51
|
Rathore RS, Mishra M, Pareek A, Singla-Pareek SL. A glutathione-independent DJ-1/Pfp1 domain containing glyoxalase III, OsDJ-1C, functions in abiotic stress adaptation in rice. PLANTA 2024; 259:81. [PMID: 38438662 DOI: 10.1007/s00425-023-04315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/19/2023] [Indexed: 03/06/2024]
Abstract
MAIN CONCLUSION Overexpression of OsDJ-1C in rice improves root architecture, photosynthesis, yield and abiotic stress tolerance through modulating methylglyoxal levels, antioxidant defense, and redox homeostasis. Exposure to abiotic stresses leads to elevated methylglyoxal (MG) levels in plants, impacting seed germination and root growth. In response, the activation of NADPH-dependent aldo-keto reductase and glutathione (GSH)-dependent glyoxalase enzymes helps to regulate MG levels and reduce its toxic effects. However, detoxification may not be carried out effectively due to the limitation of GSH and NADPH in plants under stress. Recently, a novel enzyme called glyoxalase III (GLY III) has been discovered which can detoxify MG in a single step without needing GSH. To understand the physiological importance of this pathway in rice, we overexpressed the gene encoding GLYIII enzyme (OsDJ-1C) in rice. It was observed that OsDJ-1C overexpression in rice regulated MG levels under stress conditions thus, linked well with plants' abiotic stress tolerance potential. The OsDJ-1C overexpression lines displayed better root architecture, improved photosynthesis, and reduced yield penalty compared to the WT plants under salinity, and drought stress conditions. These plants demonstrated an improved GSH/GSSG ratio, reduced level of reactive oxygen species, increased antioxidant capacity, and higher anti-glycation activity thereby indicating that the GLYIII mediated MG detoxification plays a significant role in plants' ability to reduce the impact of abiotic stress. Furthermore, these findings imply the potential of OsDJ-1C in crop improvement programs.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
52
|
Jin C, Zhu Y, You J, Yu Q, Liu Q, Zhou X. The regulation of light quality on the substance production and photosynthetic activity of Dunaliella bardawil. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112872. [PMID: 38401433 DOI: 10.1016/j.jphotobiol.2024.112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
To study the influence and regulation of light quality on the microalgal photosynthetic activity and production of biomass and substances, green alga Dunaliella bardawil was cultured in this study under the monochromatic red light (7R0B), blue light (0R7B), and their combinations with different ratios (xRyB, x + y = 7), as well as a control of white light (W). The results demonstrated that the only advantage for control W was its chlorophyll-a (Chl-a) and Chl-b contents. All substance production at 7R0B were much lower than at control W, except of glycerol. Compared to control W, protein production at 1R6B (259.22 mg/L) was 1.10 times greater, carbohydrate production at 0R7B (306.49 mg/L) was 1.34 times higher, lipid production at 3R4B (133.60 mg/L) was 1.36 times higher, and glycerol production at 4R3B (53.58 mg/L) was 1.13 times greater. In comparison to control W, there was the significant improvements of at least 19%, 20%, and 5%, respectively, in the values of potential maximal relative electron transport efficiency (rETRmax), light intensity with saturated rETR (IK), and actual photochemical efficiency of PSII (QYss) in treatments. The correlation analysis revealed that the content of carotenoids was closely related to non-photochemical quenching (NPQ). The test using Chl-a fluorescence transients (JIP-test) proved that red light inhibited electron transport from reduced Quinone A (QA-) to QB and resulted in a sharp increase in RC/CSm, and that the blue-dominated light enhanced electron transport from QA- to QB and from plastoquinone (PQ) to PSI receptor side. The photosynthetic parameters including Ψo, φEO, φRO, δRO, PIABS, PItotal, DFABS, and DFtotal, which were positively correlated with growth and substance production, were improved by blue-dominated light. The variations in the electron transport chain might provide the signals for metabolic regulation. The results of this study will be helpful to promote the production of Dunaliella bardawil under artificial illumination and to clarify the regulating mechanism of light quality on microalgal photosynthesis.
Collapse
Affiliation(s)
- Cuili Jin
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China; Marine Science & Technology Institute, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Yan Zhu
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Jiajie You
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Qiuyan Yu
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Qing Liu
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China; Marine Science & Technology Institute, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Xiaojian Zhou
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China; Marine Science & Technology Institute, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China.
| |
Collapse
|
53
|
Siddiqui ZS, Nida K, Cho JI, Rehman Y, Abideen Z. Physiological and photochemical profiling of soybean plant using biological and chemical methods of treatment against biotic stress management. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108454. [PMID: 38452449 DOI: 10.1016/j.plaphy.2024.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Phyto-pathogenic fungal species is a leading biotic stress factor to agri-food production and ecosystem of globe. Chemical (Systemic fungicides) and biological treatment (micro-organism) are globally accepted methods that are being used against biotic stress (disease) management. Plant Growth-Promoting Microbes are being used as an alternative to ease chemical dependency as their overdoses have generated injurious effects on plants and environment. Therefore, present study performs to evaluate the photochemical and physiological profiling of plants exposed to chemical and biological treatment in biotic stress (disease) environment. Two concentrations of each chemical treatment i.e. Topsin-M 70 (Dimethyl 4,4'-o-phenylene bis 3-thioallaphanate, MF1 = 3 g kg-1 and MF2 = 6 g kg-1 seeds) and biological treatment i.e. Trichoderma harzianum strain Th-6 (MT1 = 106 spores mL-1and MT2 = 107 spores mL-1) were used in this experiment. Macrophomina phaseolina (MP) were used as biotic stress factor causing root rot disease in soybean plants. Morpho-physiological assessments and light harvesting efficiency of photosystem II were conducted after 52 days of treatment. Maximum quantum yield (Fv/Fm), number and size of active reaction center (Fv/Fo), photochemical quenching (qP), efficiency of photosystem II (ΦPSII), electron transport rate (ETR), chlorophyll content index (CCI), relative water content (RWC) and stomatal conductance (SC) were increased in MT2 and MF1 treatments as compared to stress plants (MP). Biological (MT2) and chemical (MF1) treatment lessen the production of stress markers showing -48.0 to -54.3% decline in malondialdehyde (MDA) and -42.0 to -53.7% in hydrogen peroxide (H2O2) as compared to stress plant (MP). Biological treatment in both concentration (MF1 & MF2) while chemical treatment at low dose effectively mitigates biotic stress and eases the magnitude of disease. Increasing doses of chemical treatment persuaded deleterious effects on the physiology and light harvesting efficiency of stressed plant suggesting the role of biological treatment (T. harzianum) against biotic stress management in future of crop protection.
Collapse
Affiliation(s)
| | - Komal Nida
- Stress Physiology Lab., Department of Botany, University of Karachi, Pakistan
| | - Jung-Il Cho
- Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365, South Korea
| | - Yusra Rehman
- Stress Physiology Lab., Department of Botany, University of Karachi, Pakistan
| | - Zainul Abideen
- MAK Institute of Sustainable Halophyte Utilization, University of Karachi, Pakistan
| |
Collapse
|
54
|
Baruah P, Srivastava A, Mishra Y, Chaurasia N. Modulation in growth, oxidative stress, photosynthesis, and morphology reveals higher toxicity of alpha-cypermethrin than chlorpyrifos towards a non-target green alga at high doses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104376. [PMID: 38278501 DOI: 10.1016/j.etap.2024.104376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Considering the frequent detection of pesticides in the aquatic environment, the ecotoxicological effects of Chlorpyrifos (CHP), an organophosphate, and alpha-cypermethrin (ACM), a pyrethroid, on freshwater microalgae were compared for the first time in this study. High concentrations of both CHP and ACM significantly suppressed the growth of test microalga Graesiella emersonii (p < 0.05). The 96-h EC50 of CHP and ACM were 54.42 mg L-1 and 29.40 mg L-1, respectively. Sub-inhibitory doses of both pesticides increased ROS formation in a concentration-dependent manner, which was accompanied by changes in antioxidant enzymes activities, lipid peroxidation, and variations in photosynthetic pigment concentration. Furthermore, both pesticides influenced photosystem II performance, oxygen-evolving complex efficiency and, intracellular ATP levels. Scanning electron microscopy analysis revealed that high concentrations of both CHP and ACM caused considerable morphological changes in the microalga. In comparison, CHP was more toxic than ACM at low concentrations, whereas ACM was more toxic at high concentrations.
Collapse
Affiliation(s)
- Prithu Baruah
- Environmental Biotechnology laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Akanksha Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Yogesh Mishra
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
55
|
Thakur A, Kumar A, Kumar D, Warghat AR, Pandey SS. Physiological and biochemical regulation of Valeriana jatamansi Jones under water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108476. [PMID: 38442628 DOI: 10.1016/j.plaphy.2024.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Understanding the physiological and biochemical regulations in a medicinal plant under stress environments is essential. Here, the effect of water stress such as flooding and water deficit [80% (control), 60%, 40%, 20% field capacity (FC)] conditions on Valeriana jatamansi was studied. Both types of water stresses retarded the plant growth and biomass. Photosynthetic pigments were reduced with maximum reduction under flood stress. Chlorophyll fluorescence study revealed distinct attributes under applied stresses. Better performance index (PI) of flood-grown plants (than 20% and 40% FC) and higher relative fluorescence decrease ratio (Rfd) in 40% FC and flood-grown plants than that of control plants, indicated the adaptation ability of plants under water deficit (40% FC) and flood stress. Reduction in net photosynthetic rate was lesser in flood stress (40.92%) compared to drought stress (73.92% at 20% FC). Accumulation of starch was also decreased (61.1% at 20% FC) under drought stress, while it was increased (24.59%) in flood stress. The effect of water stress was also evident with modulation in H2O2 content and membrane damage. Differential modulation of biosynthesis of secondary metabolites (valtrate, acevaltrate and hydroxyl valerenic acid) and expression of iridoid biosynthetic genes under water stress was also revealed. The present study demonstrated the distinct effect of drought and flood stress on V. jatamansi plants, and drought [20% FC] caused severe loss and more damage than flood stress. Therefore, severe drought should be avoided during cultivation of V. jatamansi and regulated water stress-applications have potential for modulation of biosynthesis of specific secondary metabolites.
Collapse
Affiliation(s)
- Ankita Thakur
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Anil Kumar
- Chemical Technology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Dinesh Kumar
- Chemical Technology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ashish Rambhau Warghat
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
56
|
Nanda S, Shutova T, Cainzos M, Hu C, Sasbrink B, Bag P, Blanken TD, Buijs R, Gracht LVD, Hendriks F, Lambrev P, Limburg R, Mascoli V, Nawrocki WJ, Reus M, Parmessar R, Singerling B, Stokkum IHM, Jansson S, Holzwarth AR. ChloroSpec: A new in vivo chlorophyll fluorescence spectrometer for simultaneous wavelength- and time-resolved detection. PHYSIOLOGIA PLANTARUM 2024; 176:e14306. [PMID: 38659135 DOI: 10.1111/ppl.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Chlorophyll fluorescence is a ubiquitous tool in basic and applied plant science research. Various standard commercial instruments are available for characterization of photosynthetic material like leaves or microalgae, most of which integrate the overall fluorescence signals above a certain cut-off wavelength. However, wavelength-resolved (fluorescence signals appearing at different wavelengths having different time dependent decay) signals contain vast information required to decompose complex signals and processes into their underlying components that can untangle the photo-physiological process of photosynthesis. Hence, to address this we describe an advanced chlorophyll fluorescence spectrometer - ChloroSpec - allowing three-dimensional simultaneous detection of fluorescence intensities at different wavelengths in a time-resolved manner. We demonstrate for a variety of typical examples that most of the generally used fluorescence parameters are strongly wavelength dependent. This indicates a pronounced heterogeneity and a highly dynamic nature of the thylakoid and the photosynthetic apparatus under actinic illumination. Furthermore, we provide examples of advanced global analysis procedures integrating this three-dimensional signal and relevant information extracted from them that relate to the physiological properties of the organism. This conveniently obtained broad range of data can make ChloroSpec a new standard tool in photosynthesis research.
Collapse
Affiliation(s)
- Sanchali Nanda
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Tatyana Shutova
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Maximiliano Cainzos
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Chen Hu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Bart Sasbrink
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Pushan Bag
- Section of Molecular Plant Biology, Department of Biology, Oxford University, Oxford, United Kingdom
| | | | - Ronald Buijs
- Technology Centre, Vrije Universiteit Amsterdam, The Netherlands
| | | | - Frans Hendriks
- Technology Centre, Vrije Universiteit Amsterdam, The Netherlands
| | - Petar Lambrev
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim a.d. Ruhr, Germany
| | - Rob Limburg
- Technology Centre, Vrije Universiteit Amsterdam, The Netherlands
| | - Vincenzo Mascoli
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Wojciech J Nawrocki
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Michael Reus
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim a.d. Ruhr, Germany
| | - Ramon Parmessar
- Technology Centre, Vrije Universiteit Amsterdam, The Netherlands
| | - Björn Singerling
- Technology Centre, Vrije Universiteit Amsterdam, The Netherlands
| | - Ivo H M Stokkum
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alfred R Holzwarth
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim a.d. Ruhr, Germany
- ChloroSpec B.V., De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
57
|
Shu P, Gong X, Du Y, Han Y, Jin S, Wang Z, Qian P, Li X. Effects of Simulated Acid Rain on Photosynthesis in Pinus massoniana and Cunninghamia lanceolata in Terms of Prompt Fluorescence, Delayed Fluorescence, and Modulated Reflection at 820 nm. PLANTS (BASEL, SWITZERLAND) 2024; 13:622. [PMID: 38475467 DOI: 10.3390/plants13050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The effects of simulated acid rain (SAR) on the photosynthetic performance of subtropical coniferous species have not been thoroughly investigated. In this study, we treated two coniferous species, Pinus massoniana (PM) and Cunninghamia lanceolata (CL), with four gradients of SAR and then analyzed their photosynthetic activities through measurements of gas exchange, prompt fluorescence (PF), delayed fluorescence (DF), and modulated reflection at 820 nm (MR820). Gas exchange analysis indicated that the decrease in the net photosynthetic rate (Pn) in PM and CL was unrelated to stomatal factors. For the PF transients, SAR induced positive K-band and L-band, a significant reduction in photosynthetic performance index (PIABS), the quantum yield of electron transfer per unit cross-section (ETO/CSm), and maximal photochemical efficiency of photosystem II (Fv/Fm). Analysis of the MR820 kinetics showed that the re-reduction kinetics of PSI reaction center (P700+) and plastocyanin (PC+) became slower and occurred at later times under SAR treatment. For the DF signals, a decrease in the amplitude of the DF induction curve reduced the maximum value of DF (I1). These results suggested that SAR obstructed photosystem II (PSII) donor-side and acceptor-side electron transfer capacity, impaired the connectivity between PSII and PSI, and destroyed the oxygen-evolving complex (OEC). However, PM was better able to withstand SAR stress than CL, likely because of the activation of a protective mechanism.
Collapse
Affiliation(s)
- Pengzhou Shu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xiaofei Gong
- Ecological Forestry Development Center of Suichang County, Lishui 323300, China
| | - Yanlei Du
- Environmental Protection Monitoring Station of Changxing County, Huzhou 313000, China
| | - Yini Han
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Zhongxu Wang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Penghong Qian
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|
58
|
Ren H, Lu Y, Tang Y, Ren P, Tang H, Chen Q, Kuang P, Huang R, Zhu W, Chen K. Photosynthetic Responses of Racomitrium japonicum L. to Strontium Stress Evaluated through Chlorophyll a Fluorescence OJIP Transient Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:591. [PMID: 38475441 DOI: 10.3390/plants13050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Nuclides pollution and its biological effects are of great concern, especially for bryophytes during their terrestrial adaptation. Understanding PSII activity and electron transport response is vital for comprehending moss abiotic stress reactions. However, little is known about the photosynthetic performance of moss under nuclide treatment. Therefore, this study aimed to evaluate the chlorophyll fluorescence of Racomitrium japonicum L. The moss was subjected to Sr2+ solutions at concentrations of 5, 50, and 500 mg/L to evaluate chlorophyll a fluorescence using the OJIP test. Moderate and high Sr2+ stress led to inner cell membrane dissolution and reduced chlorophyll content, indicating impaired light energy absorption. At 5 mg/L Sr2+, fluorescence kinetics showed increased light energy capture, energy dissipation, and total photosynthetic driving force, thus stimulating transient photosynthetic activity of PSII and improving PSI reduction. Linear electron transfer and PSII stability significantly decreased under moderate and high Sr2+ stress, indicating potential photosynthetic center damage. Cyclic electron transfer (CEF) alleviated photosynthetic stress at 5 mg/L Sr2+. Thus, low Sr2+ levels stimulated CEF, adjusting energy flux and partitioning to protect the photosynthetic apparatus. Nevertheless, significant damage occurred due to inefficient protection under high Sr2+ stress.
Collapse
Affiliation(s)
- Hui Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- College of Biological Engineering, Jingchu University of Technology, Jingmen 448000, China
| | - Yunmei Lu
- College of Biological Engineering, Jingchu University of Technology, Jingmen 448000, China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba 623000, China
| | - Qunlong Chen
- Administration Bureau of Jiuzhaigou National Nature Reserve, Jiuzhaigou 623402, China
| | - Peigang Kuang
- Administration Bureau of Jiuzhaigou National Nature Reserve, Jiuzhaigou 623402, China
| | - Renhua Huang
- College of Biological Engineering, Jingchu University of Technology, Jingmen 448000, China
| | - Wenkun Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
59
|
Khudyakova A, Kreslavski V, Kosobryukhov A, Vereshagin M, Allakhverdiev S. Effect of cryptochrome 1 deficiency and spectral composition of light on photosynthetic processes in A. thaliana under high-intensity light exposure. PHOTOSYNTHETICA 2024; 62:71-78. [PMID: 39650628 PMCID: PMC11609765 DOI: 10.32615/ps.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/24/2024] [Indexed: 12/11/2024]
Abstract
The role of cryptochrome 1 in photosynthetic processes and pro-/antioxidant balance in the Arabidopsis thaliana plants was studied. Wild type (WT) and hy4 mutant deficient in cryptochrome 1 grown for 20 d under red (RL, 660 nm) and blue (BL, 460 nm) light at an RL:BL = 4:1 ratio were kept for 3 d in different lights: RL:BL = 4:1, RL:BL:GL = 4:1:0.3 (GL - green light, 550 nm), and BL, then were exposed to high irradiance (4 h). Activity of PSII and the rate of photosynthesis in WT and hy4 decreased under the high irradiance in all spectral variants but under BL stronger decrease in the activity was found in the hy4 mutant than in WT. We assumed that lowered resistance of photosynthetic apparatus in the hy4 mutant may be associated with the low activity of the main antioxidant enzymes and reduced content of low-molecular-mass antioxidants in the mutant compared to the WT.
Collapse
Affiliation(s)
- A. Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
| | - V. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
| | - A. Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
| | - M. Vereshagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - S.I. Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
60
|
Dainelli M, Castellani MB, Pignattelli S, Falsini S, Ristori S, Papini A, Colzi I, Coppi A, Gonnelli C. Growth, physiological parameters and DNA methylation in Spirodela polyrhiza (L.) Schleid exposed to PET micro-nanoplastic contaminated waters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108403. [PMID: 38290343 DOI: 10.1016/j.plaphy.2024.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The effects of polyethylene terephthalate micro-nanoplastics (PET-MNPs) were tested on the model freshwater species Spirodela polyrhiza (L.) Schleid., with focus on possible particle-induced epigenetic effects (i.e. alteration of DNA methylation status). MNPs (size ∼ 200-300 nm) were produced as water dispersions from PET bottles through repeated cycles of homogenization and used to prepare N-medium at two environmentally relevant concentrations (∼0.05 g L-1 and ∼0.1 g L-1 of MNPs). After 10 days of exposure, a reduction in fresh and dry weight was observed in treated plants, even if the average specific growth rate for both frond number and area was not altered. Impaired growth was coupled with a MNP-induced decrease of chlorophyll fluorescence parameters (i.e. ΨETo and Piabs, indicators of photochemical efficiency) and starch concentration, as well as with alterations in plant ionomic profile and oxidative status. The methylation-sensitive amplification polymorphism (MSAP) technique was used to assess possible changes in DNA methylation levels induced by plastic particles. The analysis showed unusual hypermethylation in 5'-CCGG sites that could be implicated in DNA protection from dangerous agents (i.e. reactive oxygen species) or in the formation of new epialleles. This work represents the first evidence of MNP-induced epigenetic modifications in the plant world.
Collapse
Affiliation(s)
- Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Maria Beatrice Castellani
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Sara Pignattelli
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Sandra Ristori
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| |
Collapse
|
61
|
Orzechowska A, Szymańska R, Sarna M, Żądło A, Trtílek M, Kruk J. The interaction between titanium dioxide nanoparticles and light can have dualistic effects on the physiological responses of plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13706-13721. [PMID: 38265580 DOI: 10.1007/s11356-024-31970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
The model plant Arabidopsis thaliana was exposed to combined stress factors, i.e., titanium dioxide nanoparticles (TiNPs) and high light. The concentrations of TiNPs used for irrigation were 250, 500, and 1000 μg/mL. This study shows that TiNPs alter the morphology and nanomechanical properties of chloroplasts in A. thaliana, which leads to a decrease in membrane elasticity. We found that TiNPs contributed to a delay in the thermal response of A. thaliana under dynamic light conditions, as revealed by non-invasive thermal imaging. The thermal time constants of TiNP-treated plants under excessive light are determined, showing a shortening in comparison to control plants. The results indicate that TiNPs may contribute to an alleviation of temperature stress experienced by plants under exposure to high light. In this research, we observed a decline in photosystem II photochemical efficiency accompanied by an increase in energy dissipation upon exposure to TiNPs. Interestingly, concentrations exceeding 250 µg/mL TiNPs appeared to mitigate the effects of high light, as shown by reduced differences in the values of specific OJIP parameters (FV/FM, ABS/RC, DI0/RC, and Pi_Abs) before and after light exposure.
Collapse
Affiliation(s)
- Aleksandra Orzechowska
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Renata Szymańska
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Andrzej Żądło
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Biophysics, Jagiellonian University Medical College, Św. Łazarza 16, 31-530, Kraków, Poland
| | - Martin Trtílek
- Photon Systems Instruments, Průmyslova 470, 664 24, Drásov, Czech Republic
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
62
|
Trotti J, Trapani I, Gulino F, Aceto M, Minio M, Gerotto C, Mica E, Valè G, Barbato R, Pagliano C. Physiological Responses to Salt Stress at the Seedling Stage in Wild ( Oryza rufipogon Griff.) and Cultivated ( Oryza sativa L.) Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:369. [PMID: 38337902 PMCID: PMC10857172 DOI: 10.3390/plants13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Domesticated rice Oryza sativa L. is a major staple food worldwide, and the cereal most sensitive to salinity. It originated from the wild ancestor Oryza rufipogon Griff., which was reported to possess superior salinity tolerance. Here, we examined the morpho-physiological responses to salinity stress (80 mM NaCl for 7 days) in seedlings of an O. rufipogon accession and two Italian O. sativa genotypes, Baldo (mildly tolerant) and Vialone Nano (sensitive). Under salt treatment, O. rufipogon showed the highest percentage of plants with no to moderate stress symptoms, displaying an unchanged shoot/root biomass ratio, the highest Na+ accumulation in roots, the lowest root and leaf Na+/K+ ratio, and highest leaf relative water content, leading to a better preservation of the plant architecture, ion homeostasis, and water status. Moreover, O. rufipogon preserved the overall leaf carbon to nitrogen balance and photosynthetic apparatus integrity. Conversely, Vialone Nano showed the lowest percentage of plants surviving after treatment, and displayed a higher reduction in the growth of shoots rather than roots, with leaves compromised in water and ionic balance, negatively affecting the photosynthetic performance (lowest performance index by JIP-test) and apparatus integrity. Baldo showed intermediate salt tolerance. Being O. rufipogon interfertile with O. sativa, it resulted a good candidate for pre-breeding towards salt-tolerant lines.
Collapse
Affiliation(s)
- Jacopo Trotti
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Isabella Trapani
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | - Federica Gulino
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Maurizio Aceto
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Miles Minio
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (M.M.); (C.G.)
| | - Caterina Gerotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (M.M.); (C.G.)
| | - Erica Mica
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Giampiero Valè
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Roberto Barbato
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Cristina Pagliano
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale Teresa Michel 5, 15121 Alessandria, Italy
| |
Collapse
|
63
|
Wang T, Xu D, Zhang F, Yan T, Li Y, Wang Z, Xie Y, Zhuang W. Changes in Photosynthetic Characteristics between Green-Leaf Poplar Linn. "2025" and Its Bud-Sporting Colored-Leaf Cultivars. Int J Mol Sci 2024; 25:1225. [PMID: 38279223 PMCID: PMC10816277 DOI: 10.3390/ijms25021225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Colored-leaf poplar is increasingly popular due to its great ornamental values and application prospects. However, the photosynthetic characteristics of these colored-leaf cultivars have not been well understood. In this study, the photosynthetic differences between green-leaf poplar Populus deltoids Linn. "2025" (L2025) and colored-leaf cultivars 'Zhonghong poplar' (ZHP), 'Quanhong poplar' (QHP), and 'Caihong poplar' (CHP) were investigated on several levels, including chloroplast ultrastructure observation, photosynthetic physiological characteristics, and expression analysis of key genes. The results showed that the photosynthetic performance of ZHP was basically consistent with that of L2025, while the ranges of light energy absorption and efficiency of light energy utilization decreased to different degrees in CHP and QHP. A relatively low water use efficiency and high dark respiration rate were observed in QHP, suggesting a relatively weak environmental adaptability. The differences in chloroplast structure in different colored-leaf poplars were further observed by transmission electron microscopy. The disorganization of thylakoid in CHP was considered an important reason, resulting in a significant decrease in chlorophyll content compared with other poplar cultivars. Interestingly, CHP exhibited extremely high photosynthetic electron transport activity and photochemical efficiency, which were conductive to maintaining its relatively high photosynthetic performance. The actual quantum yield of PSII photochemistry of ZHP was basically the same as that of QHP, while the relatively high photosynthetic performance indexes in ZHP suggested a more optimized photosynthetic apparatus, which was crucial for the improvement of photosynthetic efficiency. The differential expressions of a series of key genes in different colored-leaf poplars provided a reasonable explanation for anthocyanin accumulation and specific photosynthetic processes.
Collapse
Affiliation(s)
- Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (D.X.); (F.Z.); (T.Y.); (Y.L.); (Z.W.)
| | - Donghuan Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (D.X.); (F.Z.); (T.Y.); (Y.L.); (Z.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Fan Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (D.X.); (F.Z.); (T.Y.); (Y.L.); (Z.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Tengyue Yan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (D.X.); (F.Z.); (T.Y.); (Y.L.); (Z.W.)
| | - Yuhang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (D.X.); (F.Z.); (T.Y.); (Y.L.); (Z.W.)
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (D.X.); (F.Z.); (T.Y.); (Y.L.); (Z.W.)
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (D.X.); (F.Z.); (T.Y.); (Y.L.); (Z.W.)
| |
Collapse
|
64
|
Dikšaitytė A, Kniuipytė I, Žaltauskaitė J, Abdel-Maksoud MA, Asard H, AbdElgawad H. Enhanced Cd phytoextraction by rapeseed under future climate as a consequence of higher sensitivity of HMA genes and better photosynthetic performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168164. [PMID: 37914112 DOI: 10.1016/j.scitotenv.2023.168164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
This study aimed to investigate the underlying physiological, biochemical, and molecular mechanisms responsible for Brassica napu's potential to remediate Cd-contaminated soil under current (CC) vs. future (FC) climate (400 vs. 800 ppm of CO2, 21/14 °C vs. 25/18 °C). B. napus exhibited good tolerance to low Cd treatments (Cd-1, Cd-10, i.e., 1, 10 mg kg-1) under both climates without visible phytotoxicity symptoms. TI sharply decreased by 47 % and 68 % (p < 0.05), respectively, in Cd-50 and Cd-100 treated shoots under CC, but to a lesser extent (-26 % and -53 %, p < 0.05) under FC. This agreed with increased photosynthetic apparatus performance under FC, primarily due to a significant decrease in the closure of active PSII RCs ((dV/dt)o, TRo/RC) and less dissipated excitation energy (DIo/RC, φDo). Calvin Benson cycle-related enzyme activity also improved under FC with 2.2-fold and 2.4-fold (p < 0.05) increases in Rubisco and TPI under Cd-50 and Cd-100, respectively. Consequentially, a 2.2-fold and 2.3-fold (p < 0.05) boosted Pr resulted in a 2.3-fold and 2.4-fold (p < 0.05) increase in the DW of Cd-50 and Cd-100 treated shoots, respectively. This also led to a decrease (26 %, p < 0.05) in shoot Cd concentration under both high Cd treatments with a slight reduction in BCF. Translocation factor (TF) decreased (on average 42 %, p < 0.05) by high Cd treatments under both climates. However, under Cd-100, FC increased TF by 1.7-fold (p < 0.05) compared to CC, which could be explained by significant increases in the expression of HMA genes, especially BnaHMA4a and BnaHMA4c. Finally, Cd TU increased under FC by 65 % and 76 % (p < 0.05) under Cd-50 and Cd-100. This led to a shorter hypothetical remediation time for reaching the Cd pollution limit by 35 (p > 0.05) and 61 (p < 0.05) years, respectively, compared to CC.
Collapse
Affiliation(s)
- Austra Dikšaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania.
| | - Inesa Kniuipytė
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos st. 3, LT-44403 Kaunas, Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Han Asard
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
65
|
Colpo A, Demaria S, Boldrini P, Baldisserotto C, Pancaldi S, Ferroni L. Ultrastructural organization of the thylakoid system during the afternoon relocation of the giant chloroplast in Selaginella martensii Spring (Lycopodiophyta). PROTOPLASMA 2024; 261:143-159. [PMID: 37612526 PMCID: PMC10784399 DOI: 10.1007/s00709-023-01888-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/30/2023] [Indexed: 08/25/2023]
Abstract
Within the ancient vascular plant lineage known as lycophytes, many Selaginella species contain only one giant chloroplast in the upper epidermal cells of the leaf. In deep-shade species, such as S. martensii, the chloroplast is cup-shaped and the thylakoid system differentiates into an upper lamellar region and a lower granal region (bizonoplast). In this report, we describe the ultrastructural changes occurring in the giant chloroplast hosted in the epidermal cells of S. martensii during the daily relocation of the organelle. The process occurs in up to ca. 40% of the microphylls without the plants being exposed to high-light flecks. The relocated chloroplast loses its cup shape: first, it flattens laterally toward the radial cell wall and then assumes a more globular shape. The loss of the conical cell shape, the side-by-side lateral positioning of vacuole and chloroplast, and the extensive rearrangement of the thylakoid system to only granal cooperate in limiting light absorption. While the cup-shaped chloroplast emphasizes the light-harvesting capacity in the morning, the relocated chloroplast is suggested to support the renewal of the thylakoid system during the afternoon, including the recovery of photosystem II (PSII) from photoinhibition. The giant chloroplast repositioning is part of a complex reversible reshaping of the whole epidermal cell.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Paola Boldrini
- Center of Electron Microscopy, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy.
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy.
| |
Collapse
|
66
|
Anwar K, Joshi R, Bahuguna RN, Govindjee G, Sasidharan R, Singla-Pareek SL, Pareek A. Impact of individual, combined and sequential stress on photosynthesis machinery in rice (Oryza sativa L). PHYSIOLOGIA PLANTARUM 2024; 176:e14209. [PMID: 38348703 DOI: 10.1111/ppl.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Abiotic stresses such as heat, drought and submergence are major threats to global food security. Despite simultaneous or sequential occurrence of these stresses being recurrent under field conditions, crop response to such stress combinations is poorly understood. Rice is a staple food crop for the majority of human beings. Exploitation of existing genetic diversity in rice for combined and/or sequential stress is a useful approach for developing climate-resilient cultivars. We phenotyped ~400 rice accessions under high temperature, drought, or submergence and their combinations. A cumulative performance index revealed Lomello as the best performer across stress and stress combinations at the seedling stage. Lomello showed a remarkable ability to maintain a higher quantum yield of photosystem (PS) II photochemistry. Moreover, the structural integrity of the photosystems, electron flow through both PSI and PSII and the ability to protect photosystems against photoinhibition were identified as the key traits of Lomello across the stress environments. A higher membrane stability and an increased amount of leaf chlorophyll under stress may be due to an efficient management of reactive oxygen species (ROS) at the cellular level. Further, an efficient electron flow through the photosystems and, thus, a higher photosynthetic rate in Lomello is expected to act as a sink for ROS by reducing the rate of electron transport to the high amount of molecular oxygen present in the chloroplast. However, further studies are needed to identify the molecular mechanism(s) involved in the stability of photosynthetic machinery and stress management in Lomello during stress conditions.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajeev N Bahuguna
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Govindjee Govindjee
- Department of Biochemistry, Center of Biophysics & Quantitative Biology, and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
67
|
Andresen E, Morina F, Bokhari SNH, Koník P, Küpper H. Disturbed electron transport beyond PSI changes metabolome and transcriptome in Zn-deficient soybean. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149018. [PMID: 37852568 DOI: 10.1016/j.bbabio.2023.149018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Low Zn availability in soils is a problem in many parts of the world, with tremendous consequences for food and feed production because Zn deficiency affects the yield and quality of plants. In this study we investigated the consequences of Zn-limitation in hydroponically cultivated soybean (Glycine max L.) plants. Parameters of photosynthesis biophysics were determined by spatially and spectrally resolved Kautsky and OJIP fluorescence kinetics and oxygen production at two time points (V4 stage, after five weeks, and pod development stage, R5-R6, after 8-10 weeks). Lower NPQ at 730 nm and lower quantum yield of electron transport flux until PSI acceptors were observed, indicating an inhibition of the PSI acceptor side. Metalloproteomics showed that down-regulation of Cu/Zn-superoxide dismutase (CuZnSOD) and Zn‑carbonic anhydrase (CA) were primary consequences of Zn-limitation. This explained the effects on photosynthesis in terms of decreased use of excitons, which consequently led to oxidative stress. Indeed, untargeted metabolomics revealed an accumulation of lipid oxidation products in the Zn-deficient leaves. Further response to Zn deficiency included up-regulation of gene expression of cell wall metabolism, response to (a)biotic stressors and antioxidant activity, which correlated with accumulation of antioxidants, Vit B6, (iso)flavonoids and phytoalexins.
Collapse
Affiliation(s)
- Elisa Andresen
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Peter Koník
- University of South Bohemia, Faculty of Sciences, Department of Chemistry, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Sciences, Department of Experimental Plant Biology, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
68
|
Colussi A, Bokhari SNH, Mijovilovich A, Koník P, Küpper H. Acclimation to medium-level non-lethal iron limitation: Adjustment of electron flow around the PSII and metalloprotein expression in Trichodesmium erythraeum IMS101. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149015. [PMID: 37742749 DOI: 10.1016/j.bbabio.2023.149015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The aim of this study was to investigate how acclimation to medium-level, long-term, non-lethal iron limitation changes the electron flux around the Photosystem II of the oceanic diazotroph Trichodesmium erythraeum IMS101. Fe availability of about 5× and 100× lower than a replete level, i.e. conditions common in the natural environment of this cyanobacterium, were applied in chemostats. The response of the cells was studied not only in terms of growth, but also mechanistically, measuring the chlorophyll fluorescence of dark-adapted filaments via imaging fluorescence kinetic microscopy (FKM) with 0.3 ms time resolution. Combining these measurements with those of metal binding to proteins via online coupling of metal-free HPLC (size exclusion chromatography SEC) to sector-field ICP-MS allowed to track the fate of the photosystems, together with other metalloproteins. General increase of fluorescence has been observed, with the consequent decrease in the quantum yields φ of the PSII, while the efficiency ψ of the electron flux between PSII and the PSI remained surprisingly unchanged. This indicates the ability of Trichodesmium to cope with a situation that makes assembling the many iron clusters in Photosystem I a particular challenge, as shown by decreasing ratios of Fe to Mg in these proteins. The negative effect of Fe limitation on PSII may also be due to its fast turnover. A broader view was obtained from metalloproteomics via HPLC-ICP-MS, revealing a differential protein expression pattern under iron limitation with a drastic down-regulation especially of iron-containing proteins and some increase in low MW metal-binding complexes.
Collapse
Affiliation(s)
- Antonio Colussi
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Sciences, Department of Experimental Plant Biology, České Budějovice, Czech Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Peter Koník
- University of South Bohemia, Faculty of Sciences, Department of Chemistry, České Budějovice, Czech Republic
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Sciences, Department of Experimental Plant Biology, České Budějovice, Czech Republic.
| |
Collapse
|
69
|
Hu F, Zhang Y, Guo J. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. PLANT SIGNALING & BEHAVIOR 2023; 18:2215025. [PMID: 37243677 DOI: 10.1080/15592324.2023.2215025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Yellow horn grows in northern China and has a high tolerance to drought and poor soil. Improving photosynthetic efficiency and increasing plant growth and yield under drought conditions have become important research content for researchers worldwide. Our study goal is to provide comprehensive information on photosynthesis and some candidate genes breeding of yellow horn under drought stress. In this study, seedlings' stomatal conductance, chlorophyll content, and fluorescence parameters decreased under drought stress, but non-photochemical quenching increased. The leaf microstructure showed that stomata underwent a process from opening to closing, guard cells from complete to dry, and surrounding leaf cells from smooth to severe shrinkage. The chloroplast ultrastructure showed that the changes of starch granules were different under different drought stress, while plastoglobules increased and expanded continuously. In addition, we found some differentially expressed genes related to photosystem, electron transport component, oxidative phosphate ATPase, stomatal closure, and chloroplast ultrastructure. These results laid a foundation for further genetic improvement and deficit resistance breeding of yellow horn under drought stress.
Collapse
Affiliation(s)
- Fang Hu
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
70
|
Tamizhselvan P, Madhavan S, Constan-Aguilar C, Elrefaay ER, Liu J, Pěnčík A, Novák O, Cairó A, Hrtyan M, Geisler M, Tognetti VB. Chloroplast Auxin Efflux Mediated by ABCB28 and ABCB29 Fine-Tunes Salt and Drought Stress Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 13:7. [PMID: 38202315 PMCID: PMC10780339 DOI: 10.3390/plants13010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Photosynthesis is among the first processes negatively affected by environmental cues and its performance directly determines plant cell fitness and ultimately crop yield. Primarily sites of photosynthesis, chloroplasts are unique sites also for the biosynthesis of precursors of the growth regulator auxin and for sensing environmental stress, but their role in intracellular auxin homeostasis, vital for plant growth and survival in changing environments, remains poorly understood. Here, we identified two ATP-binding cassette (ABC) subfamily B transporters, ABCB28 and ABCB29, which export auxin across the chloroplast envelope to the cytosol in a concerted action in vivo. Moreover, we provide evidence for an auxin biosynthesis pathway in Arabidopsis thaliana chloroplasts. The overexpression of ABCB28 and ABCB29 influenced stomatal regulation and resulted in significantly improved water use efficiency and survival rates during salt and drought stresses. Our results suggest that chloroplast auxin production and transport contribute to stomata regulation for conserving water upon salt stress. ABCB28 and ABCB29 integrate photosynthesis and auxin signals and as such hold great potential to improve the adaptation potential of crops to environmental cues.
Collapse
Affiliation(s)
- Prashanth Tamizhselvan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Sharmila Madhavan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Christian Constan-Aguilar
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Eman Ryad Elrefaay
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Jie Liu
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland; (J.L.); (M.G.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Albert Cairó
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Markus Geisler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland; (J.L.); (M.G.)
| | - Vanesa Beatriz Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| |
Collapse
|
71
|
Bharati R, Gupta A, Novy P, Severová L, Šrédl K, Žiarovská J, Fernández-Cusimamani E. Synthetic polyploid induction influences morphological, physiological, and photosynthetic characteristics in Melissa officinalis L. FRONTIERS IN PLANT SCIENCE 2023; 14:1332428. [PMID: 38155852 PMCID: PMC10752996 DOI: 10.3389/fpls.2023.1332428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Melissa officinalis L., a well-known herb with diverse industrial and ethnopharmacological properties. Although, there has been a significant lack in the breeding attempts of this invaluable herb. This study aimed to enhance the agronomical traits of M. officinalis through in vitro polyploidization. Nodal segments were micropropagated and subjected to oryzalin treatment at concentrations of 20, 40, and 60 mM for 24 and 48 hours. Flow cytometry, chromosome counting, and stomatal characteristics were employed to confirm the ploidy level of the surviving plants. The survival rate of the treated explants decreased exponentially with increasing oryzalin concentration and duration. The highest polyploid induction rate (8%) was achieved with 40 mM oryzalin treatment for 24 hours. The induced tetraploid plants exhibited vigorous growth, characterized by longer shoots, larger leaves, and a higher leaf count. Chlorophyll content and fluorescence parameters elucidated disparities in photosynthetic performance between diploid and tetraploid genotypes. Tetraploid plants demonstrated a 75% increase in average essential oil yield, attributed to the significantly larger size of peltate trichomes. Analysis of essential oil composition in diploid and tetraploid plants indicated the presence of three major components: geranial, neral, and citronellal. While citronellal remained consistent, geranial and neral increased by 11.06% and 9.49%, respectively, in the tetraploid population. This effective methodology, utilizing oryzalin as an anti-mitotic agent for polyploid induction in M. officinalis, resulted in a polyploid genotype with superior morpho-physiological traits. The polyploid lemon balm generated through this method has the potential to meet commercial demands and contribute significantly to the improvement of lemon balm cultivation.
Collapse
Affiliation(s)
- Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Novy
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Lucie Severová
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Karel Šrédl
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jana Žiarovská
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
72
|
Lahlou A, Tehrani HS, Coghill I, Shpinov Y, Mandal M, Plamont MA, Aujard I, Niu Y, Nedbal L, Lazár D, Mahou P, Supatto W, Beaurepaire E, Eisenmann I, Desprat N, Croquette V, Jeanneret R, Le Saux T, Jullien L. Fluorescence to measure light intensity. Nat Methods 2023; 20:1930-1938. [PMID: 37996751 PMCID: PMC10703675 DOI: 10.1038/s41592-023-02063-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023]
Abstract
Despite the need for quantitative measurements of light intensity across many scientific disciplines, existing technologies for measuring light dose at the sample of a fluorescence microscope cannot simultaneously retrieve light intensity along with spatial distribution over a wide range of wavelengths and intensities. To address this limitation, we developed two rapid and straightforward protocols that use organic dyes and fluorescent proteins as actinometers. The first protocol relies on molecular systems whose fluorescence intensity decays and/or rises in a monoexponential fashion when constant light is applied. The second protocol relies on a broad-absorbing photochemically inert fluorophore to back-calculate the light intensity from one wavelength to another. As a demonstration of their use, the protocols are applied to quantitatively characterize the spatial distribution of light of various fluorescence imaging systems, and to calibrate illumination of commercially available instruments and light sources.
Collapse
Affiliation(s)
- Aliénor Lahlou
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France.
- Sony Computer Science Laboratories, Paris, France.
| | - Hessam Sepasi Tehrani
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Ian Coghill
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Yuriy Shpinov
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Mrinal Mandal
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Marie-Aude Plamont
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Isabelle Aujard
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Dusan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau, France
| | - Isabelle Eisenmann
- Laboratory of Physics of the École Normale Supérieure, University of PSL, CNRS, Sorbonne University, University of Paris City, Paris, France
- Institute of Biology of ENS (IBENS), École Normale Supérieure, CNRS, INSERM, University of PSL, Paris, France
| | - Nicolas Desprat
- Laboratory of Physics of the École Normale Supérieure, University of PSL, CNRS, Sorbonne University, University of Paris City, Paris, France
- Institute of Biology of ENS (IBENS), École Normale Supérieure, CNRS, INSERM, University of PSL, Paris, France
| | - Vincent Croquette
- Laboratory of Physics of the École Normale Supérieure, University of PSL, CNRS, Sorbonne University, University of Paris City, Paris, France
- Institute of Biology of ENS (IBENS), École Normale Supérieure, CNRS, INSERM, University of PSL, Paris, France
| | - Raphaël Jeanneret
- Laboratory of Physics of the École Normale Supérieure, University of PSL, CNRS, Sorbonne University, University of Paris City, Paris, France
- Institute of Biology of ENS (IBENS), École Normale Supérieure, CNRS, INSERM, University of PSL, Paris, France
| | - Thomas Le Saux
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France.
| | - Ludovic Jullien
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France.
| |
Collapse
|
73
|
Morina F, Mijovilovich A, Mishra A, Brückner D, Vujić B, Bokhari SNH, Špak J, Falkenberg G, Küpper H. Cadmium and Zn hyperaccumulation provide efficient constitutive defense against Turnip yellow mosaic virus infection in Noccaea caerulescens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111864. [PMID: 37689279 DOI: 10.1016/j.plantsci.2023.111864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
To understand the role of Zn and Cd in anti-viral defence, Zn/Cd hyperaccumulator Noccaea caerulescens plants grown with deficient (0.3 µM), replete (10 µM) and excess (100 µM) Zn2+ and Cd (10 µM Zn2+ + 1 µM Cd2+) were infected with Turnip yellow mosaic virus (TYMV). Gas exchange and chlorophyll fluorescence kinetics analyses demonstrated direct TYMV effects on photosynthetic light reactions but N. caerulescens was more resistant against TYMV than the previously studied non-hyperaccumulator N. ochroleucum. Virus abundance and photosynthesis inhibition were the lowest in the high Zn and Cd treatments. RNAseq analysis of 10 µM Zn2+ plants revealed TYMV-induced upregulation of Ca transporters, chloroplastic ZTP29 and defence genes, but none of those that are known to be strongly involved in hyperaccumulation. Synchrotron µ-XRF tomography, however, showed that Zn hyperaccumulation remained strongest in vacuoles of epidermal storage cells regardless of infection. This was in contrast to N. ochroleucum, where apoplastic Zn drastically increased in response to TYMV. These results suggest that the antiviral response of N. caerulescens is less induced by the onset of this biotic stress, but it is rather a permanent resistant state of the plant. Real-time qPCR revealed upregulation of ferritin in Zn10 infected plants, suggesting Fe deprivation as a virus defence strategy under suboptimal Zn supply.
Collapse
Affiliation(s)
- Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Archana Mishra
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany; University of Hamburg, Department of Physics, Jungiusstr. 9, 20355 Hamburg, Germany; Ruhr-Universität Bochum, Faculty of Chemistry and Biochemistry, Universitätsstr. 150, 44801 Bochum, Germany.
| | - Bojan Vujić
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Josef Špak
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
74
|
Kokavcová A, Bokhari SNH, Mijovilovich A, Morina F, Lukačová Z, Kohanová J, Lux A, Küpper H. Copper and zinc accumulation, distribution, and tolerance in Pistia stratiotes L.; revealing the role of root caps. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106731. [PMID: 37890272 DOI: 10.1016/j.aquatox.2023.106731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Pollution by potentially toxic trace metals, such as copper or zinc, is global. Both Cu and Zn are essential microelements, which in higher concentrations become toxic. The aquatic plant Pistia stratiotes(L. has great potential for phytoremediation. Also, it has an unusually large and easily detachable root cap, which makes it a suitable model for studying the potential role of the root cap in metal uptake. Plant response to environmentally relevant concentrations of Cu (0.1, 0.3, and 1 μM) and Zn (0.3, 1, and 3 μM) was investigated with the aim of studying their interaction and distribution at the root tissue level as well as revealing their tolerance mechanisms. Changes in the root anatomy and plant ionome were determined using light and fluorescence microscopy, ICP-MS, and μXRF imaging. Alterations in photosynthetic activity caused by Cu or Zn excesses were monitored by direct imaging of fast chlorophyll fluorescence kinetics (OJIP). Fe and Mn were preferentially localized in the root cap, while Ca, Cu, Ni, and Zn were mainly in the root tip regardless of the Cu/Zn treatment. Translocation of Cu and Zn to the leaves increased with higher doses, however the translocation factor was the lowest in the highest treatments. Measurements of photosynthetic parameters showed a higher susceptibility of electron transport flux from QA to QB under increasing Cu than Zn supply. This, along with our findings regarding the root anatomy and the differences in Ca accumulation and distribution, led to the conclusion that P. stratiotes is more effective for Zn remediation than Cu.
Collapse
Affiliation(s)
- Anna Kokavcová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Plant Physiology, Mlynská dolina, Ilkovičova 6, Bratislava 842 15, Slovak Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Zuzana Lukačová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Plant Physiology, Mlynská dolina, Ilkovičova 6, Bratislava 842 15, Slovak Republic
| | - Jana Kohanová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Plant Physiology, Mlynská dolina, Ilkovičova 6, Bratislava 842 15, Slovak Republic
| | - Alexander Lux
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Plant Physiology, Mlynská dolina, Ilkovičova 6, Bratislava 842 15, Slovak Republic; Slovak Academy of Sciences, Institute of Chemistry, Dúbravská cesta 9, Bratislava 845 38, Slovak Republic.
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská 1760/31a, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
75
|
Colpo A, Molinari A, Boldrini P, Živčak M, Brestič M, Demaria S, Baldisserotto C, Pancaldi S, Ferroni L. Thylakoid membrane appression in the giant chloroplast of Selaginella martensii Spring: A lycophyte challenges grana paradigms in shade-adapted species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111833. [PMID: 37595894 DOI: 10.1016/j.plantsci.2023.111833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/17/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In vascular plants, the thylakoid architecture is dominated by the highly structured multiple membrane layers known as grana. The structural diversity of the thylakoid system among plant species is mainly determined by the adaptation to the growth light regime, according to a paradigm stating that shade-tolerant species are featured by a high membrane extension with an enhanced number of thylakoid layers per granum. In this study, the thylakoid system was analysed in Selaginella martensii Spring, a shade-adapted rainforest species belonging to lycophytes, a diminutive plant lineage, sister clade of all other vascular plants (euphyllophytes, including ferns and seed plants). The species is characterized by giant cup-shaped chloroplasts in the upper epidermis and, quantitatively less important, disk-shaped chloroplasts in the mesophyll and lower epidermis. The study aimed at the quantitative assessment of the thylakoid appression exploiting a combination of complementary methods, including electron microscopy, selective thylakoid solubilisation, electron paramagnetic resonance, and simultaneous analysis of fast chlorophyll a fluorescence and P700 redox state. With a chlorophyll a/b ratio of 2.6 and PSI/PSII ratio of 0.31, the plant confirmed two typical hallmarks of shade-adaptation. The morphometric analysis of electron micrographs revealed a 33% fraction of non-appressed thylakoid domains. However, contrasting with the structural paradigm of thylakoid shade-adaptation in angiosperms, S. martensii privileges the increase in the granum diameter in place of the increase in the number of layers building the granum. The very wide grana diameter, 727 nm on average, largely overcame the threshold of 500 nm currently hypothesized to allow an effective diffusion of long-range electron carriers. The fraction of non-appressed membranes based on the selective solubilisation of thylakoids with digitonin was 26%, lower than the morphometric determination, indicating the presence of non-appressed domains inaccessible to the detergent, most probably because of the high three-dimensional complexity of the thylakoid system in S. martensii. Particularly, strong irregularity of grana stacks is determined by assembling thylakoid layers of variable width that tend to slide apart from each other as the number of stacked layers increases.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Alessandra Molinari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Paola Boldrini
- Center of Electron Microscopy, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marek Živčak
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, A. Hlinku 2, Nitra, 949 76, Slovak Republic
| | - Marian Brestič
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, A. Hlinku 2, Nitra, 949 76, Slovak Republic
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy.
| |
Collapse
|
76
|
Brentjens ET, Beall EAK, Zucker RM. Analysis of Microcystis aeruginosa physiology by spectral flow cytometry: Impact of chemical and light exposure. PLOS WATER 2023; 2:1-30. [PMID: 38516272 PMCID: PMC10953801 DOI: 10.1371/journal.pwat.0000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
M. aeruginosa fluorescent changes were observed using a Cytek Aurora spectral flow cytometer that contains 5 lasers and 64 narrow band detectors located between 365 and 829 nm. Cyanobacteria were treated with different concentrations of H2O2 and then monitored after exposure between 1 and 8 days. The red fluorescence emission derived from the excitation of cyanobacteria with a yellow green laser (550 nm) was measured in the 652-669 nm detector while green fluorescence from excitation with a violet laser (405 nm) was measured in the 532-550 nm detector. The changes in these parameters were measured after the addition of H2O2. There was an initial increase in red fluorescence intensity at 24 hours. This was followed by a daily decrease in red fluorescence intensity. In contrast, green fluorescence increased at 24 hours and remained higher than the control for the duration of the 8-day study. A similar fluorescence intensity effect as H2O2 on M. aeruginosa fluorescence emissions was observed after exposure to acetylacetone, diuron (DCMU), peracetic acid, and tryptoline. Minimal growth was also observed in H2O2 treated cyanobacteria during exposure of H2O2 for 24 days. In another experiment, H2O2-treated cyanobacteria were exposed to high-intensity blue (14 mW) and UV (1 mW) lights to assess the effects of light stress on fluorescence emissions. The combination of blue and UV light with H2O2 had a synergistic effect on M. aeruginosa that induced greater fluorescent differences between control and treated samples than exposure to either stimulus individually. These experiments suggest that the early increase in red and green fluorescence may be due to an inhibition in the ability of photosynthesis to process photons. Further research into the mechanisms driving these increases in fluorescence is necessary.
Collapse
Affiliation(s)
- Emma T. Brentjens
- Oak Ridge Institute for Science and Education Research Participation Program hosted by U.S. Environmental Protection Agency, Oak Ridge, TN, United States of America
| | - Elizabeth A. K. Beall
- Oak Ridge Institute for Science and Education Research Participation Program hosted by U.S. Environmental Protection Agency, Oak Ridge, TN, United States of America
| | - Robert M. Zucker
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, United States of America
| |
Collapse
|
77
|
Mathur S, Seo B, Jajoo A, Reddy KR, Reddy VR. Chlorophyll fluorescence is a potential indicator to measure photochemical efficiency in early to late soybean maturity groups under changing day lengths and temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1228464. [PMID: 37936935 PMCID: PMC10627226 DOI: 10.3389/fpls.2023.1228464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023]
Abstract
In this study, we employed chlorophyll a fluorescence technique, to indicate plant health and status in response to changing day lengths (photoperiods) and temperatures in soybean early and late maturity groups. Chlorophyll a fluorescence study indicates changes in light reactions in photosystem II. Experiments were performed for 3-day lengths (12.5, 13.5, and 14.5 h) and five temperatures (22/14°C, 26/18°C, 30/22°C, 34/26°C, and 40/32°C), respectively. The I-P phase declined for changing day lengths. Active reaction centers decreased at long day length for maturity group III. We observed that low temperatures impacted the acceptor side of photosystem II and partially impacted electron transport toward the photosystem I end electron acceptor. Results emphasized that higher temperatures (40/32°C) triggered damage at the oxygen-evolving complex and decreased electron transport and photosynthesis. We studied specific leaf areas and aboveground mass. Aboveground parameters were consistent with the fluorescence study. Chlorophyll a fluorescence can be used as a potential technique for high-throughput phenotyping methods. The traits selected in the study proved to be possible indicators to provide information on the health status of various maturity groups under changing temperatures and day lengths. These traits can also be deciding criteria for breeding programs to develop inbreed soybean lines for stress tolerance and sensitivity based on latitudinal variations.
Collapse
Affiliation(s)
- Sonal Mathur
- Adaptive Cropping Systems Laboratory, USDA-Agricultural Research Service (USDA-ARS), Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Beomseok Seo
- Adaptive Cropping Systems Laboratory, USDA-Agricultural Research Service (USDA-ARS), Beltsville Agricultural Research Center, Beltsville, MD, United States
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Anjana Jajoo
- School of Biotechnology, Devi Ahilya University, Indore, India
| | - Kambham Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
| | - Vangimalla R. Reddy
- Adaptive Cropping Systems Laboratory, USDA-Agricultural Research Service (USDA-ARS), Beltsville Agricultural Research Center, Beltsville, MD, United States
| |
Collapse
|
78
|
Garab G, Magyar M, Sipka G, Lambrev PH. New foundations for the physical mechanism of variable chlorophyll a fluorescence. Quantum efficiency versus the light-adapted state of photosystem II. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5458-5471. [PMID: 37410874 DOI: 10.1093/jxb/erad252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Photosystem II (PSII) uses solar energy to oxidize water and delivers electrons to fix CO2. Although the structure at atomic resolution and the basic photophysical and photochemical functions of PSII are well understood, many important questions remain. The activity of PSII in vitro and in vivo is routinely monitored by recording the induction kinetics of chlorophyll a fluorescence (ChlF). According to the 'mainstream' model, the rise from the minimum level (Fo) to the maximum (Fm) of ChlF of dark-adapted PSII reflects the closure of all functionally active reaction centers, and the Fv/Fm ratio is equated with the maximum photochemical quantum yield of PSII (where Fv=Fm-Fo). However, this model has never been free of controversies. Recent experimental data from a number of studies have confirmed that the first single-turnover saturating flash (STSF), which generates the closed state (PSIIC), produces F1
Collapse
Affiliation(s)
- Győző Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Melinda Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Gábor Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Petar H Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
79
|
Khaing EP, Eaton-Rye JJ. Lys264 of the D2 Protein Performs a Dual Role in Photosystem II Modifying Assembly and Electron Transfer through the Quinone-Iron Acceptor Complex. Biochemistry 2023; 62:2738-2750. [PMID: 37606628 DOI: 10.1021/acs.biochem.3c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Bicarbonate (HCO3-) binding regulates electron flow between the primary (QA) and secondary (QB) plastoquinone electron acceptors of Photosystem II (PS II). Lys264 of the D2 subunit of PS II contributes to a hydrogen-bond network that stabilizes HCO3- ligation to the non-heme iron in the QA-Fe-QB complex. Using the cyanobacterium Synechocystis sp. PCC 6803, alanine and glutamate were introduced to create the K264A and K264E mutants. Photoautotrophic growth was slowed in K264E cells but not in the K264A strain. Both mutants accumulated an unassembled CP43 precomplex as well as the CP43-lacking RC47 assembly intermediate, indicating weakened binding of the CP43 precomplex to RC47. Assembly was impeded more in K264E cells than in the K264A strain, but K264A cells were more susceptible to high-light-induced photodamage when assayed using PS II-specific electron acceptors. Furthermore, an impaired repair mechanism was observed in the K264A mutant in protein labeling experiments. Unexpectedly, unlike the K264A strain, the K264E mutant displayed inhibited oxygen evolution following high-light exposure when HCO3- was added to support whole chain electron transport. In both mutants, the decay of chlorophyll fluorescence was slowed, indicating impaired electron transfer between QA and QB. Furthermore, the fluorescence decay kinetics in the K264E strain were insensitive to addition of either formate or HCO3-, whereas HCO3--reversible formate-induced inhibition in the K264A mutant was observed. Exchange of plastoquinol with the membrane plastoquinone pool at the QB-binding site was also retarded in both mutants. Hence, D2-Lys264 possesses key roles in both assembly and activity of PS II.
Collapse
Affiliation(s)
- Ei Phyo Khaing
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
80
|
Hu J, Zhang N, Srinivasan B, Yang J, Tang K, Zhang L, Liu X, Zhang X. Photosynthetic response mechanism to polybrominated diphenyl ether exposure in Chlorella pyrenoidosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115245. [PMID: 37451097 DOI: 10.1016/j.ecoenv.2023.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Polybrominated diphenyl ether (PBDE) contamination is common in aquatic environments and can severely damage aquatic organisms. However, there is a lack of information on the response and self-adaptation mechanisms of these organisms. Chlorella pyrenoidosa was treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), causing significant growth inhibition, pigment reduction, oxidative stress, and chloroplast atrophy. Photosynthetic damage contributed to inhibition, as indicated by Fv/Fm, Chl a fluorescence induction, photosynthetic oxygen evolution activity, and photosystem subunit stoichiometry. Here, Chl a fluorescence induction and quinone electron acceptor (QA-) reoxidation kinetics showed that the PSII donor and acceptor sides were insensitive to BDE47. Quantitative analyses of D1 and PsaD proteins illustrated that PSII and PSI complexes were the main primary targets of photosynthesis inhibition by BDE47. Significant modulation of PSII complex might have been caused by the potential binding of BDE47 on D1 protein, and molecular docking was performed to investigate this. Increased activation of antioxidant defense systems and photosystem repair as a function of exposure time indicated a positive resistance to BDE47. After a 5-day exposure, 23 % of BDE47 was metabolized. Our findings suggest that C. pyrenoidosa has potential as a bioremediator for wastewater-borne PBDEs and can improve our understanding of ecological risks to microalgae.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Ning Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | | | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kaixin Tang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lifei Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xueli Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xin Zhang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| |
Collapse
|
81
|
Suárez JC, Urban MO, Anzola JA, Contreras AT, Vanegas JI, Beebe SE, Rao IM. Influence of Increase in Phosphorus Supply on Agronomic, Phenological, and Physiological Performance of Two Common Bean Breeding Lines Grown in Acidic Soil under High Temperature Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3277. [PMID: 37765443 PMCID: PMC10534644 DOI: 10.3390/plants12183277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Many common bean (Phaseolus vulgaris L.) plants cultivated in areas of the world with acidic soils exhibit difficulties adapting to low phosphorus (P) availability, along with aluminum (Al) toxicity, causing yield loss. The objective of this study was to evaluate the influence of an increase in P supply level on the agronomic, phenological, and physiological performance of two common bean breeding lines grown in acidic soil, with low fertility and under high temperature conditions, in a screenhouse. A randomized complete block (RCB) design was used under a factorial arrangement (five levels of P × 2 genotypes) for a total of 10 treatments with four replications. The factors considered in the experiment were: (i) five P supply levels (kg ha-1): four levels of P0, P15, P30, and P45 through the application of rock phosphate (RP), and one P level supplied through the application of organic matter (PSOM) corresponding to 25 kg P ha-1 (P25); and (ii) two advanced bean lines (BFS 10 and SEF10). Both bean lines were grown under the combined stress conditions of high temperatures (day and night maximum temperatures of 42.5 °C/31.1 °C, respectively) and acidic soil. By increasing the supply of P, a significant effect was found, indicating an increase in the growth and development of different vegetative organs, as well as physiological efficiency in photosynthesis and photosynthate remobilization, which resulted in higher grain yield in both bean lines evaluated (BFS 10 and SEF10). The adaptive responses of the two bean lines were found to be related to phenological adjustments (days to flowering and physiological maturity; stomatal development), as well as to heat dissipation strategies in the form of heat (NPQ) or unregulated energy (qN) that contributed to greater agronomic performance. We found that, to some extent, increased P supply alleviated the negative effects of high temperature on the growth and development of the reproductive organs of bean lines. Both bean lines (BFS 10 and SEF 10) showed adaptive attributes suited to the combined stress conditions of high temperature and acidic soil, and these two lines can serve as useful parents in a bean breeding program to develop multiple stress tolerant cultivars.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (J.A.A.); (A.T.C.); (J.I.V.)
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia 180001, Colombia
| | - Milan O. Urban
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (S.E.B.); (I.M.R.)
| | - José Alexander Anzola
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (J.A.A.); (A.T.C.); (J.I.V.)
| | - Amara Tatiana Contreras
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (J.A.A.); (A.T.C.); (J.I.V.)
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia 180001, Colombia
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
| | - José Iván Vanegas
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (J.A.A.); (A.T.C.); (J.I.V.)
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
| | - Stephen E. Beebe
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (S.E.B.); (I.M.R.)
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (S.E.B.); (I.M.R.)
| |
Collapse
|
82
|
Akinyemi OO, Čepl J, Keski-Saari S, Tomášková I, Stejskal J, Kontunen-Soppela S, Keinänen M. Derivative-based time-adjusted analysis of diurnal and within-tree variation in the OJIP fluorescence transient of silver birch. PHOTOSYNTHESIS RESEARCH 2023; 157:133-146. [PMID: 37382782 PMCID: PMC10485093 DOI: 10.1007/s11120-023-01033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
The JIP test, based on fast chlorophyll fluorescence (ChlF) kinetics and derived parameters, is a dependable tool for studying photosynthetic efficiency under varying environmental conditions. We extracted additional information from the whole OJIP and the normalized variable fluorescence (Vt) transient curve using first and second-order derivatives to visualize and localize points of landmark events. To account for light-induced variations in the fluorescence transient, we present a time-adjusted JIP test approach in which the derivatives of the transient curve are used to determine the exact timing of the J and I steps instead of fixed time points. We compared the traditional JIP test method with the time-adjusted method in analyzing fast ChlF measurements of silver birch (Betula pendula) in field conditions studying diurnal and within-crown variation. The time-adjusted JIP test method showed potential for studying ChlF dynamics, as it takes into account potential time shifts in the occurrence of J and I steps. The exact occurrence times of J and I steps and other landmark events coincided with the times of significant differences in fluorescence intensity. Chlorophyll fluorescence parameters were linearly related to photosynthetic photon flux density (PPFD) at different times of day, and the values obtained by the time-adjusted JIP test showed a stronger linear regression than the traditional JIP test. For fluorescence parameters having significant differences among different times of day and crown layers, the time-adjusted JIP test resulted in more clear differences than the traditional JIP test. Diurnal ChlF intensity data indicated that differences between the southern and northern provenance were only evident under low light conditions. Taken together, our results emphasize the potential relevance of considering the time domain in the analysis of the fast ChlF induction.
Collapse
Affiliation(s)
- Olusegun Olaitan Akinyemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80101, Joensuu, Finland.
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia.
| | - Jaroslav Čepl
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia
| | - Sarita Keski-Saari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80101, Joensuu, Finland
| | - Ivana Tomášková
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia
| | - Jan Stejskal
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia
| | - Sari Kontunen-Soppela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80101, Joensuu, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80101, Joensuu, Finland
- Center for Photonics Sciences, Yliopistokatu 7, P.O. Box 111, 80101, Joensuu, Finland
| |
Collapse
|
83
|
Veena M, Sameena PP, Sarath NG, Noble L, Aswathi KPR, Amritha MS, Johnson R, Joel JM, Anjitha KS, Hou HJM, Puthur JT. Revelations on photosystem II, thermoluminescence, and artificial photosynthesis: a retrospective of Govindjee from fundamentals to applications. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1225-1238. [PMID: 38024954 PMCID: PMC10678879 DOI: 10.1007/s12298-023-01373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/08/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Photosynthesis, as one of the most important chemical reactions, has powered our planet for over four billion years on a massive scale. This review summarizes and highlights the major contributions of Govindjee from fundamentals to applications in photosynthesis. His research included primary photochemistry measurements, in the picosecond time scale, in both Photosystem I and II and electron transport leading to NADP reduction, using two light reactions. He was the first to suggest the existence of P680, the reaction center of PSII, and to prove that it was not an artefact of Chlorophyll a fluorescence. For most photobiologists, Govindjee is best known for successfully exploiting Chlorophyll a fluorescence to understand the various steps in photosynthesis as well as to predict plant productivity. His contribution in resolving the controversy on minimum number of quanta in favor of 8-12 vs 3-4, needed for the evolution of one molecule of oxygen, is a milestone in the area of photosynthesis research. Furthermore, together with Don DeVault, he is the first to provide the correct theory of thermoluminescence in photosynthetic systems. His research productivity is very high: ~ 600 published articles and total citations above 27,000 with an h-index of 82. He is a recipient of numerous awards and honors including a 2022: Lifetime Achievement Award of the International Society of Photosynthesis Research. We hope that the retrospective of Govindjee described in this work will inspire and stimulate the readers to continue probing the photosynthetic apparatuses with new discoveries and breakthroughs.
Collapse
Affiliation(s)
- Mathew Veena
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - P. P. Sameena
- Department of Botany, PSMO College, Tirurangadi, Malappuram, Kerala 676 306 India
| | - Nair G. Sarath
- Department of Botany, Mar Athanasius College, Kothamangalam College, P.O., Kothamangalam, Kerala 686 666 India
| | - Louis Noble
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - K. P. Raj Aswathi
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - M. S. Amritha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - Joy M. Joel
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - K. S. Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - Harvey J. M. Hou
- Laboratory of Forensic Analysis and Photosynthesis, Department of Physical and Forensic Sciences, Alabama State University, Montgomery, AL 36104 USA
| | - Jos T. Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| |
Collapse
|
84
|
Sorce C, Bellini E, Bacchi F, Sanità di Toppi L. Photosynthetic Efficiency of Marchantia polymorpha L. in Response to Copper, Iron, and Zinc. PLANTS (BASEL, SWITZERLAND) 2023; 12:2776. [PMID: 37570930 PMCID: PMC10420882 DOI: 10.3390/plants12152776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Metal micronutrients are essential for plant nutrition, but their toxicity threshold is low. In-depth studies on the response of light-dependent reactions of photosynthesis to metal micronutrients are needed, and the analysis of chlorophyll a fluorescence transients is a suitable technique. The liverwort Marchantia polymorpha L., a model organism also used in biomonitoring, allowed us to accurately study the effects of metal micronutrients in vivo, particularly the early responses. Gametophytes were treated with copper (Cu), iron (Fe) or zinc (Zn) for up to 120 h. Copper showed the strongest effects, negatively affecting almost the entire light phase of photosynthesis. Iron was detrimental to the flux of energy around photosystem II (PSII), while the acceptor side of PSI was unaltered. The impact of Fe was milder than that of Cu and in both cases the structures of the photosynthetic apparatus that resisted the treatments were still able to operate efficiently. The susceptibility of M. polymorpha to Zn was low: although the metal affected a large part of the electron transport chain, its effects were modest and short-lived. Our results may provide a contribution towards achieving a more comprehensive understanding of response mechanisms to metals and their evolution in plants, and may be useful for supporting the development of biomonitoring techniques.
Collapse
Affiliation(s)
- Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| | - Erika Bellini
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy
| | - Florinda Bacchi
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| | - Luigi Sanità di Toppi
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| |
Collapse
|
85
|
Smythers AL, Crislip JR, Slone DR, Flinn BB, Chaffins JE, Camp KA, McFeeley EW, Kolling DRJ. Excess manganese increases photosynthetic activity via enhanced reducing center and antenna plasticity in Chlorella vulgaris. Sci Rep 2023; 13:11301. [PMID: 37438371 DOI: 10.1038/s41598-023-35895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/25/2023] [Indexed: 07/14/2023] Open
Abstract
Photosynthesis relies on many easily oxidizable/reducible transition metals found in the metalloenzymes that make up much of the photosynthetic electron transport chain (ETC). One of these is manganese, an essential cofactor of photosystem II (PSII) and a component of the oxygen-evolving complex, the only biological entity capable of oxidizing water. Additionally, manganese is a cofactor in enzymatic antioxidants, notably the superoxide dismutases-which are localized to the chloroplastic membrane. However, unlike other metals found in the photosynthetic ETC, previous research has shown exposure to excess manganese enhances photosynthetic activity rather than diminishing it. In this study, the impact of PSII heterogeneity on overall performance was investigated using chlorophyll fluorescence, a rapid, non-invasive technique that probed for overall photosynthetic efficiency, reducing site activity, and antenna size and distribution. These measurements unveiled an enhanced plasticity of PSII following excess manganese exposure, in which overall performance and reducing center activity increased while antenna size and proportion of PSIIβ centers decreased. This enhanced activity suggests manganese may hold the key to improving photosynthetic efficiency beyond that which is observed in nature.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, Marshall University, Huntington, WV, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Danielle R Slone
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | - Brendin B Flinn
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | | | - Kristen A Camp
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | - Eli W McFeeley
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | | |
Collapse
|
86
|
Pilarska M, Niewiadomska E, Kruk J. Salinity-induced changes in plastoquinone pool redox state in halophytic Mesembryanthemum crystallinum L. Sci Rep 2023; 13:11160. [PMID: 37430104 DOI: 10.1038/s41598-023-38194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
We have analyzed the effect of salinity on photosystem II (PSII) photochemistry and plastoquinone (PQ) pool in halophytic Mesembryanthemum crystallinum plants. Under prolonged salinity conditions (7 or 10 days of 0.4 M NaCl treatment) we noted an enlarged pool of open PSII reaction centers and increased energy conservation efficiency, as envisaged by parameters of the fast and slow kinetics of chlorophyll a fluorescence. Measurements of oxygen evolution, using 2,6-dichloro-1,4-benzoquinone as an electron acceptor, showed stimulation of the PSII activity due to salinity. In salt-acclimated plants (10 days of NaCl treatment), the improved PSII performance was associated with an increase in the size of the photochemically active PQ pool and the extent of its reduction. This was accompanied by a rise in the NADP+/NADPH ratio. The presented data suggest that a redistribution of PQ molecules between photochemically active and non-active fractions and a change of the redox state of the photochemically active PQ pool indicate and regulate the acclimation of the photosynthetic apparatus to salinity.
Collapse
Affiliation(s)
- Maria Pilarska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Ewa Niewiadomska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
87
|
Li N, Pu K, Ding D, Yang Y, Niu T, Li J, Xie J. Foliar Spraying of Glycine Betaine Alleviated Growth Inhibition, Photoinhibition, and Oxidative Stress in Pepper ( Capsicum annuum L.) Seedlings under Low Temperatures Combined with Low Light. PLANTS (BASEL, SWITZERLAND) 2023; 12:2563. [PMID: 37447123 DOI: 10.3390/plants12132563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Low temperature combined with low light (LL stress) is a typical environmental stress that limits peppers' productivity, yield, and quality in northwestern China. Glycine betaine (GB), an osmoregulatory substance, has increasingly valuable effects on plant stress resistance. In this study, pepper seedlings were treated with different concentrations of GB under LL stress, and 20 mM of GB was the best treatment. To further explore the mechanism of GB in response to LL stress, four treatments, including CK (normal temperature and light, 28/18 °C, 300 μmol m-2 s-1), CB (normal temperature and light + 20 mM GB), LL (10/5 °C, 100 μmol m-2 s-1), and LB (10/5 °C, 100 μmol m-2 s-1 + 20 mM GB), were investigated in terms of pepper growth, biomass accumulation, photosynthetic capacity, expression levels of encoded proteins Capsb, cell membrane permeability, antioxidant enzyme gene expression and activity, and subcellular localization. The results showed that the pre-spraying of GB under LL stress significantly alleviated the growth inhibition of pepper seedlings; increased plant height by 4.64%; increased root activity by 63.53%; and decreased photoinhibition by increasing the chlorophyll content; upregulating the expression levels of encoded proteins Capsb A, Capsb B, Capsb C, Capsb D, Capsb S, Capsb P1, and Capsb P2 by 30.29%, 36.69%, 18.81%, 30.05%, 9.01%, 6.21%, and 16.45%, respectively; enhancing the fluorescence intensity (OJIP curves), the photochemical efficiency (Fv/Fm, Fv'/Fm'), qP, and NPQ; improving the light energy distribution of PSΠ (Y(II), Y(NPQ), and Y(NO)); and increasing the photochemical reaction fraction and reduced heat dissipation, thereby increasing plant height by 4.64% and shoot bioaccumulation by 13.55%. The pre-spraying of GB under LL stress also upregulated the gene expression of CaSOD, CaPOD, and CaCAT; increased the activity of the ROS-scavenging ability in the pepper leaves; and coordinately increased the SOD activity in the mitochondria, the POD activity in the mitochondria, chloroplasts, and cytosol, and the CAT activity in the cytosol, which improved the LL resistance of the pepper plants by reducing excess H2O2, O2-, MDA, and soluble protein levels in the leaf cells, leading to reduced biological membrane damage. Overall, pre-spraying with GB effectively alleviated the negative effects of LL stress in pepper seedlings.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Dongxia Ding
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
88
|
Klofac D, Antosovsky J, Skarpa P. Effect of Zinc Foliar Fertilization Alone and Combined with Trehalose on Maize ( Zea mays L.) Growth under the Drought. PLANTS (BASEL, SWITZERLAND) 2023; 12:2539. [PMID: 37447100 DOI: 10.3390/plants12132539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Maize (Zea mays L.) is one of the most widely grown cereals in the world. Its cultivation is affected by abiotic stress caused by climate change, in particular, drought. Zinc (Zn) supplied by foliar nutrition can increase plant resistance to water stress by enhancing physiological and enzymatic antioxidant defence mechanisms. One of the possibilities to reduce the effect of drought on plant production is also the utilization of trehalose. In order to confirm the effect of the foliar application of selected forms of Zn (0.1% w/v solution)-zinc oxide micro- (ZnO) and nanoparticles (ZnONP), zinc sulphate (ZnSO4) and zinc chelate (ZnEDTA)-a pot experiment in controlled conditions was conducted in combination with trehalose (1% w/v solution) on selected growth parameters of maize exposed to the drought stress. A significant effect of coapplication of Zn and trehalose on chlorophyll content, chlorophyll fluorescence parameters, root electrical capacity, weight of maize aboveground biomass (AGB) and Zn content in AGB was found. At the same time, the hypothesis of a positive effect of carbohydrates on increasing the uptake of foliar-applied Zn was confirmed, especially for the ZnEDTA and ZnSO4. This paper presents the first empirical evidence of the trehalose addition to sprays for zinc foliar fertilization of maize proving to be an effective way of increasing the resistance of maize grown under drought stress conditions.
Collapse
Affiliation(s)
- Daniel Klofac
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriScience, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Jiri Antosovsky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriScience, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriScience, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| |
Collapse
|
89
|
Wang YQ, Ye JJ, Yang HZ, Li D, Li XX, Wang YK, Zheng XQ, Ye JH, Li QS, Liang YR, Lu JL. Shading-Dependent Greening Process of the Leaves in the Light-Sensitive Albino Tea Plant 'Huangjinya': Possible Involvement of the Light-Harvesting Complex II Subunit of Photosystem II in the Phenotypic Characteristic. Int J Mol Sci 2023; 24:10314. [PMID: 37373460 DOI: 10.3390/ijms241210314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The light-sensitive albino tea plant can produce pale-yellow shoots with high levels of amino acids which are suitable to process high-quality tea. In order to understand the mechanism of the albino phenotype formation, the changes in the physio-chemical characteristics, chloroplast ultrastructure, chlorophyll-binding proteins, and the relevant gene expression were comprehensively investigated in the leaves of the light-sensitive albino cultivar 'Huangjinya' ('HJY') during short-term shading treatment. In the content of photosynthetic pigments, the ultrastructure of the chloroplast, and parameters of the photosynthesis in the leaves of 'HJY' could be gradually normalized along with the extension of the shading time, resulting in the leaf color transformed from pale yellow to green. BN-PAGE and SDS-PAGE revealed that function restoration of the photosynthetic apparatus was attributed to the proper formation of the pigment-protein complexes on the thylakoid membrane that benefited from the increased levels of the LHCII subunits in the shaded leaves of 'HJY', indicating the low level of LHCII subunits, especially the lack of the Lhcb1 might be responsible for the albino phenotype of the 'HJY' under natural light condition. The deficiency of the Lhcb1 was mainly subject to the strongly suppressed expression of the Lhcb1.x which might be modulated by the chloroplast retrograde signaling pathway GUN1 (GENOMES UNCOUPLED 1)-PTM (PHD type transcription factor with transmembrane domains)-ABI4 (ABSCISIC ACID INSENSITIVE 4).
Collapse
Affiliation(s)
- Ying-Qi Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jing-Jing Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yong-Kang Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qing-Sheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
90
|
Tang C, Dai D, Li S, Qv M, Liu D, Li Z, Huang LZ, Zhu L. Responses of microalgae under different physiological phases to struvite as a buffering nutrient source for biomass and lipid production. BIORESOURCE TECHNOLOGY 2023:129352. [PMID: 37336459 DOI: 10.1016/j.biortech.2023.129352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Microalgae cultivation for biodiesel production is promising, but the high demand for nutrients, such as nitrogen and phosphorus, remains a limiting factor. This study investigated effects of struvite, a low-cost nutrient source, on microalgae production under different physiological phases. Changes in element concentrations were determined to characterize the controllable nutrient release properties of struvite. Results showed that nutrient elements could be effectively supplemented by struvite. However, responses of microalgae under different growth stages to struvite varied obviously, achieving the highest biomass (0.53 g/L) and the lowest (0.32 g/L). Moreover, the microalgal lipid production was obviously increased by adding struvite during the growth phase, providing the first evidence that struvite could serve as an alternative buffering nutrient source to culture microalgae. The integration of microalgae cultivation with struvite as a buffering nutrient source provides a novel strategy for high ammonia nitrogen wastewater treatment with microalgae for biodiesel production.
Collapse
Affiliation(s)
- Chunming Tang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Zhuo Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Li-Zhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
91
|
Dikšaitytė A, Kniuipytė I, Žaltauskaitė J. Drought-free future climate conditions enhance cadmium phytoremediation capacity by Brassica napus through improved physiological status. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131181. [PMID: 36948123 DOI: 10.1016/j.jhazmat.2023.131181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to assess Cd phytoextraction efficiency in well-watered and drought-stressed B. napus plants under current climate (CC, 21/14 °C, 400 ppm CO2) and future climate (FC, 25/18 °C, 800 ppm CO2) conditions. The underlying physiological mechanisms underpinning the obtained results were investigated by studying Cd (1, 10, 50, and 100 mg kg-1) effect on B. napus photosynthetic performance and nutritional status. Only the Cd-50 and Cd-100 treatments caused visible leaf lesions, growth retardation, reductions in both gas exchange and chlorophyll fluorescence-related parameters, and disturbed mineral nutrient balance. Under CC conditions, well-watered plants were affected more than under FC conditions. The most important pathway by which Cd affected B. napus photosynthetic efficiency in well-watered plants was the damage to both photosystems, lowering photosynthetic electron transport. Meanwhile, non-stomatal and stomatal limitations were responsible for the higher reduction in the photosynthetic rate (Pr) of drought-stressed compared to well-watered plants. The significantly higher shoot dry weight, which had a strong positive relationship with Pr, was the main factor determining significantly higher shoot Cd accumulation in high Cd treatments in well-watered plants under FC conditions, resulting in a 65% (p < 0.05) higher soil Cd removal rate in the Cd-50 treatment.
Collapse
Affiliation(s)
- Austra Dikšaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania.
| | - Inesa Kniuipytė
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos st. 3, LT-44403, Kaunas, Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania
| |
Collapse
|
92
|
Marková H, Tarkowská D, Čečetka P, Kočová M, Rothová O, Holá D. Contents of endogenous brassinosteroids and the response to drought and/or exogenously applied 24- epibrassinolide in two different maize leaves. FRONTIERS IN PLANT SCIENCE 2023; 14:1139162. [PMID: 37332698 PMCID: PMC10272441 DOI: 10.3389/fpls.2023.1139162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023]
Abstract
Exogenously applied brassinosteroids (BRs) improve plant response to drought. However, many important aspects of this process, such as the potential differences caused by different developmental stages of analyzed organs at the beginning of drought, or by BR application before or during drought, remain still unexplored. The same applies for the response of different endogenous BRs belonging to the C27, C28-and C29- structural groups to drought and/or exogenous BRs. This study examines the physiological response of two different leaves (younger and older) of maize plants exposed to drought and treated with 24-epibrassinolide (epiBL), together with the contents of several C27, C28-and C29-BRs. Two timepoints of epiBL application (prior to and during drought) were utilized to ascertain how this could affect plant drought response and the contents of endogenous BRs. Marked differences in the contents of individual BRs between younger and older maize leaves were found: the younger leaves diverted their BR biosynthesis from C28-BRs to C29-BRs, probably at the very early biosynthetic steps, as the levels of C28-BR precursors were very low in these leaves, whereas C29-BR levels vere extremely high. Drought also apparently negatively affected contents of C28-BRs (particularly in the older leaves) and C29-BRs (particularly in the younger leaves) but not C27-BRs. The response of these two types of leaves to the combination of drought exposure and the application of exogenous epiBL differed in some aspects. The older leaves showed accelerated senescence under such conditions reflected in their reduced chlorophyll content and diminished efficiency of the primary photosynthetic processes. In contrast, the younger leaves of well-watered plants showed at first a reduction of proline levels in response to epiBL treatment, whereas in drought-stressed, epiBL pre-treated plants they were subsequently characterized by elevated amounts of proline. The contents of C29- and C27-BRs in plants treated with exogenous epiBL depended on the length of time between this treatment and the BR analysis regardless of plant water supply; they were more pronounced in plants subjected to the later epiBL treatment. The application of epiBL before or during drought did not result in any differences of plant response to this stressor.
Collapse
Affiliation(s)
- Hana Marková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences, v.v.i. and Palacký University, Olomouc, Czechia
| | - Petr Čečetka
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Marie Kočová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Olga Rothová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Dana Holá
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
93
|
Sun Y, Gu L, Wen J, van der Tol C, Porcar-Castell A, Joiner J, Chang CY, Magney T, Wang L, Hu L, Rascher U, Zarco-Tejada P, Barrett CB, Lai J, Han J, Luo Z. From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part I-Harnessing theory. GLOBAL CHANGE BIOLOGY 2023; 29:2926-2952. [PMID: 36799496 DOI: 10.1111/gcb.16634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/08/2022] [Indexed: 05/03/2023]
Abstract
Solar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during the light reactions of photosynthesis. The past two decades have witnessed an explosion in availability of SIF data at increasingly higher spatial and temporal resolutions, sparking applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and socioeconomics). These applications must deal with complexities caused by tremendous variations in scale and the impacts of interacting and superimposing plant physiology and three-dimensional vegetation structure on the emission and scattering of SIF. At present, these complexities have not been overcome. To advance future research, the two companion reviews aim to (1) develop an analytical framework for inferring terrestrial vegetation structures and function that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF research via the lens of multi-sector applications, and (3) map out actionable solutions to tackle these challenges and offer our vision for research priorities over the next 5-10 years based on the proposed analytical framework. This paper is the first of the two companion reviews, and theory oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. Guided by this framework, we offer theoretical perspectives on three overarching questions: (1) The forward (mechanism) question-How are the dynamics of SIF affected by terrestrial ecosystem structure and function? (2) The inference question: What aspects of terrestrial ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and how? (3) The innovation question: What innovations are needed to realize the full potential of SIF remote sensing for real-world applications under climate change? The analytical framework elucidates that process complexity must be appreciated in inferring ecosystem structure and function from the observed SIF; this framework can serve as a diagnosis and inference tool for versatile applications across diverse spatial and temporal scales.
Collapse
Affiliation(s)
- Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jiaming Wen
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Christiaan van der Tol
- Affiliation Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Joanna Joiner
- National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - Christine Y Chang
- US Department of Agriculture, Agricultural Research Service, Adaptive Cropping Systems Laboratory, Beltsville, Maryland, USA
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| | - Leiqiu Hu
- Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Pablo Zarco-Tejada
- School of Agriculture and Food (SAF-FVAS) and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher B Barrett
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA
| | - Jiameng Lai
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Zhenqi Luo
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| |
Collapse
|
94
|
Nacheva L, Dimitrova N, Koleva-Valkova L, Stefanova M, Ganeva T, Nesheva M, Tarakanov I, Vassilev A. In Vitro Multiplication and Rooting of Plum Rootstock 'Saint Julien' ( Prunus domestica subsp. insititia) under Fluorescent Light and Different LED Spectra. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112125. [PMID: 37299104 DOI: 10.3390/plants12112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In recent years, light emitting diodes (LEDs), due to their low energy consumption, low heat emission and specific wavelength irradiation, have become an alternative to fluorescent lamps (FLs) in plant tissue culture. The aim of this study was to investigate the effects of various LED light sources on the in vitro growth and rooting of plum rootstock Saint Julien (Prunus domestica subsp. insititia). The test plantlets were cultivated under a Philips GreenPower LEDs research module illumination system with four spectral regions: white (W), red (R), blue (B) and mixed (W:R:B:far-red = 1:1:1:1). The control plantlets were cultivated under fluorescent lamps (FL) and the photosynthetic photon flux density (PPFD) of all treatments was set at 87 ± 7.5 μmol m-2 s-1. The effect of light source on the selected physiological, biochemical and growth parameters of plantlets was monitored. Additionally, microscopic observations of leaf anatomy, leaf morphometric parameters and stomata characteristics were carried out. The results showed that the multiplication index (MI) varied from 8.3 (B) to 16.3 (R). The MI of plantlets grown under mixed light (WBR) was 9, lower compared to the control (FL) and white light (W), being 12.7 and 10.7, respectively. In addition, a mixed light (WBR) favored plantlets' stem growth and biomass accumulation at the multiplication stage. Considering these three indicators, we could conclude that under the mixed light, the microplants were of better quality and therefore mixed light (WBR) was more suitable during the multiplication phase. A reduction in both net photosynthesis rate and stomatal conductance in the leaves of plants grown under B were observed. The quantum yield (Yield = FV/FM), which represents the potential photochemical activity of PS II, ranged from 0.805 to 0.831 and corresponded to the typical photochemical activity (0.750-0.830) in the leaves of unstressed healthy plants. The red light had a beneficial effect on the rooting of plum plants; the rooting was over 98%, significantly higher than for the control (FL, 68%) and the mixed light (WBR, 19%). In conclusion, the mixed light (WBR) turned out to be the best choice during the multiplication phase and the red LED light was more suitable during the rooting stage.
Collapse
Affiliation(s)
- Lilyana Nacheva
- Fruit Growing Institute, Agricultural Academy, 12 Ostromila Str., 4004 Plovdiv, Bulgaria
| | - Nataliya Dimitrova
- Fruit Growing Institute, Agricultural Academy, 12 Ostromila Str., 4004 Plovdiv, Bulgaria
| | - Lyubka Koleva-Valkova
- Department of Plant Physiology, Biochemistry and Genetics, Faculty of Agronomy, Agricultural University, 12 Mendeleev Str., 4000 Plovdiv, Bulgaria
| | - Miroslava Stefanova
- Department of Botany, Faculty of Biology, Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Tsveta Ganeva
- Department of Botany, Faculty of Biology, Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Marieta Nesheva
- Fruit Growing Institute, Agricultural Academy, 12 Ostromila Str., 4004 Plovdiv, Bulgaria
| | - Ivan Tarakanov
- Department of Plant Physiology, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Andon Vassilev
- Department of Plant Physiology, Biochemistry and Genetics, Faculty of Agronomy, Agricultural University, 12 Mendeleev Str., 4000 Plovdiv, Bulgaria
| |
Collapse
|
95
|
El-Mejjaouy Y, Belmrhar L, Zeroual Y, Dumont B, Mercatoris B, Oukarroum A. PCA-based detection of phosphorous deficiency in wheat plants using prompt fluorescence and 820 nm modulated reflection signals. PLoS One 2023; 18:e0286046. [PMID: 37224124 DOI: 10.1371/journal.pone.0286046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023] Open
Abstract
Phosphorus deficiency induces biochemical and morphological changes which affect crop yield and production. Prompt fluorescence signal characterizes the PSII activity and electron transport from PSII to PSI, while the modulated light reflection at 820 (MR 820) nm investigates the redox state of photosystem I (PSI) and plastocyanin (PC). Therefore, combining information from modulated reflection at 820 nm with chlorophyll a fluorescence can potentially provide a more complete understanding of the photosynthetic process and integrating other plant physiological measurements may help to increase the accuracy of detecting the phosphorus deficiency in wheat leaves. In our study, we combined the chlorophyll a fluorescence and MR 820 signals to study the response of wheat plants to phosphorus deficiency as indirect tools for phosphorus plant status characterization. In addition, we studied the changes in chlorophyll content index, stomatal conductance (gs), root morphology, and biomass of wheat plants. The results showed an alteration in the electron transport chain as a specific response to P deficiency in the I-P phase during the reduction of the acceptor side of PSI. Furthermore, P deficiency increased parameters related to the energy fluxes per reaction centers, namely ETo/RC, REo/RC, ABS/RC, and DIo/RC. P deficiency increased the values of MRmin and MRmax and decreased νred, which implies that the reduction of PSI and PC became slower as the phosphorus decreased. The principal component analysis of the modulated reflection and chlorophyll a fluorescence parameters, with the integration of the growth parameters as supplementary variables, accounted for over 71% of the total variance in our phosphorus data using two components and provided a reliable information on PSII and PSI photochemistry under P deficiency.
Collapse
Affiliation(s)
- Yousra El-Mejjaouy
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Laila Belmrhar
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Youssef Zeroual
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Benjamin Dumont
- Pant Sciences / Crop Science, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Benoît Mercatoris
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Abdallah Oukarroum
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- High Throughput Multidisciplinary Research Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
96
|
Qiu Y, Guo X, Zhang C, Qin T, Liu F, Liu J. Dual-Photosensitizer Nanoplatform Based on Near-Infrared Excitation Orthogonal Emission Nanomaterials for Enhanced Photodynamic Therapy of Tumors. ACS APPLIED BIO MATERIALS 2023. [PMID: 37216601 DOI: 10.1021/acsabm.3c00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photodynamic therapy (PDT) is considered as a promising therapeutic approach for clinical cancer treatment. However, the hypoxia of the tumor microenvironment leads to the low effect of single PDT. Here, a dual-photosensitizer nanoplatform based on near-infrared excitation orthogonal emission nanomaterials is constructed by introducing two kinds of photosensitizers into the nanosystem. Orthogonal emission upconversion nanoparticles (OE-UCNPs) were used as light conversion reagents to generate red emission under 980 nm irradiation and green emission under 808 nm irradiation. On the one hand, merocyanine 540 (MC540) is introduced as a photosensitizer (PS), which can absorb green light to generate reactive oxygen species (ROS) and trigger PDT for tumor treatment. On the other hand, another photosensitizer, chlorophyll a (Chla), which can be excited by red light, has also been introduced into the system to build a dual PDT nanotherapeutic platform. The introduction of photosensitizer Chla can synergistically increase ROS concentration to accelerate cancer cell apoptosis. Our research shows that this dual PDT nanotherapeutic platform combined with Chla has better therapeutic effects and effectively destroys cancer.
Collapse
Affiliation(s)
- Yan Qiu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xinran Guo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chaofan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Teng Qin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Fangfang Liu
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Shouguang, Shandong 262700, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
97
|
Gan T, Yin G, Zhao N, Tan X, Wang Y. A Sensitive Response Index Selection for Rapid Assessment of Heavy Metals Toxicity to the Photosynthesis of Chlorella pyrenoidosa Based on Rapid Chlorophyll Fluorescence Induction Kinetics. TOXICS 2023; 11:toxics11050468. [PMID: 37235282 DOI: 10.3390/toxics11050468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Heavy metals as toxic pollutants have important impacts on the photosynthesis of microalgae, thus seriously threatening the normal material circulation and energy flow of the aquatic ecosystem. In order to rapidly and sensitively detect the toxicity of heavy metals to microalgal photosynthesis, in this study, the effects of four typical toxic heavy metals, chromium (Cr(VI)), cadmium (Cd), mercury (Hg), and copper (Cu), on nine photosynthetic fluorescence parameters (φPo, ΨEo, φEo, δRo, ΨRo, φRo, FV/FO, PIABS, and Sm) derived from the chlorophyll fluorescence rise kinetics (OJIP) curve of microalga Chlorella pyrenoidosa, were investigated based on the chlorophyll fluorescence induction kinetics technique. By analyzing the change trends of each parameter with the concentrations of the four heavy metals, we found that compared with other parameters, φPo (maximum photochemical quantum yield of photosystem II), FV/FO (photochemical parameter of photosystem II), PIABS (photosynthetic performance index), and Sm (normalized area of the OJIP curve) demonstrated the same monotonic change characteristics with an increase in concentration of each heavy metal, indicating that these four parameters could be used as response indexes to quantitatively detect the toxicity of heavy metals. By further comparing the response performances of φPo, FV/FO, PIABS, and Sm to Cr(VI), Cd, Hg, and Cu, the results indicated that whether it was analyzed from the lowest observed effect concentration (LOEC), the influence degree by equal concentration of heavy metal, the 10% effective concentration (EC10), or the median effective concentration (EC50), the response sensitivities of PIABS to each heavy metal were all significantly superior to those of φRo, FV/FO, and Sm. Thus, PIABS was the most suitable response index for sensitive detection of heavy metals toxicity. Using PIABS as a response index to compare the toxicity of Cr(VI), Cd, Hg, and Cu to C. pyrenoidosa photosynthesis within 4 h by EC50 values, the results indicated that Hg was the most toxic, while Cr(VI) toxicity was the lowest. This study provides a sensitive response index for rapidly detecting the toxicity of heavy metals to microalgae based on the chlorophyll fluorescence induction kinetics technique.
Collapse
Affiliation(s)
- Tingting Gan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Gaofang Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Nanjing Zhao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Xiaoxuan Tan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Ying Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| |
Collapse
|
98
|
Milrad Y, Nagy V, Elman T, Fadeeva M, Tóth SZ, Yacoby I. A PSII photosynthetic control is activated in anoxic cultures of green algae following illumination. Commun Biol 2023; 6:514. [PMID: 37173420 PMCID: PMC10182038 DOI: 10.1038/s42003-023-04890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Photosynthetic hydrogen production from microalgae is considered to have potential as a renewable energy source. Yet, the process has two main limitations holding it back from scaling up; (i) electron loss to competing processes, mainly carbon fixation and (ii) sensitivity to O2 which diminishes the expression and the activity of the hydrogenase enzyme catalyzing H2 production. Here we report a third, hitherto unknown challenge: We found that under anoxia, a slow-down switch is activated in photosystem II (PSII), diminishing the maximal photosynthetic productivity by three-fold. Using purified PSII and applying in vivo spectroscopic and mass spectrometric techniques on Chlamydomonas reinhardtii cultures, we show that this switch is activated under anoxia, within 10 s of illumination. Furthermore, we show that the recovery to the initial rate takes place following 15 min of dark anoxia, and propose a mechanism in which, modulation in electron transfer at the acceptor site of PSII diminishes its output. Such insights into the mechanism broaden our understanding of anoxic photosynthesis and its regulation in green algae and inspire new strategies to improve bio-energy yields.
Collapse
Affiliation(s)
- Yuval Milrad
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Tamar Elman
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Maria Fadeeva
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
| |
Collapse
|
99
|
El Amine B, Mosseddaq F, Naciri R, Oukarroum A. Interactive effect of Fe and Mn deficiencies on physiological, biochemical, nutritional and growth status of soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107718. [PMID: 37182277 DOI: 10.1016/j.plaphy.2023.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023]
Abstract
Iron (Fe) deficiency is one of the most common problems of soybean. It causes upper leaves yellowing, interveinal chlorosis, stunted growth and yield loss. Manganese (Mn) deficiency affects the reactions in the oxygen evolving complex (OEC) of photosystem II and increase the accumulation of reactive oxygen species (ROS). The aim of this research is to study the effect of Fe and Mn deficiencies applied separately and simultaneously on physiological, biochemical, nutritional and growth (morphological) parameters of soybean cultivars (Glycine max L.). The experiment was conducted in nutrient hydroponic solution lacking Fe or Mn or both Fe and Mn. Chlorophyll content index (CCI) and chlorophyll a fluorescence were measured through time to detect nutritional disorders at an early growth stage before the apparition of visual symptoms. The results showed that Fe and Mn deficiencies had a significant negative effect on the photosynthetic efficiency, CCI, stomatal conductance, protein content and shoot/root nutrient uptakes. Iron and manganese stress conditions were found to enhance the accumulation of secondary metabolites and increase the antioxidant activity such as total polyphenol content (TPC), malondialdehyde (MDA) and superoxide dismutase (SOD). These impacts were more accentuated when Fe and Mn stress were applied simultaneously than when any of the deficiencies was applied alone. More than that, Mn stress alone did not significantly affect the biomass accumulation. The obtained results showed that, in hydroponic conditions, iron and manganese rational fertilization can improve the studied parameters.
Collapse
Affiliation(s)
- Bouthayna El Amine
- Mohammed VI Polytechnic University, AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir, 43150, Morocco; Department of Plant Production, Protection and Biotechnology, Hassan II Institute of Agronomy and Veterinary Medicine, Madinate Al Irfane, Morocco.
| | - Fatema Mosseddaq
- Department of Plant Production, Protection and Biotechnology, Hassan II Institute of Agronomy and Veterinary Medicine, Madinate Al Irfane, Morocco
| | - Rachida Naciri
- Mohammed VI Polytechnic University, AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir, 43150, Morocco
| | - Abdallah Oukarroum
- Mohammed VI Polytechnic University, AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir, 43150, Morocco
| |
Collapse
|
100
|
De Prato L, Ansari O, Hardy GESJ, Howieson J, O'Hara G, Ruthrof KX. Physiological and cannabinoid responses of hemp ( Cannabis sativa) to rock phosphate dust under tropical conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:378-389. [PMID: 36973638 DOI: 10.1071/fp22264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
Growing a high-value crop such as industrial hemp (Cannabis sativa L.) in post-mining environments is economically and environmentally attractive but faces a range of biotic and abiotic challenges. An opportunity to investigate the cultivation of C. sativa presented itself as part of post-mining activities on Christmas Island (Australia) to profitably utilise disused phosphate (PS) quarries. Challenges to plant growth and cadmium (Cd) uptake were addressed in this study using potted plants under fully controlled conditions in a growth chamber. A complete nutritional spectrum, slow-release fertiliser was applied to all plants as a control treatment, and two levels of rock PS dust, a waste product of PS mining that contains 35% phosphorus (P) and 40ppm of naturally occurring Cd, were applied at 54 and 162gL-1 . After 12weeks, control plants (no PS dust) significantly differed in phenological development, with no flower production, lower aboveground biomass and reduced photosynthesis efficiency than those with P applied as rock dust. Compared with the controls, the 54gL-1 level of P dust increased shoot biomass by 38%, while 162gL-1 increased shoot biomass by 85%. The concentration of Δ9 -tetrahydrocannabinol also increased with the higher P levels. Cd uptake from PS dust by C. sativa was substantial and warrants further investigation. However, there was no increase in Cd content between the 54 and 162gL-1 application rates in seed and leaf. Results indicate that hemp could become a high-value crop on Christmas Island, with the readily available rock PS dust providing a source of P.
Collapse
Affiliation(s)
- Luca De Prato
- Murdoch University, Food Futures Institute, Murdoch, WA, Australia; and Medicann Health Aust Pty Ltd, Osborne Park, WA, Australia
| | - Omid Ansari
- HempGenTech Pty Ltd, Kenmore, Qld, Australia
| | - Giles E St J Hardy
- Murdoch University, Harry Butler Institute, Murdoch, WA, Australia; and ArborCarbon, Murdoch University, Murdoch, WA, Australia
| | - John Howieson
- Murdoch University, Food Futures Institute, Murdoch, WA, Australia
| | - Graham O'Hara
- Murdoch University, Food Futures Institute, Murdoch, WA, Australia
| | - Katinka X Ruthrof
- Murdoch University, Harry Butler Institute, Murdoch, WA, Australia; and Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia
| |
Collapse
|