(C)) to a misfolded pathogenic form (PrP(Sc)). There are many genetic mutations of PrP associated with human prion diseases. Three of these point mutations are located at the first strand of the native β-sheet in human PrP: G131V, S132I, and A133V. To understand the underlying structural and dynamic effects of these disease-causing mutations on the human PrP, we performed molecular dynamics of wild-type and mutated human PrP. The results indicate that the mutations induced different effects but they were all related to misfolding of the native β-sheet: G131V caused the elongation of the native β-sheet, A133V disrupted the native β-sheet, and S132I converted the native β-sheet to an α-sheet. The observed changes were due to the reorientation of side chain-side chain interactions upon introducing the mutations. In addition, all mutations impaired a structurally conserved water site at the native β-sheet. Our work suggests various misfolding pathways for human PrP in response to mutation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5013, United States
| | | | | |
Collapse
|
53
|
Apostol MI, Sawaya MR, Cascio D, Eisenberg D. Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease. J Biol Chem 2010; 285:29671-5. [PMID: 20685658 PMCID: PMC2943325 DOI: 10.1074/jbc.c110.158303] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/19/2010] [Indexed: 01/21/2023] Open
Abstract
A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are "steric zippers," pairs of interacting β-sheets. Both structures of these "homozygous steric zippers" reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.
Collapse
Affiliation(s)
- Marcin I. Apostol
- From the Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, California 90095-1570
| | - Michael R. Sawaya
- From the Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, California 90095-1570
| | - Duilio Cascio
- From the Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, California 90095-1570
| | - David Eisenberg
- From the Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, California 90095-1570
| |
Collapse
|
54
|
Changing the solvent accessibility of the prion protein disulfide bond markedly influences its trafficking and effect on cell function. Biochem J 2010; 428:169-82. [PMID: 20337594 DOI: 10.1042/bj20091635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prion diseases are fatal transmissible neurodegenerative diseases that result from structural conversion of the prion protein into a disease-associated isoform. The prion protein contains a single disulfide bond. Our analysis of all NMR structures of the prion protein (total of 440 structures over nine species) containing an explicit disulfide bond reveals that the bond exists predominantly in a stable low-energy state, but can also adopt a high-energy configuration. The side chains of two tyrosine residues and one phenylalanine residue control access of solvent to the disulfide bond. Notably, the side chains rotate away from the disulfide bond in the high-energy state, exposing the disulfide bond to solvent. The importance of these aromatic residues for protein function was analysed by mutating them to alanine residues and analysing the properties of the mutant proteins using biophysical and cell biological approaches. Whereas the mutant protein behaved similarly to wild-type prion protein in recombinant systems, the mutants were retained in the endoplasmic reticulum of mammalian cells and degraded by the proteasomal system. The cellular behaviour of the aromatic residue mutants was similar to the cellular behaviour of a disulfide bond mutant prion protein in which the cysteine residues were replaced with alanine, a result which is consistent with an unstable disulfide bond in the aromatic residue mutants. These observations suggest that the conformation of the prion protein disulfide bond may have implications for correct maturation and function of this protein.
Collapse
|
55
|
Chakroun N, Prigent S, Dreiss CA, Noinville S, Chapuis C, Fraternali F, Rezaei H. The oligomerization properties of prion protein are restricted to the H2H3 domain. FASEB J 2010; 24:3222-31. [PMID: 20410442 DOI: 10.1096/fj.09-153924] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The propensity of the prion protein (PrP) to adopt different structures is a clue to its pathological behavior. The determination of the region involved in the PrP(C) to PrP(Sc) conversion is fundamental for the understanding of the mechanisms underlying this process at the molecular level. In this paper, the polymerization of the helical H2H3 domain of ovine PrP (OvPrP) was compared to the full-length construct (using chromatography and light scattering). We show that the oligomerization patterns are identical, although the H2H3 domain has a higher polymerization rate. Furthermore, the depolymerization kinetics of purified H2H3 oligomers compared to those purified from the full-length PrP reveal that regions outside H2H3 do not significantly contribute to the oligomerization process. By combining rational mutagenesis and molecular dynamics to investigate the early stages of H2H3 oligomerization, we observe a conformationally stable beta-sheet structure that we propose as a possible nucleus for oligomerization; we also show that single point mutations in H2 and H3 present structural polymorphisms and oligomerization properties that could constitute the basis of species or strain variability.
Collapse
Affiliation(s)
- Nesrine Chakroun
- Institut National de la Recherche Agronomique, Virologie et Immunologie Moléculaires, INRA, F-78352 Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
56
|
Harrison CF, Lawson VA, Coleman BM, Kim YS, Masters CL, Cappai R, Barnham KJ, Hill AF. Conservation of a glycine-rich region in the prion protein is required for uptake of prion infectivity. J Biol Chem 2010; 285:20213-23. [PMID: 20356832 DOI: 10.1074/jbc.m109.093310] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are associated with the misfolding of the endogenously expressed prion protein (designated PrP(C)) into an abnormal isoform (PrP(Sc)) that has infectious properties. The hydrophobic domain of PrP(C) is highly conserved and contains a series of glycine residues that show perfect conservation among all species, strongly suggesting it has functional and evolutionary significance. These glycine residues appear to form repeats of the GXXXG protein-protein interaction motif (two glycines separated by any three residues); the retention of these residues is significant and presumably relates to the functionality of PrP(C). Mutagenesis studies demonstrate that minor alterations to this highly conserved region of PrP(C) drastically affect the ability of cells to uptake and replicate prion infection in both cell and animal bioassay. The localization and processing of mutant PrP(C) are not affected, although in vitro and in vivo studies demonstrate that this region is not essential for interaction with PrP(Sc), suggesting these residues provide conformational flexibility. These data suggest that this region of PrP(C) is critical in the misfolding process and could serve as a novel, species-independent target for prion disease therapeutics.
Collapse
Affiliation(s)
- Christopher F Harrison
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Walter ED, Stevens DJ, Spevacek AR, Visconte MP, Dei Rossi A, Millhauser GL. Copper binding extrinsic to the octarepeat region in the prion protein. Curr Protein Pept Sci 2010; 10:529-35. [PMID: 19538144 DOI: 10.2174/138920309789352056] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 03/12/2009] [Indexed: 11/22/2022]
Abstract
Current research suggests that the function of the prion protein (PrP) is linked to its ability to bind copper. PrP is implicated in copper regulation, copper buffering and copper-dependent signaling. Moreover, in the development of prion disease, copper may modulate the rate of protein misfolding. PrP possesses a number of copper sites, each with distinct chemical characteristics. Most studies thus far have concentrated on elucidating chemical features of the octarepeat region (residues 60-91, hamster sequence), which can take up to four equivalents of copper, depending on the ratio of Cu2+ to protein. However, other sites have been proposed, including those at histidines 96 and 111, which are adjacent to the octarepeats, and also at histidines within PrP's folded C-terminal domain. Here, we review the literature of these copper sites extrinsic to the octarepeat region and add new findings and insights from recent experiments.
Collapse
Affiliation(s)
- Eric D Walter
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
The crucial event in the development of transmissible spongiform encephalopathies (TSEs) is the conformational change of a host-encoded membrane protein - the cellular PrPC - into a disease associated, fibril-forming isoform PrPSc. This conformational transition from the α-helix-rich cellular form into the mainly β-sheet containing counterpart initiates an ‘autocatalytic’ reaction which leads to the accumulation of amyloid fibrils in the central nervous system (CNS) and to neurodegeneration, a hallmark of TSEs. The exact molecular mechanisms which lead to the conformational change are still unknown. It also remains to be brought to light how a polypeptide chain can adopt at least two stable conformations. This review focuses on structural aspects of the prion protein with regard to protein-protein interactions and the initiation of prion protein misfolding. It therefore highlights parts of the protein which might play a notable role in the conformational transition from PrPC to PrPSc and consequently in inducing a fatal chain reaction of protein misfolding. Furthermore, features of different proteins, which are able to adopt insoluble fibrillar states under certain circumstances, are compared to PrP in an attempt to understand the unique characteristics of prion diseases.
Collapse
Affiliation(s)
- L Kupfer
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | | | | |
Collapse
|
59
|
Ishikawa T, Ishikura T, Kuwata K. Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 2009; 30:2594-601. [DOI: 10.1002/jcc.21265] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
60
|
Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. EMBO J 2009; 29:251-62. [PMID: 19927125 DOI: 10.1038/emboj.2009.333] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/22/2009] [Indexed: 11/08/2022] Open
Abstract
A conformational transition of normal cellular prion protein (PrP(C)) to its pathogenic form (PrP(Sc)) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of human PrP variants: three of wild-type (WT) PrP containing V129, and four of the familial variants D178N and F198S, containing either M129 or V129. Comparison of these structures with each other and with previously published WT PrP structures containing M129 revealed that only WT PrPs were found to crystallize as domain-swapped dimers or closed monomers; the four mutant PrPs crystallized as non-swapped dimers. Three of the four mutant PrPs aligned to form intermolecular beta-sheets. Several regions of structural variability were identified, and analysis of their conformations provides an explanation for the structural features, which can influence the formation and conformation of intermolecular beta-sheets involving the M/V129 polymorphic residue.
Collapse
|
61
|
Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.05.011] [Citation(s) in RCA: 342] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
62
|
Sanghera N, Swann MJ, Ronan G, Pinheiro TJ. Insight into early events in the aggregation of the prion protein on lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2245-51. [DOI: 10.1016/j.bbamem.2009.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/06/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
|
63
|
Ronga L, Palladino P, Ragone R, Benedetti E, Rossi F. A thermodynamic approach to the conformational preferences of the 180-195 segment derived from the human prion protein alpha2-helix. J Pept Sci 2009; 15:30-5. [PMID: 19035579 DOI: 10.1002/psc.1086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
On consideration that intrinsic structural weakness could affect the segment spanning the alpha2-helical residues 173-195 of the PrP, we have investigated the conformational stabilities of some synthetic Ala-scanned analogs of the peptide derived from the 180-195 C-terminal sequence, using a novel approach whose theoretical basis originates from protein thermodynamics. Even though a quantitative comparison among peptides could not be assessed to rank them according to the effect caused by single amino acid substitution, as a general trend, all peptides invariably showed an appreciable preference for an alpha-type organization, consistently with the fact that the wild-type sequence is organized as an alpha-helix in the native protein. Moreover, the substitution of whatever single amino acid in the wild-type sequence reduced the gap between the alpha- and the beta-propensity, invariably enhancing the latter, but in any case this gap was larger than that evaluated for the full-length alpha2-helix-derived peptide. It appears that the low beta-conformation propensity of the 180-195 region depends on the simultaneous presence of all of the Ala-scanned residues, indirectly confirming that the N-terminal 173-179 segment could play a major role in determining the chameleon conformational behavior of the entire 173-195 region in the PrP.
Collapse
Affiliation(s)
- Luisa Ronga
- Dipartimento delle Scienze Biologiche and C.I.R.Pe.B., Università Federico II di Napoli, Naples, Italy
| | | | | | | | | |
Collapse
|
64
|
Nazabal A, Hornemann S, Aguzzi A, Zenobi R. Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant full-length prion protein amyloid fibrils. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:965-977. [PMID: 19283723 DOI: 10.1002/jms.1572] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Understanding the structural basis that distinguishes the amyloid form of the prion protein from its monomeric homologue is of crucial importance to elucidate the mechanism of the lethal diseases related to this protein. Recently, an in vitro conversion system was established which reproduces the transition of recombinant prion protein PrP(23-230) from its native alpha-helical rich form into an aggregated amyloid beta-sheet rich form with physicochemical properties reminiscent to those of the disease-related isoform of the prion protein, PrPSc. To study the tertiary and quaternary structural organization within recombinant amyloid fibrils from mouse, mPrP(23-231)betaf; bovine, bPrP(23-230)betaf; and elk, ePrP(23-230)betaf; we utilized hydrogen/deuterium (H/D) exchange analyzed by matrix-assisted laser desorption/ionization (MALDI) and nano-electrospray (nano-ESI) mass spectrometry. No significant differences were found by measuring the deuterium exchange kinetics of the aggregated fibrillar forms for mPrP(23-231)betaf, bPrP(23-230)betaf and ePrP(23-230)betaf, indicating a similar overall structural organization of the fibrils from all three species. Next, we characterized the solvent accessibility for the soluble and fibrillar forms of the mouse prion protein by hydrogen exchange, pepsin proteolysis and nano-ESI ion trap mass spectrometry analysis. In its amyloid form, two highly protected regions of mPrP(23-231) comprising residues [24-98] and [182-212] were identified. The residues between the two highly protected stretches were found to be more solvent exposed, but less than in the soluble protein, and might therefore rather form part of a fibrillar interface.
Collapse
Affiliation(s)
- Alexis Nazabal
- Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
65
|
Chebaro Y, Derreumaux P. The Conversion of Helix H2 to β-Sheet Is Accelerated in the Monomer and Dimer of the Prion Protein upon T183A Mutation. J Phys Chem B 2009; 113:6942-8. [DOI: 10.1021/jp900334s] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yassmine Chebaro
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico Chimique et Université Paris Diderot-Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico Chimique et Université Paris Diderot-Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
66
|
Palladino P, Ronga L, Benedetti E, Rossi F, Ragone R. Peptide Fragment Approach to Prion Misfolding: The Alpha-2 Domain. Int J Pept Res Ther 2009. [DOI: 10.1007/s10989-009-9171-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
67
|
Crystal structure of human prion protein bound to a therapeutic antibody. Proc Natl Acad Sci U S A 2009; 106:2554-8. [PMID: 19204296 DOI: 10.1073/pnas.0809170106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prion infection is characterized by the conversion of host cellular prion protein (PrP(C)) into disease-related conformers (PrP(Sc)) and can be arrested in vivo by passive immunization with anti-PrP monoclonal antibodies. Here, we show that the ability of an antibody to cure prion-infected cells correlates with its binding affinity for PrP(C) rather than PrP(Sc). We have visualized this interaction at the molecular level by determining the crystal structure of human PrP bound to the Fab fragment of monoclonal antibody ICSM 18, which has the highest affinity for PrP(C) and the highest therapeutic potency in vitro and in vivo. In this crystal structure, human PrP is observed in its native PrP(C) conformation. Interactions between neighboring PrP molecules in the crystal structure are mediated by close homotypic contacts between residues at position 129 that lead to the formation of a 4-strand intermolecular beta-sheet. The importance of this residue in mediating protein-protein contact could explain the genetic susceptibility and prion strain selection determined by polymorphic residue 129 in human prion disease, one of the strongest common susceptibility polymorphisms known in any human disease.
Collapse
|
68
|
Moore RA, Taubner LM, Priola SA. Prion protein misfolding and disease. Curr Opin Struct Biol 2009; 19:14-22. [PMID: 19157856 DOI: 10.1016/j.sbi.2008.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/02/2008] [Accepted: 12/04/2008] [Indexed: 12/21/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs or prion diseases) are a rare group of invariably fatal neurodegenerative disorders that affect humans and other mammals. TSEs are protein misfolding diseases that involve the accumulation of an abnormally aggregated form of the normal host prion protein (PrP). They are unique among protein misfolding disorders in that they are transmissible and have different strains of infectious agents that are associated with unique phenotypes in vivo. A wealth of biological and biophysical evidence now suggests that the molecular basis for prion diseases may be encoded by protein conformation. The purpose of this review is to provide an overview of the existing structural information for PrP within the context of what is known about the biology of prion disease.
Collapse
Affiliation(s)
- Roger A Moore
- Rocky Mountain Laboratories, Laboratory of Persistent Viral Diseases, NIAID, NIH, 903 S. 4th Street, Hamilton, MT 59840, United States.
| | | | | |
Collapse
|
69
|
Ronga L, Palladino P, Saviano G, Tancredi T, Benedetti E, Ragone R, Rossi F. Structural characterization of a neurotoxic threonine-rich peptide corresponding to the human prion protein alpha 2-helical 180-195 segment, and comparison with full-length alpha 2-helix-derived peptides. J Pept Sci 2008; 14:1096-102. [PMID: 18563793 DOI: 10.1002/psc.1046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The 173-195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several 'spots' of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation-prone conformations. Here, we report CD and NMR studies on the alpha2-helix-derived peptide of maximal length (hPrP[180-195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other alpha2-helix-derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C-terminal sequence of the PrP(C) full-length alpha2-helix and includes the highly conserved threonine-rich 188-195 segment. At neutral pH, its conformation is dominated by beta-type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of alpha-helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173-179 segment, as occurring in wild-type and mutant peptides corresponding to the full-length alpha2-helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180-195 parental region in hPrP(C) makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full-length alpha2-helix, and could play a role in determining structural rearrangements of the entire globular domain.
Collapse
Affiliation(s)
- Luisa Ronga
- Dipartimento delle Scienze Biologiche and C.I.R.Pe.B., Università Federico II di Napoli, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
70
|
Proteolysis of prion protein by cathepsin S generates a soluble β-structured intermediate oligomeric form, with potential implications for neurotoxic mechanisms. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:209-18. [DOI: 10.1007/s00249-008-0371-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
|
71
|
Noinville S, Chich JF, Rezaei H. Misfolding of the prion protein: linking biophysical and biological approaches. Vet Res 2008; 39:48. [PMID: 18533092 DOI: 10.1051/vetres:2008025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 06/03/2008] [Indexed: 01/19/2023] Open
Abstract
Prion diseases are a group of neurodegenerative diseases that can arise spontaneously, be inherited, or acquired by infection in mammals. The propensity of the prion protein to adopt different structures is a clue to its pathological and perhaps biological role too. While the normal monomeric PrP is well characterized, the misfolded conformations responsible for neurodegeneration remain elusive despite progress in this field. Both structural dynamics and physico-chemical approaches are thus fundamental for a better knowledge of the molecular basis of this pathology. Indeed, multiple misfolding pathways combined with extensive posttranslational modifications of PrP and probable interaction(s) with cofactors call for a combination of approaches. In this review, we outline the current physico-chemical knowledge explaining the conformational diversities of PrP in relation with postulated or putative cellular partners such as proteic or non-proteic ligands.
Collapse
Affiliation(s)
- Sylvie Noinville
- Institut National de la Recherche Agronomique, Virologie et Immunologie Moléculaires, F-78352 Jouy-en-Josas, France
| | | | | |
Collapse
|
72
|
Colombo MC, Vandevondele J, Van Doorslaer S, Laio A, Guidoni L, Rothlisberger U. Copper binding sites in the C-terminal domain of mouse prion protein: A hybrid (QM/MM) molecular dynamics study. Proteins 2008; 70:1084-98. [PMID: 17876822 DOI: 10.1002/prot.21604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present a hybrid QM/MM Car-Parrinello molecular dynamics study of the copper-loaded C-terminal domain of the mouse prion protein. By means of a statistical analysis of copper coordination in known protein structures, we localized the protein regions with the highest propensity for copper ion binding. The identified candidate structures were subsequently refined via QM/MM simulations. Their EPR characteristics were computed to make contact with the experimental data and to probe the sensitivity to structural and chemical changes. Overall best agreement with the experimental EPR data (Van Doorslaer et al., J Phys Chem B 2001; 105: 1631-1639) and the information currently available in the literature is observed for a binding site involving H187. Moreover, a reinterpretation of the experimental proton hyperfine couplings was possible in the light of the present computational findings.
Collapse
Affiliation(s)
- Maria Carola Colombo
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
73
|
Gayrard V, Picard-Hagen N, Viguié C, Jeunesse E, Tabouret G, Rezaei H, Toutain PL. Blood clearance of the prion protein introduced by intravenous route in sheep is influenced by host genetic and physiopathologic factors. Transfusion 2008; 48:609-19. [DOI: 10.1111/j.1537-2995.2007.01628.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Zhu F, Davies P, Thompsett AR, Kelly SM, Tranter GE, Hecht L, Isaacs NW, Brown DR, Barron LD. Raman Optical Activity and Circular Dichroism Reveal Dramatic Differences in the Influence of Divalent Copper and Manganese Ions on Prion Protein Folding. Biochemistry 2008; 47:2510-7. [DOI: 10.1021/bi7022893] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fujiang Zhu
- WestChem, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Chiralabs Ltd., BCIE, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire OX5 1PF, United Kingdom
| | - Paul Davies
- WestChem, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Chiralabs Ltd., BCIE, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire OX5 1PF, United Kingdom
| | - Andrew R. Thompsett
- WestChem, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Chiralabs Ltd., BCIE, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire OX5 1PF, United Kingdom
| | - Sharon M. Kelly
- WestChem, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Chiralabs Ltd., BCIE, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire OX5 1PF, United Kingdom
| | - George E. Tranter
- WestChem, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Chiralabs Ltd., BCIE, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire OX5 1PF, United Kingdom
| | - Lutz Hecht
- WestChem, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Chiralabs Ltd., BCIE, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire OX5 1PF, United Kingdom
| | - Neil W. Isaacs
- WestChem, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Chiralabs Ltd., BCIE, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire OX5 1PF, United Kingdom
| | - David R. Brown
- WestChem, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Chiralabs Ltd., BCIE, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire OX5 1PF, United Kingdom
| | - Laurence D. Barron
- WestChem, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Chiralabs Ltd., BCIE, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire OX5 1PF, United Kingdom
| |
Collapse
|
75
|
Hesp JR, Raven NDH, Sutton JM. A role for His155 in binding of human prion peptide144–167 to immobilised prion protein. Biochem Biophys Res Commun 2007; 362:695-9. [PMID: 17761148 DOI: 10.1016/j.bbrc.2007.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/07/2007] [Indexed: 11/26/2022]
Abstract
The interactions and conformational changes that lead to the conversion of the normal prion protein (PrP(c)) to its pathogenic form, PrP(sc), are still being elucidated. Using Surface Plasma Resonance (SPR), we provide evidence that a synthetic peptide (PrP(144-167)) corresponding to residues comprising the alpha helix 1-beta strand 2 domain of PrP(c) is able to interact and bind to immobilised recombinant human PrP (rHuPrP) in a dose-dependent manner. The interaction is pH dependent with an increase in binding observed as the pH is lowered, particularly between pH 6.5 and pH 5.5 suggesting a specific role for His(155) in the interaction, confirmed by covalent modification of this residue in the peptide with diethylpyrocarbonate (DEPC). Circular dichroism analysis of PrP(144-167) revealed no secondary structure motifs across the pH range investigated. Possible pH related structural changes of immobilised rHuPrP are also discussed with regard to the increased affinity for PrP(144-167).
Collapse
Affiliation(s)
- J Richard Hesp
- Health Protection Agency, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| | | | | |
Collapse
|
76
|
Cernilec M, Vranac T, Hafner-Bratkovic I, Koren S, Venturini AC, Popović M, Juntes P, Serbec VC. Identification of an epitope on the recombinant bovine PrP that is able to elicit a prominent immune response in wild-type mice. Immunol Lett 2007; 113:29-39. [PMID: 17884181 DOI: 10.1016/j.imlet.2007.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 06/22/2007] [Accepted: 07/18/2007] [Indexed: 11/22/2022]
Abstract
The main cause for the development of transmissible spongiform encephalopathies (TSE) is the conformational change of prion protein from the normal cellular isoform (PrP(C)) into the abnormal isoform, named prion (PrP(Sc)). The two isoforms have the same primary structure, and with PrP being highly conserved among different species, no immune response to PrP(Sc) has been observed in infected humans or other mammals so far. The problem of inducing immune response was encountered when producing monoclonal antibodies against PrP, therefore mice lacking a functional Prnp gene were predominantly used for the immunization. In the present paper we report that by immunizing wild-type BALB/c mice with chemically unmodified recombinant bovine PrP a potent humoral immune response was achieved. Furthermore, we were able to isolate the monoclonal antibody (mAb) E12/2 and few other mAbs, all reacting specifically with bovine and human PrP, but not with PrP from several other mammals. The epitope of mAb E12/2 is located at the C-terminal end of helix 1, with His155 being crucial for binding. It has been proven that mAb E12/2 is useful for human and bovine TSE research as well as for diagnostics. Our results show that there are sufficient structural differences between mouse and bovine PrP to provoke a prominent humoral immune response.
Collapse
Affiliation(s)
- Maja Cernilec
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Electron crystallography of the scrapie prion protein complexed with heavy metals. Arch Biochem Biophys 2007; 467:239-48. [PMID: 17935686 DOI: 10.1016/j.abb.2007.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 08/09/2007] [Indexed: 11/21/2022]
Abstract
The insolubility of the disease-causing isoform of the prion protein (PrP(Sc)) has prevented studies of its three-dimensional structure at atomic resolution. Electron crystallography of two-dimensional crystals of N-terminally truncated PrP(Sc) (PrP 27-30) and a miniprion (PrP(Sc)106) provided the first insights at intermediate resolution on the molecular architecture of the prion. Here, we report on the structure of PrP 27-30 and PrP(Sc)106 negatively stained with heavy metals. The interactions of the heavy metals with the crystal lattice were governed by tertiary and quaternary structural elements of the protein as well as the charge and size of the heavy metal salts. Staining with molybdate anions revealed three prominent densities near the center of the trimer that forms the unit cell, coinciding with the location of the beta-helix that was proposed for the structure of PrP(Sc). Differential staining also confirmed the location of the internal deletion of PrP(Sc)106 at or near these densities.
Collapse
|
78
|
Abstract
The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrP(C) to PrP(Sc). Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrP(C) in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrP(C), with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrP(C) function, and emerging connections between copper and prion disease.
Collapse
Affiliation(s)
- Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
79
|
Abstract
Among the diseases caused by protein misfolding is the family associated with the prion protein (PrP). This is a small extracellular membrane-anchored molecule of yet unknown function. Understanding how PrP folds both into its cellular and pathological forms is thought to be crucial for explaining protein misfolding in general and the specific role of PrP in disease. Since the first structure determination, an increasing number of structural studies of PrP have become available, showing that the protein is formed by a flexible N-terminal region and a highly conserved globular C-terminal domain. We review here the current knowledge on PrP structure. We focus on vertebrate PrPs and analyse in detail the similarities and the differences among the coordinates of the C-terminal domain of PrP from different species, in search for understanding the mechanism of disease-causing mutations and the molecular bases of species barrier.
Collapse
|
80
|
De Simone A, Zagari A, Derreumaux P. Structural and hydration properties of the partially unfolded states of the prion protein. Biophys J 2007; 93:1284-92. [PMID: 17483173 PMCID: PMC1929054 DOI: 10.1529/biophysj.107.108613] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Misfolding and aggregation of the prion protein (PrP) is responsible for the development of transmissible spongiform encephalopathies (TSE). To gain insights into possible aggregation-prone intermediate states, we construct the free energy surface of the C-terminal globular domain of the PrP from enhanced sampling of replica exchange molecular dynamics. This cellular domain is characterized by three helices H1-H3 and a small beta-sheet. In agreement with experimental studies, the partially unfolded states display a stable core built from the central portions of helices H2 and H3 and a high mobility of helix H1 from the core. Among all identified conformational basins, a marginally populated state appears to be a very good candidate for aggregation. This intermediate is stabilized by four TSE-sensitive key interactions, displays a longer helix H1 with both a dry and solvated surface, and is featured by a significant detachment of helix H1 from the PrP-core.
Collapse
Affiliation(s)
- Alfonso De Simone
- Dipartimento delle Scienze Biologiche, Sezione Biostrutture and CNISM, Università di Napoli Federico II, I-80134 Naples, Italy.
| | | | | |
Collapse
|
81
|
Lennon CW, Cox HD, Hennelly SP, Chelmo SJ, McGuirl MA. Probing structural differences in prion protein isoforms by tyrosine nitration. Biochemistry 2007; 46:4850-60. [PMID: 17397138 PMCID: PMC2562509 DOI: 10.1021/bi0617254] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two conformational isomers of recombinant hamster prion protein (residues 90-232) have been probed by reaction with two tyrosine nitration reagents, peroxynitrite and tetranitromethane. Two conserved tyrosine residues (tyrosines 149 and 150) are not labeled by either reagent in the normal cellular form of the prion protein. These residues become reactive after the protein has been converted to the beta-oligomeric isoform, which is used as a model of the fibrillar form that causes disease. After conversion, a decrease in reactivity is noted for two other conserved residues, tyrosine 225 and tyrosine 226, whereas little to no effect was observed for other tyrosines. Thus, tyrosine nitration has identified two specific regions of the normal prion protein isoform that undergo a change in chemical environment upon conversion to a structure that is enriched in beta-sheet.
Collapse
Affiliation(s)
- Christopher W. Lennon
- Division of Biological Sciences and the Biomolecular Structure and Dynamics Program, The University of Montana, Missoula, MT 59812 USA
| | | | - Scott P. Hennelly
- Division of Biological Sciences and the Biomolecular Structure and Dynamics Program, The University of Montana, Missoula, MT 59812 USA
| | | | - Michele A. McGuirl
- Division of Biological Sciences and the Biomolecular Structure and Dynamics Program, The University of Montana, Missoula, MT 59812 USA
- Corresponding author information: Michele A. McGuirl, Clapp Building 204, Division of Biological Sciences, 32 Campus Drive The University of Montana, Missoula, MT 59812, , (406) 243-4404 phone, (406) 243-4304 fax
| |
Collapse
|
82
|
Sun Y, Breydo L, Makarava N, Yang Q, Bocharova OV, Baskakov IV. Site-specific Conformational Studies of Prion Protein (PrP) Amyloid Fibrils Revealed Two Cooperative Folding Domains within Amyloid Structure. J Biol Chem 2007; 282:9090-7. [PMID: 17244617 DOI: 10.1074/jbc.m608623200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the ability of most proteins to form amyloid, very little is know about amyloid fibril structures and the factors that govern their stability. Using amyloid fibrils produced from full-length prion protein (PrP), we describe a reliable approach for determining both site-specific and global conformational stability of the fibrillar form. To measure site-specific stability, we produced six variants of PrP by replacing the residues at positions 88, 98, 127, 144, 196, and 230 with cysteine, labeled the new cysteines with the fluorescent dye acrylodan, and investigated their conformational status within the amyloid form in guanidine hydrochloride-induced denaturation experiments. We found that the fibrils labeled at positions 127, 144, 196, and 230 displayed cooperative unfolding and showed a very high C1/2 value similar to that observed for the global unfolding of the amyloid structure. The unfolding at residue 98 was also cooperative; however, it showed a C1/2 value substantially lower than that of global unfolding, whereas the unfolding of fibrils labeled at residue 88 was non-cooperative. These data illustrate that there are at least two independent cooperative folding domains within the amyloid structure of the full-length PrP. In addition, kinetic experiments revealed only a partial overlap between the region that constituted the fibrillar cross-beta core and the regions that were involved in nucleation. This result illustrates that separate PrP regions accounted for the nucleation and for the formation of the conformationally most stable fibrillar core.
Collapse
Affiliation(s)
- Ying Sun
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
83
|
Ronga L, Langella E, Palladino P, Marasco D, Tizzano B, Saviano M, Pedone C, Improta R, Ruvo M. Does tetracycline bind helix 2 of prion? An integrated spectroscopical and computational study of the interaction between the antibiotic and alpha helix 2 human prion protein fragments. Proteins 2007; 66:707-15. [PMID: 17152078 DOI: 10.1002/prot.21204] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We demonstrate here that tetracycline (TC) can strongly interact (KD' = 189 +/- 7 nM) with model peptides derived from the C-terminal globular domain of the prion protein, hPrP [173-195], and that interaction concerns residues within the C-terminal half of the helix 2, a short region previously indicated as endowed with ambivalent conformational behavior and implicated in PrP conversion to the beta-sheet-rich, infective scrapie variant. Data have been confirmed by binding studies with the N-terminal truncated 180-195 variant that displays a dissociation constant of 483 +/- 30 nM. Remarkably, TC does not influence the structure of the N-terminally fluoresceinated peptides that both show alpha-helical conformations. Docking calculations and molecular dynamics simulations suggest a direct, strong interaction of the antibiotic with exposed side chain functional groups of threonines 190-193 on the solvent-exposed surface of helix 2.
Collapse
Affiliation(s)
- Luisa Ronga
- Istituto di Biostrutture e Bioimmagini del CNR, Sezione Biostrutture, via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Ronga L, Palladino P, Tizzano B, Marasco D, Benedetti E, Ragone R, Rossi F. Effect of salts on the structural behavior of hPrP alpha2-helix-derived analogues: the counterion perspective. J Pept Sci 2007; 12:790-5. [PMID: 17131298 DOI: 10.1002/psc.818] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Both theoretical studies and direct experimental evidence have emphasized the importance of electrostatic interactions in the general phenomenon of spontaneous amyloid fibril formation. A number of observations have recently spurred interest in the contribution of these interactions to the conformational behavior of the prion protein. In this paper, we show how salt addition and pH change can modify the conformation of two peptide analogues derived from the human prion protein helix 2 according to a Hofmeister-series-type dependence. Employment of various sodium salts allowed us to highlight the fact that chaotropic anions favor unstructured conformation, whereas kosmotropic anions promote the formation of compact structures like alpha-helix and beta-sheet, which may ultimately facilitate fibril formation. This finding should warn people engaged in ion-based research on prion and derived peptides about cation-bound effects, which have been almost exclusively investigated to date, being easily confounded with modifications that are actually caused by anion activity, thus leading researchers into misunderstand ion-specific effects. To avoid the common complication of ion confounding, it is highly desirable that experiments be designed so that the species causing the modification can be unequivocally perceived.
Collapse
Affiliation(s)
- Luisa Ronga
- Dipartimento delle Scienze Biologiche, C.I.R.Pe.B, Università Federico II di Napoli and Istituto di Bioimmagini e Biostrutture, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
85
|
Ronga L, Tizzano B, Palladino P, Ragone R, Urso E, Maffia M, Ruvo M, Benedetti E, Rossi F. The prion protein: Structural features and related toxic peptides. Chem Biol Drug Des 2007; 68:139-47. [PMID: 17062011 DOI: 10.1111/j.1747-0285.2006.00427.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prion diseases are characterized by the conversion of the physiological cellular form of the prion protein (PrP(C)) into an insoluble, partially protease-resistant abnormal scrapie form (PrP(Sc)). PrP(C) is normally expressed in mammalian cell and is highly conserved among species, although its role in cellular function remains elusive. The conversion of PrP(C) to PrP(Sc) parallels a conformational change of the polypeptide from a predominantly alpha-helical to a highly beta-sheet secondary structure. The pathogenesis and molecular basis of the consequent nerve cell loss are not understood. Limited structural information is available on aggregate formation by this protein as the possible cause of these diseases and on its toxicity. This brief overview focuses on the large amount of structure-activity studies based on the prion fragment approach, hinging on peptides derived from the unstructured N-terminal and globular C-terminal domains. It is well documented that most of the fragments with regular secondary structure, with the exception of helices 1 and 3, possess a high beta-sheet propensity and tendency to form beta-sheet-like aggregates. In this context, helix 2 plays a crucial role because it is able to adopt both misfolded and partially helical conformation. However, only a few mutants are able to display its intrinsic neurotoxicity.
Collapse
Affiliation(s)
- Luisa Ronga
- Dipartimento delle Scienze Biologiche, C I R Pe B, Università Federico II di Napoli and Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
The discovery of prion disease transmission in mammals, as well as a non-Mendelian type of inheritance in yeast, has led to the establishment of a new concept in biology, the prion hypothesis. The prion hypothesis postulates that an abnormal protein conformation propagates itself in an autocatalytic manner using the normal isoform of the same protein as a substrate and thereby acts either as a transmissible agent of disease (in mammals), or as a heritable determinant of phenotype (in yeast and fungus). While the prion biology of yeast and fungus supports this idea strongly, the direct proof of the prion hypothesis in mammals, specifically the reconstitution of the disease-associated isoform of the prion protein (PrP(Sc)) in vitro de novo from noninfectious prion protein, has been difficult to achieve despite many years of effort. The present review summarizes our current knowledge about the biochemical nature of the prion infectious agent and structure of PrP(Sc), describes potential strategies for generating prion infectivity de novo and provides some insight on why the reconstitution of infectivity has been difficult to achieve in vitro. Several hypotheses are proposed to explain the apparently low infectivity of the first generation of recently reported synthetic mammalian prions.
Collapse
Affiliation(s)
- Ilia V Baskakov
- Medical Biotechnology Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
87
|
Hachiya NS, Imagawa M, Kaneko K. The possible role of protein X, a putative auxiliary factor in pathological prion replication, in regulating a physiological endoproteolytic cleavage of cellular prion protein. Med Hypotheses 2007; 68:670-3. [PMID: 17008028 DOI: 10.1016/j.mehy.2006.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
The posttranslational conformational conversion of the cellular isoform of prion protein PrP(C) into its scrapie isoform PrP(Sc) is the fundamental process underlying the pathogenesis of prion disease. Based on several transgenic data, it has been postulated that a putative auxiliary factor denoted protein X functions as a molecular chaperone through its unfolding activity of PrP(C) during the formation of PrP(Sc). However, the assumption that protein X therefore exists exclusively in prion diseases appears improbable and thus, it should have some simultaneous physiological role. We, hereby, propose a novel concept - a characteristic role of protein X in supporting a physiological endoproteolytic cleavage of PrP(C). The events corresponding to the formation of the physiologically metabolized PrP(C) or the pathologically transformed PrP(Sc) are mutually exclusive. Amino acid residues that are critical in terms of the target site of protein X for the pathological alteration into PrP(Sc) overlap at the cleavage site. These amino acid residues tend to have a hydrophobic property and are most probably found buried inside the native protein structure. Therefore, a putative molecular chaperone identical to protein X may target the same hydrophobic residues in PrP(C) and work in conjunction with either PrP(Sc) in prion disease or PrP proteases during the physiological state. This postulation may help explain in a relatively simple manner these two mutually exclusive phenomena, viz. the physiological endoproteolytic cleavage of PrP(C) and its pathological conversion into PrP(Sc).
Collapse
Affiliation(s)
- Naomi S Hachiya
- Department of Neurophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Tokyo 160-8402, Japan
| | | | | |
Collapse
|
88
|
Petrakis S, Sklaviadis T. Identification of proteins with high affinity for refolded and native PrPC. Proteomics 2006; 6:6476-84. [PMID: 17111435 DOI: 10.1002/pmic.200600103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PrPC, the cellular prion protein, is widely expressed in most tissues, including brain, muscle and the gastrointestinal tract, but its physiological role remains unclear. During propagation of transmissible spongiform encephalopathies (TSEs), prion protein is converted to the pathological isoform, PrPSc, in a process believed to be mediated by as-yet-unknown host factors. The identification of proteins associated with PrP may provide information about the biology of prions and the pathogenesis of TSEs. In the present work, we report proteins identified from brain tissue based on their ability to bind to recombinant PrP (recPrP) or form multimolecular complexes with native PrPC in the presence of cross-linkers. Immobilized his-tagged recPrP was used as an affinity matrix to isolate PrP-interacting proteins from brain homogenates of normal individuals. In parallel, PrPC-associated proteins were characterized by cross-linking and co-immunoprecipitation assays. The unknown molecules were identified by MS and the results of LC-MS/MS analysis were subsequently verified by Western blot. Both techniques resulted in identification of proteins participating in the formation of cytoskeleton and signal transduction, further supporting the hypothesis that PrP is involved in the organization and function of receptors throughout the nervous system.
Collapse
Affiliation(s)
- Spyros Petrakis
- Prion Disease Research Group, Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
89
|
Thackray A, Fitzmaurice T, Hopkins L, Bujdoso R. Ovine plasma prion protein levels show genotypic variation detected by C-terminal epitopes not exposed in cell-surface PrPC. Biochem J 2006; 400:349-58. [PMID: 16881870 PMCID: PMC1652830 DOI: 10.1042/bj20060746] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ovine PBMCs (peripheral blood mononuclear cells) express PrP(C) [cellular PrP (prion-related protein)] and have the potential to harbour and release disease-associated forms of PrP during scrapie in sheep. Cell-surface PrP(C) expression by PBMCs, together with plasma PrP(C) levels, may contribute to the regulatory mechanisms that determine susceptibility and resistance to natural scrapie in sheep. Here, we have correlated cell-surface PrP(C) expression on normal ovine PBMCs by FACS with the presence of PrP(C) in plasma measured by capture-detector immunoassay. FACS showed similar levels of cell-surface PrP(C) on homozygous ARR (Ala136-Arg154-Arg171), ARQ (Ala136-Arg154-Gln171) and VRQ (Val136-Arg154-Gln171) PBMCs. Cell-surface ovine PrP(C) showed modulation of N-terminal epitopes, which was more evident on homozygous ARR cells. Ovine plasma PrP(C) levels showed genotypic variation and the protein displayed C-terminal epitopes not available in cell-surface PrP(C). Homozygous VRQ sheep showed the highest plasma PrP(C) level and homozygous ARR animals the lowest. For comparison, similar analyses were performed on normal bovine PBMCs and plasma. PrP(C) levels in bovine plasma were approx. 4-fold higher than ovine homozygous ARQ plasma despite similar levels of PBMC cell-surface PrP(C) expression. Immunoassays using C-terminal-specific anti-PrP monoclonal antibodies as capture and detector reagents revealed the highest level of PrP(C) in both ovine and bovine plasma, whilst lower levels were detected using N-terminal-specific monoclonal antibody FH11 as the capture reagent. This suggested that a proportion of plasma PrP(C) was N-terminally truncated. Our results indicate that the increased susceptibility to natural scrapie displayed by homozygous VRQ sheep correlates with a higher level of plasma PrP(C).
Collapse
Affiliation(s)
- Alana M. Thackray
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, U.K
| | - Tim J. Fitzmaurice
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, U.K
| | - Lee Hopkins
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, U.K
| | - Raymond Bujdoso
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
90
|
Wu CD, Pang WY, Zhao DM. Comparative analysis of the prion protein gene sequences in African lion. Virus Genes 2006; 33:213-4. [PMID: 16972036 DOI: 10.1007/s11262-005-0058-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 11/28/2005] [Indexed: 10/24/2022]
Abstract
The prion protein gene of African lion (Panthera Leo) was first cloned and polymorphisms screened. The results suggest that the prion protein gene of eight African lions is highly homogenous. The amino acid sequences of the prion protein (PrP) of all samples tested were identical. Four single nucleotide polymorphisms (C42T, C81A, C420T, T600C) in the prion protein gene (Prnp) of African lion were found, but no amino acid substitutions. Sequence analysis showed that the higher homology is observed to felis catus AF003087 (96.7%) and to sheep number M31313.1 (96.2%) Genbank accessed. With respect to all the mammalian prion protein sequences compared, the African lion prion protein sequence has three amino acid substitutions. The homology might in turn affect the potential intermolecular interactions critical for cross species transmission of prion disease.
Collapse
Affiliation(s)
- Chang-De Wu
- National Animal Transmissible Spongiform Encephalopathies Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | | | | |
Collapse
|
91
|
Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis). Chem Rev 2006; 106:1995-2044. [PMID: 16771441 DOI: 10.1021/cr040410w] [Citation(s) in RCA: 1255] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Gaggelli
- Department of Chemistry, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | | | | | | |
Collapse
|
92
|
Hicks MR, Gill AC, Bath IK, Rullay AK, Sylvester ID, Crout DH, Pinheiro TJT. Synthesis and structural characterization of a mimetic membrane-anchored prion protein. FEBS J 2006; 273:1285-99. [PMID: 16519692 DOI: 10.1111/j.1742-4658.2006.05152.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrP(Sc)) of the host encoded prion protein (PrP(C)) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrP(C) and PrP(Sc) have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrP(C) to PrP(Sc), but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP.
Collapse
Affiliation(s)
- Matthew R Hicks
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | | | | | | | |
Collapse
|
93
|
Langella E, Improta R, Crescenzi O, Barone V. Assessing the acid–base and conformational properties of histidine residues in human prion protein (125–228) by means of pK
a
calculations and molecular dynamics simulations. Proteins 2006; 64:167-77. [PMID: 16639746 DOI: 10.1002/prot.20979] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A thorough study of the acid-base behavior of the four histidines and the other titratable residues of the structured domain of human prion protein (125-228) is presented. By using multi-tautomer electrostatic calculations, average titration curves have been built for all titratable residues, using the whole bundles of NMR structures determined at pH 4.5 and 7.0. According to our results, (1) only histidine residues are likely to be involved in the first steps of the pH-driven conformational transition of prion protein; (2) the pK(a)'s of His140 and His177 are approximately 7.0, whereas those of His155 and His187 are < 5.5. 10-ns long molecular dynamics simulations have been performed on five different models, corresponding to the most significant combinations of histidine protonation states. A critical comparison between the available NMR structures and our computational results (1) confirms that His155 and His187 are the residues whose protonation is involved in the conformational rearrangement of huPrP in mildly acidic condition, and (2) shows how their protonation leads to the destructuration of the C-terminal part of HB and to the loss of the last turn of HA that represent the crucial microscopic steps of the rearrangement.
Collapse
Affiliation(s)
- Emma Langella
- Dipartimento di Chimica, Universitá Federico II, Complesso di Monte S. Angelo, Napoli, Italy
| | | | | | | |
Collapse
|
94
|
De Simone A, Dodson GG, Fraternali F, Zagari A. Water molecules as structural determinants among prions of low sequence identity. FEBS Lett 2006; 580:2488-94. [PMID: 16638576 DOI: 10.1016/j.febslet.2006.02.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 02/09/2006] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
The nature of the factors leading to the conversion of the cellular prion protein (PrP(C)) into its amyloidogenic isoform (PrP(Sc)) is still matter of debate in the field of structural biology. The NMR structures of non-mammalian PrP(C) (non-mPrP) from frog, chicken and turtle [Calzolai, L., Lysek, D.A., Perez, D.R., Guntert, P. and Wuthrich, K. (2005) Prion protein NMR structures of chickens, turtles, and frogs. Proc. Natl. Acad. Sci. USA 102, 651-655] have provided some new and valuable information on the scaffolding elements that preserve the PrP(C) folding, despite their low sequence identity with the mammalian prions (mPrP). The present molecular dynamics study of non-mPrP(C) focuses on the hydration properties of these proteins in comparison with the mammalian ones. The data reveal new insights in the PrP hydration and focus on the implications for PrP(C) folding stability and its propensity for interactions. In addition, for the first time, a role in disfavoring the PrP(C) aggregation is suggested for a conserved beta-bulge which is stabilized by the local hydration.
Collapse
Affiliation(s)
- Alfonso De Simone
- National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, London, UK
| | | | | | | |
Collapse
|
95
|
Anderson M, Bocharova OV, Makarava N, Breydo L, Salnikov VV, Baskakov IV. Polymorphism and Ultrastructural Organization of Prion Protein Amyloid Fibrils: An Insight from High Resolution Atomic Force Microscopy. J Mol Biol 2006; 358:580-96. [PMID: 16519898 DOI: 10.1016/j.jmb.2006.02.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/16/2005] [Accepted: 02/02/2006] [Indexed: 10/25/2022]
Abstract
Amyloid fibrils were produced from the full-length mouse prion protein (PrP) under solvent conditions similar to those used for the generation of synthetic prions from PrP 89-230. Analysis of the ultrastructure by atomic force microscopy revealed extremely broad polymorphism in fibrils formed under a single growth condition. Fibrils varied with respect to the number of constitutive filaments and the manner in which the filaments were assembled. PrP polymerization was found to show several peculiar features: (i) the higher-order fibrils/ribbons were formed through a highly hierarchical mechanism of assembly of lower-order fibrils/ribbons; (ii) the lateral assembly proceeded stepwise; at each step, a semi-stable fibrillar species were generated, which were then able to enter the next level of assembly; (iii) the assembly of lower into higher-order fibrils occurred predominantly in a vertical dimension via stacking of ribbons on top of each other; (iv) alternative modes of lateral association co-existed under a single growth condition; (iv) the fibrillar morphology changed even within individual fibrils, illustrating that alternative modes of filament assembly are inter-convertible and thermodynamically equivalent. The most predominant fibrillar types were classified into five groups according to their height, each of which was divided in up to three subgroups according to their width. Detailed analysis of ultrastructure revealed that the fibrils of the major subtype (height 3.61(+/-0.28)nm, width 31.1(+/-2.0)nm) were composed of two ribbons, each of which was composed of two filaments. The molecular volume calculations indicated that a single PrP molecule occupied a distance of approximately 1.2 nm within a single filament. High polymorphism in fibrils generated in vitro is reminiscent of high morphological diversity of scrapie-associated fibrils isolated from scrapie brains, suggesting that polymorphism is peculiar for polymerization of PrP regardless of whether fibrils are formed in vitro or under pathological conditions in vivo.
Collapse
Affiliation(s)
- Maighdlin Anderson
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
96
|
Bujdoso R, Burke DF, Thackray AM. Structural differences between allelic variants of the ovine prion protein revealed by molecular dynamics simulations. Proteins 2006; 61:840-9. [PMID: 16252284 DOI: 10.1002/prot.20755] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have modeled ovine prion protein (residues 119-233) based on NMR structures of PrP from other mammalian species. Modeling of the C-terminal domain of ovine PrP predicts three helices: helix-1 (residues 147-155), flanked by two short beta-strands; helix-2 (residues 176-197), and helix-3 (residues 203-229). Molecular dynamics simulations on this model of ovine PrP have determined structural differences between allelic variants. At neutral pH, limited root mean-squared (RMS) fluctuations were seen in the region of helix-1; between beta-strand-2 and residue 171, and the loop connecting helix-2 and helix-3. At low pH, these RMS fluctuations increased and showed allelic variation. The extent of RMS fluctuation between beta-strand 2 and residue 171 was ARR > ARQ > VRQ. This order was reversed for the loop region connecting helix-2 and helix-3. Although all three variants have the potential to display an extended helix at the C-terminal region of helix-1, the major influence of the VRQ allele was to restrict the conformations of the Asn162 and Arg139 side-chains. Variations observed in the simulations in the vicinity of helix-1 correlated with reactivity of C-terminal specific anti-PrP monoclonal antibodies with peripheral blood cells from scrapie-susceptible and -resistant genotypes of sheep: cells from VRQ homozygous sheep showed uniform reactivity, while cells from ARQ and ARR homozygous sheep showed variable binding. Our data show that molecular dynamics simulations can be used to determine structural differences between allelic variants of ovine PrP. The binding of anti-PrP monoclonal antibodies to ovine blood cells may validate these structural predictions.
Collapse
Affiliation(s)
- Raymond Bujdoso
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 OES, UK.
| | | | | |
Collapse
|
97
|
Tattum MH, Cohen-Krausz S, Thumanu K, Wharton CW, Khalili-Shirazi A, Jackson GS, Orlova EV, Collinge J, Clarke AR, Saibil HR. Elongated oligomers assemble into mammalian PrP amyloid fibrils. J Mol Biol 2006; 357:975-85. [PMID: 16473369 DOI: 10.1016/j.jmb.2006.01.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 11/23/2022]
Abstract
In prion diseases, the mammalian prion protein PrP is converted from a monomeric, mainly alpha-helical state into beta-rich amyloid fibrils. To examine the structure of the misfolded state, amyloid fibrils were grown from a beta form of recombinant mouse PrP (residues 91-231). The beta-PrP precursors assembled slowly into amyloid fibrils with an overall helical twist. The fibrils exhibit immunological reactivity similar to that of ex vivo PrP Sc. Using electron microscopy and image processing, we obtained three-dimensional density maps of two forms of PrP fibrils with slightly different twists. They reveal two intertwined protofilaments with a subunit repeat of approximately 60 A. The repeating unit along each protofilament can be accounted for by elongated oligomers of PrP, suggesting a hierarchical assembly mechanism for the fibrils. The structure reveals flexible crossbridges between the two protofilaments, and subunit contacts along the protofilaments that are likely to reflect specific features of the PrP sequence, in addition to the generic, cross-beta amyloid fold.
Collapse
Affiliation(s)
- M Howard Tattum
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Inouye H, Kirschner DA. X-Ray fiber and powder diffraction of PrP prion peptides. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:181-215. [PMID: 17190614 DOI: 10.1016/s0065-3233(06)73006-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A conformational change from the alpha-helical, cellular form of prion to the beta-sheet, scrapie (infectious) form is the central event for prion replication. The folding mechanism underlying this conformational change has not yet been deciphered. Here, we review prion pathology and summarize X-ray fiber and powder diffraction studies on the N-terminal fragments of prion protein and on short sequences that initiate the beta-assembly for various fibrils, including poly(L-alanine) and poly(L-glutamine). We discuss how the quarter-staggered beta-sheet assembly (like in polyalanine) and polar-zipper beta-sheet formation (like in polyglutamine) may be involved in the formation of the scrapie form of prion.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
99
|
Eghiaian F. Structuring the puzzle of prion propagation. Curr Opin Struct Biol 2005; 15:724-30. [PMID: 16263262 DOI: 10.1016/j.sbi.2005.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/21/2005] [Indexed: 11/22/2022]
Abstract
Of all the prion proteins identified to date, the agent responsible for transmissible spongiform encephalopathies is one of the least characterized. Nevertheless, recent advances in the prion field should lead to important progress in our knowledge of mammalian prions. First, the demonstration that PrP aggregates generated in vitro infect animals and cause neuronal death is a considerable breakthrough. Second, new structural data provide direct insight into the structure of the infectious agent. Third, the study of yeast prions unveiled what might be the structural basis for the strain phenomena in transmissible spongiform encephalopathies.
Collapse
Affiliation(s)
- Frédéric Eghiaian
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR 9063, Centre National de la Recherche Scientifique, Bâtiment 34, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
100
|
Bragason BT, Palsdottir A. Processing of ovine PrP(ARQ)C-EGFP chimeras containing Asn138 and Cys151 polymorphisms. Biochem Biophys Res Commun 2005; 336:544-53. [PMID: 16143302 DOI: 10.1016/j.bbrc.2005.08.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/12/2005] [Indexed: 10/25/2022]
Abstract
Polymorphisms in the prion protein, PrP(C), affect the susceptibility of sheep to scrapie. Three rare polymorphisms, M137T, S138N, and R151C, have been found in Icelandic sheep. Observations suggest that R151C may be associated with lower scrapie susceptibility, whereas S138N is neutral. The effects of the S138N and R151C polymorphisms on the cellular processing of PrP(C) were examined in a model system consisting of the expression of ovine PrP(C)-EGFP (green fluorescent protein) chimeras in the mouse neuroblastoma cell line N2a. Chimeras with the haplotypes A136R154Q171 (ARQ), AN138RQ, and AC151RQ were compared. The chimeras did not differ regarding their translocation into the secretory system, glycosylation, and transport to the cell surface. However, the AC151RQ chimera differed from the other chimeras regarding disulfide bonding characteristics; furthermore, a slight difference was detected between AC151RQ and the other chimeras by limited proteolysis. The processing of the ARQ and AN138RQ chimeras was identical in the experiments performed consistent with observations that it is neutral.
Collapse
Affiliation(s)
- Birkir Thor Bragason
- Institute for Experimental Pathology, Keldur, University of Iceland, Vesturlandsvegur, Reykjavik 112, Iceland
| | | |
Collapse
|