51
|
Trépanier MO, Hopperton KE, Orr SK, Bazinet RP. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update. Eur J Pharmacol 2015; 785:187-206. [PMID: 26036964 DOI: 10.1016/j.ejphar.2015.05.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/13/2015] [Accepted: 05/21/2015] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is a characteristic of a multitude of neurological and psychiatric disorders. Modulating inflammatory pathways offers a potential therapeutic target in these disorders. Omega-3 polyunsaturated fatty acids have anti-inflammatory and pro-resolving properties in the periphery, however, their effect on neuroinflammation is less studied. This review summarizes 61 animal studies that tested the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory outcomes in vivo in various models including stroke, spinal cord injury, aging, Alzheimer's disease, Parkinson's disease, lipopolysaccharide and IL-1β injections, diabetes, neuropathic pain, traumatic brain injury, depression, surgically induced cognitive decline, whole body irradiation, amyotrophic lateral sclerosis, N-methyl-D-aspartate-induced excitotoxicity and lupus. The evidence presented in this review suggests anti-neuroinflammatory properties of omega-3 polyunsaturated fatty acids, however, it is not clear by which mechanism omega-3 polyunsaturated fatty acids exert their effect. Future research should aim to isolate the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory signaling in vivo and elucidate the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| |
Collapse
|
52
|
Hong SH, Khoutorova L, Bazan NG, Belayev L. Docosahexaenoic acid improves behavior and attenuates blood-brain barrier injury induced by focal cerebral ischemia in rats. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2015; 7:3. [PMID: 25642315 PMCID: PMC4312454 DOI: 10.1186/s13231-014-0012-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/03/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ischemic brain injury disrupts the blood-brain barrier (BBB) and then triggers a cascade of events, leading to edema formation, secondary brain injury and poor neurological outcomes. Recently, we have shown that docosahexaenoic acid (DHA) improves functional and histological outcomes following experimental stroke. However, little is known about the effect of DHA on BBB dysfunction after cerebral ischemia-reperfusion injury. The present study was designed to determine whether DHA protects against BBB disruption after focal cerebral ischemia in rats. METHODS Physiologically-controlled SD rats received 2 h middle cerebral artery occlusion (MCAo). DHA (5 mg/kg) or vehicle (saline) was administered I.V. at 3 h after onset of MCAo. Fluorometric quantitation of Evans Blue dye (EB) was performed in eight brain regions at 6 h, 24 h or 72 h after MCAo. Fluorescein isothiocynate (FITC) - dextran leakage and histopathology was evaluated on day 3 after stroke. RESULTS Physiological variables were stable and showed no significant differences between groups. DHA improved neurological deficits at 24 h, 48 h and 72 h and decreased EB extravasation in the ischemic hemisphere at 6 h (by 30%), 24 h (by 48%) and 72 h (by 38%). In addition, EB extravasation was decreased by DHA in the cortex and total hemisphere as well. FITC-dextran leakage was reduced by DHA treatment on day 3 by 68% compared to the saline group. DHA treatment attenuated cortical (by 50%) and total infarct volume (by 38%) compared to vehicle-treated rats on day 3 after stroke. CONCLUSIONS DHA therapy diminishes BBB damage accompanied with the acceleration of behavioral recovery and attenuation of the infarct volume. It is reasonable to propose that DHA has the potential for treating focal ischemic stroke in the clinical setting.
Collapse
Affiliation(s)
- Sung-Ha Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112 USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112 USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112 USA
| | - Ludmila Belayev
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112 USA ; Department of Neurosurgery, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112 USA
| |
Collapse
|
53
|
Lin SY, Wang YY, Chen WY, Chuang YH, Pan PH, Chen CJ. Beneficial effect of quercetin on cholestatic liver injury. J Nutr Biochem 2014; 25:1183-1195. [PMID: 25108658 DOI: 10.1016/j.jnutbio.2014.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 12/15/2022]
Abstract
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Flavonoids have been shown to confer beneficial health effects, including hepatoprotection. However, the molecular mechanism of flavonoid-mediated hepatoprotection is incompletely understood. In this study, we report the protective effect of quercetin on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily oral administration of quercetin was started 1 week before injury and lasted for 4 weeks. In comparison with the control group, the BDL group showed liver injury, as evidenced by histological changes, and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by daily quercetin supplementation. Quercetin alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), interleukin-1 beta, connective tissue growth factor and collagen expression. The antifibrotic effect of quercetin was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. Quercetin also attenuated BDL-induced oxidative stress, leukocyte accumulation, nuclear factor (NF)-κB activation and proinflammatory cytokine production. Further studies demonstrated an inhibitory effect of quercetin on MyD88 and TGF-β-activated kinase-1 critical for linking toll-like receptor (TLR) and NF-κB. Taken together, the hepatoprotective, anti-inflammatory and antifibrotic effects of quercetin seem to be multifactorial. The beneficial effects of daily quercetin supplementation are associated with antioxidative and anti-inflammatory potential as well as down-regulation of NF-κB and TGF-β/Smad signaling, probably via interference with TLR signaling.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 407, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ya-Yu Wang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Division of Family Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Han Chuang
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan; Center for General Education, Tunghai University, Taichung 407, Taiwan; Department of Nursing, HungKuang University, Taichung 433, Taiwan.
| |
Collapse
|
54
|
Casañas-Sánchez V, Pérez JA, Fabelo N, Herrera-Herrera AV, Fernández C, Marín R, González-Montelongo MC, Díaz M. Addition of docosahexaenoic acid, but not arachidonic acid, activates glutathione and thioredoxin antioxidant systems in murine hippocampal HT22 cells: potential implications in neuroprotection. J Neurochem 2014; 131:470-83. [DOI: 10.1111/jnc.12833] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Verónica Casañas-Sánchez
- Department of Genetics; University Institute of Tropical Diseases and Public Health; University of La Laguna; Tenerife Spain
| | - José A. Pérez
- Department of Genetics; University Institute of Tropical Diseases and Public Health; University of La Laguna; Tenerife Spain
| | - Noemí Fabelo
- Laboratory of Membrane Physiology and Biophysics; Department of Animal Biology; University of La Laguna; Tenerife Spain
| | | | - Cecilia Fernández
- Laboratory of Cellular Neurobiology; Department of Physiology; University of La Laguna; Tenerife Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology; Department of Physiology; University of La Laguna; Tenerife Spain
| | - María C. González-Montelongo
- Laboratory of Membrane Physiology and Biophysics; Department of Animal Biology; University of La Laguna; Tenerife Spain
| | - Mario Díaz
- Laboratory of Membrane Physiology and Biophysics; Department of Animal Biology; University of La Laguna; Tenerife Spain
| |
Collapse
|
55
|
Pan PH, Lin SY, Wang YY, Chen WY, Chuang YH, Wu CC, Chen CJ. Protective effects of rutin on liver injury induced by biliary obstruction in rats. Free Radic Biol Med 2014; 73:106-116. [PMID: 24815012 DOI: 10.1016/j.freeradbiomed.2014.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/14/2022]
Abstract
Rutin has been shown to possess beneficial health effects, including hepatoprotection. However, to date, it has not been demonstrated to have a hepatoprotective effect against cholestatic liver injury. This is the first report to show a protective effect of rutin on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily oral administration of rutin was started 1 week before injury and was maintained for 4 weeks. In comparison with the control group, the BDL group showed liver injury as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation, and oxidative stress. These pathophysiological changes were attenuated by rutin supplementation. Rutin alleviated BDL-induced transforming growth factor β1 (TGF-β1), interleukin-1β, connective tissue growth factor, and collagen expression. The antifibrotic effect of rutin was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad2/3 activity critical to the fibrogenic potential of TGF-β1. Rutin attenuated BDL-induced oxidative stress, leukocyte accumulation, NF-κB activation, and proinflammatory cytokine production. Further studies demonstrated an inhibitory effect of rutin on the redox-sensitive intracellular signaling molecule extracellular signal-regulated kinase (ERK). Rutin also attenuated BDL-induced reduction in NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and AMP-activated protein kinase (AMPK). Taken together, the beneficial effects of rutin were shown to be associated with antioxidative and anti-inflammatory effects as well as the downregulation of NF-κB and TGF-β/Smad signaling, probably via interference of ERK activation and/or enhancement of Nrf2, HO-1, and AMPK activity.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Shih-Yi Lin
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Ya-Yu Wang
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Han Chuang
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, and Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Institute of Biomedical Sciences, and National Chung Hsing University, Taichung 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Center for General Education, Tunghai University, Taichung 407, Taiwan; Graduate School of Nursing, Hungkuang University, Taichung 433, Taiwan.
| |
Collapse
|
56
|
Saada HN, Said UZ, Mahdy EME, Elmezayen HE, Shedid SM. Fish oil omega-3 fatty acids reduce the severity of radiation-induced oxidative stress in the rat brain. Int J Radiat Biol 2014; 90:1179-83. [PMID: 24937371 DOI: 10.3109/09553002.2014.934928] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE To evaluate the modulator role of fish oil (FO) on some biochemical changes in the brain of gamma-irradiated rats (RAD). MATERIAL AND METHODS Male albino rats Sprague Dawley were divided into four groups (n = 10). (i) CONTROL received vehicle via gavages during 28 days; (ii) FO: received fish oil (400 mg/kg/day) via gavages during 28 days; (iii) RAD: received vehicle for 7 days before whole body gamma-irradiation with 8 Gy given in four fractions each 7 days apart and continued during the irradiation period; and (iv) FO+ RAD: received FO for 7 days before exposure to the first dose of irradiation and FO treatment was continued during the irradiation period. Animals were sacrificed 24 hours post the last irradiation dose. RESULTS A significant increase of malondialdehyde (MDA) and protein carbonyl (CO) content associated with a significant decrease of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities and glutathione (GSH) content were recorded in the brain of irradiated rats. Oxidative stress was accompanied by a significant decrease of eicosapentaenoic (EPA) and docosahexaenoic (DHA) levels. Aspartic (Asp) and glutamic (Glu) acid levels were increased. Serotonin level showed a decrease associated with enhanced monoamine oxidase (MAO) activity and increased 5-hydroxyindolacetic acid (5-HIAA) level. FO treatment reduced the severity of radiation-induced oxidative stress, alteration of Asp and Glu levels and serotonin metabolism concomitant with increased EPA and DHA levels. CONCLUSION FO attenuates the severity of radiation-induced biochemical disorders in the brain by counteracting the radiation-induced decrease of EPA and DHA. Further studies are needed concerning the long-term implications of our findings.
Collapse
Affiliation(s)
- Helen N Saada
- Radiation Biology Department National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority , Cairo
| | | | | | | | | |
Collapse
|
57
|
Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury. J Neurosci 2014; 34:3743-55. [PMID: 24599472 DOI: 10.1523/jneurosci.2872-13.2014] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated the development of endoplasmic reticulum (ER) stress after traumatic brain injury (TBI) and the efficacy of post-TBI administration of docosahexaenoic acid (DHA) in reducing ER stress. TBI was induced by cortical contusion injury in Sprague-Dawley rats. Either DHA (16 mg/kg in DMSO) or vehicle DMSO (1 ml/kg) was administered intraperitoneally at 5 min after TBI, followed by a daily dose for 3-21 d. TBI triggered sustained expression of the ER stress marker proteins including phosphorylated eukaryotic initiation factor-2α, activating transcription factor 4, inositol requiring kinase 1, and C/EBP homologous protein in the ipsilateral cortex at 3-21 d after TBI. The prolonged ER stress was accompanied with an accumulation of abnormal ubiquitin aggregates and increased expression of amyloid precursor protein (APP) and phosphorylated tau (p-Tau) in the frontal cortex after TBI. The ER stress marker proteins were colocalized with APP accumulation in the soma. Interestingly, administration of DHA attenuated all ER stress marker proteins and reduced the accumulation of both ubiquitinated proteins and APP/p-Tau proteins. In addition, the DHA-treated animals exhibited early recovery of their sensorimotor function after TBI. In summary, our study demonstrated that TBI induces a prolonged ER stress, which is positively correlated with abnormal APP accumulation. The sustained ER stress may play a role in chronic neuronal damage after TBI. Our findings illustrate that post-TBI administration of DHA has therapeutic potentials in reducing ER stress, abnormal protein accumulation, and neurological deficits.
Collapse
|
58
|
Russell KL, Berman NEJ, Gregg PRA, Levant B. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury. Prostaglandins Leukot Essent Fatty Acids 2014; 90:5-11. [PMID: 24342130 PMCID: PMC3906920 DOI: 10.1016/j.plefa.2013.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/14/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022]
Abstract
The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9.
Collapse
Affiliation(s)
- K L Russell
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA.
| | - N E J Berman
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - P R A Gregg
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA.
| | - B Levant
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA.
| |
Collapse
|
59
|
Ciftci O, Cetin A, Aydin M, Kaya K, Oguz F. Fish oil, contained in eicosapentaenoic acid and docosahexaenoic acid, attenuates testicular and spermatological damage induced by cisplatin in rats. Andrologia 2013; 46:1161-8. [PMID: 24350676 DOI: 10.1111/and.12209] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2013] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to investigate the beneficial effects of the fish oil (FO) supplementation on oxidative stress, sperm characteristics and histological alterations in the male reproductive system of rats against cisplatin (CP) toxicity. The rats were divided randomly into 4 equal groups (control, FO, CP and FO + CP). FO was orally administered at the dose of 1 softgel per rat per day for 14 days and CP was intraperitoneally given at the dose of 7 mg kg(-1) with a single injection. In CP + FO group, they were applicated at the same doses and times. The results showed that CP caused a significant oxidative damage via induction of lipid peroxidation and reduction in the antioxidant defence system potency in the testis tissue. In addition, sperm motility and sperm concentration significantly decreased but the abnormal sperm rate and histopathological testicular damage increased with CP treatment. On the other hand, FO treatment prevented oxidative, histopathological and spermatological effects of CP and reversed side effects of CP. In conclusion, FO supplementation had significant beneficial effects against CP toxicity on male reproductive system and toxic effects of CP can be prevented by FO treatment. Therefore, it appears that fish oil may be useful for the prevention and treatment of cisplatin-induced reproductive system toxicity.
Collapse
Affiliation(s)
- O Ciftci
- Department of Pharmacology, Inonu University, Faculty of Medicine, Malatya, Turkey
| | | | | | | | | |
Collapse
|
60
|
Chang CY, Kuan YH, Li JR, Chen WY, Ou YC, Pan HC, Liao SL, Raung SL, Chang CJ, Chen CJ. Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. J Nutr Biochem 2013; 24:2127-2137. [PMID: 24139673 DOI: 10.1016/j.jnutbio.2013.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 02/06/2023]
Abstract
Cellular inflammatory response plays an important role in ischemic brain injury and anti-inflammatory treatments in stroke are beneficial. Dietary supplementation with docosahexaenoic acid (DHA) shows anti-inflammatory and neuroprotective effects against ischemic stroke. However, its effectiveness and its precise modes of neuroprotective action remain incompletely understood. This study provides evidence of an alternative target for DHA and sheds light on the mechanism of its physiological benefits. We report a global inhibitory effect of 3 consecutive days of DHA preadministration on circulating and intracerebral cellular inflammatory responses in a rat model of permanent cerebral ischemia. DHA exhibited a neuroprotective effect against ischemic deficits by reduction of behavioral disturbance, brain infarction, edema and blood-brain barrier disruption. The results of enzymatic assay, Western blot, real-time reverse transcriptase polymerase chain reaction and flow cytometric analysis revealed that DHA reduced central macrophages/microglia activation, leukocyte infiltration and pro-inflammatory cytokine expression and peripheral leukocyte activation after cerebral ischemia. In parallel with these immunosuppressive phenomena, DHA attenuated post-stroke oxidative stress, c-Jun N-terminal kinase (JNK) phosphorylation, c-Jun phosphorylation and activating protein-1 (AP-1) activation but further elevated ischemia-induced NF-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) expression. DHA treatment also had an immunosuppressive effect in lipopolysaccharide/interferon-γ-stimulated glial cultures by attenuating JNK phosphorylation, c-Jun phosphorylation and AP-1 activation and augmenting Nrf2 and HO-1 expression. In summary, we have shown that DHA exhibited neuroprotective and anti-inflammatory effects against ischemic brain injury and these effects were accompanied by decreased oxidative stress and JNK/AP-1 signaling as well as enhanced Nrf2/HO-1 expression.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Fong Yuan Hospital, Taichung 420, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kamisli S, Ciftci O, Cetin A, Kaya K, Kamisli O, Celik H. Fish oil protects the peripheral and central nervous systems against cisplatin-induced neurotoxicity. Nutr Neurosci 2013; 17:116-26. [DOI: 10.1179/1476830513y.0000000074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
62
|
Vascular aspects of cognitive impairment and dementia. J Cereb Blood Flow Metab 2013; 33:1696-706. [PMID: 24022624 PMCID: PMC3824191 DOI: 10.1038/jcbfm.2013.159] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 01/03/2023]
Abstract
Hypertension and stroke are highly prevalent risk factors for cognitive impairment and dementia. Alzheimer's disease (AD) and vascular dementia (VaD) are the most common forms of dementia, and both conditions are preceded by a stage of cognitive impairment. Stroke is a major risk factor for the development of vascular cognitive impairment (VCI) and VaD; however, stroke may also predispose to AD. Hypertension is a major risk factor for stroke, thus linking hypertension to VCI and VaD, but hypertension is also an important risk factor for AD. Reducing these two major, but modifiable, risk factors-hypertension and stroke-could be a successful strategy for reducing the public health burden of cognitive impairment and dementia. Intake of long-chain omega-3 polyunsaturated fatty acids (LC-n3-FA) and the manipulation of factors involved in the renin-angiotensin system (e.g. angiotensin II or angiotensin-converting enzyme) have been shown to reduce the risk of developing hypertension and stroke, thereby reducing dementia risk. This paper will review the research conducted on the relationship between hypertension, stroke, and dementia and also on the impact of LC-n3-FA or antihypertensive treatments on risk factors for VCI, VaD, and AD.
Collapse
|
63
|
Yang G, Park D, Lee SH, Bae DK, Yang YH, Kyung J, Kim D, Choi EK, Hong JT, Jeong HS, Kim HJ, Jang SK, Joo SS, Kim YB. Neuroprotective Effects of a Butanol Fraction of Rosa hybrida Petals in a Middle Cerebral Artery Occlusion Model. Biomol Ther (Seoul) 2013; 21:454-461. [PMID: 24404336 PMCID: PMC3879917 DOI: 10.4062/biomolther.2013.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/04/2013] [Accepted: 10/18/2013] [Indexed: 11/06/2022] Open
Abstract
The neuroprotective effects of a butanol fraction of white rose petal extract (WRPE-BF) were investigated in a middle cerebral artery occlusion (MCAO) model. Seven week-old male rats were orally administered WRPE-BF for 2 weeks and subjected to MCAO for 2 h, followed by reperfusion. Twenty-four h later, MCAO-induced behavioral dysfunctions were markedly improved in a dose-dependent manner by pretreatment with WRPE-BF. Moreover, higher dose of WRPE-BF not only decreased infarction area but also effectively reduced astrogliosis. The expression of inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein in MCAO model were markedly inhibited by WRPE-BF treatment. Notably, WRPE-BF decreased nitric oxide and malondialdehyde levels in the striatum and subventricular zone of stroke-challenged brains. These data suggested that WRPE-BF may exert its neuroprotective effects via anti-oxidative and anti-inflammatory activities against ischemia-reperfusion brain injury and could be a good candidate as a therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Goeun Yang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Dongsun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Sun Hee Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Dae-Kwon Bae
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Yun-Hui Yang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Jangbeen Kyung
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Dajeong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Ehn-Kyoung Choi
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Heon-Sang Jeong
- Department Food Science and Technology, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Hee Jung Kim
- Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University, Gangneung 210- 702, Republic of Korea
| | - Su Kil Jang
- Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University, Gangneung 210- 702, Republic of Korea
| | - Seong Soo Joo
- Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University, Gangneung 210- 702, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| |
Collapse
|
64
|
Jones ML, Mark PJ, Waddell BJ. Maternal omega-3 fatty acid intake increases placental labyrinthine antioxidant capacity but does not protect against fetal growth restriction induced by placental ischaemia-reperfusion injury. Reproduction 2013; 146:539-47. [PMID: 24023246 DOI: 10.1530/rep-13-0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Placental oxidative stress plays a key role in the pathophysiology of several placenta-related disorders. Oxidative stress occurs when excess reactive oxygen species (ROS) damages cellular components, an outcome limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) also limits ROS production. We recently reported that maternal dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation reduced placental oxidative damage and enhanced fetal and placental growth in the rats. Here, we examined the effect of n-3 PUFAs on placental antioxidant defences and whether n-3 PUFA supplementation could prevent growth restriction induced by placental ischaemia-reperfusion (IR), a known inducer of oxidative stress. Rats were fed either standard or high-n-3 PUFA diets from day 1 of pregnancy. Placentas were collected on days 17 and 22 in untreated pregnancies (term=day 23) and at day 22 following IR treatment on day 17. Expression of several antioxidant enzyme genes (Sod1, Sod2, Sod3, Cat, Txn1 and Gpx3) and Ucp2 was measured by quantitative RT-PCR in the placental labyrinth zone (LZ) and junctional zone (JZ). Cytosolic superoxide dismutase (SOD), mitochondrial SOD and catalase (CAT) activities were also analyzed. Maternal n-3 PUFA supplementation increased LZ mRNA expression of Cat at both gestational days (2- and 1.5-fold respectively; P<0.01) and female Sod2 at day 22 (1.4-fold, P<0.01). Cytosolic SOD activity increased with n-3 PUFA supplementation at day 22 (1.3-fold, P<0.05). Sod1 and Txn1 expression decreased marginally (30 and 22%, P<0.05). JZ antioxidant defences were largely unaffected by diet. Despite increased LZ antioxidant defences, maternal n-3 PUFA supplementation did not protect against placental IR-induced growth restriction of the fetus and placental LZ.
Collapse
Affiliation(s)
- Megan L Jones
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | |
Collapse
|
65
|
Kao TK, Chang CY, Ou YC, Chen WY, Kuan YH, Pan HC, Liao SL, Li GZ, Chen CJ. Tetramethylpyrazine reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. Exp Neurol 2013; 247:188-201. [PMID: 23644042 DOI: 10.1016/j.expneurol.2013.04.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/15/2013] [Accepted: 04/24/2013] [Indexed: 12/21/2022]
Abstract
Tetramethylpyrazine (TMP) has been used to treat ischemic stroke. However, scientific evidence related to its effectiveness or precise modes of neuroprotective action is largely unclear. This study provides evidence of an alternative target for TMP and sheds light on the mechanism of its physiological benefits. We report a global inhibitory effect of TMP on intracerebral cellular inflammatory response in a rat model of permanent cerebral ischemia. TMP exhibited a neuroprotective effect against ischemic deficits by reduction of behavioral disturbance, brain infarction, and edema. The results of immunohistochemistry, enzymatic assay, Western blot, real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and flow cytometric analysis revealed that TMP reduced the percentages of activated macrophages/microglia and infiltrative lymphocytes, neutrophils, and macrophages and pro-inflammatory cytokine expression after cerebral ischemia. In parallel with these immunosuppressive phenomena, TMP also attenuated the activities of ischemia-induced inflammation-associated signaling molecules and transcription factors. Another finding in this study was that the anti-inflammatory and neuroprotective effects of TMP were accompanied by a further elevated expression of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in ipsilateral neurons and macrophages/microglia after cerebral ischemia. Taken together, our results suggest that both the promotion of endogenous defense capacity and the attenuation of the extent and composition percentage of the major cellular inflammatory responses via targeting of macrophages/microglia by elevating Nrf2/HO-1 expression might actively contribute to TMP-mediated neuroprotection against cerebral ischemia.
Collapse
Affiliation(s)
- Tsung-Kuei Kao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Russell KL, Berman NEJ, Levant B. Low brain DHA content worsens sensorimotor outcomes after TBI and decreases TBI-induced Timp1 expression in juvenile rats. Prostaglandins Leukot Essent Fatty Acids 2013; 89:97-105. [PMID: 23796971 PMCID: PMC3753049 DOI: 10.1016/j.plefa.2013.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 12/31/2022]
Abstract
The effects of dietary modulation of brain DHA content on outcomes after TBI were examined in a juvenile rat model. Long-Evans rats with normal or diet-induced decreases in brain DHA were subjected to a controlled cortical impact or sham surgery on postnatal day 17. Rats with the greatest decreases in brain DHA had the poorest sensorimotor outcomes after TBI. Ccl2, Gfap, and Mmp 9 mRNA levels, and MMP-2 and -9 enzymatic activities were increased after TBI regardless of brain DHA level. Lesion volume was not affected by brain DHA level. In contrast, TBI-induced Timp1 expression was lower in rats on the Deficient diet and correlated with brain DHA level. These data suggest that decreased brain DHA content contributes to poorer sensorimotor outcomes after TBI through a mechanism involving modulation of Timp1 expression.
Collapse
Affiliation(s)
- Kristin L. Russell
- Department of Pharmacology, Toxicology, and Therapeutics, 3901 Rainbow Blvd., University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Nancy E. J. Berman
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Beth Levant
- Department of Pharmacology, Toxicology, and Therapeutics, 3901 Rainbow Blvd., University of Kansas Medical Center, Kansas City, KS 66160 USA
- Corresponding author: Department of Pharmacology, University of Kansas Medical Center, Mail Stop 1018, 3901 Rainbow Blvd., Kansas City, KS 66160, Phone: 1 913 588 7527, Fax: 1 913 588 7501,
| |
Collapse
|
67
|
Sahin N, Akdemir F, Orhan C, Aslan A, Agca CA, Gencoglu H, Ulas M, Tuzcu M, Viyaja J, Komorowskı JR, Sahin K. A novel nutritional supplement containing chromium picolinate, phosphatidylserine, docosahexaenoic acid, and boron activates the antioxidant pathway Nrf2/HO-1 and protects the brain against oxidative stress in high-fat-fed rats. Nutr Neurosci 2013; 15:42-7. [DOI: 10.1179/1476830512y.0000000018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
68
|
Hasadsri L, Wang BH, Lee JV, Erdman JW, Llano DA, Barbey AK, Wszalek T, Sharrock MF, Wang H(J. Omega-3 Fatty Acids as a Putative Treatment for Traumatic Brain Injury. J Neurotrauma 2013; 30:897-906. [DOI: 10.1089/neu.2012.2672] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Bonnie H. Wang
- Department of Internal Medicine, University of Illinois College of Medicine at Urbana-Champaign, Urbana, Illinois
| | - James V. Lee
- Department of Internal Medicine, University of Illinois College of Medicine at Urbana-Champaign, Urbana, Illinois
| | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Aron K. Barbey
- Department of Internal Medicine, University of Illinois College of Medicine at Urbana-Champaign, Urbana, Illinois
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, Illinois
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Tracey Wszalek
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Matthew F. Sharrock
- Department of Internal Medicine, University of Illinois College of Medicine at Urbana-Champaign, Urbana, Illinois
| | - Huan (John) Wang
- Department of Neurosurgery, University of Illinois College of Medicine at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
69
|
Ueda M, Inaba T, Nito C, Kamiya N, Katayama Y. Therapeutic impact of eicosapentaenoic acid on ischemic brain damage following transient focal cerebral ischemia in rats. Brain Res 2013; 1519:95-104. [PMID: 23643859 DOI: 10.1016/j.brainres.2013.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Long-chain n-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), have been shown to reduce ischemic neuronal injury. We investigated the effects of ethyl-EPA (EPA-E) on ischemic brain damage using a rat transient focal cerebral ischemia model. Male Sprague-Dawley rats (n=105) were subjected to 90 min of focal cerebral ischemia. EPA-E (100mg/kg/day) or vehicle was administered once a day for 3, 5 or 7 days prior to ischemia. Different withdrawal intervals of 3, 5, and 7 days prior to ischemia following 7-day pretreatment with EPA-E or vehicle were also examined. In addition, post-ischemic administration of EPA-E was investigated. Pretreatment with EPA-E for 7 and 5 days, but not 3 days, showed significant infarct volume reduction and neurological improvements when compared with vehicle pretreatment. In addition, withdrawal of EPA-E administration for 3 days, but not 5 and 7 days, also demonstrated significant infarct volume reduction and neurological improvements when compared with vehicle treatment. Post-ischemic treatment of EPA-E did not show any neuroprotection. Immunohistochemistry revealed that 7-day pretreatment with EPA-E significantly reduced cortical expression of 8-hydroxydeoxyguanosine (maker for oxidative DNA damage), 4-hydroxy-2-nonenal (maker for lipid peroxidation), phosphorylated adducin (marker for Rho-kinase activation) and von Willebrand factor (endothelial marker) when compared with vehicle pretreatment. In addition, phosphorylated adducin expression co-localized with von Willebrand factor immunoreactivity. The present study established the neuroprotective effect of EPA-E on ischemic brain damage following transient focal cerebral ischemia in rats, which may be involved in the suppression of oxidative stress and endothelial Rho-kinase activation.
Collapse
Affiliation(s)
- Masayuki Ueda
- Department of Neurology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| | | | | | | | | |
Collapse
|
70
|
Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure. J Nutr Biochem 2013; 24:760-9. [DOI: 10.1016/j.jnutbio.2012.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/19/2022]
|
71
|
Lim SN, Gladman SJ, Dyall SC, Patel U, Virani N, Kang JX, Priestley JV, Michael-Titus AT. Transgenic mice with high endogenous omega-3 fatty acids are protected from spinal cord injury. Neurobiol Dis 2013; 51:104-12. [DOI: 10.1016/j.nbd.2012.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/23/2012] [Accepted: 10/24/2012] [Indexed: 12/24/2022] Open
|
72
|
Williams JJ, Mayurasakorn K, Vannucci SJ, Mastropietro C, Bazan NG, Ten VS, Deckelbaum RJ. N-3 fatty acid rich triglyceride emulsions are neuroprotective after cerebral hypoxic-ischemic injury in neonatal mice. PLoS One 2013; 8:e56233. [PMID: 23437099 PMCID: PMC3577805 DOI: 10.1371/journal.pone.0056233] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/10/2013] [Indexed: 01/22/2023] Open
Abstract
We questioned if acute administration of n-3 fatty acids (FA) carried in n-3 rich triglyceride (TG) emulsions provides neuroprotection in neonatal mice subjected to hypoxic-ischemic (H/I) brain injury. We examined specificity of FA, optimal doses, and therapeutic windows for neuroprotection after H/I. H/I insult was induced in C57BL/6J 10-day-old mice by right carotid artery ligation followed by exposure to 8% O2 for 15 minutes at 37°C. Intraperitoneal injection with n-3-rich TG emulsions, n-6 rich TG emulsions or saline for control was administered at different time points before and/or after H/I. In separate experiments, dose responses were determined with TG containing only docosahexaenoic acid (Tri-DHA) or eicosapentaenoic acid (Tri-EPA) with a range of 0.1–0.375 g n-3 TG/kg, administered immediately after H/I insult. Infarct volume and cerebral blood flow (CBF) were measured. Treatment with n-3 TG emulsions both before- and after- H/I significantly reduced total infarct volume by a mean of 43% when administered 90 min prior to H/I and by 47% when administered immediately after H/I. In post-H/I experiments Tri-DHA, but not Tri-EPA exhibited neuroprotective effects with both low and high doses (p<0.05). Moreover, delayed post-H/I treatment with Tri-DHA significantly decreased total infarct volume by a mean of 51% when administered at 0 hr, by 46% at 1 hr, and by 51% at 2 hr after H/I insult. No protective effect occurred with Tri-DHA injection at 4 hr after H/I. There were no n-3 TG related differences in CBF. A significant reduction in brain tissue death was maintained after Tri-DHA injection at 8 wk after the initial brain injury. Thus, n-3 TG, specifically containing DHA, is protective against H/I induced brain infarction when administered up to 2 hr after H/I injury. Acute administration of TG-rich DHA may prove effective for treatment of stroke in humans.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bleeding Time
- Blood Glucose/metabolism
- Brain/blood supply
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- Brain Infarction/drug therapy
- Brain Infarction/pathology
- Brain Infarction/physiopathology
- Cerebrovascular Circulation/drug effects
- Docosahexaenoic Acids/administration & dosage
- Docosahexaenoic Acids/pharmacology
- Docosahexaenoic Acids/therapeutic use
- Eicosapentaenoic Acid/administration & dosage
- Eicosapentaenoic Acid/pharmacology
- Eicosapentaenoic Acid/therapeutic use
- Emulsions
- Fatty Acids, Omega-3/administration & dosage
- Fatty Acids, Omega-3/pharmacology
- Fatty Acids, Omega-3/therapeutic use
- Fatty Acids, Omega-6/administration & dosage
- Fatty Acids, Omega-6/pharmacology
- Fatty Acids, Omega-6/therapeutic use
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Injections, Intraperitoneal
- Mice
- Mice, Inbred C57BL
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Time Factors
- Triglycerides/blood
- Triglycerides/pharmacology
- Triglycerides/therapeutic use
Collapse
Affiliation(s)
- Jill J. Williams
- Institute of Human Nutrition, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Korapat Mayurasakorn
- Institute of Human Nutrition, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Susan J. Vannucci
- Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
| | - Christopher Mastropietro
- Department of Pediatrics, Children’s Hospital of Michigan and Wayne State University, Michigan, United States of America
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Vadim S. Ten
- Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Richard J. Deckelbaum
- Institute of Human Nutrition, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
73
|
Eckert GP, Lipka U, Muller WE. Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria. Prostaglandins Leukot Essent Fatty Acids 2013; 88:105-14. [PMID: 22727983 DOI: 10.1016/j.plefa.2012.05.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction represents a common early pathological event in brain aging and in neurodegenerative diseases, e.g., in Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD), as well as in ischemic stroke. In vivo and ex vivo experiments using animal models of aging and AD, PD, and HD mainly showed improvement of mitochondrial function after treatment with polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA). Thereby, PUFA are particular beneficial in animals treated with mitochondria targeting toxins. However, DHA showed adverse effects in a transgenic PD mouse model and it is not clear if a diet high or low in PUFA might provide neuroprotective effects in PD. Post-treatment with PUFA revealed conflicting results in ischemic animal models, but intravenous administered DHA provided neuroprotective efficacy after acute occlusion of the middle cerebral artery. In summary, the majority of preclinical data indicate beneficial effects of n-3 PUFA in neurodegenerative diseases, whereas most controlled clinical trials did not meet the expectations. Because of the high half-life of DHA in the human brain clinical studies may have to be initiated much earlier and have to last much longer to be more efficacious.
Collapse
Affiliation(s)
- Gunter P Eckert
- Department of Pharmacology, Biocenter, Campus Riedberg, Goethe-University, Frankfurt, Biocentre Geb. N260, R.1.09, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany.
| | | | | |
Collapse
|
74
|
McNamara RK. Deciphering the role of docosahexaenoic acid in brain maturation and pathology with magnetic resonance imaging. Prostaglandins Leukot Essent Fatty Acids 2013; 88:33-42. [PMID: 22521863 PMCID: PMC3458176 DOI: 10.1016/j.plefa.2012.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 01/11/2023]
Abstract
Animal studies have found that deficits in brain docosahexaenoic acid (DHA, 22:6n-3) accrual during perinatal development leads to transient and enduring abnormalities in brain development and function. Determining the relevance of this evidence to brain disorders in humans has been hampered by an inability to determine antimortem brain DHA levels and limitations associated with a postmortem approach. Accordingly, there is a need for alternate or complementary approaches to better understand the role of DHA in cortical function and pathology, and conventional magnetic resonance imaging (MRI) techniques may be ideally suited for this application. A major advantage of neuroimaging is that it permits prospective evaluation of the effects of manipulating DHA status on both clinical and neuroimaging variables. Emerging evidence from MRI studies suggest that greater DHA status is associated with cortical structural and functional integrity, and suggest that reduced DHA status and abnormalities in cortical function observed in psychiatric disorders may be interrelated phenomenon. Preliminary evidence from animal MRI studies support a critical role of DHA in normal brain development. Neuroimaging research in both human and animals therefore holds tremendous promise for developing a better understanding of the role of DHA status in cortical function, as well as for elucidating the impact of DHA deficiency on neuropathological processes implicated in the etiology and progression of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA.
| |
Collapse
|
75
|
Orr SK, Trépanier MO, Bazinet RP. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 88:97-103. [PMID: 22770766 DOI: 10.1016/j.plefa.2012.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component.
Collapse
Affiliation(s)
- Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|
76
|
Berman DR, Mozurkewich E, Liu Y, Shangguan Y, Barks JD, Silverstein FS. Docosahexaenoic acid augments hypothermic neuroprotection in a neonatal rat asphyxia model. Neonatology 2013; 104:71-78. [PMID: 23817197 PMCID: PMC4721269 DOI: 10.1159/000351011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/01/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND In neonatal rats, early post-hypoxia-ischemia (HI) administration of the omega-3 fatty acid docosahexaenoic acid (DHA) improves sensorimotor function, but does not attenuate brain damage. OBJECTIVE To determine if DHA administration in addition to hypothermia, now standard care for neonatal asphyxial brain injury, attenuates post-HI damage and sensorimotor deficits. METHODS Seven-day-old (P7) rats underwent right carotid ligation followed by 90 min of 8% O2 exposure. Fifteen minutes later, pups received injections of DHA 2.5 mg/kg (complexed to 25% albumin) or equal volumes of albumin. After a 1-hour recovery, pups were cooled (3 h, 30°C). Sensorimotor and pathology outcomes were initially evaluated on P14. In subsequent experiments, sensorimotor function was evaluated on P14, P21, and P28; histopathology was assessed on P28. RESULTS At P14, left forepaw function scores (normal: 20/20) were near normal in DHA + hypothermia-treated animals (mean ± SD 19.7 ± 0.7 DHA + hypothermia vs. 12.7 ± 3.5 albumin + hypothermia, p < 0.0001) and brain damage was reduced (mean ± SD right hemisphere damage 38 ± 17% with DHA + hypothermia vs. 56 ± 15% with albumin + hypothermia, p = 0.003). Substantial improvements on three sensorimotor function measures and reduced brain damage were evident up to P28. CONCLUSION Unlike post-HI treatment with DHA alone, treatment with DHA + hypothermia produced both sustained functional improvement and reduced brain damage after neonatal HI.
Collapse
Affiliation(s)
- Deborah R Berman
- Department of Obstetrics and Gynecology; Division of Maternal Fetal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ellen Mozurkewich
- Department of Obstetrics and Gynecology; Division of Maternal Fetal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yiqing Liu
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan USA
| | - Yu Shangguan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan USA
| | - John D Barks
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan USA
| | - Faye S Silverstein
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan USA
| |
Collapse
|
77
|
Cardoso HD, Passos PP, Lagranha CJ, Ferraz AC, Santos Júnior EF, Oliveira RS, Oliveira PEL, Santos RDCF, Santana DF, Borba JMC, Rocha-de-Melo AP, Guedes RCA, Navarro DMAF, Santos GKN, Borner R, Picanço-Diniz CW, Beltrão EI, Silva JF, Rodrigues MCA, Andrade da Costa BLS. Differential vulnerability of substantia nigra and corpus striatum to oxidative insult induced by reduced dietary levels of essential fatty acids. Front Hum Neurosci 2012; 6:249. [PMID: 22969716 PMCID: PMC3431008 DOI: 10.3389/fnhum.2012.00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 08/10/2012] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress (OS) has been implicated in the etiology of certain neurodegenerative disorders. Some of these disorders have been associated with unbalanced levels of essential fatty acids (EFA). The response of certain brain regions to OS, however, is not uniform and a selective vulnerability or resilience can occur. In our previous study on rat brains, we observed that a two-generation EFA dietary restriction reduced the number and size of dopaminergic neurons in the substantia nigra (SN) rostro-dorso-medial. To understand whether OS contributes to this effect, we assessed the status of lipid peroxidation (LP) and anti-oxidant markers in both SN and corpus striatum (CS) of rats submitted to this dietary treatment for one (F1) or two (F2) generations. Wistar rats were raised from conception on control or experimental diets containing adequate or reduced levels of linoleic and α-linolenic fatty acids, respectively. LP was measured using the thiobarbituric acid reaction method (TBARS) and the total superoxide dismutase (t-SOD) and catalase (CAT) enzymatic activities were assessed. The experimental diet significantly reduced the docosahexaenoic acid (DHA) levels of SN phospholipids in the F1 (~28%) and F2 (~50%) groups. In F1 adult animals of the experimental group there was no LP in both SN and CS. Consistently, there was a significant increase in the t-SOD activity (p < 0.01) in both regions. In EF2 young animals, degeneration in dopaminergic and non-dopaminergic neurons and a significant increase in LP (p < 0.01) and decrease in the CAT activity (p < 0.001) were detected in the SN, while no inter-group difference was found for these parameters in the CS. Conversely, a significant increase in t-SOD activity (p < 0.05) was detected in the CS of the experimental group compared to the control. The results show that unbalanced EFA dietary levels reduce the redox balance in the SN and reveal mechanisms of resilience in the CS under this stressful condition.
Collapse
Affiliation(s)
- Henriqueta D Cardoso
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Begum G, Kintner D, Liu Y, Cramer SW, Sun D. DHA inhibits ER Ca2+ release and ER stress in astrocytes following in vitro ischemia. J Neurochem 2012; 120:622-30. [PMID: 22129278 DOI: 10.1111/j.1471-4159.2011.07606.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Docosahexaenoic acid (DHA) has neuroprotective effects in several neurodegenerative disease conditions. However, the underlying mechanisms are not well understood. In the present study, we investigated the effects of DHA on astrocyte Ca(2+) signaling under in vitro ischemic conditions (oxygen/glucose deprivation and reoxygenation, OGD/REOX). OGD (2h) triggered a Ca(2+) (ER) store overload (∼1.9-fold). Ca(2+) uptake by the Ca(2+) (ER) stores was further augmented during REOX and Ca(2+) (ER) was elevated by ∼4.7-fold at 90min REOX. Interestingly, Ca(2+) (ER) stores abruptly released Ca(2+) at ∼120min REOX and emptied at 160min REOX. Depletion of Ca(2+) (ER) stores led to delayed elevation of intracellular Ca(2+) concentration (Ca(2+) (cyt) ) and cell death. Activation of the purinergic receptor P2Y1 was responsible for the release of Ca(2+) (ER) . Most importantly, DHA blocked the initial Ca(2+) (ER) store overload, the delayed depletion of Ca(2+) (ER) , and rise in Ca(2+) (cyt) , which was in part via inhibiting d-myo-inositol 1,4,5-triphosphate receptors. The DHA metabolite DiHDoHE exhibited similar effects. DHA also attenuated expression of phosphorylated eukaryotic initiation factor 2α and activating transcription factor-4, two ER stress markers, following in vitro ischemia. Taken together, these findings suggest that DHA has protective effects in astrocytes following in vitro ischemia, in part, by inhibiting Ca(2+) dysregulation and ER stress.
Collapse
Affiliation(s)
- Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
79
|
Chen WY, Lin SY, Pan HC, Liao SL, Chuang YH, Yen YJ, Lin SY, Chen CJ. Beneficial effect of docosahexaenoic acid on cholestatic liver injury in rats. J Nutr Biochem 2012; 23:252-264. [PMID: 21497498 DOI: 10.1016/j.jnutbio.2010.11.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 11/09/2010] [Accepted: 11/23/2010] [Indexed: 01/20/2023]
Abstract
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid that has been shown to possess health beneficial effects, including hepatoprotection. However, the molecular mechanism of DHA-mediated hepatoprotection is not fully understood. In the present study, we report the protective effect of DHA on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily administration of DHA was started 2 weeks before injury and lasted for 5 weeks. In comparison with the control group, the BDL group showed hepatic damage as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by chronic DHA supplementation. DHA alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), intereukin-1beta, connective tissue growth factor and collagen expression. The anti-fibrotic effect of DHA was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. DHA also attenuated BDL-induced leukocyte accumulation and nuclear factor-κB (NF-κB) activation. Further studies demonstrated an inhibitory effect of DHA on redox-sensitive intracellular signaling molecule extracellular signal-regulated kinase (ERK). Taken together, the hepatoprotective, anti-inflammatory and anti-fibrotic effects of DHA seem to be multifactorial. The beneficial effects of chronic DHA supplementation are associated with anti-oxidative and anti-inflammatory potential as well as down-regulation of NF-κB and transforming growth factor beta/Smad signaling probably via interference with ERK activation.
Collapse
Affiliation(s)
- Wen-Ying Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Figueroa JD, Cordero K, Baldeosingh K, Torrado AI, Walker RL, Miranda JD, Leon MD. Docosahexaenoic acid pretreatment confers protection and functional improvements after acute spinal cord injury in adult rats. J Neurotrauma 2011; 29:551-66. [PMID: 21970623 DOI: 10.1089/neu.2011.2141] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Currently, few interventions have been shown to successfully limit the progression of secondary damage events associated with the acute phase of spinal cord injury (SCI). Docosahexaenoic acid (DHA, C22:6 n-3) is neuroprotective when administered following SCI, but its potential as a pretreatment modality has not been addressed. This study used a novel DHA pretreatment experimental paradigm that targets acute cellular and molecular events during the first week after SCI in rats. We found that DHA pretreatment reduced functional deficits during the acute phase of injury, as shown by significant improvements in Basso-Beattie-Bresnahan (BBB) locomotor scores, and the detection of transcranial magnetic motor evoked potentials (tcMMEPs) compared to vehicle-pretreated animals. We demonstrated that, at 7 days post-injury, DHA pretreatment significantly increased the percentage of white matter sparing, and resulted in axonal preservation, compared to the vehicle injections. We found a significant increase in the survival of NG2+, APC+, and NeuN+ cells in the ventrolateral funiculus (VLF), dorsal corticospinal tract (dCST), and ventral horns, respectively. Interestingly, these DHA protective effects were observed despite the lack of inhibition of inflammatory markers for monocytes/macrophages and astrocytes, ED1/OX42 and GFAP, respectively. DHA pretreatment induced levels of Akt and cyclic AMP responsive element binding protein (CREB) mRNA and protein. This study shows for the first time that DHA pretreatment ameliorates functional deficits, and increases tissue sparing and precursor cell survival. Further, our data suggest that DHA-mediated activation of pro-survival/anti-apoptotic pathways may be independent of its anti-inflammatory effects.
Collapse
Affiliation(s)
- Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Lalancette-Hébert M, Julien C, Cordeau P, Bohacek I, Weng YC, Calon F, Kriz J. Accumulation of dietary docosahexaenoic acid in the brain attenuates acute immune response and development of postischemic neuronal damage. Stroke 2011; 42:2903-9. [PMID: 21852616 DOI: 10.1161/strokeaha.111.620856] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Consumption of fish has been shown to reduce risk of coronary heart disease and, possibly, of ischemic stroke. Because docosahexaenoic acid (DHA) is the most likely neuroactive component within fish oil, we hypothesized that exposing mice to a DHA-enriched diet may reduce inflammation and protect neurons against ischemic injury. METHODS To visualize the effects of DHA on neuroinflammation after stroke, TLR2-fluc-GFP transgenic mice were exposed to either a control diet, a diet depleted in n-3 polyunsaturated fatty acid, or a diet enriched in DHA during 3 months. Real-time biophotonic/bioluminescence imaging of the TLR2 response was performed before and after middle cerebral artery occlusion, whereas cytokines concentrations and stroke area analyses were performed at 3 and 7 days after middle cerebral artery occlusion, respectively. RESULTS We show that a 3-month DHA treatment prevented microglial activation after ischemic injury, reduced the ischemic lesion size, and increased levels of the antiapoptotic molecule Bcl-2 in the brain. Additional analysis revealed a significant decrease in the levels of COX2 and IL-1β, but not in other proinflammatory cytokines. Importantly, long-term DHA supplementation significantly changed the n-3:n-6 polyunsaturated fatty acid ratio in the brain. CONCLUSIONS Collectively, these data indicate that diet-induced accumulation of DHA in the brain protects against postischemic inflammation and injury. Because DHA is widely available at low cost and has an excellent safety profile, our data suggest that increased DHA intake may provide protection against acute immune response/brain damage in ischemic stroke.
Collapse
Affiliation(s)
- Mélanie Lalancette-Hébert
- Department of Psychiatry and Neuroscience, Faculty of Medicine, University Laval, 2705 boul. Laurier, Quebec City, QC, G1V 4G2 Canada
| | | | | | | | | | | | | |
Collapse
|
82
|
Mariee AD, Abd-Ellah MF. Protective effect of docosahexaenoic acid against cyclosporine A-induced nephrotoxicity in rats: a possible mechanism of action. Ren Fail 2011; 33:66-71. [PMID: 21219208 DOI: 10.3109/0886022x.2010.541584] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this experimental study was to investigate whether, and how then, docosahexaenoic acid (DHA) could alleviate the cyclosporine A (CsA)-induced nephrotoxicity. Three main groups of Sprague-Dawley rats were treated orally with CsA (25 mg/kg), DHA (100 mg/kg), and CsA along with DHA. A corresponding control group was also used. DHA administration significantly reduced CsA-induced nephrotoxicity and associated hyperlipidemia and proteinuria as assessed by estimating serum triacylglycerol, serum total cholesterol, serum total protein, serum urea, and creatinine clearance. Furthermore, urinary excretions of protein and N-acetyl-β-D-glucosaminidase were significantly inhibited following DHA administration. DHA supplementation slightly attenuated the oxidative damage in kidney tissues as evaluated by the levels of thiobarbituric acid-reacting substances and protein carbonyl content in the kidney homogenate, although there were no significant differences between CsA-intoxicated and DHA-treated animals. Moreover, DHA treatment significantly restored total nitric oxide (NO) levels in both renal tissues and urine. This study demonstrates the ability of DHA to ameliorate CsA-induced renal dysfunction, which might be beneficial to enhance the therapeutic index of CsA. The data suggest that the protective potential of DHA in the prevention of CsA nephrotoxicity in rats was mainly associated with the increase of total NO bioavailability in renal tissues. Nevertheless, the exact independent mechanism in which DHA exerts its beneficial effect is yet to be fully elucidated.
Collapse
Affiliation(s)
- Amr Darwish Mariee
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | | |
Collapse
|
83
|
Expression of Bcl-2 and Bax after hippocampal ischemia in DHA + EPA treated rats. Neurol Sci 2011; 32:811-8. [PMID: 21617951 DOI: 10.1007/s10072-011-0621-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
Abstract
To determine the impact of ω3 fatty acids on post-ischemic expression of pro- and anti-apoptotic proteins in hippocampus, male rats were received 10 or 100 mg/kg [Docosahexaenoic acid (DHA) + Ecosapentaenoic acid (EPA); gavage; 21 days before ischemia to 2-10 days after ischemia]. Global cerebral ischemia reperfusion (IR) was performed using the four-vessel occlusion model; ischemia 8 min and reperfusion 6, 48 h and 10 days. IR increased Bcl-2 and Bax expression after 48 h (p < 0.05 and p < 0.01 vs. sham) and 10 days (only Bax; p < 0.05), without significant difference with DHA + EPA groups after 6 h. But after 48 h expression of Bcl-2 increased (p < 0.05 vs. IR) and Bax decreased (p < 0.05). At day 10 after ischemia expression of Bax in DHA + EPA acid groups was less than IR (p < 0.05) and in 100 mg/kg DHA + EPA group Bcl-2 expression was more than IR (p < 0.05). These data suggested that long-term gavage with DHA + EPA increase hippocampal neurons survival for days after ischemia, revealed by increased Bcl-2 and decreased Bax expressions.
Collapse
|
84
|
Shin SS, Dixon CE. Oral fish oil restores striatal dopamine release after traumatic brain injury. Neurosci Lett 2011; 496:168-71. [PMID: 21514362 DOI: 10.1016/j.neulet.2011.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 11/28/2022]
Abstract
Omega-3 fatty acid administration can affect the release of neurotransmitters and reduce inflammation and oxidative stress, but its use in traumatic brain injury (TBI) has not been described extensively. We investigated the effect of 7 day oral fish oil treatment in the recovery of potassium evoked dopamine release after TBI. Sham rats and TBI rats were given either olive oil or fish oil by oral gavage and were subject to cerebral microdialysis. Olive oil treated TBI rats showed significant dopamine release deficit compared to sham rats, and this deficit was restored with oral fish oil treatment. There was no effect of fish oil treatment on extracellular levels of dopamine metabolites such as 3,4-dihydroxyphenylacetic acid and homovanillic acid. These results suggest the therapeutic potential of omega-3 fatty acids in restoring dopamine neurotransmission deficits after TBI.
Collapse
Affiliation(s)
- Samuel S Shin
- Brain Trauma Research Center, Department of Neurosurgery, University of Pittsburgh, 3434 Fifth Ave, Suite 201, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
85
|
Mayurasakorn K, Williams JJ, Ten VS, Deckelbaum RJ. Docosahexaenoic acid: brain accretion and roles in neuroprotection after brain hypoxia and ischemia. Curr Opin Clin Nutr Metab Care 2011; 14:158-67. [PMID: 21178607 PMCID: PMC4201839 DOI: 10.1097/mco.0b013e328342cba5] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW With important effects on neuronal lipid composition, neurochemical signaling and cerebrovascular pathobiology, docosahexaenoic acid (DHA), a n-3 polyunsaturated fatty acid, may emerge as a neuroprotective agent against cerebrovascular disease. This paper examines pathways for DHA accretion in brain and evidence for possible roles of DHA in prophylactic and therapeutic approaches for cerebrovascular disease. RECENT FINDINGS DHA is a major n-3 fatty acid in the mammalian central nervous system and enhances synaptic activities in neuronal cells. DHA can be obtained through diet or to a limited extent via conversion from its precursor, α-linolenic acid (α-LNA). DHA attenuates brain necrosis after hypoxic ischemic injury, principally by modulating membrane biophysical properties and maintaining integrity in functions between presynaptic and postsynaptic areas, resulting in better stabilizing intracellular ion balance in hypoxic-ischemic insult. Additionally, DHA alleviates brain apoptosis, by inducing antiapoptotic activities such as decreasing responses to reactive oxygen species, upregulating antiapoptotic protein expression, downregulating apoptotic protein expression, and maintaining mitochondrial integrity and function. SUMMARY DHA in brain relates to a number of efficient delivery and accretion pathways. In animal models DHA renders neuroprotection after hypoxic-ischemic injury by regulating multiple molecular pathways and gene expression.
Collapse
Affiliation(s)
- Korapat Mayurasakorn
- Institute of Human Nutrition, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Jill J. Williams
- Institute of Human Nutrition, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Vadim S. Ten
- Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Richard J. Deckelbaum
- Institute of Human Nutrition, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| |
Collapse
|
86
|
Mills JD, Hadley K, Bailes JE. Dietary Supplementation With the Omega-3 Fatty Acid Docosahexaenoic Acid in Traumatic Brain Injury. Neurosurgery 2011; 68:474-81; discussion 481. [DOI: 10.1227/neu.0b013e3181ff692b] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- James D. Mills
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | - Julian E. Bailes
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
87
|
Okabe N, Nakamura T, Toyoshima T, Miyamoto O, Lu F, Itano T. Eicosapentaenoic acid prevents memory impairment after ischemia by inhibiting inflammatory response and oxidative damage. J Stroke Cerebrovasc Dis 2010; 20:188-95. [PMID: 20621517 DOI: 10.1016/j.jstrokecerebrovasdis.2009.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/14/2009] [Indexed: 12/12/2022] Open
Abstract
Previous studies have demonstrated that the generation of reactive oxygen species and an excessive inflammatory reaction are involved in the progression of neural damage following brain ischemia. In this study, we focused on the anti-inflammatory and antioxidant properties of eicosapentaenoic acid (EPA). Gerbils were treated intraperitoneally with 500 mg/kg of EPA ethyl for 4 weeks until the day of forebrain ischemia, which was induced by occluding the bilateral common carotid artery for 5 minutes. In the first part of the 2-part experiment, the effect of EPA treatment was evaluated using hematoxylin and eosin staining and deoxynucleotidyl transferase-mediated dUTP nick-end labeling as a marker of cell death (n=3 per group). The inflammatory reaction was evaluated using anti-Iba1 immunohistochemistry, a marker of microglial activation (n=3 per group), and detection of 8-hydroxyl-2'-deoxyguanosine, a marker of oxidative DNA damage (n=4 per group). In the second part of the experiment, the effect of EPA treatment on memory function was examined using an 8-arm radial maze (n=6 per group). EPA treatment significantly inhibited DNA oxidative damage (P < .05) and accumulation of Iba1-positive cells in the CA1 area at 12 and 72 hours after the induction of ischemia, and also decreased apoptotic neurons and neuronal death (P < .001) at 72 hours after ischemia. EPA treatment also significantly improved memory function (P < .05). These findings suggest that EPA inhibits the inflammatory reaction and oxidative damage occurring after ischemic brain injury, and also may contribute to the prevention of neural damage and memory impairment following such injury.
Collapse
Affiliation(s)
- Naohiko Okabe
- Department of Neurobiology, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
88
|
Pan PH, Lin SY, Ou YC, Chen WY, Chuang YH, Yen YJ, Liao SL, Raung SL, Chen CJ. Stearic acid attenuates cholestasis-induced liver injury. Biochem Biophys Res Commun 2010; 391:1537-1542. [PMID: 20036638 DOI: 10.1016/j.bbrc.2009.12.119] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 12/18/2009] [Indexed: 01/15/2023]
Abstract
Inflammation is involved in cholestasis-induced hepatic damage. Stearic acid has been shown to possess anti-inflammatory potential. We assessed whether stearic acid has protective effects against cholestasis-related liver damage. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3weeks. Daily administration of stearic acid was started 2weeks before injury and lasted for 5weeks. In comparison with the control group, the BDL group showed hepatic damage as evidenced by elevation in serum biochemicals, ductular reaction, fibrosis, and inflammation. These pathophysiological changes were attenuated by chronic stearic acid supplementation. The anti-fibrotic effect of stearic acid was accompanied by reductions in alpha-smooth muscle actin-positive matrix-producing cells and critical fibrogenic cytokine transforming growth factor beta-1 production. Stearic acid also attenuated BDL-induced leukocyte accumulation and NF-kappaB activation. The data indicate that stearic acid attenuates BDL-induced cholestatic liver injury. The hepatoprotective effect of stearic acid is associated with anti-inflammatory potential.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Pediatrics, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Dyall SC. Amyloid-Beta Peptide, Oxidative Stress and Inflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Omega-3 Polyunsaturated Fatty Acids. Int J Alzheimers Dis 2010. [PMCID: PMC2911611 DOI: 10.4061/2010/274128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia in the elderly and is a progressive neurodegenerative disorder characterised by a decline in cognitive function and also profound alterations in mood and behaviour. The pathology of the disease is characterised by the presence of extracellular amyloid peptide deposits and intracellular neurofibrillary tangles in the brain. Although many hypotheses have been put forward for the aetiology of the disease, increased inflammation and oxidative stress appear key to be features contributing to the pathology. The omega-3 polyunsaturated fats, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have well-characterised effects on inflammation and may have neuroprotective effects in a number of neurodegenerative conditions including Alzheimer's disease. The aims of this paper are to review the neuroprotective effects of EPA and DHA in Alzheimer's disease, with special emphasis on their role in modulating oxidative stress and inflammation and also examine their potential as therapeutic agents.
Collapse
Affiliation(s)
- S. C. Dyall
- British College of Osteopathic Medicine, Lief House, 120-122 Finchely Road, London NW5 5HR, UK
| |
Collapse
|
90
|
Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke 2009; 40:3121-6. [PMID: 19542051 PMCID: PMC2745047 DOI: 10.1161/strokeaha.109.555979] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/14/2009] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Docosahexaenoic acid (DHA; 22:6n-3), an omega-3 essential fatty acid family member, is the precursor of neuroprotectin D1, which downregulates apoptosis and, in turn, promotes cell survival. This study was conducted to assess whether DHA would show neuroprotective efficacy when systemically administered in different doses after middle cerebral artery occlusion (MCAo) in rats. METHODS Sprague-Dawley rats were anesthetized with isoflurane and subjected to 2 hour of MCAo. Animals were treated with either DHA (low doses=3.5 or 7 mg/kg; medium doses=16 or 35 mg/kg; and high dose=70 mg/kg) or an equivalent volume of saline intravenously 3 hours after MCAo onset. Neurologic status was evaluated during occlusion (60 minutes) and on days 1, 2, 3, and 7 after MCAo. Seven days after MCAo, brains were perfusion-fixed, and infarct areas and volumes were determined. RESULTS Only the low and medium doses of DHA significantly improved the neurologic score compared with vehicle-treated rats at 24 hours, 48 hours, 72 hours, and 7 days. DHA markedly reduced total corrected infarct volume in all treated groups compared with vehicle-treated rats (3.5 mg/kg, 26+/-9 mm(3); 7 mg/kg, 46+/-12 mm(3); 16 mg/kg, 37+/-5 mm(3); and 35 mg/kg, 34+/-15 mm(3) vs vehicle, 94+/-12 mm(3)). Cortical and striatal infarct volumes were also significantly reduced by treatment with DHA. No neuroprotective effects were observed with 70 mg/kg DHA. CONCLUSIONS We conclude that DHA experimental therapy at low and medium doses improves neurologic and histologic outcomes after focal cerebral ischemia and might provide benefits in patients after ischemic stroke.
Collapse
Affiliation(s)
- Ludmila Belayev
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
91
|
Rosa AO, Rapoport SI. Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:697-705. [PMID: 19327408 PMCID: PMC2735787 DOI: 10.1016/j.bbalip.2009.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/01/2009] [Accepted: 03/11/2009] [Indexed: 02/01/2023]
Abstract
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are found in high concentrations in brain cell membranes and are important for brain function and structure. Studies suggest that AA and DHA are hydrolyzed selectively from the sn-2 position of synaptic membrane phospholipids by Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) and Ca(2+)-independent phospholipase A(2) (iPLA(2)), respectively, resulting in increased levels of the unesterified fatty acids and lysophospholipids. Cell studies also suggest that AA and DHA release depend on increased concentrations of Ca(2+), even though iPLA(2) has been thought to be Ca(2+)-independent. The source of Ca(2+) for activation of cPLA(2) is largely extracellular, whereas Ca(2+) released from the endoplasmic reticulum can activate iPLA(2) by a number of mechanisms. This review focuses on the role of Ca(2+) in modulating cPLA(2) and iPLA(2) activities in different conditions. Furthermore, a model is suggested in which neurotransmitters regulate the activity of these enzymes and thus the balanced and localized release of AA and DHA from phospholipid in the brain, depending on the primary source of the Ca(2+) signal.
Collapse
Affiliation(s)
- Angelo O Rosa
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|