51
|
Mittag A, Singer A, Hoera C, Westermann M, Kämpfe A, Glei M. Impact of in vitro digested zinc oxide nanoparticles on intestinal model systems. Part Fibre Toxicol 2022; 19:39. [PMID: 35644618 PMCID: PMC9150335 DOI: 10.1186/s12989-022-00479-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Zinc oxide nanoparticles (ZnO NP) offer beneficial properties for many applications, especially in the food sector. Consequently, as part of the human food chain, they are taken up orally. The toxicological evaluation of orally ingested ZnO NP is still controversial. In addition, their physicochemical properties can change during digestion, which leads to an altered biological behaviour. Therefore, the aim of our study was to investigate the fate of two different sized ZnO NP (< 50 nm and < 100 nm) during in vitro digestion and their effects on model systems of the intestinal barrier. Differentiated Caco-2 cells were used in mono- and coculture with mucus-producing HT29-MTX cells. The cellular uptake, the impact on the monolayer barrier integrity and cytotoxic effects were investigated after 24 h exposure to 123–614 µM ZnO NP. Results
In vitro digested ZnO NP went through a morphological and chemical transformation with about 70% free zinc ions after the intestinal phase. The cellular zinc content increased dose-dependently up to threefold in the monoculture and fourfold in the coculture after treatment with digested ZnO NP. This led to reactive oxygen species but showed no impact on cellular organelles, the metabolic activity, and the mitochondrial membrane potential. Only very small amounts of zinc (< 0.7%) reached the basolateral area, which is due to the unmodified transepithelial electrical resistance, permeability, and cytoskeletal morphology. Conclusions Our results reveal that digested and, therefore, modified ZnO NP interact with cells of an intact intestinal barrier. But this is not associated with serious cell damage.
Collapse
|
52
|
Ding Z, Shen H, Xu K, Wu Y, Wang S, Yi F, Wang D, Liu Y. Comprehensive Analysis of mTORC1 Signaling Pathway–Related Genes in the Prognosis of HNSCC and the Response to Chemotherapy and Immunotherapy. Front Mol Biosci 2022; 9:792482. [PMID: 35573741 PMCID: PMC9100579 DOI: 10.3389/fmolb.2022.792482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: The mammalian target of the rapamycin complex 1 (mTORC1) signaling pathway has emerged as a crucial player in the oncogenesis and development of head and neck squamous cell carcinoma (HNSCC), however, to date, no relevant gene signature has been identified. Therefore, we aimed to construct a novel gene signature based on the mTORC1 pathway for predicting the outcomes of patients with HNSCC and their response to treatment. Methods: The gene expression and clinical data were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The key prognostic genes associated with the mTORC1 pathway were screened by univariate Cox regression analyses. A prognostic signature was then established based on significant factors identified in the multivariate Cox regression analysis. The performance of the multigene signature was evaluated by the Kaplan–Meier (K–M) survival analysis and receiver operating characteristic (ROC) analysis. Based on the median risk score, patients were categorized into high- and low-risk groups. Subsequently, a hybrid prognostic nomogram was constructed and estimated by a calibration plot and decision curve analysis. Furthermore, immune cell infiltration and therapeutic responses were compared between the two risk groups. Finally, we measured the expression levels of seven genes by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Results: The mTORC1 pathway–based signature was constructed using the seven identified genes (SEC11A, CYB5B, HPRT1, SLC2A3, SC5D, CORO1A, and PIK3R3). Patients in the high-risk group exhibited a lower overall survival (OS) rate than those in the low-risk group in both datasets. Through the univariate and multivariate Cox regression analyses, this gene signature was confirmed to be an independent prognostic risk factor for HNSCC. The constructed nomogram based on age, American Joint Committee on Cancer (AJCC) stage, and the risk score exhibited satisfactory performance in predicting the OS. In addition, immune cell infiltration and chemotherapeutic and immunotherapeutic responses differed significantly between the two risk groups. The expression levels of SEC11A and CYB5B were higher in HNSCC tissues than in normal tissues. Conclusion: Our study established and verified an mTORC1 signaling pathway–related gene signature that could be used as a novel prognostic factor for HNSCC.
Collapse
Affiliation(s)
- Zhao Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Hailong Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Ke Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Yu Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Otolaryngology, General Hospital of Anhui Wanbei Coal Power Group, Suzhou, China
| | - Shuhao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Fangzheng Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Daming Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yehai Liu,
| |
Collapse
|
53
|
Mittag A, Owesny P, Hoera C, Kämpfe A, Glei M. Effects of Zinc Oxide Nanoparticles on Model Systems of the Intestinal Barrier. TOXICS 2022; 10:49. [PMID: 35202236 PMCID: PMC8880068 DOI: 10.3390/toxics10020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Zinc oxide nanoparticles (ZnO NP) are often used in the food sector, among others, because of their advantageous properties. As part of the human food chain, they are inevitably taken up orally. The debate on the toxicity of orally ingested ZnO NP continues due to incomplete data. Therefore, the aim of our study was to examine the effects of two differently sized ZnO NP (<50 nm and <100 nm primary particle size; 123-614 µmol/L) on two model systems of the intestinal barrier. Differentiated Caco-2 enterocytes were grown on Transwell inserts in monoculture and also in coculture with the mucus-producing goblet cell line HT29-MTX. Although no comprehensive mucus layer was detectable in the coculture, cellular zinc uptake was clearly lower after a 24-h treatment with ZnO NP than in monocultured cells. ZnO NP showed no influence on the permeability, metabolic activity, cytoskeleton and cell nuclei. The transepithelial electrical resistance was significantly increased in the coculture model after treatment with ≥307 µmol/L ZnO NP. Only small zinc amounts (0.07-0.65 µg/mL) reached the basolateral area. Our results reveal that the cells of an intact intestinal barrier interact with ZnO NP but do not suffer serious damage.
Collapse
Affiliation(s)
- Anna Mittag
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| | - Patricia Owesny
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| | - Christian Hoera
- Swimming and Bathing Pool Water, Chemical Analytics, German Environment Agency, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; (C.H.); (A.K.)
| | - Alexander Kämpfe
- Swimming and Bathing Pool Water, Chemical Analytics, German Environment Agency, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; (C.H.); (A.K.)
| | - Michael Glei
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| |
Collapse
|
54
|
Dey TK, Bose P, Paul S, Karmakar BC, Saha RN, Gope A, Koley H, Ghosh A, Dutta S, Dhar P, Mukhopadhyay AKKUMAR. Protective efficacy of fish oil nanoemulsion against non-typhoidal Salmonella mediated mucosal inflammation and loss of barrier function. Food Funct 2022; 13:10083-10095. [DOI: 10.1039/d1fo04419b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-typhoidal Salmonella serotypes are well-adapted to utilize the inflammation for colonization in mammalian gut mucosa and bring down the integrity of the epithelial barrier in mammalian intestine. The present study...
Collapse
|
55
|
Hujoel IA, Hujoel MLA. The Role of Copper and Zinc in Irritable Bowel Syndrome: A Mendelian Randomization Study. Am J Epidemiol 2022; 191:85-92. [PMID: 34132328 DOI: 10.1093/aje/kwab180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Irritable bowel syndrome (IBS) has been associated with copper and zinc imbalance and a zinc-deficient diet. Mendelian randomization was used in this study to evaluate if genetically determined copper and zinc levels play a causal role in the development of IBS. Three single-nucleotide polymorphisms (SNPs; rs1175550, rs2769264, and rs2769270) associated with erythrocyte copper levels, and 3 SNPs associated with erythrocyte zinc levels (rs11638477, rs1532423, and rs2120019) in the Australian Twin Study (1993-1996 and 2001-2005) were used as instrumental variables for levels of these metals. The association of these SNPs with IBS was tested using summary statistics computed from data on 340,331 individuals from the UK Biobank, 5,548 of whom had IBS (2006-2010). Genetically predicted high serum copper levels were associated with a lower risk of IBS (odds ratio = 0.89; 95% confidence interval: 0.80, 0.98). Genetically predicted, high serum zinc levels were nonsignificantly associated with a higher risk of IBS (odds ratio = 1.06; 95% confidence interval: 0.95, 1.18). Sensitivity analysis did not suggest the presence of pleiotropy. These results suggest that high erythrocyte copper levels may be protective against IBS development. Targeting higher levels, therefore, may provide an avenue to reduce the likelihood of IBS development in high-risk individuals.
Collapse
|
56
|
Fujimoto Y, Kaji K, Nishimura N, Enomoto M, Murata K, Takeda S, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Yoshiji H. Dual therapy with zinc acetate and rifaximin prevents from ethanol-induced liver fibrosis by maintaining intestinal barrier integrity. World J Gastroenterol 2021; 27:8323-8342. [PMID: 35068872 PMCID: PMC8717023 DOI: 10.3748/wjg.v27.i48.8323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic overload of gut-derived lipopolysaccharide dictates the progression of alcoholic liver disease (ALD) by inducing oxidative stress and activating Kupffer cells and hepatic stellate cells through toll-like receptor 4 signaling. Therefore, targeting the maintenance of intestinal barrier integrity has attracted attention for the treatment of ALD. Zinc acetate and rifaximin, which is a nonabsorbable antibiotic, had been clinically used for patients with cirrhosis, particularly those with hepatic encephalopathy, and had been known to improve intestinal barrier dysfunction. However, only few studies focused on their efficacies in preventing the ALD-related fibrosis development. AIM To investigate the effects of a combined zinc acetate with rifaximin on liver fibrosis in a mouse ALD model. METHODS To induce ALD-related liver fibrosis, female C57BL/6J mice were fed a 2.5% (v/v) ethanol-containing Lieber-DeCarli liquid diet and received intraperitoneal carbon tetrachloride (CCl4) injection twice weekly (1 mL/kg) for 8 wk. Zinc acetate (100 mg/L) and/or rifaximin (100 mg/L) were orally administered during experimental period. Hepatic steatosis, inflammation and fibrosis as well as intestinal barrier function were evaluated by histological and molecular analyses. Moreover, the direct effects of both agents on Caco-2 barrier function were assessed by in vitro assays. RESULTS In the ethanol plus CCl4-treated mice, combination of zinc acetate and rifaximin attenuated oxidative lipid peroxidation with downregulation of Nox2 and Nox4. This combination significantly inhibited the Kupffer cells expansion and the proinflammatory response with blunted hepatic exposure of lipopolysaccharide and the toll-like receptor 4/nuclear factor kB pathway. Consequently, liver fibrosis and hepatic stellate cells activation were efficiently suppressed with downregulation of Mmp-2, -9, -13, and Timp1. Both agents improved the atrophic changes and permeability in the ileum, with restoration of tight junction proteins (TJPs) by decreasing the expressions of tumor necrosis factor α and myosin light chain kinase. In the in vitro assay, both agents directly reinforced ethanol or lipopolysaccharide-stimulated paracellular permeability and upregulated TJPs in Caco-2 cells. CONCLUSION Dual therapy with zinc acetate and rifaximin may serve as a strategy to prevent ALD-related fibrosis by maintaining intestinal barrier integrity.
Collapse
Affiliation(s)
- Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Soichi Takeda
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| |
Collapse
|
57
|
Zhang C, Yao D, Su Z, Chen H, Hao P, Liao Y, Guo Y, Yang D. Copper/Zinc-Modified Palygorskite Protects Against Salmonella Typhimurium Infection and Modulates the Intestinal Microbiota in Chickens. Front Microbiol 2021; 12:739348. [PMID: 34956111 PMCID: PMC8696032 DOI: 10.3389/fmicb.2021.739348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
Palygorskite (Pal), a clay nanoparticle, has been demonstrated to be a vehicle for drug delivery. Copper has antibacterial properties, and zinc is an essential micronutrient for intestinal health in animals and humans. However, whether copper/zinc-modified Pal (Cu/Zn-Pal) can protect chickens from Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) infection remains unclear. In this study, three complexes (Cu/Zn-Pal-1, Cu/Zn-Pal-2, and Cu/Zn-Pal-3) were prepared, and Cu/Zn-Pal-1 was shown to be the most effective at inhibiting the growth of S. Typhimurium in vitro, whereas natural Pal alone had no inhibitory effect. In vivo, Cu/Zn-Pal-1 reduced S. Typhimurium colonization in the intestine of infected chickens and relieved S. Typhimurium-induced organ and intestinal mucosal barrier damage. Moreover, this reduction in Salmonella load attenuated intestinal inflammation and the oxidative stress response in challenged chickens. Additionally, Cu/Zn-Pal-1 modulated the intestinal microbiota in infected chickens, which was characterized by the reduced abundance of Firmicutes and the increased abundance of Proteobacteria and Bacteroidetes. Our results indicated that the Cu/Zn-Pal-1 complex may be an effective feed supplement for reducing S. Typhimurium colonization of the gut.
Collapse
Affiliation(s)
- Chaozheng Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dawei Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zenan Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huan Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pan Hao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yun Liao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yiwen Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Deji Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
58
|
Panpetch W, Visitchanakun P, Saisorn W, Sawatpanich A, Chatthanathon P, Somboonna N, Tumwasorn S, Leelahavanichkul A. Lactobacillus rhamnosus attenuates Thai chili extracts induced gut inflammation and dysbiosis despite capsaicin bactericidal effect against the probiotics, a possible toxicity of high dose capsaicin. PLoS One 2021; 16:e0261189. [PMID: 34941893 PMCID: PMC8699716 DOI: 10.1371/journal.pone.0261189] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Because of a possible impact of capsaicin in the high concentrations on enterocyte injury (cytotoxicity) and bactericidal activity on probiotics, Lactobacillus rhamnosus L34 (L34) and Lactobacillus rhamnosus GG (LGG), the probiotics derived from Thai and Caucasian population, respectively, were tested in the chili-extract administered C57BL/6 mice and in vitro experiments. In comparison with placebo, 2 weeks administration of the extract from Thai chili in mice caused loose feces and induced intestinal permeability defect as indicated by FITC-dextran assay and the reduction in tight junction molecules (occludin and zona occludens-1) using fluorescent staining and gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the chili extracts also induced the translocation of gut pathogen molecules; lipopolysaccharide (LPS) and (1→3)-β-d-glucan (BG) and fecal dysbiosis (microbiome analysis), including reduced Firmicutes, increased Bacteroides, and enhanced total Gram-negative bacteria in feces. Both L34 and LGG attenuated gut barrier defect (FITC-dextran, the fluorescent staining and gene expression of tight junction molecules) but not improved fecal consistency. Additionally, high concentrations of capsaicin (0.02-2 mM) damage enterocytes (Caco-2 and HT-29) as indicated by cell viability test, supernatant cytokine (IL-8), transepithelial electrical resistance (TEER) and transepithelial FITC-dextran (4.4 kDa) but were attenuated by Lactobacillus condition media (LCM) from both probiotic-strains. The 24 h incubation with 2 mM capsaicin (but not the lower concentrations) reduced the abundance of LGG (but not L34) implying a higher capsaicin tolerance of L34. However, Lactobacillus rhamnosus fecal abundance, using qRT-PCR, of L34 or LGG after 3, 7, and 20 days of the administration in the Thai healthy volunteers demonstrated the similarity between both strains. In conclusion, high dose chili extracts impaired gut permeability and induced gut dysbiosis but were attenuated by probiotics. Despite a better capsaicin tolerance of L34 compared with LGG in vitro, L34 abundance in feces was not different to LGG in the healthy volunteers. More studies on probiotics with a higher intake of chili in human are interesting.
Collapse
Affiliation(s)
- Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
| | - Ajcharaporn Sawatpanich
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piraya Chatthanathon
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (AL); (ST)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (AL); (ST)
| |
Collapse
|
59
|
Yaghoubfar R, Behrouzi A, Zare Banadkoki E, Ashrafian F, Lari A, Vaziri F, Nojoumi SA, Fateh A, Khatami S, Siadat SD. Effect of Akkermansia muciniphila, Faecalibacterium prausnitzii, and Their Extracellular Vesicles on the Serotonin System in Intestinal Epithelial Cells. Probiotics Antimicrob Proteins 2021; 13:1546-1556. [PMID: 33852147 DOI: 10.1007/s12602-021-09786-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The gastrointestinal (GI) tract is an essential reservoir of serotonin or 5-hydroxytryptamine (5-HT), which possesses a set of bacterial species communities. Intestinal microbiota has the ability to modulate the host's serotonin system. In this regard, we evaluated the effect of Akkermansia muciniphila and Faecalibacterium prausnitzii along with their extracellular vesicles (EVs) on serotonin system-related genes in human epithelial colorectal adenocarcinoma (Caco-2) cells. The differentiated Caco-2 cells were treated with A. muciniphila and F. prausnitzii with the multiplicity of infection ratio of 1 and 10 and the EV concentration of 1 μg/mL and 50 μg/mL, respectively. After 24 h, the serotonin level was quantified using an ELISA kit and also the gene expression of serotonin system-related genes was examined using the quantitative real-time PCR method. According to the results, treatment with A. muciniphila and F. prausnitzii-derived EVs increased the serotonin level, while none of the bacteria could affect the serotonin level in the Caco-2 cells. Both bacteria had significant effects on the mRNA expression of serotonin system-related genes in the Caco-2 cells. Moreover, we observed that A. muciniphila and F. prausnitzii-derived EVs could impact the expression of major genes involved in the serotonin system. Our findings showed that A. muciniphila and F. prausnitzii along with their EVs could modulate serotonin system-related genes; hence, they may be useful in microbiota modulation therapies to maintain the homeostasis of the serotonin system.
Collapse
Affiliation(s)
- Rezvan Yaghoubfar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
60
|
Lee DY, Lee CY, Shin JN, Oh JH, Shim SM. Impact of soy lecithin, zinc oxide, and methylsulfonylmethane, as excipient ingredients, on the bioaccessibility and intestinal transport of branched-chain amino acids from animal and plant protein mixtures. Food Funct 2021; 12:11399-11407. [PMID: 34673869 DOI: 10.1039/d1fo01712h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To maximize the biological activity of branched-chain amino acids (BCAAs), it is necessary to find a new excipient agent to increase the bioavailability of BCAAs in protein mixtures. The aim of the current study was to investigate the effects of soy lecithin (SLC), zinc oxide (ZnO), and methylsulfonylmethane (MSM) on the bioaccessibility and intestinal transport of BCAAs from animal and plant protein mixtures (PMs) via an in vitro digestion model with human intestinal epithelial (Caco-2) cells. The bioaccessibility of total BCAAs in PMs considerably increased by 107.51 ± 1.50% with the addition of SLC, and the combined effects of SLC, ZnO, and MSM on enhancing the bioaccessibility of total BCAAs was observed (107.14 ± 0.18%). Interestingly, SLC showed a major role in binding bile acid, showing 65.78 ± 1.66% of binding capacity. Intestinal transport of BCAAs was measured to be at 100.48, 110.86, and 130.29 μg mL-1 for leucine, isoleucine, and valine, respectively, in PMs with SLC + ZnO + MSM, and it eventually amplified the amount of the total transported BCAAs (341.63 ± 6.34 μg mL-1), which was about 8.72 times higher than that of PM only. The cellular integrity of digesta-treated Caco-2 cells tended to decrease according to the incubation time, but it was recovered in the treatment of PM + SLC + ZnO + MSM, and nearly reached the control levels with 92.82 ± 0.53%. Results from the current study suggest that the co-consumption of proteins equally consisting of plant and animal sources with SLC, ZnO, and MSM could improve the bioavailability of total BCAAs, resulting in the improvement of health benefits.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006 Republic of Korea. .,Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Chan-Yang Lee
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006 Republic of Korea.
| | - Jin-Na Shin
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006 Republic of Korea. .,Deepen Co., Ltd, 185, Donggwang-ro, Seocho-gu, Seoul, 06580 Republic of Korea
| | - Jeong-Ho Oh
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006 Republic of Korea.
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006 Republic of Korea.
| |
Collapse
|
61
|
Xie Y, Wen M, Zhao H, Liu G, Chen X, Tian G, Cai J, Jia G. Effect of zinc supplementation on growth performance, intestinal development, and intestinal barrier function in Pekin ducks with lipopolysaccharide challenge. Poult Sci 2021; 100:101462. [PMID: 34731734 PMCID: PMC8567444 DOI: 10.1016/j.psj.2021.101462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
This study was conducted to investigate the influence of zinc (Zn) supplementation on growth performance, intestinal development and intestinal barrier function in Pekin ducks. A total of 480, one-day-old male Pekin ducks were divided into 6 groups with 8 replicates: 0 mg/kg Zn, 0 mg/kg Zn +0.5 mg/kg lipopolysaccharide (LPS), 30 mg/kg Zn, 30 mg/kg Zn +0.5 mg/kg LPS, 120 mg/kg Zn, 120 mg/kg Zn +0.5 mg/kg LPS. The duck primary intestinal epithelial cells (DIECs) were divided into 6 groups: D-Zn (Zinc deficiency, treated with 2 µmol/L zinc Chelator TPEN), A-Zn (Adequate Zinc, basal medium), H-Zn (High level of Zn, supplemented with 20 µmol/L Zn), D-Zn + 20 µg/mL LPS, A-Zn + 20 µg/mL LPS, H-Zn + 20 µg/mL LPS. The results were as follows: in vivo, with Zn supplementation of 120 mg/kg reduced LPS-induced decrease of growth performance and intestine damage (P < 0.05), and increased intestinal digestive enzyme activity of Pekin ducks (P < 0.05). In addition, Zn supplementation also attenuated LPS-induced intestinal epithelium permeability (P < 0.05), inhibited LPS-induced the expression of proinflammatory cytokines and apoptosis-related genes (P < 0.05), as well as reduced LPS-induced the intestinal stem cells mobilization of Pekin ducks (P < 0.05). In vitro, 20 µmol/L Zn inhibited LPS-induced expression of inflammatory factors and apoptosis-related genes (P < 0.05), promoted the expression of cytoprotection-related genes, and attenuated LPS-induced intestinal epithelium permeability in DIECs (P < 0.05). Mechanistically, 20 µmol/L Zn enhanced tight junction protein markers including CLDN-1, OCLD, and ZO-1 both at protein and mRNA levels (P < 0.05), and also increased the level of phosphorylation of TOR protein (P < 0.05) and activated the TOR signaling pathway. In conclusion, Zn improves growth performance, digestive enzyme activity, and intestinal barrier function of Pekin ducks. Importantly, Zn also reverses LPS-induced intestinal barrier damage via enhancing the expression of tight junction proteins and activating the TOR signaling pathway.
Collapse
Affiliation(s)
- Yueqin Xie
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min Wen
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, 644000, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
62
|
Guo M, Wang Y, Zhao H, Wang D, Yin K, Liu Y, Li B, Xing M. Zinc antagonizes common carp (Cyprinus carpio) intestinal arsenic poisoning through PI3K/AKT/mTOR signaling cascade and MAPK pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105986. [PMID: 34638088 DOI: 10.1016/j.aquatox.2021.105986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) pollution is a serious and longstanding problem, which has obvious threaten to aquatic organisms. The study aimed to explore the mitigation effect of natural antioxidant zinc (Zn) on As toxicity in the foregut and midgut of common carp (Cyprinus carpio L.), and in-depth disclose related signal cascade. Carps were treated with Zn2+ (1 mg/L) and/or As3+ (2.83 mg/L) for a period of 30 days. Under As exposure, the foregut and midgut showed obvious burst of reactive oxygen species (ROS) and breakdown of antioxidant system. What followed is the activation of the endogenous and exogenous apoptotic pathways, and the rise of autophagy level prompted by the increase in LC3 II and the down-regulation of p62. Mitochondrial swelling, cristae fragmentation and autophagosomes were observed under the electron microscope, which also means the occurrence of apoptosis and autophagy. In addition, As induced the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and the inhibition of extracellular signal-related kinase (ERK) in MAPK signaling, and up-regulated the level of autophagy through the inhibition of the phosphatidylinositol 3 kinase (PI3K)/AKT/ mammalian target of rapamycin (mTOR) signaling cascade. However, Zn supplementation has clearly reversed the above phenomenon, and it basically has no effect on foregut and midgut. In conclusion, this study shows that Zn can alleviate the damage caused by subchronic As exposure, which provides a reference for the use of Zn preparations in aquaculture.
Collapse
Affiliation(s)
- Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
63
|
Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021; 8:718093. [PMID: 34778332 PMCID: PMC8582318 DOI: 10.3389/fnut.2021.718093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
There is converging and increasing evidence, but also uncertainty, for the role of abnormal intestinal epithelial barrier function in the origin and development of a growing number of human gastrointestinal and extraintestinal inflammatory disorders, and their related complaints. Despite a vast literature addressing factors and mechanisms underlying changes in intestinal permeability in humans, and its connection to the appearance and severity of clinical symptoms, the ultimate link remains to be established in many cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic management of intestinal permeability disorders that allow health professionals involved in the management of these patients to carry out a consensus treatment based on clinical evidence. Instead, there are multiple pseudoscientific approaches and commercial propaganda scattered on the internet that confuse those affected and health professionals and that often lack scientific rigor. Therefore, in this review we aim to shed light on the different therapeutic options, which include, among others, dietary management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic and exosomes-manipulation, through an objective evaluation of the scientific publications in this field. Advances in the knowledge and management of intestinal permeability will sure enable better options of dealing with this group of common disorders to enhance quality of life of those affected.
Collapse
Affiliation(s)
- Marina Fortea
- Laboratory for Enteric NeuroScience, Translational Research Center for GastroIntestinal Disorders, University of Leuven, Leuven, Belgium
| | - Mercé Albert-Bayo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Abril-Gil
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - John-Peter Ganda Mall
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xavier Serra-Ruiz
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Alejandro Henao-Paez
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
64
|
Hassanein EHM, Kamel EO, Ali FEM, Ahmed MAR. Berberine and/or zinc protect against methotrexate-induced intestinal damage: Role of GSK-3β/NRF2 and JAK1/STAT-3 signaling pathways. Life Sci 2021; 281:119754. [PMID: 34174323 DOI: 10.1016/j.lfs.2021.119754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
AIM The present study was undertaken to elucidate the potential protective mechanism of berberine (BBR) and/or zinc (Zn) against methotrexate (MTX)-induced intestinal injury. METHODS Five groups of rats were assigned; normal group (received vehicle), MTX group (20 mg/kg; i.p. single dose), and the other three groups received a single daily oral dose of BBR (50 mg/kg), Zn (5 mg/kg), and BBR plus Zn respectively, for 5 days before MTX and 5 days after. RESULTS Our results emphasized the toxic effect of MTX on rat's intestine as shown by disturbance of oxidant/antioxidant status, down-regulation of NRF2, SIRT1, FOXO-3, Akt, and mTOR expressions, along with up-regulation of GSK-3β, JAK1, and STAT-3 expressions. Besides, severe intestinal histopathological changes were also observed. On the contrary, BBR and/or Zn produced marked protection against MTX-induced intestinal toxicity via amelioration of oxidative stress, improving NRF2, SIRT1, FOXO-3, GSK-3β, Akt, mTOR, JAK1, and STAT-3 alterations. Moreover, our treatments significantly restored histopathological abnormalities. Interestingly, combination therapy of BBR plus Zn exhibited higher effectiveness than mono-therapy. SIGNIFICANCE BBR plus Zn could be used as a novel therapy for the treatment of MTX-induced intestinal damage through modulation of GSK-3β/NRF2, Akt/mTOR, JAK1/STAT-3, and SIRT1/FOXO-3 signaling pathways.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esam Omar Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | |
Collapse
|
65
|
Gilani S, Chrystal PV, Barekatain R. Current experimental models, assessment and dietary modulations of intestinal permeability in broiler chickens. ACTA ACUST UNITED AC 2021; 7:801-811. [PMID: 34466684 PMCID: PMC8384772 DOI: 10.1016/j.aninu.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Maintaining and optimising the intestinal barrier (IB) function in poultry has important implications for the health and performance of the birds. As a key aspect of the IB, intestinal permeability (IP) is mainly controlled by complex junctional proteins called tight junction proteins (TJ) that link enterocytes together. The disruption of TJ is associated with increased gut leakage with possible subsequent implications for bacterial translocation, intestinal inflammation, compromised health and performance of the birds. Despite considerable data being available for other species, research on IP in broiler chickens and in general avian species is still an understudied topic. This paper reviews the available literature with a specific focus on IP in broiler chickens with consideration given to practical factors affecting the IP, current assessment methods, markers and nutritional modulation of IP. Several experimental models to induce gut leakage are discussed including pathogens, rye-based diets, feed deprivation and stress-inducing agents such as exogenous glucocorticoids and heat stress. Although various markers including fluorescein isothiocyanate dextran, expression of TJ and bacterial translocation have been widely utilized to study IP, recent studies have identified a number of excreta biomarkers to evaluate intestinal integrity, in particular non-invasive IP. Although the research on various nutrients and feed additives to potentially modulate IP is still at an early stage, the most promising outcomes are anticipated for probiotics, prebiotics, amino acids and those feed ingredients, nutrients and additives with anti-inflammatory properties. Considerable research gaps are identified for the mechanistic mode of action of various nutrients to influence IP under different experimental models. The modulation of IP through various strategies (i.e. nutritional manipulation of diet) may be regarded as a new frontier for disease prevention and improving the health and performance of poultry particularly in an antibiotic-free production system.
Collapse
Affiliation(s)
- Saad Gilani
- Danisco Animal Nutrition (IFF), Oegstgeest, the Netherlands
| | | | - Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
- Corresponding author. South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.
| |
Collapse
|
66
|
Asgharzadeh F, Roshan-Milani S, Fard AA, Ahmadi K, Saboory E, Pourjabali M, Chodari L, Amini M. The protective effect of zinc on morphine-induced testicular toxicity via p53 and Akt pathways: An in vitro and in vivo approach. J Trace Elem Med Biol 2021; 67:126776. [PMID: 33984544 DOI: 10.1016/j.jtemb.2021.126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chronic use of morphine is associated with reproductive complications, such as hypogonadism and infertility. While the side effects of morphine have been extensively studied in the testis, much less is known regarding the effects of morphine on Sertoli cells and the effects of zinc on morphine-induced testicular injury as well as their underlying mechanisms. Therefore, the purpose of this study was to investigate the effect of morphine (alone and co-administered with zinc) on cell viability and apoptosis of the testicular (Sertoli) cells as well as the tumor suppressor p53 and phosphorylated-protein kinase B (p-Akt) protein levels in both in vitro and in vivo models. METHODS Cultured Sertoli cells were exposed to morphine (23 μM), zinc (8 μM), and zinc prior to morphine and their effects on Sertoli cell viability and apoptosis were investigated. Morphine (3 mg/kg) and zinc (5 mg/kg, 1 h before morphine) were also injected intraperitoneally to rats and then the apoptotic changes in the testis were evaluated. RESULTS Cell viability and p-Akt protein levels decreased in morphine-treated cells, while apoptosis and p53 protein expression increased in these cells. Pretreatment with zinc recovered morphine-induced apoptotic effects, as well as over-expression of p53 and down-regulation of p-Akt. These findings were supported by a subsequent animal study. CONCLUSION The present data indicated the protective effect of zinc against morphine-induced testicular (Sertoli) cell toxicity via p53/Akt pathways in both in vivo and in vitro models and suggested the clinical importance of zinc on infertility among chronic opioid users and addicted men.
Collapse
Affiliation(s)
- Fatemeh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amin Abdollahzade Fard
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Kimia Ahmadi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Masoumeh Pourjabali
- Department of Pathology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Leila Chodari
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammad Amini
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
67
|
Zhang B, Wang Y, Jiang C, Wu C, Guo G, Chen X, Qiu S. Valeriana jatamansi Jones Inhibits Rotavirus-Induced Diarrhea via Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Pathway. J Microbiol Biotechnol 2021; 31:1115-1122. [PMID: 32522968 PMCID: PMC9705907 DOI: 10.4014/jmb.2003.03006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Rotavirus (RV), as the main cause of diarrhea in children under 5 years, contributes to various childhood diseases. Valeriana jatamansi Jones is a traditional Chinese herb and possesses antiviral effects. In this study we investigated the potential mechanisms of V. jatamansi Jones in RV-induced diarrhea. MTT assay was performed to evaluate cell proliferation and the diarrhea mice model was constructed using SA11 infection. Mice were administered V. jatamansi Jones and ribavirin. Diarrhea score was used to evaluate the treatment effect. The enzyme-linked immunosorbent assay was performed to detect the level of cytokines. Western blot and quantitative reverse transcription-PCR were used to determine protein and mRNA levels, respectively. Hematoxylin-eosin staining was applied to detect the pathological change of the small intestine. TdT-mediated dUTP nick-end labeling was conducted to determine the apoptosis rate. The results showed V. jatamansi Jones promoted MA104 proliferation. V. jatamansi Jones downregulated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in protein level, which was consistent with the immunohistochemistry results. Moreover, V. jatamansi Jones combined with ribavirin regulated interleukin-1β (IL-1β), interferon γ, IL-6, tumor necrosis factor α, and IL-10, and suppressed secretory immunoglobulin A secretion to remove viruses and inhibit dehydration. V. jatamansi Jones + ribavirin facilitated the apoptosis of small intestine cells. In conclusion, V. jatamansi Jones may inhibit RV-induced diarrhea through PI3K/AKT signaling pathway, and could therefore be a potential therapy for diarrhea.
Collapse
Affiliation(s)
- Bin Zhang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Yan Wang
- Food, Animal and Plant Inspection and Quarantine Technical Center of Shanghai Customs, Shanghai 210000, P.R. China
| | - Chunmao Jiang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Caihong Wu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China,Corresponding author Phone: +86-523-8615-7098 Fax: +86-523-8684-2288 E-mail:
| | - Guangfu Guo
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaolan Chen
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Shulei Qiu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
68
|
Santos HO. Therapeutic supplementation with zinc in the management of COVID-19-related diarrhea and ageusia/dysgeusia: mechanisms and clues for a personalized dosage regimen. Nutr Rev 2021; 80:1086-1093. [PMID: 34338769 PMCID: PMC8385805 DOI: 10.1093/nutrit/nuab054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zinc supplementation is indicated for diarrhea and taste disorders, which are both features of COVID-19. Nevertheless, this strategy has not been tested for the treatment of these secondary complications in the current pandemic. Through an updated review, a practical appraisal was considered as a means of providing a medical nexus of therapeutic zinc regimens as an adjunct in the management of COVID-19–related diarrhea and ageusia/dysgeusia. While diarrhea and taste disorders are consequences of COVID-19, zinc supplementation is useful for non–COVID-19 patients with these clinical problems. The overwhelming evidence for supplementing with zinc in diarrhea and pneumonia is associated with the treatment of children, while for taste disorders the use of supplementing with zinc is more examined in adults. Whereas COVID-19 is more prevalent in adults, precautions should be exercised not to translate the zinc dosage used for children with diarrhea and taste disorders into the current pandemic. Therapeutic doses of zinc used for adults (∼50–150 mg/day of elemental zinc) could be included in the treatment strategies for COVID-19, but this proposal should be examined through randomized studies.
Collapse
Affiliation(s)
- Heitor O Santos
- H.O. Santos is with the School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
- H.O. Santos, School of Medicine, Federal University of Uberlandia (UFU), Para Street, 1720, Umuarama, Block 2H, Uberlandia, 38400-902 MG, Brazil. E-mail:
| |
Collapse
|
69
|
He Y, Ayansola H, Hou Q, Liao C, Lei J, Lai Y, Jiang Q, Masatoshi H, Zhang B. Genistein Inhibits Colonic Goblet Cell Loss and Colorectal Inflammation Induced by Salmonella Typhimurium Infection. Mol Nutr Food Res 2021; 65:e2100209. [PMID: 34146390 DOI: 10.1002/mnfr.202100209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/12/2021] [Indexed: 12/28/2022]
Abstract
SCOPE Salmonella is the main food-borne pathogen, which can infect intestinal epithelial cells and causes colitis. Genistein has a variety of biological activities that alleviates colitis induced by sodium dextran sulfate in a variety of ways, but its protective effects on colitis caused by pathogenic bacteria are still unknown. METHODS AND RESULTS This study explores the protective effect of genistein in reducing colitis caused by Salmonella infection. Salmonella causes colon inflammation through activating cyclooxygenase-2/prostaglandin E2, and genistein inhibits colitis caused by Salmonella typhimurium infection. Salmonella infection increases colonic mucosal damage, proliferating cells, and goblet cell loss, while the administration of genistein solves these pathological changes. In addition, it is further proved that Salmonella causes severe colitis related to goblet cell loss and activates the host crypt stem cells to repair the damaged epithelium. Salmonella infection inhibites the host mammalian target of rapamycin, activates light chain 3 II pathways to induce autophagy to eliminate pathogenic bacteria. Genistein increases Lactobacillus in feces and reduces Salmonella colonization to inhibit colitis induces by Salmonella infection. CONCLUSION This study demonstrates genistein alleviated colitis and inhibites the goblet cell loss causes by Salmonella infection through regulating the gut bacteria and intestinal stem cell development.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Qihang Hou
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Yujiao Lai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Hori Masatoshi
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| |
Collapse
|
70
|
Pardo Z, Seiquer I. Supplemental Zinc exerts a positive effect against the heat stress damage in intestinal epithelial cells: Assays in a Caco-2 model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
71
|
Huang X, Huang D, Zhu T, Yu X, Xu K, Li H, Qu H, Zhou Z, Cheng K, Wen W, Ye Z. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli. J Nanobiotechnology 2021; 19:207. [PMID: 34247649 PMCID: PMC8274038 DOI: 10.1186/s12951-021-00956-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Metal ions have been identified as important bone metabolism regulators and widely used in the field of bone tissue engineering, however their exact role during bone regeneration remains unclear. Herein, the aim of study was to comprehensively explore the interactions between osteoinductive and osteo-immunomodulatory properties of these metal ions. In particular, the osteoinductive role of zinc ions (Zn2+), as well as its interactions with local immune microenvironment during bone healing process, was investigated in this study using a sustained Zn2+ delivery system incorporating Zn2+ into β-tricalcium phosphate/poly(L-lactic acid) (TCP/PLLA) scaffolds. The presence of Zn2+ largely enhanced osteogenic differentiation of periosteum-derived progenitor cells (PDPCs), which was coincident with increased transition from M1 to M2 macrophages (M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi $$\end{document}φs). We further confirmed that induction of M2 polarization by Zn2+ was realized via PI3K/Akt/mTOR pathway, whereas marker molecules on this pathway were strictly regulated by the addition of Zn2+. Synergically, this favorable immunomodulatory effect of Zn2+ further improved the osteogenic differentiation of PDPCs induced by Zn2+ in vitro. Consistently, the spontaneous osteogenesis and pro-healing osteoimmunomodulation of the scaffolds were thoroughly identified in vivo using a rat air pouch model and a calvarial critical-size defect model. Taken together, Zn2+-releasing bioactive ceramics could be ideal scaffolds in bone tissue engineering due to their reciprocal interactions between osteoinductive and immunomodulatory characteristics. Clarification of this synergic role of Zn2+ during osteogenesis could pave the way to develop more sophisticated metal-ion based orthopedic therapeutic strategies.![]()
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Donghua Huang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Xiaohua Yu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Kaicheng Xu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Hao Qu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Zhiyuan Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Wen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
72
|
Zinc hydroxychloride supplementation improves tibia bone development and intestinal health of broiler chickens. Poult Sci 2021; 100:101254. [PMID: 34174567 PMCID: PMC8242038 DOI: 10.1016/j.psj.2021.101254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the effects of zinc (Zn), as a combination of oxide (ZnO) and sulfate (ZnSO4), compared with incremental levels of zinc hydroxychloride (ZH) on tibia traits, intestinal integrity, expression of selected jejunal genes, cecal short chain fatty acids and microbial composition in broilers. Day-old male Ross 308 chicks (n = 784) were randomly allocated to seven dietary treatments, each replicated seven times with 16 chicks per replication. The dietary treatments included a negative control diet (NC) with no supplemental Zn, a positive control (PC) with 100 mg/kg supplemental Zn from an ionic bound source combination (50 mg/kg ZnO + 50 mg/kg ZnSO4), and the NC diet supplemented with one of 20, 40, 60, 80, or 100 mg/kg Zn as ZH. The diets were fed over starter (1–14 d) and grower (14–35 d) phases, with tissue and digesta samples collected from 3 birds per replicate on days 14 and 35. The results showed that dietary Zn level had a significant effect on tibia breaking strength on d 35 (P < 0.05), and tibia Zn concentration both on d 14 and d 35 (P < 0.01). Dietary Zn levels linearly (P < 0.01) increased cecal lactic acid production, increased Lactobacillus, and decreased Bacillus and total bacteria counts (P < 0.05). Inclusion of 80 and 100 mg/kg Zn as ZH tended to upregulate the expression of claudin-1 (P = 0.088) and tight junction protein-1 (P = 0.086). The results obtained in this study suggest that a non-Zn supplemented diet can negatively influence tibia development and gut microbiota composition in broiler chickens. Higher supplemental Zn in the diet alters cecal microbiota population in favor of Lactobacillus and can decrease the total bacterial load. Supplemental Zn level in the feed have the potential to manipulate the jejunal gut integrity at a molecular level.
Collapse
|
73
|
Epithelial barrier function properties of the 16HBE14o- human bronchial epithelial cell culture model. Biosci Rep 2021; 40:226530. [PMID: 32985670 PMCID: PMC7569203 DOI: 10.1042/bsr20201532] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 01/23/2023] Open
Abstract
The human bronchial epithelial cell line, 16HBE14o- (16HBE), is widely used as a model for respiratory epithelial diseases and barrier function. During differentiation, transepithelial electrical resistance (TER) increased to approximately 800 Ohms × cm2, while 14C-d-mannitol flux rates (Jm) simultaneously decreased. Tight junctions (TJs) were shown by diffusion potential studies to be anion-selective with PC1/PNa = 1.9. Transepithelial leakiness could be induced by the phorbol ester, protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), and the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Basal barrier function could not be improved by the micronutrients, zinc, or quercetin. Of methodological significance, TER was observed to be more variable and to spontaneously, significantly decrease after initial barrier formation, whereas Jm did not significantly fluctuate or increase. Unlike the strong inverse relationship between TER and Jm during differentiation, differentiated cell layers manifested no relationship between TER and Jm. There was also much greater variability for TER values compared with Jm. Investigating the dependence of 16HBE TER on transcellular ion conductance, inhibition of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel with GlyH-101 produced a large decrease in short-circuit current (Isc) and a slight increase in TER, but no significant change in Jm. A strong temperature dependence was observed not only for Isc, but also for TER. In summary, research utilizing 16HBE as a model in airway barrier function studies needs to be aware of the complexity of TER as a parameter of barrier function given the influence of CFTR-dependent transcellular conductance on TER.
Collapse
|
74
|
McCarty MF, Lerner A. Perspective: Prospects for Nutraceutical Support of Intestinal Barrier Function. Adv Nutr 2021; 12:316-324. [PMID: 33126251 PMCID: PMC8243597 DOI: 10.1093/advances/nmaa139] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Impairment of intestinal barrier function is linked to certain pathologies and to aging, and can be a cause of bacterial infections, systemic and hepatic inflammation, food allergies, and autoimmune disorders. The formation and maintenance of intestinal tight junctions is supported by glucagon-like peptide-2 (GLP-2), which via insulin-like growth factor I activity boosts phosphoinositide 3-kinase/Akt/mammalian target of rapamycin complex 1 (PI3K/Akt/mTORC1) signaling in enterocytes. 5'-AMP-activated protein kinase (AMPK) activity as well as estrogen receptor-β (ERβ) activity are also protective in this regard. Conversely, activation of mitogen-activated protein kinases (MAPKs) and cellular Src (c-Src) under inflammatory conditions can induce dissociation of tight junctions. Hence, nutraceuticals that promote GLP-2 secretion from L cells-effective pre/probiotics, glycine, and glutamine-as well as diets rich in soluble fiber or resistant starch, can support intestinal barrier function. AMPK activators-notably berberine and the butyric acid produced by health-promoting microflora-are also beneficial in this regard, as are soy isoflavones, which function as selective agonists for ERβ. The adverse impact of MAPK and c-Src overactivation on the intestinal barrier can be combatted with various antioxidant measures, including phycocyanobilin, phase 2-inducer nutraceuticals, and N-acetylcysteine. These considerations suggest that rationally designed functional foods or complex supplementation programs could have clinical potential for supporting and restoring healthful intestinal barrier function.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Chaim Sheba Medical Center, Zabludowicz Center for Autoimmune Diseases, Tel-Hashomer, Israel
| |
Collapse
|
75
|
Xia P, Lian S, Wu Y, Yan L, Quan G, Zhu G. Zinc is an important inter-kingdom signal between the host and microbe. Vet Res 2021; 52:39. [PMID: 33663613 PMCID: PMC7931793 DOI: 10.1186/s13567-021-00913-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc (Zn) is an essential trace element in living organisms and plays a vital role in the regulation of both microbial virulence and host immune responses. A growing number of studies have shown that zinc deficiency or the internal Zn concentration does not meet the needs of animals and microbes, leading to an imbalance in zinc homeostasis and intracellular signalling pathway dysregulation. Competition for zinc ions (Zn2+) between microbes and the host exists in the use of Zn2+ to maintain cell structure and physiological functions. It also affects the interplay between microbial virulence factors and their specific receptors in the host. This review will focus on the role of Zn in the crosstalk between the host and microbe, especially for changes in microbial pathogenesis and nociceptive neuron-immune interactions, as it may lead to new ways to prevent or treat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
76
|
Buddington RK, Wong T, Howard SC. Paracellular Filtration Secretion Driven by Mechanical Force Contributes to Small Intestinal Fluid Dynamics. Med Sci (Basel) 2021; 9:medsci9010009. [PMID: 33572202 PMCID: PMC7931054 DOI: 10.3390/medsci9010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Studies of fluid secretion by the small intestine are dominated by the coupling with ATP-dependent generation of ion gradients, whereas the contribution of filtration secretion has been overlooked, possibly by the lack of a known mechanistic basis. We measured apical fluid flow and generation of hydrostatic pressure gradients by epithelia of cultured mouse enterocytes, Caco-2 and T-84 cells, and fibroblasts exposed to mechanical force provided by vigorous aeration and in response to ion gradients, inhibitors of ion channels and transporters and in vitro using intact mouse and rat small intestine. We describe herein a paracellular pathway for unidirectional filtration secretion that is driven by mechanical force, requires tight junctions, is independent of ionic and osmotic gradients, generates persistent hydrostatic pressure gradients, and would contribute to the fluid shifts that occur during digestion and diarrhea. Zinc inhibits the flow of fluid and the paracellular marker fluorescein isothyocyanate conjugated dextran (MW = 4 kD) across epithelia of cultured enterocytes (>95%; p < 0.001) and intact small intestine (>40%; p = 0.03). We propose that mechanical force drives fluid secretion through the tight junction complex via a “one-way check valve” that can be regulated. This pathway of filtration secretion complements chloride-coupled fluid secretion during high-volume fluid flow. The role of filtration secretion in the genesis of diarrhea in intact animals needs further study. Our findings may explain a potential linkage between intestinal motility and intestinal fluid dynamics.
Collapse
Affiliation(s)
- Randal K. Buddington
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA;
- Babies Taking Flight, Memphis, TN 38117, USA
- Correspondence: ; Tel.: +1-662-418-2666
| | - Thomas Wong
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA;
| | - Scott C. Howard
- Department of Acute and Tertiary Care, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA;
| |
Collapse
|
77
|
Ede JD, Ong KJ, Mulenos MR, Pradhan S, Gibb M, Sayes CM, Shatkin JA. Physical, chemical, and toxicological characterization of sulfated cellulose nanocrystals for food-related applications using in vivo and in vitro strategies. Toxicol Res (Camb) 2021; 9:808-822. [PMID: 33447365 DOI: 10.1093/toxres/tfaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 11/14/2022] Open
Abstract
Cellulose nanocrystals (CNCs) are a next-generation cellulose product with many unique properties including applications in the food industry as a food additive, food coating, and in food-contact packaging material. While CNC is anticipated to be safe due to its similarity to the many forms of cellulose currently used as food additives, special consideration is given to it as it is the first manufactured form of cellulose that is nanoscale in both length and width. A proactive approach to safety has been adopted by manufacturers to demonstrate CNC safety toward responsible commercialization. As part of the safety demonstration, in vivo and in vitro testing strategies were commissioned side-by-side with conventional cellulose, which has been safely used in food for decades. Testing included a 90-day rodent feeding study as well as additional physical, chemical, and biological studies in vitro that follow European Food Safety Authority (EFSA) guidance to demonstrate the safe use of novel food ingredients. The strategy includes assessment of neat materials side-by-side with simulated digestion, mimicking conditions that occur along the gastrointestinal tract as well as intracellularly. An intestinal co-culture model examined any potential toxicological effects from exposure to either pristine or digested forms of CNC including cytotoxicity, metabolic activity, membrane permeability, oxidative stress, and proinflammatory responses. None of the studies demonstrated any toxicity via oral or simulated oral exposure. These studies demonstrate that CNC produced by InnoTech Alberta is similarly safe by ingestion as conventional cellulose with a no-observed-adverse-effect level of 2085.3 (males) and 2682.8 (females) mg/kg/day.
Collapse
Affiliation(s)
- James D Ede
- Vireo Advisors LLC, Boston, MA 02130-4323, USA
| | | | - Marina R Mulenos
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Sahar Pradhan
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Christie M Sayes
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | | |
Collapse
|
78
|
The Associated Regulatory Mechanisms of Zinc Lactate in Redox Balance and Mitochondrial Function of Intestinal Porcine Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:8815383. [PMID: 33381268 PMCID: PMC7762675 DOI: 10.1155/2020/8815383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
Zinc lactate (ZnLA) is a new organic zinc salt which has antioxidant properties in mammals and can improve intestinal function. This study explored the effects of ZnLA and ZnSO4 on cell proliferation, Zn transport, antioxidant capacity, mitochondrial function, and their underlying molecular mechanisms in intestinal porcine epithelial cells (IPEC-J2). The results showed that addition of ZnLA promoted cell proliferation, inhibited cell apoptosis and IL-6 secretion, and upregulated the mRNA expression and concentration of MT-2B, ZNT-1, and CRIP, as well as affected the gene expression and activity of oxidation or antioxidant enzymes (e.g., CuZnSOD, CAT, and Gpx1, GSH-PX, LDH, and MDA), compared to ZnSO4 or control. Compared with the control, ZnLA treatment had no significant effect on mitochondrial membrane potential, whereas it markedly increased the mitochondrial basal OCR, nonmitochondrial respiratory capacity, and mitochondrial proton leakage and reduced spare respiratory capacity and mitochondrial reactive oxygen (ROS) production in IPEC-J2 cells. Furthermore, ZnLA treatment increased the protein expression of Nrf2 and phosphorylated AMPK, but reduced Keap1 and p62 protein expression and autophagy-related genes LC3B-1 and Beclin mRNA abundance. Under H2O2-induced oxidative stress conditions, ZnLA supplementation markedly reduced cell apoptosis and mitochondrial ROS levels in IPEC-J2 cells. Moreover, ZnLA administration increased the protein expression of Nrf2 and decreased the protein expression of caspase-3, Keap1, and p62 in H2O2-induced IPEC-J2 cells. In addition, when the activity of AMPK was inhibited by Compound C, ZnLA supplementation did not increase the protein expression of nuclear Nrf2, but when Compound C was removed, the activities of AMPK and Nfr2 were both increased by ZnLA treatment. Our results indicated that ZnLA could improve the antioxidant capacity and mitochondrial function in IPEC-J2 cells by activating the AMPK-Nrf2-p62 pathway under normal or oxidative stress conditions. Our novel finding also suggested that ZnLA, as a new feed additive for piglets, has the potential to be an alternative for ZnSO4.
Collapse
|
79
|
Zinc-methionine acts as an anti-diarrheal agent by protecting the intestinal epithelial barrier in postnatal Holstein dairy calves. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
80
|
Increase in Epithelial Permeability and Cell Metabolism by High Mobility Group Box 1, Inflammatory Cytokines and TPEN in Caco-2 Cells as a Novel Model of Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21228434. [PMID: 33182652 PMCID: PMC7696423 DOI: 10.3390/ijms21228434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
High mobility group box 1 protein (HMGB1) is involved in the pathogenesis of inflammatory bowel disease (IBD). Patients with IBD develop zinc deficiency. However, the detailed roles of HMGB1 and zinc deficiency in the intestinal epithelial barrier and cellular metabolism of IBD remain unknown. In the present study, Caco-2 cells in 2D culture and 2.5D Matrigel culture were pretreated with transforming growth factor-β (TGF-β) type 1 receptor kinase inhibitor EW-7197, epidermal growth factor receptor (EGFR) kinase inhibitor AG-1478 and a TNFα antibody before treatment with HMGB1 and inflammatory cytokines (TNFα and IFNγ). EW-7197, AG-1478 and the TNFα antibody prevented hyperpermeability induced by HMGB1 and inflammatory cytokines in 2.5D culture. HMGB1 affected cilia formation in 2.5D culture. EW-7197, AG-1478 and the TNFα antibody prevented the increase in cell metabolism induced by HMGB1 and inflammatory cytokines in 2D culture. Furthermore, ZnSO4 prevented the hyperpermeability induced by zinc chelator TPEN in 2.5D culture. ZnSO4 and TPEN induced cellular metabolism in 2D culture. The disruption of the epithelial barrier induced by HMGB1 and inflammatory cytokines contributed to TGF-β/EGF signaling in Caco-2 cells. The TNFα antibody and ZnSO4 as well as EW-7197 and AG-1478 may have potential for use in therapy for IBD.
Collapse
|
81
|
Horst EA, Mayorga EJ, Al-Qaisi M, Rodriguez-Jimenez S, Goetz BM, Abeyta MA, Gorden PJ, Kvidera SK, Baumgard LH. Evaluating effects of zinc hydroxychloride on biomarkers of inflammation and intestinal integrity during feed restriction. J Dairy Sci 2020; 103:11911-11929. [PMID: 33041022 DOI: 10.3168/jds.2020-18860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Objectives were to evaluate effects of supplemental zinc hydroxychloride (HYD; Micronutrients, Indianapolis, IN) on gut permeability, metabolism, and inflammation during feed restriction (FR). Holstein cows (n = 24; 159 ± 8 d in milk; parity 3 ± 0.2) were enrolled in a 2 × 2 factorial design and randomly assigned to 1 of 4 treatments: (1) ad libitum fed (AL) and control diet (ALCON; 75 mg/kg Zn from zinc sulfate; n = 6); (2) ad libitum fed and HYD diet (ALHYD; 75 mg/kg Zn from HYD; n = 6); (3) 40% of ad libitum feed intake and control diet (FRCON; n = 6); or (4) 40% of ad libitum feed intake and HYD diet (FRHYD; n = 6). Prior to study initiation, cows were fed their respective diets for 21 d. The trial consisted of 2 experimental periods (P) during which cows continued to receive their respective dietary treatments. Period 1 (5 d) served as the baseline for P2 (5 d), during which cows were fed ad libitum or restricted to 40% of P1 feed intake. In vivo total-tract permeability was evaluated on d 4 of P1 and on d 2 and 5 of P2, using the paracellular permeability marker chromium (Cr)-EDTA. All cows were euthanized at the end of P2 to assess intestinal architecture. As anticipated, FR cows lost body weight (∼46 kg), entered into calculated negative energy balance (-13.86 Mcal/d), and had decreased milk yield. Circulating glucose, insulin, and glucagon decreased, and nonesterified fatty acids and β-hydroxybutyrate increased in FR relative to AL cows. Relative to AL cows, FR increased lipopolysaccharide-binding protein, serum amyloid A (SAA), and haptoglobin (Hp) concentrations (2-, 4-, and 17-fold, respectively); and peak SAA and Hp concentrations were observed on d 5. Circulating SAA and Hp from FRHYD tended to be decreased (47 and 61%, respectively) on d 5 relative to FRCON. Plasma Cr area under the curve increased (32%) in FR treatments on d 2 and tended to be increased (17%) on d 5 of P2 relative to AL treatments. No effects of diet were observed on Cr appearance. Relative to AL cows, FR increased jejunum villus width and decreased jejunum crypt depth and ileum villus height and crypt depth. Relative to FRCON, ileum villus height tended to increase in FRHYD cows. Feed restriction tended to decrease jejunum and ileum mucosal surface area, but the decrease in the ileum was ameliorated by dietary HYD. In summary, FR induced gut hyperpermeability to Cr-EDTA, and feeding HYD appeared to benefit some key metrics of barrier integrity.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames, 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames, 50011
| | | | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, 50011
| | - P J Gorden
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, 50011
| | - S K Kvidera
- Micronutrients USA LLC, Indianapolis, IN 46241
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, 50011.
| |
Collapse
|
82
|
Fan J, Zhao XH, Li TJ. Heat treatment of galangin and kaempferol inhibits their benefits to improve barrier function in rat intestinal epithelial cells. J Nutr Biochem 2020; 87:108517. [PMID: 33011286 DOI: 10.1016/j.jnutbio.2020.108517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/07/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
Flavonols are bioactive substances in plant foods. In this study, two flavonols galangin and kaempferol were heated at 100°C for 30 min prior to assessing their effects on barrier function of rat intestinal epithelial (IEC-6) cells. Both heated and unheated flavonols (2.5-20 µmol/L dosages) were nontoxic to the cells up to 48 h post-treatment, and could promote cell viability values to 102.2-141.2% of control. By treatment with 5 µmol/L flavonols for 24 and 48 h, the treated cells time-dependently showed better improved physical and biological barrier functions than the control cells without any flavonol treatment, including higher transepithelial electrical resistance and antibacterial effect but reduced paracellular permeability and bacterial translocation. The results from real-time PCR and western-blot assays indicated that the cells treated with heated and unheated flavonols of 5 µmol/L dosage had up-regulated mRNA (1.13-1.81 folds) and protein (1.15-5.11 folds) expression for zonula occluden-1, occludin, and claudin-1 that are vital to the tight junctions of the cells. Moreover, protein expression of RhoA and ROCK were down-regulated into 0.41-0.98 and 0.40-0.92 folds, respectively, demonstrating a Rho inactivation that led to enhanced cell barrier integrity via the RhoA/ROCK pathway. Overall, galangin was more active than kaempferol to perform three biofunctions like improving cell barrier function, up-regulating tight junctions protein expression, and down-regulating RhoA/ROCK expression. Moreover, the heated flavonols were less effective than the unheated counterparts to perform these biofunctions. It is concluded that this heat treatment of galangin and kaempferol could inhibit their benefits to improve barrier function of IEC-6 cells.
Collapse
Affiliation(s)
- Jing Fan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, PR China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, PR China; School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, PR China.
| | - Tie-Jing Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, PR China; College of Light Industry, Liaoning University, Shenyang, PR China.
| |
Collapse
|
83
|
Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim Sci J 2020; 91:e13357. [PMID: 32219956 PMCID: PMC7187240 DOI: 10.1111/asj.13357] [Citation(s) in RCA: 394] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Tight junctions (TJs) play an important role in intestinal barrier function. TJs in intestinal epithelial cells are composed of different junctional molecules, such as claudin and occludin, and regulate the paracellular permeability of water, ions, and macromolecules in adjacent cells. One of the most important roles of the TJ structure is to provide a physical barrier to luminal inflammatory molecules. Impaired integrity and structure of the TJ barrier result in a forcible activation of immune cells and chronic inflammation in different tissues. According to recent studies, the intestinal TJ barrier could be regulated, as a potential target, by dietary factors to prevent and reduce different inflammatory disorders, although the precise mechanisms underlying the dietary regulation remain unclear. This review summarizes currently available information on the regulation of the intestinal TJ barrier by food components.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.,Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
84
|
Reduced Mrp2 surface availability as PI3Kγ-mediated hepatocytic dysfunction reflecting a hallmark of cholestasis in sepsis. Sci Rep 2020; 10:13110. [PMID: 32753644 PMCID: PMC7403153 DOI: 10.1038/s41598-020-69901-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis-associated liver dysfunction manifesting as cholestasis is common during multiple organ failure. Three hepatocytic dysfunctions are considered as major hallmarks of cholestasis in sepsis: impairments of microvilli covering canalicular membranes, disruptions of tight junctions sealing bile-collecting canaliculae and disruptions of Mrp2-mediated hepatobiliary transport. PI3Kγ loss-of-function was suggested as beneficial in early sepsis. Yet, the PI3Kγ-regulated cellular processes in hepatocytes remained largely unclear. We analysed all three sepsis hallmarks for responsiveness to massive PI3K/Akt signalling and PI3Kγ loss-of-function, respectively. Surprisingly, neither microvilli nor tight junctions were strongly modulated, as shown by electron microscopical studies of mouse liver samples. Instead, quantitative electron microscopy proved that solely Mrp2 surface availability, i.e. the third hallmark, responded strongly to PI3K/Akt signalling. Mrp2 plasma membrane levels were massively reduced upon PI3K/Akt signalling. Importantly, Mrp2 levels at the plasma membrane of PI3Kγ KO hepatocytes remained unaffected upon PI3K/Akt signalling stimulation. The effect explicitly relied on PI3Kγ's enzymatic ability, as shown by PI3Kγ kinase-dead mice. Keeping the surface availability of the biliary transporter Mrp2 therefore is a cell biological process that may underlie the observation that PI3Kγ loss-of-function protects from hepatic excretory dysfunction during early sepsis and Mrp2 should thus take center stage in pharmacological interventions.
Collapse
|
85
|
Meng J, Zhou X, Yang J, Qu X, Cui S. Exposure to low dose ZnO nanoparticles induces hyperproliferation and malignant transformation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways in colonic mucosal cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114578. [PMID: 32325249 DOI: 10.1016/j.envpol.2020.114578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
As ZnO nanoparticles have been applied in many fields, their biological risks on human health, of course, are worthy of our attention. Whether ZnO NPs have the risk and how colonic cells respond to the invaded ZnO NPs are still unknown. Herein, we evaluated the biological effects of ZnO NPs on colonic mucosal cells by in vitro and in vivo methods. IMCE cells, with APC mutation but phenotypically normal, demonstrated hyperproliferation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways when exposed to ZnO NPs for 24 h. Long-term exposure of ZnO NPs resulted in the malignant transformation of IMCE cells, showing the morphological changes, anchorage-independent cell growth ability. Importantly, IMCE cells exposed to ZnO NPs subcutaneously grew and induced tumorigenesis in nude mice. In conclusion, exposure of ZnO NPs could induce malignant transformation of colonic mucosal cells through the CXCR2/NF-κB/STAT3/ERK and AKT pathways. We suggest that it was necessary to consider using the precautionary principle for gastrointestinal contact nanomaterials.
Collapse
Affiliation(s)
- Jian Meng
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoling Zhou
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Juan Yang
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuxiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
86
|
Zhou JY, Lin HL, Wang Z, Zhang SW, Huang DG, Gao CQ, Yan HC, Wang XQ. Zinc L-Aspartate enhances intestinal stem cell activity to protect the integrity of the intestinal mucosa against deoxynivalenol through activation of the Wnt/β-catenin signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114290. [PMID: 32155551 DOI: 10.1016/j.envpol.2020.114290] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The micronutrient, zinc, plays a vital role in modulating cellular signaling recognition and enhancing intestinal barrier function. However, the precise mechanisms underlying the zinc regulation of intestinal stem cell (ISC) renewal and regeneration ability, which drive intestinal epithelial turnover to maintain the intestinal barrier, under physiological and pathological conditions are unknown. In this study, we used in vivo mouse plus ex vivo enteroid model to investigate thoroughly the protection efficacy of zinc L-aspartate (Zn-Asp) on intestinal mucosal integrity exposed to deoxynivalenol (DON). The results showed that 10 rather than 20 mg/kg body weight (BW) Zn-Asp (calculation in zinc) significantly increased the jejunum mass and ameliorated mucosa injury caused by 2 mg/kg BW DON treatment, including improvement of the intestinal morphology and barrier, as well as enteroid-forming and -budding efficiency, which was expanded from crypt cells isolated from jejunum of mice in each group. The repair process stimulated by Zn-Asp was also accompanied by increased fluorescence signal intensity of KRT20 and Villin; increased numbers of MUC2+, CAG+, LYZ+, BrdU+ and Ki67+ cells in mouse jejunum; and protein expression of Ki67 and PCNA in the jejunum, crypt and enteroid. Simultaneously, Zn-Asp increased ISC activity to promote intestinal epithelial renewal even under physiological conditions. These results were further verified in ex vivo enteroid culture experiments, which were treated with 100 μmol/L Zn-Asp (calculation in zinc) and 100 ng/mL DON for 72 h. Furthermore, we demonstrated that Zn-Asp improved intestinal integrity or accelerated wound healing along with Wnt/β-catenin signaling upregulation or reactivation. Our findings indicate Zn-Asp, especially Zn, enhances ISC activity to maintain the intestinal integrity by activating the Wnt/β-catenin signaling, which sheds some light upon effective preventive strategies for intestinal injury induced by mycotoxin based on ISCs with exogenous zinc preparations in the proper drugs, health foods or qualified feed.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Hua-Lin Lin
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Zhe Wang
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Sai-Wu Zhang
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Deng-Gui Huang
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China; Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| |
Collapse
|
87
|
Increasing the Hindgut Carbohydrate/Protein Ratio by Cecal Infusion of Corn Starch or Casein Hydrolysate Drives Gut Microbiota-Related Bile Acid Metabolism To Stimulate Colonic Barrier Function. mSystems 2020; 5:5/3/e00176-20. [PMID: 32487741 PMCID: PMC8534727 DOI: 10.1128/msystems.00176-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dietary high protein and low carbohydrate levels compromise colonic microbiota and bile acid metabolism, which underlies a detrimental gut environment. However, it remains unclear if the diet-induced changes in colonic health are due to a change in hindgut nutrient availability and what key intermediates link the microbe-epithelium dialogue. To specifically alter the hindgut nutrient substrate availability, here we used a cecally cannulated pig model to infuse corn starch and casein hydrolysate directly into the cecum to generate a stepwise change of carbohydrate/nitrogenous compound (C/N) ratio. Pigs were cecally infused daily with either saline (Control), corn starch (Starch), or casein hydrolysate (Casein) (n = 8 per group), respectively, for 19 days. After infusion, C/N ratios in colonic digesta were 16.33, 12.56, and 8.54 for the starch, control, and casein groups, respectively (P < 0.05). Relative to the control group, casein infusion showed greater abundance of the bacteria (Eubacterium) capable of bile acid 7α-dehydroxylation (baiJ), higher levels of expression of bacterial genes encoding the baiJ enzyme, and higher levels of secondary bile acid (deoxycholic acid [DCA] and lithocholic acid [LCA]), while the starch infusion showed the opposite effect. Correspondingly, casein infusion downregulated expression of genes encoding tight junction proteins (ZO-1 and OCLD) and upregulated expression of genes encoding epidermal growth factor receptor (EGFR). The ratio of C/N was linearly related with the concentrations of DCA and LCA and gene expression levels of ZO-1, occludin, and EGFR. Caco-2 cell experiments further showed that DCA and LCA downregulated expression of genes involved in barrier function (ZO-1 and OCLD) and upregulated the gene expression of EGFR and Src. Inhibition of EGFR and Src could abolish DCA- and LCA-induced downregulation of ZO-1, indicating that DCA and LCA impair gut barrier function via enhancing the EGFR-Src pathway. These results suggest that the ratio of C/N in the large intestine is an important determinant of microbial metabolism and gut barrier function in the colon. The findings provide evidence that microbe-related secondary bile acid metabolism may mediate the interplay between microbes and gut barrier function. IMPORTANCE High-fiber or high-protein diets could alter gut microbiota and health in the large intestine, but factors involved in the effects remain unclear. The present study for the first time demonstrates that the starch- and casein-induced C/N ratio in the hindgut is an important factor. Using the cannulated pig model, we found that the distinct C/N ratio induced by cecal infusion of corn starch or casein hydrolysate was linearly correlated with microbial metabolites (secondary bile acids) and tight junction proteins (ZO-1 and OCLD). Cell culture study further demonstrates that the gut microbial metabolites (DCA and LCA) could impair the intestinal barrier function via the EGFR-Src pathway. These suggest that DCA and LCA were key metabolites mediating microbe-epithelium dialogue when the hindgut C/N ratios were altered by cecal infusion of corn starch or casein hydrolysate. These findings provide new insight into the impact of C/N ratio in the large intestine on colonic health and provide a new framework for therapeutic strategy in gut health through targeted manipulation of hindgut microbiota by increasing the carbohydrate level in the large intestine.
Collapse
|
88
|
Pradhan SH, Mulenos MR, Steele LR, Gibb M, Ede JD, Ong KJ, Shatkin JA, Sayes CM. Physical, chemical, and toxicological characterization of fibrillated forms of cellulose using an in vitro gastrointestinal digestion and co-culture model. Toxicol Res (Camb) 2020; 9:290-301. [PMID: 32670560 PMCID: PMC7329166 DOI: 10.1093/toxres/tfaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Fibrillated cellulose is a next-generation material in development for a variety of applications, including use in food and food-contact materials. An alternative testing strategy including simulated digestion was developed to compare the physical, chemical, and biological characteristics of seven different types of fibrillated cellulose, following European Food Safety Authority guidance. Fibrillated forms were compared to a conventional form of cellulose which has been used in food for over 85 years and has Generally Recognized as safe regulatory status in the USA. The physical and chemical characterization of fibrillated celluloses demonstrate that these materials are similar physically and chemically, which composed of the same fundamental molecular structure and exhibit similar morphology, size, size distribution, surface charge, and low levels of impurities. Simulated gastrointestinal and lysosomal digestions demonstrate that these physical and chemical similarities remain following exposure to conditions that mimic the gastrointestinal tract or intracellular lysosomes. A toxicological investigation with an advanced intestinal co-culture model found that exposure to each of the fibrillated and conventional forms of cellulose, in either the pristine or digested form at 0.4% by weight, showed no adverse toxicological effects including cytotoxicity, barrier integrity, oxidative stress, or inflammation. The results demonstrate the physical, chemical, and biological similarities of these materials and provide substantive evidence to support their grouping and ability to read-across data as part of a food safety demonstration.
Collapse
Affiliation(s)
- Sahar H Pradhan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Marina R Mulenos
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - London R Steele
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Matthew Gibb
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - James D Ede
- Vireo Advisors, LLC, Boston, MA, 02130-4323, USA
| | | | | | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| |
Collapse
|
89
|
Dong Y, Hou Q, Lei J, Wolf PG, Ayansola H, Zhang B. Quercetin Alleviates Intestinal Oxidative Damage Induced by H 2O 2 via Modulation of GSH: In Vitro Screening and In Vivo Evaluation in a Colitis Model of Mice. ACS OMEGA 2020; 5:8334-8346. [PMID: 32309744 PMCID: PMC7161027 DOI: 10.1021/acsomega.0c00804] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/24/2020] [Indexed: 05/13/2023]
Abstract
The gastrointestinal tract is exposed to pro-oxidants from food, host immune factors, and microbial pathogens, which may induce oxidative damage. Oxidative stress has been shown to play an important role in the onset of inflammatory bowel disease. This study aimed to use a novel model to evaluate the effects of a screened natural component and explore its possible mechanism. An in vitro oxidative stress Caco2 cell model induced by H2O2 was established using a real-time cellular analysis system and verified by addition of glutathione (GSH). A variety of plant components were chosen for the screening. Quercetin was the most effective phytochemical to alleviate the decreased cell index caused by H2O2 among the tested plant components. Furthermore, quercetin ameliorated dextran sulfate sodium salt (DSS)-induced colitis and further increased the serum GSH. The mechanism of quercetin protection was explored in Caco2. Reversed H2O2-induced cell damage and decreased reactive oxygen species and apoptosis ratio were observed in quercetin-treated cells. Also, quercetin increased expression of the glutamate-cysteine ligase catalytic subunit (GCLC), the first rate-limiting enzyme of glutathione synthesis, and increased intracellular GSH concentration under H2O2 treatment. This effect was abolished by the GCLC inhibitor buthionine sulfoximine. These results indicated that quercetin can improve cell proliferation and increase intracellular GSH concentrations by upregulating transcription of GCLC to eliminate excessive reactive oxygen species (ROS). Increased extracellular H2O2 concentration induced by quercetin under oxidative stress was related to the inhibition of AQP3 and upregulation of NOX1/2, which may contribute to the observed protective effects of quercetin. Moreover, the novel H2O2-induced oxidative stress cell model based on the real-time cellular analysis system was an effective model to screen natural products to deal with intestinal oxidative damage and help accelerate the discovery of new drugs for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Yuanyang Dong
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| | - Qihang Hou
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| | - Patricia G. Wolf
- Division
of Nutritional Sciences, University of Illinois
at Urbana-Champaign, 1207 W. Gregory Avenue, Urbana, Illinois 61801, United
States
| | - Hammed Ayansola
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
90
|
Khatlab ADS, Del Vesco AP, Rodrigues Oliveira Neto A, Almeida FLA, Gasparino E. Dietary supplementation with free methionine or methionine dipeptide improves environment intestinal of broilers challenged with Eimeria spp. J Anim Sci 2020; 97:4746-4760. [PMID: 31679027 DOI: 10.1093/jas/skz339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
This study examined the influence of a diet enriched with free methionine (dl-Met) or methionine dipeptide (dl-MMet) on the intestinal health of Eimeria-challenged (EC) and unchallenged (UC) broilers. A non-supplemented, methionine-deficient diet (NS) was used as control. Treatments were arranged in a 2 × 3 factorial completely randomized design with eight replications. Broilers in the EC group were infected with sporulated oocysts of Eimeria spp. (E. acervulina, E. maxima, E. praecox, and E. mitis) at 14 d of age. Performance analysis, light and electron microscopy of the jejunum, analysis of genes related to apoptosis and cell proliferation in the jejunum, and blood tests were performed at 6 days post-inoculation (dpi). EC broilers had poorer performance than UC broilers, regardless of diet (P < 0.001). Broilers fed the dl-Met diet had greater weight gain (P = 0.004) and lower feed conversion ratio (P = 0.019) than broilers fed other diets. Jejunal sections from EC broilers fed the NS diet showed short (P = 0.001) and wide villi (P < 0.001) with increased crypt depth (P < 0.001) and reduced villus / crypt ratio (P = 0.001), jejunal absorptive surface area (P < 0.001), number of neutral goblet cells (Eimeria challenge: P = 0.048; diet P = 0.016), and mucin 2 (MUC2) gene expression (P = 0.018). EC birds fed the dl-MMet diet had higher enterocyte height (P < 0.001). Birds fed the dl-MMet diet had low lamina propria width (P = 0.009). UC broilers fed the dl-Met diet had the highest number of acidic goblet cells (P = 0.005), whereas EC broilers assigned the dl-MMet diet showed the highest number of intraepithelial lymphocytes (P = 0.033). Reduced expression of caspase-3 (CASP3) (P = 0.005), B-cell lymphoma 2 (BCL2) (P < 0.001), mechanistic target of rapamycin (MTOR) (P < 0.001), and ribosomal protein S6 kinase B1 (RPS6KB1) (P < 0.001) genes was observed in EC animals. MTOR expression levels were highest in birds fed the dl-MMet diet (P = 0.004). Plasma activities of aspartate aminotransferase (AST) was influenced by both diet (P = 0.002) and Eimeria challenge (P = 0.005), with EC broilers assigned the NS diet showing the highest levels. EC broilers fed the NS diet had higher creatine kinase (CK) activity (P = 0.049). EC broilers had lower plasma uric acid (P = 0.004) and higher serum mucoproteins level (P < 0.001). These results indicate that methionine dipeptide supplementation is able to mitigate the harmful intestinal effects of Eimeria spp. in broilers.
Collapse
Affiliation(s)
| | - Ana Paula Del Vesco
- Animal Science Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Eliane Gasparino
- Animal Science Department, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
91
|
Lallès JP. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev 2020; 77:710-724. [PMID: 31086953 DOI: 10.1093/nutrit/nuz015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, much new data on intestinal alkaline phosphatase (IAP) have been published, and major breakthroughs have been disclosed. The aim of the present review is to critically analyze the publications released over the last 5 years. These breakthroughs include, for example, the direct implication of IAP in intestinal tight junction integrity and barrier function maintenance; chronic intestinal challenge with low concentrations of Salmonella generating long-lasting depletion of IAP and increased susceptibility to inflammation; the suggestion that genetic mutations in the IAP gene in humans contribute to some forms of chronic inflammatory diseases and loss of functional IAP along the gut and in stools; stool IAP as an early biomarker of incipient diabetes in humans; and omega-3 fatty acids as direct inducers of IAP in intestinal tissue. Many recent papers have also explored the prophylactic and therapeutic potential of IAP and other alkaline phosphatase (AP) isoforms in various experimental settings and diseases. Remarkably, nearly all data confirm the potent anti-inflammatory properties of (I)AP and the negative consequences of its inhibition on health. A simplified model of the body AP system integrating the IAP compartment is provided. Finally, the list of nutrients and food components stimulating IAP has continued to grow, thus emphasizing nutrition as a potent lever for limiting inflammation.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France, and the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| |
Collapse
|
92
|
Bao C, Yang Z, Li Q, Cai Q, Li H, Shu B. Aerobic Endurance Exercise Ameliorates Renal Vascular Sclerosis in Aged Mice by Regulating PI3K/AKT/mTOR Signaling Pathway. DNA Cell Biol 2020; 39:310-320. [PMID: 31971826 DOI: 10.1089/dna.2019.4966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal vascular sclerosis caused by aging plays an important role in the occurrence and development of chronic kidney disease. Clinical studies have confirmed that endurance exercise is able to delay the aging of skeletal muscle and brain tissue. However, to date, few studies have assessed whether endurance exercise is able to improve the occurrence of renal vascular sclerosis caused by natural aging and its related mechanisms. In this study, we investigated the protective effect of aerobic endurance exercise on renal vascular sclerosis in aged mice and its effect on the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. The results suggested that aerobic endurance exercise preserved kidney morphology and renal function. Glomerular basement membrane thickness was evidently increased, podocyte foot processes were effaced in aged mice, and aerobic endurance exercise significantly ameliorated the overall lesion range. The protein expression of vascular endothelial growth factor (VEGF) and JG12 was lower in the senile control group (OC group). The protein expression of VEGF and JG12 was significantly increased after aerobic endurance exercise. Furthermore, aerobic endurance exercise resulted in downregulation of Bax, Caspase 3, IL-6, and senescent cells and upregulation of Bcl-2. The upregulation of PI3K and its downstream signal molecules AKT and mTOR after aerobic endurance exercise was further observed. Our observations indicated that aerobic endurance exercise may inhibit renal vascular sclerosis in aged mice by regulating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, University-Town Hospital, Chongqing Medical University, Chongqing, China
| | - Zhong Yang
- Department of Clinical Blood Teaching and Research, Army Medical University, Chongqing, China
| | - Qian Li
- Department of Rehabilitation Medicine, University-Town Hospital, Chongqing Medical University, Chongqing, China
| | - Qiyan Cai
- Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Hongli Li
- Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Bin Shu
- Department of Rehabilitation Medicine, University-Town Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
93
|
Wessels I, Pupke JT, von Trotha KT, Gombert A, Himmelsbach A, Fischer HJ, Jacobs MJ, Rink L, Grommes J. Zinc supplementation ameliorates lung injury by reducing neutrophil recruitment and activity. Thorax 2020; 75:253-261. [PMID: 31915307 DOI: 10.1136/thoraxjnl-2019-213357] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Zinc is well known for its anti-inflammatory effects, including regulation of migration and activity of polymorphonuclear neutrophils (PMN). Zinc deficiency is associated with inflammatory diseases such as acute lung injury (ALI). As deregulated neutrophil recruitment and their hyper-activation are hallmarks of ALI, benefits of zinc supplementation on the development of lipopolysaccharides (LPS)-induced ALI were tested. METHODS 64 C57Bl/6 mice, split into eight groups, were injected with 30 µg zinc 24 hours before exposure to aerosolised LPS for 4 hours. Zinc homoeostasis was characterised measuring serum and lung zinc concentrations as well as metallothionein-1 expression. Recruitment of neutrophils to alveolar, interstitial and intravascular space was assessed using flow cytometry. To determine the extent of lung damage, permeability and histological changes and the influx of protein into the bronchoalveolar lavage fluid were measured. Inflammatory status and PMN activity were evaluated via tumour necrosis factor α levels and formation of neutrophil extracellular traps. The effects of zinc supplementation prior to LPS stimulation on activation of primary human granulocytes and integrity of human lung cell monolayers were assessed as well. RESULTS Injecting zinc 24 hours prior to LPS-induced ALI indeed significantly decreased the recruitment of neutrophils to the lungs and prevented their hyperactivity and thus lung damage was decreased. Results from in vitro investigations using human cells suggest the transferability of the finding to human disease, which remains to be tested in more detail. CONCLUSION Zinc supplementation attenuated LPS-induced lung injury in a murine ALI model. Thus, the usage of zinc-based strategies should be considered to prevent detrimental consequences of respiratory infection and lung damage in risk groups.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Johanna Theresa Pupke
- Department of Vascular Surgery, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Klaus-Thilo von Trotha
- Department of Vascular Surgery, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany.,Department of Vascular Surgery, Marienhospital Aachen, Aachen, Nordrhein-Westfalen, Germany
| | - Alexander Gombert
- Department of Vascular Surgery, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Anika Himmelsbach
- Department of Cardiology, Medical Clinic I, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Henrike Josephine Fischer
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Michael J Jacobs
- Department of Vascular Surgery, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Jochen Grommes
- Department of Vascular Surgery, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany .,Department of Vascular Surgery, Rhein-Maas Klinikum GmbH, Wurselen, Nordrhein-Westfalen, Germany
| |
Collapse
|
94
|
Bian Y, Dong Y, Sun J, Sun M, Hou Q, Lai Y, Zhang B. Protective Effect of Kaempferol on LPS-Induced Inflammation and Barrier Dysfunction in a Coculture Model of Intestinal Epithelial Cells and Intestinal Microvascular Endothelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:160-167. [PMID: 31825618 DOI: 10.1021/acs.jafc.9b06294] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of intestinal mucosa and submucosa, characterized by the disruption of the intestinal epithelial barrier, increased production of inflammatory mediators, and excessive tissue injury. Intestinal epithelial cells, as well as microvascular endothelial cells, play important roles in IBD. To study the potential effects of kaempferol in IBD progress, we established a novel epithelial-endothelial cells coculture model to investigate the intestinal inflammation and barrier function. Data demonstrated an obvious increased transepithelial electrical resistance (TEER) (1222 ± 60.40 Ω cm2 vs 1371 ± 38.77 Ω cm2), decreased flux of FITC (180.8 ± 20.06 μg/mL vs 136.7 ± 14.78 μg/mL), and up-regulated occludin and claudin-2 expression in Caco-2 that was specifically cocultured with endothelial cells. Meanwhile, 80 μM kaempferol alleviated the drop of TEER, the increase of FITC flux, and the overexpression of interleukin-8 (IL-8) induced by 1 μg/mL lipopolysaccharide (LPS). Additionally, kaempferol also ameliorated the LPS-induced decrease of protein expression of zonula occludens-1 (ZO-1), occludin, and claudin-2, together with the inhibited protein expressions of the phosphorylation level of NF-κB and I-κB induced by LPS. Our results suggest that kaempferol alleviates the IL-8 secretion and barrier dysfunction of the Caco-2 monolayer in the LPS-induced epithelial-endothelial coculture model via inhibiting the NF-κB signaling pathway activation.
Collapse
Affiliation(s)
- Yifei Bian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Yuanmingyuan West Road , Haidian District, Beijing , 100193 , China
| | - Yuanyang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Yuanmingyuan West Road , Haidian District, Beijing , 100193 , China
| | - Jingjing Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Yuanmingyuan West Road , Haidian District, Beijing , 100193 , China
| | - Meng Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Yuanmingyuan West Road , Haidian District, Beijing , 100193 , China
| | - Qihang Hou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Yuanmingyuan West Road , Haidian District, Beijing , 100193 , China
| | - Yujiao Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Yuanmingyuan West Road , Haidian District, Beijing , 100193 , China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Yuanmingyuan West Road , Haidian District, Beijing , 100193 , China
| |
Collapse
|
95
|
Huang Q, Liu L, Wu H, Li K, Li N, Liu Y. The design, development, and in vivo performance of intestinal anastomosis ring fabricated by magnesium‑zinc‑strontium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110158. [DOI: 10.1016/j.msec.2019.110158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022]
|
96
|
Mnatsakanyan H, Sabater I Serra R, Salmeron-Sanchez M, Rico P. Zinc Maintains Embryonic Stem Cell Pluripotency and Multilineage Differentiation Potential via AKT Activation. Front Cell Dev Biol 2019; 7:180. [PMID: 31544103 PMCID: PMC6728745 DOI: 10.3389/fcell.2019.00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cells (ESCs) possess remarkable abilities, as they can differentiate into all cell types (pluripotency) and be self-renewing, giving rise to two identical cells. These characteristics make ESCs a powerful research tool in fundamental embryogenesis as well as candidates for use in regenerative medicine. Significant efforts have been devoted to developing protocols to control ESC fate, including soluble and complex cocktails of growth factors and small molecules seeking to activate/inhibit key signaling pathways for the maintenance of pluripotency states or activate differentiation. Here we describe a novel method for the effective maintenance of mouse ESCs, avoiding the supplementation of complex inhibitory cocktails or cytokines, e.g., LIF. We show that the addition of zinc to ESC cultures leads to a stable pluripotent state that shares biochemical, transcriptional and karyotypic features with the classical LIF treatment. We demonstrate for the first time that ESCs maintained in long-term cultures with added zinc, are capable of sustaining a stable ESCs pluripotent phenotype, as well as differentiating efficiently upon external stimulation. We show that zinc promotes long-term ESC self-renewal (>30 days) via activation of ZIP7 and AKT signaling pathways. Furthermore, the combination of zinc with LIF results in a synergistic effect that enhances LIF effects, increases AKT and STAT3 activity, promotes the expression of pluripotency regulators and avoids the expression of differentiation markers.
Collapse
Affiliation(s)
- Hayk Mnatsakanyan
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
| | - Roser Sabater I Serra
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Manuel Salmeron-Sanchez
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Division of Biomedical Engineering, Centre for the Cellular Microenvironment, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Patricia Rico
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
97
|
Hussein J, Attia MF, El Bana M, El-Daly SM, Mohamed N, El-Khayat Z, El-Naggar ME. Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticles as a potential antidiabetic agent in rats. Int J Biol Macromol 2019; 140:1305-1314. [PMID: 31449866 DOI: 10.1016/j.ijbiomac.2019.08.201] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Our goal in this study is to improve the efficiency of docosahexaenoic acid (DHA) toward the enhancement of insulin signaling pathway in vivo via loading with zinc oxide nanoparticles (ZnO NPs). To this end, two consecutive steps were undertaken, preparation of ZnO NPs by one-step solid-state reaction in dry conditions and calcinated followed by loading DHA. Both developed nanoparticles, with and without DHA were then characterized by TEM, SEM, EDX, and Zetasizer. For comparison between free and loaded DHA, four groups of rats were prepared to receive different treatments. Group I; healthy rats (reference), group II; diabetes (streptozotocin-induced), group III and group IV are diabetes orally administered with free DHA and DHA-loaded ZnO NPs (10 mg/kg bw/day), respectively. Blood samples were collected and analyzed where the results demonstrated that fasting blood sugar and insulin resistance were significantly increased in diabetic group along with upgrading in oxidative stress parameters emphasizing the oxidative properties of streptozotocin. HPLC analysis of cell membrane fatty acids resulted in the reduction of omega-6 and 9 and elevation of omega-3 after free DHA and DHA-loaded ZnO NPs streptozotocin treatments. DHA-loaded ZnO NPs had high performance in enhancing insulin signaling pathway as expressed in changes of phosphatidylinositol 3-kinase (PI3K) levels.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed F Attia
- Textile Research Division, National Research Centre, 33 El Bohouth st.-Dokki-Giza, Egypt; Department of Chemistry, Clemson University, Clemson, SC, United States.
| | - Mona El Bana
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Nadia Mohamed
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Zakeria El-Khayat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Centre, 33 El Bohouth st.-Dokki-Giza, Egypt.
| |
Collapse
|
98
|
Li X, Hu X, Tian GG, Cheng P, Li Z, Zhu M, Zhou H, Wu J. C89 Induces Autophagy of Female Germline Stem Cells via Inhibition of the PI3K-Akt Pathway In Vitro. Cells 2019; 8:cells8060606. [PMID: 31216656 PMCID: PMC6627605 DOI: 10.3390/cells8060606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022] Open
Abstract
Postnatal female germline stem cells (FGSCs) are a type of germline stem cell with self-renewal ability and the capacity of differentiation toward oocyte. The proliferation, differentiation, and apoptosis of FGSCs have been researched in recent years, but autophagy in FGSCs has not been explored. This study investigated the effects of the small-molecule compound 89 (C89) on FGSCs and the underlying molecular mechanism in vitro. Cytometry, Cell Counting Kit-8 (CCK8), and 5-ethynyl-2'-deoxyuridine (EdU) assay showed that the number, viability, and proliferation of FGSCs were significantly reduced in C89-treated groups (0.5, 1, and 2 µM) compared with controls. C89 had no impact on FGSC apoptosis or differentiation. However, C89 treatment induced the expression of light chain 3 beta II (LC3BII) and reduced the expression of sequestosome-1 (SQSTM1) in FGSCs, indicating that C89 induced FGSC autophagy. To investigate the mechanism of C89-induced FGSC autophagy, RNA-seq technology was used to compare the transcriptome differences between C89-treated FGSCs and controls. Bioinformatics analysis of the sequencing data indicated a potential involvement of the phosphatidylinositol 3 kinase and kinase Akt (PI3K-Akt) pathway in the effects of C89's induction of autophagy in FGSCs. Western blot confirmed that levels of p-PI3K and p-Akt were significantly reduced in the C89- or LY294002 (PI3K inhibitor)-treated groups compared with controls. Moreover, we found cooperative functions of C89 and LY294002 in inducing FGSC autophagy through suppressing the PI3K-Akt pathway. Taken together, this research demonstrates that C89 can reduce the number, viability, and proliferation of FGSCs by inducing autophagy. Furthermore, C89 induced FGSC autophagy by inhibiting the activity of PI3K and Akt. The PI3K-Akt pathway may be a target to regulate FGSC proliferation and death.
Collapse
Affiliation(s)
- Xinyue Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaopeng Hu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ping Cheng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Zezhong Li
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
99
|
Zinc induces iron uptake and DMT1 expression in Caco-2 cells via a PI3K/IRP2 dependent mechanism. Biochem J 2019; 476:1573-1583. [DOI: 10.1042/bcj20180939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/29/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
Abstract
Abstract
The absorption of iron is influenced by numerous dietary and physiological factors. We have previously demonstrated that zinc treatment of intestinal cells increases iron absorption via induction of the apical membrane iron transporter divalent metal ion transporter-1 (DMT1). To better understand the mechanisms of zinc-induced iron absorption, we have studied the effect of zinc on iron uptake, iron transporter and iron regulatory protein (IRP 1 and 2) expression and the impact of the PI3K pathway in differentiated Caco-2 cells, an intestinal cell culture model. We found that zinc induces DMT1 protein and mRNA expression. Zinc-induced DMT1 expression and iron absorption were inhibited by siRNA silencing of DMT1. Furthermore, zinc treatment led to increased abundance of IRP2 protein in cell lysates and in polysomal fractions, implying its binding to target mRNAs. Zinc treatment induced Akt phosphorylation, indicating the activation of the PI3K pathway. LY294002, a specific inhibitor of PI3K inhibited zinc-induced Akt phosphorylation, iron uptake, DMT1 and IRP2 expression. Furthermore, LY294002 also decreased the basal level of DMT1 mRNA but not protein expression. siRNA silencing of IRP2 led to down-regulation of both basal and zinc-induced DMT1 protein expression, implying possible involvement of post-transcriptional regulatory mechanisms. In agreement with these findings, zinc treatment stabilized DMT1 mRNA levels in actinomycin D-treated cells. Based on these findings, we conclude that zinc-induced iron absorption involves elevation of DMT1 expression by stabilization of its mRNA, by a PI3K/IRP2-dependent mechanism.
Collapse
|
100
|
Leech B, Schloss J, Steel A. Treatment Interventions for the Management of Intestinal Permeability: A Cross-Sectional Survey of Complementary and Integrative Medicine Practitioners. J Altern Complement Med 2019; 25:623-636. [PMID: 31038350 DOI: 10.1089/acm.2018.0374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives: This study aims to explore the treatment interventions complementary and integrative medicine (CIM) practitioners use in the management of an emerging health condition, increased intestinal permeability (IP), and the association these methods have on the observed time to resolve this condition. Design and setting: A cross-sectional survey of Australian naturopaths, nutritionists, and Western herbal medicine practitioners was undertaken (n = 227) through the Practitioner Research and Collaboration Initiative (PRACI) network. Outcome measures: Frequencies and percentages of the treatment methods, including chi-square analysis to examine the associations between treatment methods and observed time to resolve IP. Results: Thirty-six CIM practitioners responded to the survey (response rate 15.9%). CIM practitioners were found to use a multimodal approach in the management of IP with 92.6% of respondents using three or more categories of treatment interventions (nutritional, herbal, dietary, and lifestyle) with a mean total of 43.0 ± 24.89 single treatment interventions frequently prescribed. The main treatments prescribed in the management of IP were zinc (85.2%), probiotics: multistrain (77.8%), vitamin D (75.0%), glutamine (73.1%), Curcuma longa (73.1%), and Saccharomyces boulardii (70.4%). CIM practitioners also advocate patients with IP to reduce alcohol (96.3%), gluten (85.2%), and dairy (75.0%) consumption. Evaluation of antibiotics (75.0%) and nonsteroidal anti-inflammatory drugs (73.1%) prescriptions were frequently advised by CIM practitioners. A longer observed time to resolve IP was seen in CIM practitioners who did not reduce intense exercise in the management of IP (p = 0.02). Conclusions: This study represents the first survey of the treatments prescribed by CIM practitioners for IP and suggests that CIM practitioners use numerous integrative treatment methods for the management of IP. The treatment interventions frequently prescribed by CIM practitioners align with preclinical research, suggesting that CIM practitioners prescribe in accordance with the published literature. The findings of this study contribute to the implementation of clinical research in the management of IP, which considers multiple concurrent treatments.
Collapse
Affiliation(s)
- Bradley Leech
- 1 Office of Research, Endeavour College of Natural Health, Fortitude Valley, QLD, Australia.,2 Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Janet Schloss
- 1 Office of Research, Endeavour College of Natural Health, Fortitude Valley, QLD, Australia
| | - Amie Steel
- 1 Office of Research, Endeavour College of Natural Health, Fortitude Valley, QLD, Australia.,2 Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|