51
|
Hong Y, Li Z, Su Y, Pu H, Zhang X. The ceRNA Mechanism of lncRNA MEG3/miR-21-5p/SPRY2 in Cell Proliferation and Apoptosis in Bladder Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:55-68. [PMID: 37824392 DOI: 10.1615/critreveukaryotgeneexpr.2023048011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Bladder cancer (BC) is the second most common genitourinary malignancy. Long noncoding RNA (lncRNA) is implicated in BC progression. This study delved into the underlying mechanism of lncRNA MEG3 in BC. Bioinformatics analysis predicted the expression of lncRNA MEG3, its association with the survival of BC patients, its subcellular localization, and its binding sites with miR-21-5p. Differentially expressed genes (DEGs) in the GSE13507 chip were analyzed using GEOexplorer, downstream targets of miR-21-5p were predicted from databases, and the overlapping genes were analyzed by the website Venny2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html); their impacts on patient survival were analyzed by the Starbase database. The expression of SPRY2 and TGFBI associated with patient survival was analyzed in TCGA. RT-qPCR and western blot were performed to detect levels of MEG3, miR-21-5p, and SPRY2 in BC/SV-HUC-1 cells. Malignant biological behaviors of BC cells were detected using CCK8, flow cytometry, and Transwell assays. RNA pull-down and dual-luciferase assays were employed to verify the binding relationship of miR-21-5p with MEG3 and SPRY2. MEG3 was found to be lowly expressed in BC cells and mainly distributed in the cytoplasm. Over-expression of MEG3 was found to inhibit BC cell activity, promote apoptosis, and reduce invasion and migration. miR-21-5p was found to be highly expressed in BC cells, and its down-regulation was found to inhibit the malignant behavior of BC cells. Over-expression of miR-21-5p was found to reverse the effect of pcDNA3.1-MEG3 on BC cells. MEG3 was found to competitively bind to miR-21-5p as a ceRNA to promote SPRY2 levels. LncRNA MEG3 promotes SPRY2 expression by competitively binding to miR-21-5p, thereby inhibiting proliferation and promoting apoptosis of BC cells.
Collapse
Affiliation(s)
- Yangchun Hong
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Zhen Li
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Yixin Su
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Hexian Pu
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Xiuxiu Zhang
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| |
Collapse
|
52
|
Zhu D, Peng T, Zhang Z, Guo S, Su Y, Zhang K, Wang J, Liu C. Mesenchymal stem cells overexpressing XIST induce macrophage M2 polarization and improve neural stem cell homeostatic microenvironment, alleviating spinal cord injury. J Tissue Eng 2024; 15:20417314231219280. [PMID: 38223166 PMCID: PMC10785713 DOI: 10.1177/20417314231219280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024] Open
Abstract
Spinal cord injury (SCI) is a significant cause of disability worldwide, with limited treatment options. This study investigated the potential of bone marrow-derived mesenchymal stem cells (BMSCs) modified with XIST lentiviral vector to modulate macrophage polarization and affect neural stem cell (NSC) microenvironment reconstruction following SCI. Bioinformatics analysis revealed that MID1 might be crucial for BMSCs' treatment of SCI. XIST overexpression enriched Zmynd8 to the promoter region of MID1 and inhibited MID1 transcription, which promoted macrophage M2 polarization. In vitro experiments showed that BMSCs-XIST promoted NSC proliferation, migration, differentiation, and axonal growth by inducing macrophage M2 polarization, suppressing inflammation, and accelerating the re-establishment of the homeostatic microenvironment of NSCs. In vivo, animal experiments confirmed that BMSCs-XIST significantly alleviated SCI by promoting NSC differentiation and axon formation in the injured area. The study demonstrated the potential of XIST-overexpressing BMSCs for treating SCI by regulating macrophage polarization and homeostasis of the NSC microenvironment. These findings provide new insights into the development of stem cell-based therapies for SCI.
Collapse
Affiliation(s)
- Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Tie Peng
- Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Ying Su
- Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Kangwei Zhang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Jiawei Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| |
Collapse
|
53
|
Wang G, Zhou Z, Jin W, Zhang X, Zhang H, Wang X. Single-cell transcriptome sequencing reveals spatial distribution of IL34 + cancer-associated fibroblasts in hepatocellular carcinoma tumor microenvironment. NPJ Precis Oncol 2023; 7:133. [PMID: 38081923 PMCID: PMC10713639 DOI: 10.1038/s41698-023-00483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/09/2023] [Indexed: 01/21/2024] Open
Abstract
We utilized scRNA-seq, a well-established technology, to uncover the gene expression characteristics of IL34+ CAFs within HCC. We analyzed the related mechanisms through in vitro and in vivo assays. To begin, we acquired scRNA-seq datasets about HCC, which enabled us to identify distinct cell subpopulations within HCC tissues. We conducted a differential analysis to pinpoint DEGs associated with normal fibroblasts (NFs) and CAFs. Subsequently, we isolated NFs and CAFs, followed by the sorting of IL34+ CAFs. These IL34+ CAFs were then co-cultured with T cells and HCC cells to investigate their potential role in Tregs infiltration, CD8+ T cell toxicity, and the biological processes of HCC cells. We validated our findings in vivo using a well-established mouse model. Our analysis of HCC tissues revealed the presence of seven primary cell subpopulations, with the most significant disparities observed within fibroblast subpopulations. Notably, high IL34 expression was linked to increased expression of receptor proteins and enhanced proliferative activity within CAFs, with specific expression in CAFs. Furthermore, we identified a substantial positive correlation between IL34 expression and the abundance of Tregs. Both in vitro and in vivo experiments demonstrated that IL34+ CAFs promoted Tregs infiltration while suppressing CD8+ T cell toxicity. Consequently, this promoted the growth and metastasis of HCC. In summary, our study affirms that IL34+ CAFs play a pivotal role in augmenting the proliferative activity of CAFs, facilitating Tregs infiltration, and inhibiting CD8+ T cell toxicity, ultimately fostering the growth and metastasis of HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Xin Zhang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
54
|
Wu D, Sun Y, Gu Y, Zhu D. Cystathionine γ-lyase S-sulfhydrates SIRT1 to attenuate myocardial death in isoprenaline-induced heart failure. Redox Rep 2023; 28:2174649. [PMID: 36757027 PMCID: PMC9930813 DOI: 10.1080/13510002.2023.2174649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVE Hydrogen sulfide (H2S), the third gasotransmitter, plays a critical role in protecting against heart failure. Sirtuin-1 (SIRT1) is a highly conserved histone deacetylase that has a protective role in the treatment of heart failure by regulating the deacetylation of some functional proteins. This study investigates the interaction between SIRT1 and H2S in heart failure and the underlying mechanisms. METHODS AND RESULTS Using endogenous H2S-generating enzyme cystathionine γ-lyase (CSE) knockout mice, we found that CSE deficiency aggravated isoprenaline-induced cardiac injury. Treatment with H2S attenuated atrial natriuretic peptide level, brain natriuretic peptide level, improved cardiac function. Moreover, H2S treatment potentiated myocardial SIRT1 expression. Silencing CSE abolished intracellular SIRT1 expression. Furthermore, CSE/ H2S S-sulfhydrated SIRT1 at its zinc finger domains and augmented its zinc ion binding activity to stabilize the alpha-helix structure. DISCUSSION In conclusion, these results uncover that a novel mechanism that CSE/H2S S-sulfhydrated SIRT1 to prevent heart dysfunction through modulating its activity.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yuanyuan Sun
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, People’s Republic of China
| | - Yijing Gu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China, Deqiu Zhu Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People’s Republic of China
| |
Collapse
|
55
|
Liu J, Xia D, Wei M, Zhou S, Li J, Weng Y. Bibliometric Analysis to Global Research Status Quo on Photobiomodulation. Photobiomodul Photomed Laser Surg 2023; 41:683-693. [PMID: 38011736 DOI: 10.1089/photob.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Background: Photobiomodulation (PBM) becomes a remedial technology with growing popularity. The primary goal of this article is to conduct a PBM literature review, providing an overall systematic understanding of current and future trends. Methods: A dataset was made with topic retrieval, concerning PBM research retrieved from the Web of Science Core Collection. We analyzed to forecast research frontiers in this field using the softwares: VOSviewer, CiteSpace, and Biblioshiny. Results: Four thousand five hundred thirty pieces of literature were retrieved from our database. Current trends were characterized by keywords of "light," "spinal cord injury," "skeletal muscle," and so on. Future trends were characterized probably by six cutting-edge terms: "wound healing," "pain," "oral mucositis," "Alzheimer's disease," "Parkinson's disease," and "orthodontics." Conclusions: This study finds that the inadequacy of in-depth reliable interpretation of current clinical data calls for molecular biological mechanisms together with well-designed, large-sample, multicenter clinical trials. The study of oral, wound, and neural-related mechanisms and the exploration of therapeutic effects may be the popular trend at present and in the next few years.
Collapse
Affiliation(s)
- Jing Liu
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Dongyun Xia
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Min Wei
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Shaojing Zhou
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Jian Li
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Yajuan Weng
- Nursing Department, Nanjing Drum Tower Hospital, Nanjing, PR China
| |
Collapse
|
56
|
Lin Y, Li J, Li S, Chen Y, Luo Y, Wang Y, Yang Z. Long noncoding RNA LINC00482 silencing sensitizes non-small cell lung cancer cells to cisplatin by downregulating CLASRP via E2F1. Funct Integr Genomics 2023; 23:335. [PMID: 37966662 DOI: 10.1007/s10142-023-01260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Long noncoding RNA LINC00482 (LINC00482) is dysregulated in non-small cell lung cancer cells (NSCLC). Herein, this research examined the actions and specific mechanisms of LINC00482 in cisplatin (DDP) resistance in NSCLC. LINC00482 expression was assessed using RT-qPCR in clinical NSCLC tissues and cell lines. Knockdown and ectopic expression assays were conducted in A549 and HCC44 cells, followed by determination of cell proliferation with CCK-8 and clone formation assays, apoptosis with flow cytometry, and DDP sensitivity. The association between LINC00482, E2F1, and CLASRP was evaluated with dual-luciferase reporter, ChIP, and RIP assays. The role of LINC00482 in NSCLC was confirmed in nude mice. NSCLC tissues and cells had upregulated LINC00482 expression. LINC00482 was mainly localized in the cell nucleus, and LINC00482 recruited E2F1 to enhance CLASRP expression in NSCLC cells. LINC00482 knockdown enhanced the DDP sensitivity and apoptosis of NSCLC cells while reducing cell proliferation, which was negated by overexpressing CLASRP. LINC00482 knockdown restricted tumor growth and enhanced DDP sensitivity in NSCLC in vivo. LINC00482 silencing downregulated CLASRP through E2F1 to facilitate the sensitivity to DDP in NSCLC.
Collapse
Affiliation(s)
- Yanming Lin
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Jinmei Li
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Shujun Li
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Yuting Chen
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Yiping Luo
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Yongcun Wang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China.
| | - Zhixiong Yang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China.
| |
Collapse
|
57
|
Ni H, Guo Z, Wu Y, Wang J, Yang Y, Zhu Z, Wang D. The crucial role that hippocampus Cyclooxygenase-2 plays in memory. Eur J Neurosci 2023; 58:4123-4136. [PMID: 37867375 DOI: 10.1111/ejn.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
It is generally accepted that Cyclooxygenase-2 (COX-2) is activated to cause inflammation. However, COX-2 is also constitutively expressed at the postsynaptic dendrites and excitatory terminals of the cortical and spinal cord neurons. Although some evidence suggests that COX-2 release during neuronal signalling may be pivotal for regulating the function of memory, the significance of constitutively expressed COX-2 in neuron is still unclear. This research aims to discover the role of COX-2 in memory beyond neuroinflammation and to determine whether the inhibition of COX-2 can cause cognitive dysfunction by influencing dendritic plasticity and its underlying mechanism. We found COX-2 gene knockout (KO) could significantly impact the learning and memory ability, cause neuronal structure disorder and influence gamma oscillations. These might be mediated by the inhibition of prostaglandin (PG) E2/cAMP pathway and phosphorylated protein kinase A (p-PKA)-phosphorylated cAMP response element binding protein (p-CREB)-brain derived neurotrophic factor (BDNF) axis. It suggested COX-2 might play a critical role in learning, regulating neuronal structure and gamma oscillations in the hippocampus CA1 by regulating COX-2/BDNF signalling pathway.
Collapse
Affiliation(s)
- Hong Ni
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Wu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jie Wang
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Yang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zilu Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deheng Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
58
|
Huang X, Zheng D, Liu C, Huang J, Chen X, Zhong J, Wang J, Lin X, Zhao C, Chen M, Su S, Chen Y, Xu C, Lin C, Huang Y, Zhang S. miR-214 could promote myocardial fibrosis and cardiac mesenchymal transition in VMC mice through regulation of the p53 or PTEN-PI3K-Akt signali pathway, promoting CF proliferation and inhibiting its ng pathway. Int Immunopharmacol 2023; 124:110765. [PMID: 37647681 DOI: 10.1016/j.intimp.2023.110765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION This study aimed to investigate the role of miR-214 in the bidirectional regulation of p53 and PTEN and its influence on myocardial fibrosis and cardiac mesenchymal transformation in mice with viral myocarditis (VMC). METHODS The study established a VMC model in BALB/c mice by injecting them with the CVB3 virus intraperitoneally. Techniques such as ELISA, H&E staining, Masson staining, immunohistochemical staining, RT-qPCR, western blot, and dual-luciferase reporter gene assay were used to detect the expression levels of relevant factors in tissues and cells. Isolation and culture of cardiac fibroblasts (CFs) were also conducted. RESULTS The study found that miR-214 bidirectional regulation of p53 and PTEN promotes myocardial fibrosis and cardiac mesenchymal transformation in mice with VMC. The expression levels of collagen-related peptides, inflammatory-related factors, miR-214, mesenchymal transformation-related factors, and fibrosis-related factors were significantly increased, while the expression levels of p53, PTEN, and epithelial/endothelial cell phenotype marker factors were significantly decreased. Downregulation of miR-214 or upregulation of p53 and PTEN expression inhibited inflammatory cell and fibroblast infiltration in VMC mouse myocardial tissue. It reduced the proliferation ability while increasing the apoptosis of cardiac fibroblasts. CONCLUSION miR-214 plays a significant role in the bidirectional inhibition of p53 and PTEN, which leads to myocardial fibrosis and cardiac mesenchymal transformation in mice with VMC. Downregulation of miR-214 or upregulation of p53 and PTEN expression may provide potential therapeutic targets for treating VMC-induced cardiac fibrosis and mesenchymal transformation.
Collapse
Affiliation(s)
- Xianggui Huang
- Department of Pediatrics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Danling Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China; Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Chong Liu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Jianxiang Huang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China; College of Pharmacy, Jinan University, Guangzhou 510220, PR China
| | - Xiaoshan Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Jialin Zhong
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Jing Wang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Xinyue Lin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China; Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Meini Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China; Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Siman Su
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China; Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Chaoxian Lin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China; Department of Pharmacy, Shantou Chaonan Minsheng Hospital, Shantou 515000, PR China
| | - Yihui Huang
- Department of Pediatrics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China.
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China.
| |
Collapse
|
59
|
Zhu T, Hu Z, Wang Z, Ding H, Li R, Wang J, Wang G. microRNA-301b-3p from mesenchymal stem cells-derived extracellular vesicles inhibits TXNIP to promote multidrug resistance of gastric cancer cells. Cell Biol Toxicol 2023; 39:1923-1937. [PMID: 35246762 DOI: 10.1007/s10565-021-09675-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) from mesenchymal stem cells (MSC)-derived extracellular vesicles (MSCs-EVs), including exosomes, are known to participate in different diseases. However, the function of miR-301b-3p from MSCs-EVs on the chemoresistance of gastric cancer (GC) cells remains poorly characterized. Thus, we aim to explore the role of MSCs-EVs-derived miR-301b-3p in multidrug resistance of GC cells. METHODS Cisplatin (DDP)/vincristine (VCR)-resistant and sensitive GC clinical samples were harvested to detect expression of miR-301b-3p and thioredoxin interacting protein (TXNIP). MSCs were respectively transfected with miR-301b-3p oligonucleotides and/or TXNIP plasmids to extract the EVs, which were then co-cultured with multidrug-resistant GC cells. Then, P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP), IC50, proliferation, migration, and apoptosis of resistant GC cells were determined. The tumor growth was observed in nude mice. Targeting relationship between miR-301b-3p and TXNIP was confirmed. RESULTS miR-301b-3p was upregulated, and TXNIP was downregulated in DDP/VCR-resistant GC tissues and cells. MSC-EVs induced drug resistance, proliferation, and migration and inhibited apoptosis of DDP/VCR-resistant GC cells in vitro, as well as facilitated tumor growth in vivo. Inhibition of miR-301b-3p or upregulation of TXNIP reversed the promoting effect of MSC-EVs on DDP/VCR resistant GC cells to DDP/VCR resistance and malignant behaviors. The effects of MSC-EVs carrying miR-301b-3p inhibition on DDP/VCR-resistant GC cells were reversed by TXNIP downregulation. TXNIP was confirmed as a target gene of miR-301b-3p. CONCLUSION miR-301b-3p from MSCs-EVs inhibits TXNIP to promote multidrug resistance of GC cells, providing a novel insight for chemotherapy in GC.
Collapse
Affiliation(s)
- Tianyu Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Zhihao Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Zhuoyin Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Hengxuan Ding
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Ruixin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jingtao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Guojun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
60
|
Li G, Liu J, Wang Y, Liu H, Fu J, Zhao Y, Huang Y. METTL3-mediated m6A modification of pri-miR-148a-3p affects prostate cancer progression by regulating TXNIP. ENVIRONMENTAL TOXICOLOGY 2023; 38:2377-2390. [PMID: 37449729 DOI: 10.1002/tox.23874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Prostate cancer (PCa) severely affects men's health worldwide. The mechanism of methyltransferase-like 3 (METTL3) in affecting PCa development by regulating miR-148a-3p expression via N6-methyladenosine (m6A) modification was investigated. METHODS METTL3, miR-148a-3p, and thioredoxin interacting protein (TXNIP) levels were determined using RT-qPCR and Western blotting. The m6A modification level of miR-148a-3p was observed by Me-RIP assay. Bioinformatics website predicted miR-148a-3p and TXNIP levels in PCa and their correlation, and the binding site between them was verified by dual-luciferase assay. The proliferation, migration, invasion, and apoptosis of PCa cells were examined by CCK-8 assay, Transwell assay, and flow cytometry. A transplanted tumor model was established in nude mice to observe the tumor growth ability, followed by determination of TXNIP levels in tumor tissues by immunohistochemistry. RESULTS METTL3 interference restrained the proliferation, migration, and invasion and promoted apoptosis of PCa cells. METTL3 up-regulated miR-148a-3p by promoting the m6A modification of pri-miR-148a-3p in PCa cells. miR-148a-3p overexpression nullified the inhibitory actions of silencing METTL3 on PCa cell growth. miR-148a-3p facilitated PCa cell growth by silencing TXNIP. METTL3 interference inhibited tumor growth by down-regulating miR-148a-3p and up-regulating TXNIP. CONCLUSION METTL3 promoted miR-148a-3p by mediating the m6A modification of pri-miR-148a-3p, thereby targeting TXNIP, interfering with METTL3 to inhibit the proliferation, migration and invasion of PCa cells, promote apoptosis, and inhibit tumor growth in nude mice.
Collapse
Affiliation(s)
- Guoqiang Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junwen Liu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hanqi Liu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jianhan Fu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuanqiao Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanqing Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
61
|
Wu M, Ye M. Transcription factor Dp-1 knockdown downregulates thymidine kinase 1 expression to protect against proliferation and epithelial-mesenchymal transition in cervical cancer. Funct Integr Genomics 2023; 23:301. [PMID: 37715794 DOI: 10.1007/s10142-023-01218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Thymidine kinase 1 (TK1) level is an independent survival prognostic factor for both premalignant and malignant cervical pathologies. Herein, this study sought to probe the impacts of TK1 on cervical cancer (CC) progression and its underlying mechanism. Transcription factor Dp-1 (TFDP1) and TK1 expression was assessed using qRT-PCR in CC cell lines. After ectopic expression and knockdown experiments, cell counting kit-8 and colony formation assays were adopted to measure cell proliferation, western blot to examine the expression of epithelial-mesenchymal transition (EMT)-related proteins, and Transwell assays to assess cell invasion and migration. The binding of TFDP1 to TK1 was predicted by bioinformatic sites and verified by chromatin immunoprecipitation and dual-luciferase reporter assays. Tumor xenograft experiments in nude mice were performed to validate the influence of TFDP1/TK1 on CC progression in vivo. CC cells had high TK1 and TFDP1 expression. TFDP1 or TK1 knockdown restrained CC cell EMT, invasion, migration, and proliferation. TFDP1 facilitated TK1 expression in CC via transcription. Overexpression of TK1 counteracted the suppressive impacts of TFDP1 knockdown on CC cell malignant behaviors. Moreover, TFDP1 knockdown depressed CC growth in vivo by downregulating TK1. TFDP1 knockdown restricted proliferation and EMT in CC by downregulating TK1 expression.
Collapse
Affiliation(s)
- Mei Wu
- Department of Gynecologic Oncology, Hunan Cancer Hospital, Changsha, Hunan, 410013, People's Republic of China
| | - Mingji Ye
- Department of Urology Surgery, Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
62
|
Ding L, Hao K, Sang L, Shen X, Zhang C, Fu D, Qi X. ATF2-driven osteogenic activity of enoxaparin sodium-loaded polymethylmethacrylate bone cement in femoral defect regeneration. J Orthop Surg Res 2023; 18:646. [PMID: 37653390 PMCID: PMC10470168 DOI: 10.1186/s13018-023-04017-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Polymethylmethacrylate (PMMA) bone cement loaded with enoxaparin sodium (PMMA@ES) has been increasingly highlighted to affect the bone repair of bone defects, but the molecular mechanisms remain unclear. We addressed this issue by identifying possible molecular mechanisms of PMMA@ES involved in femoral defect regeneration based on bioinformatics analysis and network pharmacology analysis. METHODS The upregulated genes affecting the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were selected through bioinformatics analysis, followed by intersection with the genes of ES-induced differentiation of BMSCs identified by network pharmacology analysis. PMMA@ES was constructed. Rat primary BMSCs were isolated and cultured in vitro in the proliferation medium (PM) and osteogenic medium (OM) to measure alkaline phosphatase (ALP) activity, mineralization of the extracellular matrix, and the expression of RUNX2 and OCN using gain- or loss-of-function experiments. A rat femoral bone defect model was constructed to detect the new bone formation in rats. RESULTS ATF2 may be a key gene in differentiating BMSCs into osteoblasts. In vitro cell assays showed that PMMA@ES promoted the osteogenic differentiation of BMSCs by increasing ALP activity, extracellular matrix mineralization, and RUNX2 and OCN expression in PM and OM. In addition, ATF2 activated the transcription of miR-335-5p to target ERK1/2 and downregulate the expression of ERK1/2. PMMA@ES induced femoral defect regeneration and the repair of femoral defects in rats by regulating the ATF2/miR-335-5p/ERK1/2 axis. CONCLUSION The evidence provided by our study highlighted the ATF2-mediated mechanism of PMMA@ES in the facilitation of the osteogenic differentiation of BMSCs and femoral defect regeneration.
Collapse
Affiliation(s)
- Luobin Ding
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Orthopedic Surgery, Third Hospital of Shijiazhuang, Shijiazhuang, 050000, People's Republic of China
| | - Kangning Hao
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Linchao Sang
- Department of Orthopedic Surgery, Third Hospital of Shijiazhuang, Shijiazhuang, 050000, People's Republic of China
| | - Xiaoyu Shen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Ce Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, People's Republic of China.
| | - Xiangbei Qi
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
63
|
Ni H, Ren J, Wang Q, Li X, Wu Y, Liu D, Wang J. Electroacupuncture at ST 36 ameliorates cognitive impairment and beta-amyloid pathology by inhibiting NLRP3 inflammasome activation in an Alzheimer's disease animal model. Heliyon 2023; 9:e16755. [PMID: 37292305 PMCID: PMC10245255 DOI: 10.1016/j.heliyon.2023.e16755] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/09/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Background Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder leading to cognitive impairment in the elderly, and no effective treatment exists. Increasing evidence has demonstrated that physical therapy and electroacupuncture (EA) effectively improve spatial learning and memory abilities. Nevertheless, the mechanism underlying the effects of EA on AD pathology is largely unexplored. Acupuncture at Zusanli (ST 36) has previously been shown to improve cognitive impairment in AD, but the mechanism is unclear. According to recent studies, EA drives the vagal-adrenal axis from the hindlimb ST 36 acupoint but not from the abdominal Tianshu (ST 25) to curb severe inflammation in mice. This study examined whether ST 36 acupuncture improves cognitive dysfunction in AD model mice by improving neuroinflammation and its underlying mechanism. Methods Male 5xFAD mice (aged 3, 6, and 9 months) were used as the AD animal model and were randomly divided into three groups: the AD model group (AD group), the electroacupuncture at ST 36 acupoint group (EA-ST 36 group), and the electroacupuncture at ST 25 acupoint group (EA-ST 25 group). Age-matched wild-type mice were used as the normal control (WT) group. EA (10 Hz, 0.5 mA) was applied to the acupoints on both sides for 15 min, 5 times per week for 4 weeks. Motor ability and cognitive ability were assessed by the open field test, the novel object recognition task, and the Morris water maze test. Thioflavin S staining and immunofluorescence were used to mark Aβ plaques and microglia. The levels of NLRP3, caspase-1, ASC, interleukin (IL)-1β, and IL-18 in the hippocampus were assayed by Western blotting or qRT-PCR. Results EA at ST 36, but not ST 25, significantly improved motor function and cognitive ability and reduced both Aβ deposition and microglia and NLRP3 inflammasome activation in 5×FAD mice. Conclusion EA stimulation at ST 36 effectively improved memory impairment in 5×FAD mice by a mechanism that regulated microglia activation and alleviated neuroinflammation by inhibiting the NLRP3 inflammatory response in the hippocampus. This study shows that ST 36 may be a specific acupoint to improve the condition of AD patients.
Collapse
Affiliation(s)
- Hong Ni
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jiaoqi Ren
- Department of Geriatrics, Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, 200040, Shanghai, China
| | - Qimeng Wang
- Department of Acupuncture, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xing Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yue Wu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Dezhi Liu
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jie Wang
- Endocrinology department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| |
Collapse
|
64
|
Ding H, Yin C, Yang M, Zhou R, Wang X, Pan X. Screening of differentially methylated genes in skeletal fluorosis of rats with different types and involvement of aberrant methylation of Cthrc1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121931. [PMID: 37268221 DOI: 10.1016/j.envpol.2023.121931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Fluoride is a widespread pollutant in the environment. There is a high risk of developing skeletal fluorosis from excessive fluoride exposure. Skeletal fluorosis has different phenotypes (including osteosclerotic, osteoporotic and osteomalacic) under the same fluoride exposure and depends on dietary nutrition. However, the existing mechanistic hypothesis of skeletal fluorosis cannot well explain the condition's different pathological manifestations and their logical relation with nutritional factors. Recent studies have shown that DNA methylation is involved in the occurrence and development of skeletal fluorosis. DNA methylation is dynamic throughout life and may be affected by nutrition and environmental factors. We speculated that fluoride exposure leads to the abnormal methylation of genes related to bone homeostasis under different nutritional statuses, resulting in different skeletal fluorosis phenotypes. The mRNA-Seq and target bisulfite sequencing (TBS) result showed differentially methylated genes in rats with different skeletal fluorosis types. The role of the differentially methylated gene Cthrc1 in the formation of different skeletal fluorosis types was explored in vivo and in vitro. Under normal nutritional conditions, fluoride exposure led to hypomethylation and high expression of Cthrc1 in osteoblasts through TET2 demethylase, which promoted osteoblast differentiation by activating Wnt3a/β-catenin signalling pathway, and participated in the occurrence of osteosclerotic skeletal fluorosis. Meanwhile, the high CTHRC1 protein expression also inhibited osteoclast differentiation. Under poor dietary conditions, fluoride exposure led to hypermethylation and low expression of Cthrc1 in osteoblasts through DNMT1 methyltransferase, and increased the RANKL/OPG ratio, which promoted the osteoclast differentiation and participated in the occurrence of osteoporotic/osteomalacic skeletal fluorosis. Our study expands the understanding of the role of DNA methylation in regulating the formation of different skeletal fluorosis types and provides insights into new prevention and treatment strategies for patients with skeletal fluorosis.
Collapse
Affiliation(s)
- Hongwei Ding
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Congyu Yin
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Menglan Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Ruiqi Zhou
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xilan Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xueli Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
65
|
He XY, Wang XQ, Xiao QL, Liu D, Xu QR, Liu S. Long non-coding RNA NCK1-AS1 functions as a ceRNA to regulate cell viability and invasion in esophageal squamous cell carcinoma via microRNA-133b/ENPEP axis. Cell Cycle 2023; 22:596-609. [PMID: 36412985 PMCID: PMC9928473 DOI: 10.1080/15384101.2022.2138416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 01/04/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
This study is designed to explore the role of long non-coding RNAs (lncRNAs) NCK1-AS1 in proliferative and invasive activities of esophageal squamous cell carcinoma (ESCC) cells by binding to microRNA-133b (miR-133b) to regulate ENPEP. Differentially expressed lncRNAs, miRs, genes and their targeting relationships were screened on ESCC-related gene expression datasets GSE17351 and GSE6188. The targeting relationships among NCK1-AS1, miR-133b, and ENPEP were verified using functional assays. Loss- and gain- of function assays were carried out to examine the roles of NCK1-AS1, miR-133b, and ENPEP in ESCC cell proliferative, invasive, migrative and apoptotic abilities as well as tumorigenesis in vivo. Elevated NCK1-AS1 and ENPEP but reduced miR-133b expression were found in ESCC. NCK1-AS1 knockdown or miR-133b overexpression inhibited the malignant properties of ESCC cells as well as tumorigenesis in vivo. NCK1-AS1 regulated the ENPEP expression by competitively binding to miR-133b. ENPEP overexpression reversed inhibition of NCK1-AS1 knockdown on the function of ESCC cells. This study provides evidence that silencing NCK1-AS1 inhibits expression of ENPEP by sponging miR-133b, thereby suppressing ESCC.
Collapse
Affiliation(s)
- Xiang-Yuan He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xiu-Qi Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Qi-Lu Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Duan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Qi-Rong Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Sheng Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
66
|
Photomodulative effects of low-level laser therapy on tracheal fenestration developed in in vivo model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 240:112669. [PMID: 36764068 DOI: 10.1016/j.jphotobiol.2023.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
The effect of low-level laser therapy (LLLT) on variable mucosal lesions in the upper aerodigestive tract has been reported. However, the effect of LLLT on tracheostomy sites or tracheal fenestration is rarely reported. In this study, we evaluate the effect of LLLT performed using 635 nm laser light based on a cylindrical diffuser and an animal model with tracheal fenestration. An animal model of tracheal fenestration is developed by suturing the trachea to the skin after performing a vertical tracheostomy from the second to the fifth tracheal ring of Wistar rats (male, body weight 200-250 g). LLLT (spot size: 2 cm2) is conducted once daily for five days using a handheld cylindrical device. Twenty-four rats are randomly assigned to a no-therapy or LLLT group with an energy density of 20 J/cm2. Histological analysis is performed at 7 and 14 days after tracheal fenestration. Irradiation at the tracheal fenestration site with an energy density of 20 J/cm2 improves the wound healing, as shown at 2 weeks after tracheostomy. Histological analysis shows significantly decreased acute inflammation and granulation tissue, as well as better cartilage regeneration and less tracheal wall thickening. Therefore, LLLT demonstrates therapeutic potential for preventing tracheal stenosis and granuloma after tracheostomy.
Collapse
|
67
|
Xin R, Hu B, Qu D, Chen D. Oncogenic lncRNA MALAT-1 recruits E2F1 to upregulate RAD51 expression and thus promotes cell autophagy and tumor growth in non-small cell lung cancer. Pulm Pharmacol Ther 2023:102199. [PMID: 36690318 DOI: 10.1016/j.pupt.2023.102199] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/02/2021] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
INTRODUCTION LncRNA MALAT-1 expression is involved in regulating activities of non-small-cell lung cancer (NSCLC) cells. This study aimed to investigate the effects of lncRNA MALAT-1 on chemosensitivity of NSCLC cells by regulating autophagy. METHODS We first validated the expression of lncRNA MALAT-1 in NSCLC cell lines. NSCLC cell lines with high lncRNA MALAT-1 expression were exposed to doxorubicin (DOX) to assess chemosensitivity. Further LncMAP database retrieval and ChIP, RIP and luciferase activity assays were conducted to explore interplay between lncRNA MALAT-1, RAD51, and E2F1. Immunofluorescence staining was performed to evaluate formation of autophagosomes in NSCLC cells. Ectopic expression and knockdown methods were used for in vitro mechanism experiments and in vivo substantiation. RESULTS LncRNA MALAT-1 was overexpressed in NSCLC cells, and could promote NSCLC cell autophagy and inhibit its chemosensitivity. In vitro cell mechanism verification experiments showed that lncRNA MALAT-1 could recruit transcription factor E2F1 to bind to the promoter of RAD51, so as to promote the transcriptional expression of RAD51. In addition, cell function experiments in vitro showed that ectopically expressed lncRNA MALAT-1 promoted NSCLC cell autophagy and inhibited its chemosensitivity, while RAD51 knockdown negated its effect. Finally, in vivo animal experiments confirmed that lncRNA MALAT-1 silencing could impede the tumor growth. CONCLUSIONS Taken together, this study revealed that silencing lncRNA MALAT-1 enhanced chemosensitivity of NSCLC cells by promoting autophagy, highlighting a feasible approach to prevent chemoresistance in NSCLC treatment.
Collapse
Affiliation(s)
- Rui Xin
- Jilin University, Changchun, 130000, PR China; Department of Radiology, The Second Hospital of Jilin University, Changchun, 130000, PR China
| | - Boqi Hu
- Jilin University, Changchun, 130000, PR China; Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, PR China
| | - Danhua Qu
- Jilin University, Changchun, 130000, PR China; Department of Respiratory and Critical Diseases, The Second Hospital of Jilin University, Changchun, 130000, PR China
| | - Dawei Chen
- Jilin University, Changchun, 130000, PR China; Department of Radiation Protection, School of Public Health, Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
68
|
Liang W, Xie Z, Liao D, Li Y, Li Z, Zhao Y, Li X, Dong M. Inhibiting microRNA-142-5p improves learning and memory in Alzheimer's disease rats via targeted regulation of the PTPN1-mediated Akt pathway. Brain Res Bull 2023; 192:107-114. [PMID: 35219754 DOI: 10.1016/j.brainresbull.2022.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) have been recognized as possible biomarkers for Alzheimer's disease (AD). MiR-142-5p has been reported to be abnormally expressed in brain tissues. However, the role of miR-142-5p in AD pathogenesis keeps unclear. This study aimed to investigate the effect of miR-142-5p on the learning and memory of AD rats via regulation of protein tyrosine phosphatase nonreceptor type 1 (PTPN1)-mediated protein kinase B (Akt) pathway. METHODS The AD model was established by injection of Aβ1-42 oligomer once into the lateral ventricle of rats, and the spatial learning and memory ability of rats was measured. AD rats were injected with miR-142-5p or PTPN1 vectors to explore their functions in inflammation, Aβ, p-tau protein, apoptosis in brain tissues, and the effects on Akt pathway. The targeting relationship between miR-142-5p and PTPN1 was detected. RESULTS Overexpressed miR-142-5p, down-regulated PTPN1 and inactivated Akt pathway were exhibited in AD. MiR-142-5p targeted PTPN1 to mediate Akt pathway. Reduced miR-142-5p and elevated PTPN1 improved the behavior of AD rats. MiR-142-5p targeted PTPN1 to effectively inhibit Aβ formation and abnormal phosphorylation of p-tau protein, suppress the inflammation in the brain tissues of AD rat, and improve the survival rate of brain tissue cells. MiR-142-5p regulated PTPN1 to activate the Akt pathway, further inhibiting the apoptosis of brain neurons in AD rats. CONCLUSION Down-regulating miR-142-5p targets PTPN1 to activate Akt pathway, thus improving the learning and memory of AD rats and playing an anti-AD role.
Collapse
Affiliation(s)
- Weiwei Liang
- Department of General Practice, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhuojun Xie
- Department of The Third outpatient, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Dong Liao
- Department of Ultrasound, Yunnan Geriatric Hospital, Kunming, Yunnan, China
| | - Ying Li
- Department of Rehabilitation Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhengyu Li
- Department of Rehabilitation Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yuanru Zhao
- Department of Laboratory Medicine, Yunnan Xinkunhua Hospital, Kunming, Yunnan, China
| | - Xiaobo Li
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Manli Dong
- Department of Rehabilitation Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| |
Collapse
|
69
|
Li C, Sun Z, Song Y, Zhang Y. Suppressive function of bone marrow-derived mesenchymal stem cell-derived exosomal microRNA-187 in prostate cancer. Cancer Biol Ther 2022; 23:1-14. [PMID: 36245088 PMCID: PMC9578467 DOI: 10.1080/15384047.2022.2123675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Application of bone marrow-derived mesenchymal stem cell-derived exosomes (BMSC-exos) in cancer treatment has been widely studied. Here, we elaborated the function of BMSC-exos containing microRNA-187 (miR-187) in prostate cancer. Differentially expressed miRs and genes were screened with microarray analysis. The relationship between CD276 and miR-187 in prostate cancer was evaluated. Following miR-187 mimic/inhibitor or CD276 overexpression transfection, their actions in prostate cancer cell biological processes were analyzed. Prostate cancer cells were then exposed to BMSC-exos that were treated with either miR-187 mimic/inhibitor or CD276 overexpression for pinpointing the in vitro and in vivo effects of exosomal miR-187. miR-187 was poorly expressed while CD276 was significantly upregulated in prostate cancer. Additionally, restoring miR-187 inhibited the prostate cancer cell malignant properties by targeting CD276. Upregulation of miR-187 led to declines in CD276 expression and the JAK3-STAT3-Slug signaling pathway. Next, BMSC-exos carrying miR-187 contributed to repressed cell malignant features as well as limited tumorigenicity and tumor metastasis. Collectively, this study demonstrated that BMSC-derived exosomal miR-187 restrained prostate cancer by reducing CD276/JAK3-STAT3-Slug axis.
Collapse
Affiliation(s)
- Chuangui Li
- Department of Urology, Hebei Medical University, Shijiazhuang, P. R. China
| | - Zhen Sun
- Department of Urology, Songshan General Hospital, Chongqing, P. R. China
| | - Yajun Song
- Department of Urology, the Second Affiliated Hospital, Army Medical University, Chongqing, P. R. China,CONTACT Yajun Song Department of Urology, the Second Affiliated Hospital, Army Medical University, Chongqing, P. R. China
| | - Yong Zhang
- Department of Urology, Hebei Medical University, Shijiazhuang, P. R. China,Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China,Yong Zhang Department of Urology, Ministry of Education of China, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang050000, Hebei Province, P. R. China
| |
Collapse
|
70
|
Jere SW, Houreld NN, Abrahamse H. Photobiomodulation activates the PI3K/AKT pathway in diabetic fibroblast cells in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 237:112590. [DOI: 10.1016/j.jphotobiol.2022.112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
71
|
Lee Y, Heo SY, Lee HS, Oh SJ, Kim H, Lim S, Shin H, Jung WK, Kang HW. Combinatorial prophylactic effect of phlorotannins with photobiomodulation against tracheal stenosis. iScience 2022; 25:105405. [PMID: 36388989 PMCID: PMC9664362 DOI: 10.1016/j.isci.2022.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Several conventional treatments are used to manage tracheal stenosis after intubation and surgical procedures; however, patients are at risk of restenosis because of the absence of effective preventative therapy. In this study, we evaluate the biomodulatory effect of PT-combined blue light (BL) PBM in tracheostomal stenosis-induced animal models. The PT-combined BL group showed a significant decrease in the fibrotic protein synthesis by downregulating the release of stenosis-triggering fibrotic signals, without cytotoxicity or thermal damage. Moreover, the combined treatment ameliorated excessive granulation and collagen formation, and consequently preserved the opening of the tracheostoma ten days after fenestration. The current study demonstrated the biomodulatory effect of PT-combined BL on human tracheal fibroblasts and tracheal fenestration rodent models. Hence, PT-combined BL has the potential to be an effective preventative treatment for tracheal stenosis but also as an alternative option for fibrotic disorders.
Collapse
Affiliation(s)
- Yeachan Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea
| | - Hyoung Shin Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan 49267, Korea
| | - Sun-ju Oh
- Department of Pathology, Kosin University College of Medicine, Busan 49267, Korea
| | - Hyeonsoo Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
| | - Seonghee Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
| | - Hwarang Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
| | - Won-Kyo Jung
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
72
|
Liu SC, Chen LB, Chen PF, Huang ML, Liu TP, Peng J, Lu XS. PDCD5 inhibits progression of renal cell carcinoma by promoting T cell immunity: with the involvement of the HDAC3/microRNA-195-5p/SGK1. Clin Epigenetics 2022; 14:131. [PMID: 36266728 PMCID: PMC9583501 DOI: 10.1186/s13148-022-01336-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Epigenetics exerts a vital role in the onset and development of renal cell carcinoma (RCC). Mounting evidence has shed light on the significance of human immune system in response to tumor infiltrating T cells. Hereby, we sought to unmask the immunomodulatory role of histone deacetylase 3 (HDAC3) and its potential upstream molecule, programmed cell death 5 (PDCD5) in RCC. METHODS RCC and adjacent non-cancerous tissues were clinically resected from 58 patients, in which the expression profile of microRNA-195-5p (miR-195-5p), PDCD5, HDAC3, and serum glucocorticoid-inducible kinase 1 (SGK1) was determined by RT-qPCR and Western blot analysis. Their relations were investigated by a series of luciferase assays in combination with ChIP and co-IP. RCC cells (A498) were intervened using gain- and loss-of-function approaches, followed by cell proliferation evaluation. After co-culture with CD3+ T cells, flow cytometry and interferon-γ (IFN-γ) determination were performed. A xenograft tumor mouse model was developed for in vivo validation. RESULTS PDCD5 was downregulated in RCC tissues and A498 cells. Upregulation of HDAC3, as well as of SGK1, resulted in suppression of A498 cell proliferation and promotion of T cell activation as evidenced by higher IFN-γ expression. Re-expression of PDCD5 downregulated HDAC3, causing a subsequent upregulation of miR-195-5p, while miR-195-5p could inversely modulate its target gene, SGK1. The regulatory mechanism appeared to be functional in vivo. CONCLUSION Our results highlight the possible manipulation by PDCD5 on RCC cell proliferation and T cell activation, which provides new clues to better understand the immune balance in RCC progression.
Collapse
Affiliation(s)
- Shu-Cheng Liu
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li-Bo Chen
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ping-Feng Chen
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Meng-Long Huang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tian-Pei Liu
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Peng
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Xin-Sheng Lu
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
73
|
Kasowanjete P, Houreld NN, Abrahamse H. The effect of photomodulation on fibroblast growth factor and the Ras/MAPK signalling pathway: a review. J Wound Care 2022; 31:832-845. [DOI: 10.12968/jowc.2022.31.10.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Objective: Current therapies and technologies used to treat hard-to-heal diabetic wounds are limited to a 50% healing rate. The rise in the percentage of lower limb non-traumatic amputations in patients with diabetes has caused an increased demand for alternative, effective and safe treatment modalities. Photobiomodulation therapy (PBMT) utilises light to induce physiological changes and provide therapeutic benefits and has been shown to increase the healing of hard-to-heal wounds through the release of growth factors. The aim of this narrative review is to investigate the effect of photobiomodulation (PBM) on fibroblast growth factor (FGF) and the role of the Ras/MAPK signalling pathway in diabetic wound healing. Method: Relevant journal articles were obtained through PubMed and Google Scholar. Results: Experimental and clinical findings from the review show that PBM can stimulate the release of growth factors, including FGF, an essential cytokine in wound healing, and one which is present at lower concentrations in diabetic wounds. There is also activation of the Ras/MAPK signalling pathway. Conclusion: One mechanism through which healing may be stimulated by PBM is via the FGF-Ras/MAPK signalling pathway, although strong evidence under hyperglycaemic conditions is lacking.
Collapse
Affiliation(s)
| | - Nicolette N Houreld
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
74
|
Bai X, Zhang H, Li Z, Chen O, He H, Jia X, Zou L. Platelet-derived extracellular vesicles encapsulate microRNA-34c-5p to ameliorate inflammatory response of coronary artery endothelial cells via PODXL-mediated P38 MAPK signaling pathway. Nutr Metab Cardiovasc Dis 2022; 32:2424-2438. [PMID: 36096977 DOI: 10.1016/j.numecd.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Low-grade chronic inflammation was reported to serve as a distinctive pathophysiologic feature of coronary artery disease (CAD), the leading cause of death around the world. Herein, the current study aimed to explore whether and how microRNA-34c-5p (miR-34c-5p), a miRNA enriched in extracellular vesicles (EVs) originated from the activated platelet (PLT-EVs), affects the inflammation of human coronary artery endothelial cells (HCAECs). METHODS AND RESULTS HCAECs were established as an in vitro cell model using oxidized low-density lipoprotein (ox-LDL). miR-34c-5p, an abundant miRNA in PLT-EVs, can be transferred to HCAECs and target PODXL by binding to its 3'UTR. Gain- and loss-of-function experiments of miR-34c-5p and podocalyxin (PODXL) were performed in ox-LDL-induced HCAECs. Subsequently, HCAECs were subjected to co-culture with PLT-EVs, followed by detection of the expression patterns of key pro-inflammatory factors. Either miR-34c-5p mimic or PLT-EVs harboring miR-34c-5p attenuated the ox-LDL-evoked inflammation in HCAECs by suppressing interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). By blocking the P38 MAPK signaling pathway, miR-34c-5p-mediated depletion of PODXL contributed to protection against ox-LDL-induced inflammation. In vitro findings were further validated by findings observed in ApoE knock-out mice. Additionally, miR-34c-5p in PLT-EVs showed an athero-protective role in the murine model. CONCLUSION Altogether, our findings highlighted that miR-34c-5p in PLT-EVs could alleviate inflammation response in HCAECs by targeting PODXL and inactivation of the P38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xuetao Bai
- Department of Anaesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Hao Zhang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Zhiguo Li
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Ou Chen
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Hengpeng He
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Xiukun Jia
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Lijuan Zou
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China.
| |
Collapse
|
75
|
Jiang F, Li S, Wang X, Deng Y, Peng S. DPP10-AS1-Mediated Downregulation of MicroRNA-324-3p Is Conducive to the Malignancy of Pancreatic Cancer by Enhancing CLDN3 Expression. Pancreas 2022; 51:1201-1210. [PMID: 37078946 DOI: 10.1097/mpa.0000000000002164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
OBJECTIVES Network of long noncoding RNA-microRNA (miRNA)-mRNA is becoming increasingly pivotal roles in carcinogenesis mechanism. Herein, we aim to delineate the mechanistic understanding of dipeptidyl peptidase like 10-antisense RNA 1 (DPP10-AS1)/miRNA-324-3p/claudin 3 (CLDN3) axis in the malignancy of pancreatic cancer (PC). METHODS Microarray profiling and other bioinformatics methods were adopted to predict differentially expressed long noncoding RNA-miRNA-mRNA in PC, followed by verification of expression of DPP10-AS1, microRNA-324-3p (miR-324-3p), and CLDN3 in PC cells. The relationship among DPP10-AS1, miR-324-3p, and CLDN3 were further assessed. The PC cell invasion and migration were evaluated by scratch test and transwell assay. Tumor formation and lymph node metastasis were assessed in nude mice. RESULTS Highly expressed DPP10-AS1 and CLDN3 and poorly expressed miR-324-3p were identified in PC cells. The competitively binding between DPP10-AS1 and miR-324-3p was identified, and CLDN3 was targeted and downregulated by miR-324-3p. In addition, DPP10-AS1 was found to sequester miR-324-3p to release CLDN3 expression. DPP10-AS1 knockdown or miR-324-3p restoration diminished migration, invasion, tumor formation, microvessel density, and lymph node metastasis of PC cells, which was associated with CLDN3 downregulation. CONCLUSIONS Taken together, the study identified the regulatory role of DPP10-AS1/miR-324-3p/CLDN3 axis in PC, offering a mechanistic basis suggesting DPP10-AS1 ablation as a therapeutic target against PC.
Collapse
Affiliation(s)
- Fengru Jiang
- From the Clinical Laboratory, Huadu Hospital Affiliated to Southern Medical University
| | - Sumei Li
- From the Clinical Laboratory, Huadu Hospital Affiliated to Southern Medical University
| | - Xiaoyun Wang
- Department of Chronic Non-infectious Disease, Xinhua Community Health Service Center, Guangzhou
| | - Yingzhao Deng
- From the Clinical Laboratory, Huadu Hospital Affiliated to Southern Medical University
| | | |
Collapse
|
76
|
Liao Y, Xiao N, Wang X, Dai S, Wang G. Promoting effect of Tmsb4x on the differentiation of peripheral blood mononuclear cells to dendritic cells during septicemia. Int Immunopharmacol 2022; 111:109002. [PMID: 35932611 DOI: 10.1016/j.intimp.2022.109002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Thymosin beta 4 × (Tmsb4x) has been highlighted as an important regulator in immune and inflammation responses. Promoted differentiation of mononuclear cells into dendritic cells (DCs) exert a beneficial effect on septicemia. Herein, we investigated the effects of Tmsb4x on the mononuclear cells to affect immune responses during septicemia. METHODS Initially, we isolated peripheral blood samples from healthy individuals and patients with septicemia for extraction of mononuclear cells, followed by Tmsb4x expression quantification. A cell model was constructed with mononuclear cells through lipopolysaccharide stimulation. The viability and apoptosis were evaluated in response to Tmsb4x silencing or re-expression. Additionally, the proportion of DCs was assessed by determining levels of inflammatory factors as well as by flow cytometric analysis. A mouse septicemia model was developed for in vivo validation. RESULTS Cell and animal models demonstrated decreased Tmsb4x expression in the setting of septicemia, which led to increased inflammatory response and reduced proportion of DCs, along with inhibited mononuclear cell viability and promoted apoptosis. However, restoration of Tmsb4x facilitated the differentiation of mononuclear cells into DCs. CONCLUSION To conclude, upregulated Tmsb4x promoted the generation of DCs from mononuclear cells, which contributed to deep understanding of underpinning mechanisms in the development of septicemia.
Collapse
Affiliation(s)
- Yongqiang Liao
- Department of Clinical Laboratory, Jiangxi Pingxiang People's Hospital, Pingxiang 337055, China.
| | - Ni Xiao
- Department of Clinical Laboratory, Jiangxi Pingxiang People's Hospital, Pingxiang 337055, China
| | - Xiaoming Wang
- Department of Clinical Laboratory, Jiangxi Pingxiang People's Hospital, Pingxiang 337055, China
| | - Senhua Dai
- Department of Rheumatology and Immunology, Jiangxi Pingxiang People's Hospital, Pingxiang 337055, China
| | - Guiliang Wang
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, Pingxiang 337055, China
| |
Collapse
|
77
|
E3 Ubiquitin Ligase CHIP Inhibits the Interaction between Hsp90β and MAST1 to Repress Radiation Resistance in Non-Small-Cell Lung Cancer Stem Cells. Stem Cells Int 2022; 2022:2760899. [PMID: 36199626 PMCID: PMC9527118 DOI: 10.1155/2022/2760899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
The radiation resistance of cancer stem cells poses a critical obstacle for management of non-small-cell lung cancer (NSCLC). It is interesting to note that E3 ubiquitin ligase CHIP is involved in radiation resistance and stemness phenotypes in NSCLC, while the downstream mechanisms remain elusive. Therefore, this study is aimed at exploring the possible molecular mechanism of E3 ubiquitin ligase CHIP in radiation resistance of NSCLC stem cells. Cancer and adjacent normal tissues of NSCLC patients were collected to determine expression of CHIP, Hsp90β, and MAST1. CD133+ cells were isolated from the NSCLC tissues and the lung cancer cell line A549 by flow cytometric sorting. Accordingly, downregulated CHIP and upregulated Hsp90β and MAST1 were observed in cancer tissues from NSCLC patients and in NSCLC stem cells. Sphere formation assay, colony formation assay, and flow cytometry were performed to examine self-renewal ability, survival, and apoptosis of NSCLC stem cells. An animal model of tumor xenograft was developed in nude mice to observe the tumorigenic ability and radiation resistance of NSCLC stem cells. CHIP overexpression was demonstrated to inhibit the NSCLC stem cell properties and radiation resistance in vitro and in vivo. Mechanistically, CHIP promoted MAST1 ubiquitination by blocking Hsp90β interaction with MAST1, thus inhibiting MAST1 protein stability. Furthermore, CHIP-mediated downregulation of MAST1 protein stability inhibited the NSCLC stem cell properties and radiation resistance. Collectively, CHIP promotes the ubiquitination of MAST1 by blocking the interaction of Hsp90β with MAST1, leading to decreased MAST1 protein stability, which suppressed NSCLC stem cell properties and radiation resistance.
Collapse
|
78
|
Wang Z, Wu G, Yang Z, Li X, Feng Z, Zhao Y. Chitosan/Hyaluronic Acid/MicroRNA-21 Nanoparticle-Coated Smooth Titanium Surfaces Promote the Functionality of Human Gingival Fibroblasts. Int J Nanomedicine 2022; 17:3793-3807. [PMID: 36072958 PMCID: PMC9444039 DOI: 10.2147/ijn.s375180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Zhongshan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
- Correspondence: Zhongshan Wang; Yimin Zhao, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China, Tel/Fax +86-29-84776128, Email ;
| | - Guangsheng Wu
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, People’s Republic of China
| | - Zhujun Yang
- Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, Shaanxi, 710003, People’s Republic of China
| | - Xuejian Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhihong Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
79
|
Human umbilical cord blood mesenchymal stem cells-derived exosomal microRNA-503-3p inhibits progression of human endometrial cancer cells through downregulating MEST. Cancer Gene Ther 2022; 29:1130-1139. [PMID: 34997218 DOI: 10.1038/s41417-021-00416-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
Abstract
Endometrial cancer (EC) is a group of epithelial malignant tumors that occur in the endometrium. The specific pathogenesis is not revealed, hence, the goal of this study was to investigate the influence of human umbilical cord blood mesenchymal stem cells (hUMSCs)-derived exosomal microRNA-503-3p (miR-503-3p) on human EC cells by mediating mesoderm-specific transcript (MEST). The binding relationship between MiR-503-3p and MEST was searched. HUMSCs were collected and exosomes (Exos) were isolated and identified. Human EC cell lines HEC-1B and RL95-2 were transfected with elevated miR-503-3p or silenced MEST vector or co-cultured with Exos to figure their roles in biological functions of EC cells. The in vitro effect of miR-503-3p, MEST, and Exos on EC cells was further verified in vivo. MEST was a target of miR-503-3p. Overexpression of miR-503-3p or reduction of MEST suppressed the biological functions of EC cells. Enhanced MEST expression mitigated the role of upregulated miR-503-3p on the growth of EC cells. HUMSCs-derived Exos suppressed EC cell growth, upregulated miR-503-3p-modified HUMSCs-derived Exos had a more obvious inhibitory effect on EC cell growth. The anti-tumor effect of elevated miR-503-3p, silenced MEST, and HUMSCs-derived Exos were verified in nude mice. This study highlights that hUMSCs-derived exosomal miR-503-3p inhibits EC development by suppressing MEST, which is of great benefit to EC therapy.
Collapse
|
80
|
Wang X, Simayi A, Fu J, Zhao X, Xu G. Resveratrol mediates the miR-149/HMGB1 axis and regulates the ferroptosis pathway to protect myocardium in endotoxemia mice. Am J Physiol Endocrinol Metab 2022; 323:E21-E32. [PMID: 35532075 DOI: 10.1152/ajpendo.00227.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endotoxemia is a common complication often used to model the acute inflammatory response associated with endotoxemia. Resveratrol has been shown to exert a wide range of therapeutic effects due to its anti-inflammatory and antioxidant properties. This study explored the effect of resveratrol on endotoxemia. Lipopolysaccharide (LPS)-induced endotoxemia mouse model and endotoxemia myocardial injury cell model were established and treated with resveratrol. Cardiomyocyte activity, lactate dehydrogenase (LDH) content in cell supernatant, glutathione (GSH) consumption, lipid reactive oxygen species (ROS) production, and iron accumulation were detected. Cardiac function indexes [left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), ejection fraction (EF)%, and fractional shortening (FS)%] were measured using echocardiography. The creatine kinase muscle/brain isoenzyme (CK-MB) and CK levels in the serum were detected using an automatic biochemical analyzer. The downstream target of miR-149 was predicted, and the binding relationship between miR-149 and high mobility group box 1 (HMGB1) was verified using a dual-luciferase assay. miR-149 and HMGB1 expressions were detected using RT-qPCR and Western blot. After resveratrol treatment, cardiomyocyte viability and GSH were increased, and LDH secretion, lipid ROS production, lipid peroxidation, and iron accumulation were decreased, and cardiac function and cardiomyocyte injury were improved. Resveratrol improved LPS-induced endotoxemia cardiomyocyte injury by upregulating miR-149 and inhibiting ferroptosis. Resveratrol inhibited HMGB1 expression by upregulating miR-149. HMGB1 upregulation reversed the inhibitory effect of miR-149 on LPS-induced ferroptosis in cardiomyocytes. Resveratrol upregulated miR-149 and downregulated HMGB1 to inhibit ferroptosis and improve myocardial injury in mice with LPS-induced endotoxemia. Collectively, resveratrol upregulated miR-149, downregulated HMGB1, and inhibited the ferroptosis pathway, thus improving cardiomyocyte injury in LPS-induced endotoxemia.NEW & NOTEWORTHY Sepsis is an unusual systemic reaction. Resveratrol is involved in sepsis treatment. This study explored the mechanism of resveratrol in sepsis by regulating the miR-149/HMGB1 axis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Alimujiang Simayi
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Juan Fu
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Xuan Zhao
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Guiping Xu
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| |
Collapse
|
81
|
Yang Y, Sun Q, Guo J, Liu Z, Wang J, Yao Y, Yu P, Cao J, Zhang Y, Song X. Identification of a lncRNA AC011511.5- Mediated Competitive Endogenous RNA Network Involved in the Pathogenesis of Allergic Rhinitis. Front Genet 2022; 13:811679. [PMID: 35711945 PMCID: PMC9194448 DOI: 10.3389/fgene.2022.811679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
LncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks are thought to be involved in regulating the development of various inflammatory diseases. Up to now, the mechanism of such a network in allergic rhinitis (AR) remains unclear. In the study, we investigated the differential expression of lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) by performing a microarray analysis of peripheral blood obtained from AR patients and healthy control subjects. StarBase 2.0 was used to predict miRNAs that might interact with various DElncRNAs and DEmRNAs. We constructed a ceRNA network based on potential lncRNA-miRNA-mRNA interactions. The Cluster Profiler R package was used to perform a functional enrichment analysis of the hub-ceRNA, and Molecular Complex Detection (MCODE) was used for further identification of the hub-ceRNA network. The expression levels of genes contained in the hub-ceRNA network were validated by RT-PCR. In total, 247 DEmRNAs and 18 DelncRNAs were aberrantly expressed in the PBMCs of AR patients. A ceRNA network consisting of 3 lncRNAs, 45 miRNAs, and 75 mRNAs was constructed. A GO analysis showed that negative regulation of immune response, response to interferon-beta, and response to interferon-alpha were important terms. A KEGG pathway analysis showed that 75 mRNAs were significantly enriched in "NOD-like receptor signaling pathway" and "tryptophan metabolism". Ultimately, a hub-ceRNA network was constructed based on 1 lncRNA (AC011511.5), 5 miRNAs (hsa-miR-576-5p, hsa-miR-520c-5p, hsa-miR-519b-5p, hsa-miR-519c-5p, and hsa-miR-518d-5p), and 2 mRNAs (ZFP36L1 and SNX27). Following further verification, we found that overexpression of lncRNA AC011511.5 or inhibitor of miR-576-5p upregulated SNX27 expression. The expression of SNX27 in the lncRNA AC011511.5 overexpression & miR-576-5p inhibitor group was not different from that in the miR-576-5p inhibitor group or lncRNA AC011511.5 overexpression group, indicating that overexpression of lncRNA AC011511.5 could not further upregulate the expression of SNX27 in miR-576-5p inhibitor Jurkat cells. This network may provide new insights to search for biomarkers that can be used for the diagnosis and clinical treatment of AR.
Collapse
Affiliation(s)
- Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jing Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jianwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiayu Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
82
|
Plasma-derived extracellular vesicles transfer microRNA-130a-3p to alleviate myocardial ischemia/reperfusion injury by targeting ATG16L1. Cell Tissue Res 2022; 389:99-114. [PMID: 35503135 DOI: 10.1007/s00441-022-03605-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Extracellular vesicles (EVs) are implicated in myocardial ischemia/reperfusion (I/R) injury as modulators by shuttling diverse cargoes, including microRNAs (miRNAs). The current study was initiated to unravel the potential involvement of plasma-derived EVs carrying miR-130a-3p on myocardial I/R injury. Rats were induced with moderate endoplasmic reticulum stress, followed by isolation of plasma-derived EVs. Then, an I/R rat model and hypoxia/reoxygenation (H/R) cardiomyoblast model were established to simulate a myocardial I/R injury environment where miR-130a-3p was found to be abundantly expressed. miR-130a-3p was confirmed to target and negatively regulate autophagy-related 16-like 1 (ATG16L1) in cardiomyoblasts. Based on a co-culture system, miR-130a-3p delivered by EVs derived from plasma protected H/R-exposed cardiomyoblasts against H/R-induced excessive cardiomyoblast autophagy, inflammation, and damage, improving cardiac dysfunction as well as myocardial I/R-induced cardiac dysfunction and tissue injury. The mechanism underlying the functional role of EVs-loaded miR-130a-3p was found to be dependent on its targeting relation with ATG16L1. The protective action of EV-carried miR-130a-3p was further re-produced in a rat model serving as in vivo validation as evidenced by improved cardiac function, tissue injury, myocardial fibrosis, and myocardial infarction. Collectively, miR-130a-3p shuttled by plasma-derived EVs was demonstrated to alleviate excessive cardiomyoblast autophagy and improve myocardial I/R injury.
Collapse
|
83
|
Histone Methyltransferase SETDB1 Promotes Immune Evasion in Colorectal Cancer via FOSB-Mediated Downregulation of MicroRNA-22 through BATF3/PD-L1 Pathway. J Immunol Res 2022; 2022:4012920. [PMID: 35497876 PMCID: PMC9045983 DOI: 10.1155/2022/4012920] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Tumors may develop a variety of immune evasion mechanisms during the progression of colorectal cancer (CRC). Here, we intended to explore the mechanism of histone methyltransferase SETDB1 in immune evasion in CRC. The expression of SETDB1, microRNA-22 (miR-22), BATF3, PD-L1, and FOSB in CRC tissues and cells was determined with their interactions analyzed also. Gain-of-function and loss-of-function approaches were employed to evaluate the effects of the SETDB1/FOSB/miR-22/BATF3/PD-L1 axis on T cell function, immune cell infiltration, and tumorigenesis. Aberrant high SETDB1 expression in CRC was positively associated with PD-L1 expression. SETDB1 negatively regulated miR-22 expression by downregulating FOSB expression, while miR-22 downregulated PD-L1 expression via targeting BATF3. Furthermore, SETDB1 silencing promoted the T cell-mediated cytotoxicity to tumor cells via the FOSB/miR-22/BATF3/PD-L1 axis and hindered CRC tumor growth in mice while leading to decreased immune cell infiltration. Taken together, SETDB1 could activate the BATF3/PD-L1 axis by inhibiting FOSB-mediated miR-22 and promote immune evasion in CRC, which provides a better understanding of the mechanisms underlying immune evasion in CRC.
Collapse
|
84
|
Wang Y, Cheng Y, Yang Q, Kuang L, Liu G. Overexpression of FOXD2-AS1 enhances proliferation and impairs differentiation of glioma stem cells by activating the NOTCH pathway via TAF-1. J Cell Mol Med 2022; 26:2620-2632. [PMID: 35419917 PMCID: PMC9077300 DOI: 10.1111/jcmm.17268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging data have highlighted the importance of long noncoding RNAs (lncRNAs) in exerting critical biological functions and roles in different forms of brain cancer, including gliomas. In this study, we sought to investigate the role of lncRNA FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) in glioma cells. First, we used sphere formation assay and flow cytometry to select U251 glioma stem cells (GSCs). Then, we quantified the expression of lncRNA FOXD2-AS1, TATA-box binding protein associated factor 1 (TAF-1) and NOTCH1 in glioma tissues and GSCs, as well as the expression of GSC stem markers, OCT4, SOX2, Nanog, Nestin and CD133 in GSCs. Colony formation assay, sphere formation assay, and flow cytometry were used to evaluate GSC stemness. Next, the correlations among lncRNA FOXD2-AS1, TAF-1 and NOTCH1 were investigated. LncRNA FOXD2-AS1, TAF-1 and NOTCH1 were found to be elevated in glioma tissues and GSCs, and silencing lncRNA FOXD2-AS1 inhibited stemness and proliferation, while promoting apoptosis and differentiation of GSCs. LncRNA FOXD2-AS1 overexpression also led to increased NOTCH1 by recruiting TAF-1 to the NOTCH1 promoter region, thereby promoting stemness and proliferation, while impairing cell apoptosis and differentiation. Mechanistically, lncRNA FOXD2-AS1 elevation promoted glioma in vivo by activating the NOTCH signalling pathway via TAF-1 upregulation. Taken together, the key findings of our investigation support the proposition that downregulation of lncRNA FOXD2-AS1 presents a viable and novel molecular candidate for improving glioma treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurotumor Disease Treatment Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yanli Cheng
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qi Yang
- Department of Orthopeadic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lei Kuang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guolei Liu
- Department of Otorhinolaryngology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
85
|
PLOD3 regulates the expression of YAP1 to affect the progression of non-small cell lung cancer via the PKCδ/CDK1/LIMD1 signaling pathway. J Transl Med 2022; 102:440-451. [PMID: 35039611 DOI: 10.1038/s41374-021-00674-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3) is a crucial oncogene in human lung cancer, whereas protein kinase C δ (PKCδ) acts as a tumor suppressor. In this study, we aimed to explore the regulation by PLOD3 on the expression of YAP1 to affect the progression of non-small cell lung cancer (NSCLC) via the PKCδ/CDK1/LIMD1 signaling pathway. We found that PLOD3, CDK1, and YAP1 were highly expressed, while LIMD1 was poorly expressed in NSCLC tissues. Mechanistic investigation demonstrated that silencing PLOD3 promoted the cleavage of PKCδ in a caspase-dependent manner to generate a catalytically active fragment cleaved PKCδ, enhanced phosphorylation levels of CDK1, and LIMD1 but suppressed nuclear translocation of YAP1. Furthermore, functional experimental results suggested that loss of PLOD3 led to increased phosphorylation levels of CDK1 and LIMD1 and downregulated YAP1, thereby suppressing the proliferation, colony formation, cell cycle entry, and resistance to apoptosis of NSCLC cells in vitro and inhibiting tumor growth in vivo. Taken together, these results show that PLOD3 silencing activates the PKCδ/CDK1/LIMD1 signaling pathway to prevent the progression of NSCLC, thus providing novel insight into molecular targets for treating NSCLC.
Collapse
|
86
|
Tang J, Duan G, Wang Y, Wang B, Li W, Zhu Z. Circular RNA_ANKIB1 accelerates chemo-resistance of osteosarcoma via binding microRNA-26b-5p and modulating enhancer of zeste homolog 2. Bioengineered 2022; 13:7351-7366. [PMID: 35264070 PMCID: PMC8974058 DOI: 10.1080/21655979.2022.2037869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Osteosarcoma is a common bone malignancy in children and adolescents. Chemotherapeutic drug resistance is the major factor impacting the surgical outcome and prognosis of patients with osteosarcoma. This investigation assessed the role and mechanism of circular RNA_ANKIB1 in the development of osteosarcoma. The circular RNA (circ) _ANKIB1, microRNA (miR)-26b-5p, enhancer of zeste homolog 2 (EZH2) expression in OS samples was investigated through RT-qPCR. The EZH2, multidrug resistance protein 1 (MRP1), P-gp, and lipoprotein receptor-related protein (LRP) protein expressions were analyzed through western blot. The association between circ_ANKIB1 and the occurrence of clinic-pathological features in OS patients was assessed; the circular features of circ_ANKIB1 were analyzed. The hFOB1.19, KHOS, U2-OS OS cells were used to study the semi-inhibitory concentration IC50 of Doxorubicin (DXR)-resistant cells, clone formation, invasion, and apoptosis. The luciferase assay was used to study the binding of circ-ANKIB1 with miR-26b-5p and the targeting of miR-26b-5p with EZH2. In vivo experiments were performed via subcutaneous tumorigenic experiments. MiR-26b-5p in OS tissues and cells and DXR-resistant OS tissues and cells was silenced while circ_ANKIB1 and EZH2 were elevated. Circ_ANKIB1 silencing elevated miR-26b-5p, repressed EZH2, MRP1, P-gp, LRP, IC50, and elevated OS advancement. Circ_ANKIB1 bind miR-26b-5p. Reduced miR-26b-5p revered the influence of silencing circ_ANKIB1 on DXR resistant OS cells. MiR-26b-5p targeted EZH2, and EZH2 elevation reversed the impact of increasing miR-26b-5p on DXR resistant cells. Circ_ANKIB1 silencing suppressed DXR-resistant OS cells in vivo. In conclusion, Circ_ANKIB1 binds miR-26b-5p and modulates EZH2 to accelerate the chemo-resistance of osteosarcoma.
Collapse
Affiliation(s)
- JinShan Tang
- Department Orthopedics, Huai'an Second People's Hospital, Huai'an City, JiangSu Province, China.,Department Orthopedics, Huaian Hospital Affiliated to Xuzhou Medical University, Huai'an City, Jiangsu, China
| | - Gang Duan
- Department Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, JiangSu Province, China
| | - YunQing Wang
- Department Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, JiangSu Province, China
| | - Bin Wang
- Department Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, JiangSu Province, China
| | - WenBo Li
- Department Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, JiangSu Province, China
| | - ZiQiang Zhu
- Department Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, JiangSu Province, China
| |
Collapse
|
87
|
Liebman C, Loya S, Lawrence M, Bashoo N, Cho M. Stimulatory responses in α- and β-cells by near-infrared (810 nm) photobiomodulation. JOURNAL OF BIOPHOTONICS 2022; 15:e202100257. [PMID: 34837336 DOI: 10.1002/jbio.202100257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Significant efforts have been committed to better understand and regulate insulin secretion as it has direct implications on diabetes. The first phase of biphasic insulin secretion in response to glucose lasts about 10 minutes, followed by a more sustained release persisting several hours. Attenuated insulin release in the first phase is typically associated with abnormal β-cells. While near-infrared photobiomodulation (PBM) demonstrates potential for multiple therapeutic applications, photostimulatory effects on α- and β-cells remain to be further elucidated. Herein, we demonstrate that 810 nm PBM exposure at fluence of 9 J/cm2 can elevate the intracellular reactive oxygen species within 15 minutes following photostimulation. In addition, calcium spiking showed an approximately 3-fold increase in both ATC1 (α-cells) and BTC6 (β-cells) and correlates with hormone secretion in response to PBM stimulation. Our findings could lay a foundation for the development of non-biologic therapeutics that can augment islet transplantation.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Sheccid Loya
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
88
|
MicroRNA-135 inhibits initiation of epithelial-mesenchymal transition in breast cancer by targeting ZNF217 and promoting m6A modification of NANOG. Oncogene 2022; 41:1742-1751. [PMID: 35121826 DOI: 10.1038/s41388-022-02211-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
Abstract
MicroRNAs play significant roles in various malignancies, with breast cancer (BC) being no exception. Consequently, we explored the functional mechanism of miR-135 in the progression of BC. In total, 55 pairs of BC and matched adjacent normal tissues were clinically collected from patients, followed by quantification of miR-135 and zinc finger protein 217 (ZNF217) expression patterns in BC tissues and cells. Accordingly, high ZNF217 expression and low miR-135 expression levels were identified in BC tissues and cells. Subsequently, the expressions of miR-135 and ZNF217 were altered to evaluate their effects on BC cell migration, invasion and EMT initiation. It was found that when ZNF217 was silenced or miR-135 was elevated, BC cell malignant behaviors were significantly inhibited, which was reproduced in nude mice for in vivo evidence. Furthermore, dual-luciferase reporter gene assay revealed the presence of direct binding between miR-135 and ZNF217. Subsequent co-immunoprecipitation, methylated-RNA binding protein immunoprecipitation and photoactivatable ribonucleoside enhanced-crosslinking and immunoprecipitation assays further revealed that ZNF217 could upregulate NANOG by reducing N6-methyladenosine levels via methyltransferase-like 13 (METTL3). Collectively, our findings highlighted the role of the miR-135/ZNF217/METTL3/NANOG axis in the progression of BC, emphasizing potential therapeutic targets ZNF217 silencing and miR-135 upregulation in preventing or treating BC.
Collapse
|
89
|
Crous A, Abrahamse H. Photodynamic Therapy with an AlPcS4Cl Gold Nanoparticle Conjugate Decreases Lung Cancer’s Metastatic Potential. COATINGS 2022; 12:199. [DOI: 10.3390/coatings12020199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cancer metastasis and the risk of secondary tumours are the leading causes of cancer related death, and despite advances in cancer treatment, lung cancer remains one of the leading causes of death worldwide. A crucial characteristic of metastases is cell invasion potential, which is mainly determined by cell motility. Photodynamic therapy (PDT), known for its minimally invasive cancer treatment approach, has been extensively researched in vitro and is currently being developed clinically. Due to their physicochemical and optical properties, gold nanoparticles have been shown to increase the effectivity of PDT by increasing the loading potential of the photosensitizer (PS) inside cancer cells, to be biocompatible and nontoxic, to provide enhanced permeability and retention, and to induce lung cancer cell death. However, effects of gold nano phototherapy on lung cancer metastasis are yet to be investigated. The aim of this in vitro study was to determine the inhibitory effects of PS-gold nano bioconjugates on lung cancer metastasis by analysing cell proliferation, migration, cell cycle analysis, and extracellular matrix cell invasion. The findings indicate that nano-mediated PDT treatment of lung cancer prevents lung cancer migration and invasion, induces cell cycle arrest, and reduces lung cancer proliferation abilities, elaborating on the efficacy of the nano-mediated PDT treatment of lung cancer.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| |
Collapse
|
90
|
Liu X, Zong Z, Liu X, Li Q, Li A, Xu C, Liu D. Stimuli-Mediated Specific Isolation of Exosomes from Blood Plasma for High-Throughput Profiling of Cancer Biomarkers. SMALL METHODS 2022; 6:e2101234. [PMID: 35174989 DOI: 10.1002/smtd.202101234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Exosomes, ranging from 30-150 nm in diameter, have emerged as promising non-invasive biomarkers for the diagnosis and prognosis of numerous diseases. However, current research on exosomes is largely restricted by the lack of an efficient method to isolate exosomes from real samples. Herein, the first stimuli-mediated enrichment and purification system to selectively and efficiently extract exosomes from clinical plasma for high-throughput profiling of exosomal mRNAs as cancer biomarkers is presented. This novel isolation system relies on specific installation of the stimuli-responsive copolymers onto exosomal phospholipid bilayers, by which the enrichment and purification are exclusively achieved for exosomes rather than the non-vesicle counterparts co-existing in real samples. The stimuli-mediated isolation system outperforms conventional methods such as ultracentrifugation and polyethylene glycol-based precipitation in terms of isolation yield, purity, and retained bioactivity. The high performance of the isolation system is demonstrated by enriching exosomes from 77 blood plasma samples and validated the clinical potentials in profiling exosomal mRNAs for cancer diagnosis and discrimination with high accuracy. This simple isolation system can boost the development of extracellular vesicle research, not limited to exosomes, in both basic and clinical settings.
Collapse
Affiliation(s)
- Xuehui Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiyou Zong
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinzhuo Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin, 300000, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
91
|
Zhou Z, Tu Z, Zhang J, Tan C, Shen X, Wan B, Li Y, Wang A, Zhao L, Hu J, Ma N, Zhou J, Chen L, Song Y, Lu W. Follicular Fluid-Derived Exosomal MicroRNA-18b-5p Regulates PTEN-Mediated PI3K/Akt/mTOR Signaling Pathway to Inhibit Polycystic Ovary Syndrome Development. Mol Neurobiol 2022; 59:2520-2531. [PMID: 35092573 DOI: 10.1007/s12035-021-02714-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
Small RNA sequences in follicular fluid (FF)-derived exosomes (extracellular vesicles contain proteins, DNA, and RNA) vitally function in the development of polycystic ovary syndrome (PCOS). It has been identified that microRNA (miR)-18b-5p is one of miRs that differ between control and PCOS women that passed the false discovery rate, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is an important modifier of biological functions of ovarian granulosa cells (GCs) in PCOS. However, whether miR-18b-5p could functionally mediate the progression of PCOS via PTEN was not clarified completely, which was the issue we wanted to solve in our research. FF-derived exosomes were isolated using an extraction kit. KGN cells were co-cultured with miR-18b-5p-modified exosomes or transfected with a PTEN-related vector. After treatment, cell proliferation and apoptosis were observed. A rat model of PCOS was established by letrozole and then injected with miR-18b-5p-modified exosomes. Then, serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and estradiol (E2) levels in PCOS rats were measured. miR-18b-5p, PTEN, and phosphatidylinositol 3 kinases/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway-related genes were tested. In PCOS patients, miR-18b-5p was downregulated, and PTEN was highly expressed in FF and GCs. PTEN knockdown increased KGN cell proliferation and limited apoptosis. FF-derived exosomes stimulated proliferation and suppressed apoptosis of KGN cells; decreased FSH, LH, and testosterone; and increased E2 in PCOS rats. Upregulating miR-18b-5p further enhanced the inhibitory effects of exosomes on suppressing the progression of PCOS. miR-18b-5p targeted PTEN and could activate PI3K/Akt/mTOR pathway. miR-18b-5p produced by FF-derived exosomes reduces PTEN expression and promotes the activation of the PI3K/Akt/mTOR signaling pathway to improve PCOS. Based on that, circulating miR-18b-5p levels can contribute to the progression of PCOS complications.
Collapse
Affiliation(s)
- Zhi Zhou
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Zhihua Tu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Juan Zhang
- Reproductive Medical Center, Zhuzhou Central Hospital, Zhuzhou, 412007, Hunan, China
| | - Can Tan
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xiaoyong Shen
- Yikon Genomics Co. Ltd., Suzhou, 215000, Jiangsu, China
| | - Bangbei Wan
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Yejuan Li
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Anguo Wang
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Liqiang Zhao
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Jiajia Hu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Ning Ma
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Jing Zhou
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Lin Chen
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Yanqin Song
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Weiying Lu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China.
| |
Collapse
|
92
|
Peng X, Chen G, Lv B, Lv J. MicroRNA-148a/152 cluster restrains tumor stem cell phenotype of colon cancer via modulating CCT6A. Anticancer Drugs 2022; 33:e610-e621. [PMID: 34486532 DOI: 10.1097/cad.0000000000001198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulating evidence has presented that microRNA-148a/152 (miR-148a/152) acts as the tumor inhibitor in various cancers. In this article, we aimed to probe the inhibition of colon cancer stem cells by miR-148a/152 cluster via regulation of CCT6A. miR-148a/152 and CCT6A expression in colon cancer tissues and cells was detected. The relationship between miR-148a/152 expression and the clinicopathological features of patients with colon cancer was analyzed. Colon cancer stem cells (CD44+/CD133+) were selected and high/low expression of miR-148a/152 plasmids were synthesized to intervene CD44+/CD133+ colon cancer stem cells to investigate the function of miR-148a/152 in invasion, migration, proliferation, colony formation and apoptosis of cells. The growth status of nude mice was observed to verify the in-vitro results. The relationship between miR-148a/152 and CCT6A was analyzed. CCT6A upregulated and miR-148a/152 downregulated in colon cancer tissues. MiR-148a/152 expression was correlated with tumor node metastasis stage, lymph node metastasis and differentiation degree. Upregulated miR-148a/152 depressed CCT6A expression and restrained invasion and migration ability, colony formation and proliferation, induced cell apoptosis, depressed OCT4, Nanog and SOX2 mRNA expression of colon cancer stem cells, and descended tumor weight and volume in nude mice. CCT6A was a target gene of miR-148a/152. Overexpression of CCT6A protected colon cancer stem cells. Functional studies showed that upregulation of miR-148a/152 can suppress the migration, invasion and proliferation of CD44+/CD133+ colon cancer stem cells, advance its apoptosis via inhibition of CCT6A expression.
Collapse
Affiliation(s)
- Xin Peng
- Department of Anorectal Surgery, Xinxiang Central Hospital General Surgery III, Xinxiang City, Henan, China
| | | | | | | |
Collapse
|
93
|
Wang G, Zhang L, Yan C, Zhang Y. Upregulation of microRNA-576-5p protects from steroid-induced avascular necrosis of the femoral head by suppressing ANXA2. Cell Cycle 2022; 21:49-62. [PMID: 34890298 PMCID: PMC8837248 DOI: 10.1080/15384101.2021.1988377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is a common orthopedic disease. Evidence has shown that microRNAs (miRNAs) played essential roles in the development of SANFH. Nevertheless, the role of miR-576-5p in SANFH remains unknown. The rabbit SANFH models were constructed by injection of horse serum and methylprednisolone. Bone mineral density (BMD) of the proximal femur (including the femoral head), pathological changes, bone cell apoptosis and expressions of OPG/RANK in femoral head bone tissue were assessed upon treatment of up-regulation of miR-576-5p or knockdown of ANXA2. Osteoblasts were extracted from SANFH rabbit femoral head and cultured. Proliferation, apoptosis and mineralization were tested upon treatment of up-regulation of miR-576-5p or knockdown of ANXA2. The targeting relationship between miR-576-5p and ANXA2 was verified. Up-regulated miR-576-5p or down-regulated ANXA2 inhibited the decrease of BMD, improved pathological changes, limited cell apoptosis and increased OPG/RANKL ratio in bone tissues of SANFH rabbits. Up-regulating miR-576-5p or down-regulating ANXA2 promoted proliferation and mineralization and inhibited apoptosis of osteoblasts from SANFH rabbits. In addition, ANXA2 was found to be a target gene of miR-576-5p. Furthermore, overexpression of ANXA2 abolished the protective role of elevated miR-576-5p against femoral head necrosis. Elevated miR-576-5p or reduced ANXA2 repressed the progression of SANFH. This study may provide novel biomarkers for SANFH diagnosis and treatment.
Collapse
Affiliation(s)
- Gang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lecheng Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chao Yan
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuelei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
94
|
Kim Y, Kim S, Im G, Kim YH, Jeong G, Jeon HR, Kim D, Lee H, Park SY, Cho SM, Bhang SH. Area light source-triggered latent angiogenic molecular mechanisms intensify therapeutic efficacy of adult stem cells. Bioeng Transl Med 2022; 7:e10255. [PMID: 35079630 PMCID: PMC8780080 DOI: 10.1002/btm2.10255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
Light-based therapy such as photobiomodulation (PBM) reportedly produces beneficial physiological effects in cells and tissues. However, most reports have focused on the immediate and instant effects of light. Considering the physiological effects of natural light exposure in living organisms, the latent reaction period after irradiation should be deliberated. In contrast to previous reports, we examined the latent reaction period after light exposure with optimized irradiating parameters and validated novel therapeutic molecular mechanisms for the first time. we demonstrated an organic light-emitting diode (OLED)-based PBM (OPBM) strategy that enhances the angiogenic efficacy of human adipose-derived stem cells (hADSCs) via direct irradiation with red OLEDs of optimized wavelength, voltage, current, luminance, and duration, and investigated the underlying molecular mechanisms. Our results revealed that the angiogenic paracrine effect, viability, and adhesion of hADSCs were significantly intensified by our OPBM strategy. Following OPBM treatment, significant changes were observed in HIF-1α expression, intracellular reactive oxygen species levels, activation of the receptor tyrosine kinase, and glycolytic pathways in hADSCs. In addition, transplantation of OLED-irradiated hADSCs resulted in significantly enhanced limb salvage ratio in a mouse model of hindlimb ischemia. Our OPBM might serve as a new paradigm for stem cell culture systems to develop cell-based therapies in the future.
Collapse
Affiliation(s)
- Yu‐Jin Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung‐Won Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Gwang‐Bum Im
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Yeong Hwan Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Gun‐Jae Jeong
- Division of Vascular Surgery, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Hye Ran Jeon
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoulRepublic of Korea
| | - Dong‐Ik Kim
- Division of Vascular Surgery, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Haeshin Lee
- Department of Chemistry, Center for Nature‐Inspired Technology (CNiT)Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Sung Young Park
- Department of Chemical and Biological EngineeringKorea National University of TransportationChungjuRepublic of Korea
| | - Sung Min Cho
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
95
|
Zhao W, Zhang Y, Zhang M, Zhi Y, Li X, Liu X. Effects of total glucosides of paeony on acute renal injury following ischemia-reperfusion via the lncRNA HCG18/miR-16-5p/Bcl-2 axis. Immunobiology 2022; 227:152179. [DOI: 10.1016/j.imbio.2022.152179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/12/2022]
|
96
|
Wang J, Jiao P, Wei X, Zhou Y. Silencing Long Non-coding RNA Kcnq1ot1 Limits Acute Kidney Injury by Promoting miR-204-5p and Blocking the Activation of NLRP3 Inflammasome. Front Physiol 2021; 12:721524. [PMID: 34858199 PMCID: PMC8632456 DOI: 10.3389/fphys.2021.721524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is a critical clinical disease characterized by an acute decrease in renal function. Long non-coding RNAs (LncRNAs) are important in AKI. This study aimed to explore the mechanism of lncRNA Kcnq1ot1 in AKI by sponging microRNA (miR)-204-5p as a competitive endogenous RNA (ceRNA). AKI mouse model and hypoxia/reoxygenation (H/R) model of human kidney (HK) cells were established. Kcnq1ot1 expression, cell proliferation, and apoptosis were measured. Binding relations among Kcnq1ot1, miR-204-5p, and NLRP3 were verified. Pathological changes and cell apoptosis were detected. The results showed that Kcnq1ot1 was highly expressed in the AKI model in vivo and in vitro. Kcnq1ot1 knockdown promoted cell proliferation and prevented apoptosis and inflammation. Furthermore, Kcnq1ot1 inhibited miR-204-5p expression by competitively binding to miR-204-5p in HK-2 cells. miR-204-5p targeted NLRP3 and NLRP3 overexpression averted the inhibiting effect of miR-204-5p on apoptosis and inflammation in HK-2 cells in vitro. Kcnq1ot1 knockdown in vivo promoted miR-204-5p expression, inhibited NLRP3 inflammasome activation, reduced levels of SCr, BUN, and KIM-1, and thus alleviated AKI and reduced apoptosis. In summary, silencing lncRNA Kcnq1ot1 inhibited AKI by promoting miR-204-5p and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- JunTao Wang
- Department of Nephrology, The First People's Hospital of Shangqiu, Shangqiu, China
| | - Peng Jiao
- Department of Emergency, The First People's Hospital of Shangqiu, Shangqiu, China
| | - XiaoYing Wei
- Department of Nephrology, The First People's Hospital of Shangqiu, Shangqiu, China
| | - Yun Zhou
- Institute of Nephrology Eastern Theater General Hospital, Nanjing, China
| |
Collapse
|
97
|
Xu X, Nie J, Lu L, Du C, Meng F, Song D. LINC00337 promotes tumor angiogenesis in colorectal cancer by recruiting DNMT1, which suppresses the expression of CNN1. Cancer Gene Ther 2021; 28:1285-1297. [PMID: 33328585 DOI: 10.1038/s41417-020-00277-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 11/08/2022]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies. An increasing body of evidence has revealed the important roles long noncoding RNA (lncRNA) plays in the growth dynamics of CRC cells. In this study, we aimed to define the role of LINC00337 in the malignant phenotypes, especially angiogenesis, of CRC and clarify the underlying molecular basis. Bioinformatic analyses identified promoter region methylation of CNN1 in CRC, which was further validated by BSP and MSP assays. Loss- and gain- of function approaches were used to determine the roles of CNN1 and LINC00337 in vitro and in vivo. MTT-based method, Transwell migration/invasion assays, and tube formation assay were adopted to evaluate the cancer cell proliferation, migration/invasion, and proangiogenetic potency respectively in vitro. The tumor growth, microvascular density (MVD) and markers of proliferation (Ki67) and angiogenesis (VEGF) were quantified in nude mice xenografted with CRC cells. It was found that CNN1 downregulation and LINC00337 overexpression occurred in CRC tissues and cells. Besides, the CNN1 promoter region was hypermethylated in CRC. CNN1 overexpression or LINC00337 knockdown restricted CRC cell proliferation, migration/invasion, and proangiogenetic potency in vitro, which was substantiated by the in vivo experiments evidenced by facilitated tumor growth and MVD as well as elevated Ki67 and VEGF. Furthermore, our mechanistic evidence revealed that LINC00337 recruited DNMT1 to the promoter region of CNN1 and restricted the transcription of CNN1. Taken together, this study indicates that LINC00337 facilitates the tumorigenesis and angiogenesis in CRC via recruiting DNMT1 to inhibit the expression of CNN1.
Collapse
Affiliation(s)
- Xiangming Xu
- Department of Gastroenterology, Linyi People's Hospital, 276000, Linyi, P. R. China
| | - Jiao Nie
- Department of Gastroenterology, Linyi People's Hospital, 276000, Linyi, P. R. China
| | - Lin Lu
- Department of Gastroenterology, Linyi People's Hospital, 276000, Linyi, P. R. China
| | - Chao Du
- Department of Gastroenterology, Linyi People's Hospital, 276000, Linyi, P. R. China
| | - Fansheng Meng
- Department of Gastroenterology, Linyi People's Hospital, 276000, Linyi, P. R. China
| | - Duannuo Song
- Department of Gastroenterology, Linyi People's Hospital, 276000, Linyi, P. R. China.
| |
Collapse
|
98
|
Wang S, Yuan Q, Zhao W, Zhou W. Circular RNA RBM33 contributes to extracellular matrix degradation via miR-4268/EPHB2 axis in abdominal aortic aneurysm. PeerJ 2021; 9:e12232. [PMID: 34820156 PMCID: PMC8603816 DOI: 10.7717/peerj.12232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a complex vascular disease involving expansion of the abdominal aorta. Extracellular matrix (ECM) degradation is crucial to AAA pathogenesis, however, the specific molecular mechanism remains unclear. This study aimed to investigate differentially expressed circular RNAs (DEcircRNAs) involved in ECM degradation of AAA. Methods Transcriptome sequencing was used to analyze the DEcircRNAs between the AAA tissues and normal tissues. The expression of circRNAs in tissues and cells was validated using quantitative reverse transcription PCR (RT-qPCR). Overexpression of circRNAs in vascular smooth muscle cells (VSMCs) treated with angiotensin II (Ang II) was employed to explore its effect on ECM degradation of AAA. Bioinformatic technology, luciferase reporter gene assay, RT-qPCR, and rescue experiment were employed to evaluate the regulatory mechanism of circRNA. Results We identified 65 DEcircRNAs in AAA tissues compared with normal abdominal aortic tissues, including 30 up-regulated and 35 down-regulated circRNAs, which were mainly involved in inflammation and ECM-related functions and pathways. Moreover, circRBM33 was significantly increased in AAA tissues and Ang II-induced VSMCs compared with control samples. Overexpression of circRBM33 increased the expression of ECM-related molecule matrix metalloproteinase-2 and reduced the tissue inhibitor of matrix metalloproteinases-1 expression. Mechanistically, miR-4268 targeted binding to circRBM33 and inhibited the luciferase activity of circRBM33. Overexpression of circRBM33 induced the expression of EPH receptor B2 (EPHB2), and this effect was countered by miR-4268 mimics. Conclusions Overall, our data suggest that circRBM33 might be involved in AAA progression by regulating ECM degradation via the miR-4268/EPHB2 axis.
Collapse
Affiliation(s)
- Shizhi Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingwen Yuan
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenpeng Zhao
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
99
|
Fang X, Wang H, Zhuo Z, Tian P, Chen Z, Wang Y, Cheng X. miR-141-3p inhibits the activation of astrocytes and the release of inflammatory cytokines in bacterial meningitis through down-regulating HMGB1. Brain Res 2021; 1770:147611. [PMID: 34403663 DOI: 10.1016/j.brainres.2021.147611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bacterial meningitis (BM) is a serious infectious disease of the central nervous system that often occurs in children and adolescents. Many studies have suggested that microRNAs (miRNAs) are involved in BM. This study aimed to address the effects of miR-141-3p on astrocyte activation and inflammatory response in BM through HMGB1. METHODS The 3-week-old rats were injected with Streptococcus pneumoniae (SP) into the lateral ventricle to establish a BM model. Loeffler scoring method was used to evaluate the recovery of neurological function. Brain pathological damage was observed by hematoxylin and eosin (H&E) staining. Primary astrocytes were isolated from brain tissues of BM or non-infected SD rats. The levels of TNF-α, IL-1β, and IL-6 in brain tissues and astrocyte culture supernatant were measured by enzyme-linked immunosorbent assay (ELISA). The targeting relationship between miR-141-3p and HMGB1 was tested using dual-luciferase reporter assay. The expression of miR-141-3p, HMGB1, and the astrocytic marker glial fibrillary acidic protein (GFAP) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blotting. Methylation-specific PCR (MSP) analysis was performed to measure the methylation status of miR-141 promoter. RESULTS The results showed that lower Loeffler scores were exhibited in rats with BM. The subarachnoid space of brain tissues of BM rats was widened, and obvious inflammatory cells were observed. miR-141-3p expression was reduced in BM rats and SP-treated astrocytes. Additionally, we found that overexpression of miR-141-3p led to the downregulation of HMGB1, GFAP, and inflammatory cytokines (TNF-α, IL-1β, and IL-6) in astrocytes. Furthermore, the results of dual-luciferase reporter assay confirmed that miR-141-3p directly targeted HMGB1. Overexpression of miR-141-3p inhibited the levels of GFAP, TNF-α, IL-1β, and IL-6 in astrocytes, which was eliminated by the up-regulation of HMGB1. The results of MSP analysis indicated that miR-141 promoter was highly methylated in brain tissues and astrocytes. DNMT1 was involved in the methylation of miR-141 promoter in BM. CONCLUSION The present study verified that miR-141-3p affected inflammatory response by suppressing HMGB1 in SP-induced astrocytes and BM rat model.
Collapse
Affiliation(s)
- Xiao Fang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peichao Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiuyong Cheng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
100
|
Zhong C, Tao B, Yang F, Xia K, Yang X, Chen L, Peng T, Xia X, Li X, Peng L. Histone demethylase JMJD1C promotes the polarization of M1 macrophages to prevent glioma by upregulating miR-302a. Clin Transl Med 2021; 11:e424. [PMID: 34586733 PMCID: PMC8473479 DOI: 10.1002/ctm2.424] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/23/2022] Open
Abstract
Glioma is regarded as an aggressive lethal primary brain tumor. Jumonji domain containing 1C (JMJD1C) is a H3K9 demethylase which participates in the progression of various tumors, but its specific function and underlying mechanism in glioma development remain undefined, which is the purpose of our work. We initially assessed JMJD1C expression in glioma tissues and cells using the assays of RT-qPCR and immunohistochemistry. Meanwhile, the H3K9 level at the microRNA (miR)-302a promoter region was measured by chromatin immunoprecipitation assay, while luciferase-based reporter assay was performed for validation of the binding affinity between miR-302a and methyltransferase-like 3 (METTL3). The effect of METTL3 on suppressor of cytokine signaling 2 (SOCS2) was subsequently analyzed by MeRIP-RT-qPCR. Finally, a xenograft tumor model was established in nude mice, followed by measurement of tumor-associated macrophages using flow cytometry. JMJD1C was poorly expressed in glioma tissues. Furthermore, JMJD1C increased miR-302a expression through promoting H3K9me1 demethylation at the miR-302a promoter region. miR-302a was identified to target METTL3, which could inhibit SOCS2 expression via m6A modification. JMJD1C promoted M1 macrophage polarization and suppressed the growth of glioma xenografts through the miR-302a/METTL3/SOCS2 axis both in vivo and in vitro. In conclusion, JMJD1C could enhance M1 macrophage polarization to inhibit the onset of glioma, bringing a new insight into the contribution of JMJD1C to the pathobiology of glioma, with possible implications for targeted therapeutic method.
Collapse
Affiliation(s)
- Chuanhong Zhong
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Bei Tao
- Department of Rheumatologythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
| | - Feilong Yang
- Neurosurgery Departmentthe Affiliated Santai Hospital of North Sichuan Medical CollegeMianyang621100P. R. China
| | - Kaiguo Xia
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Xiaobo Yang
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Ligang Chen
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Tangming Peng
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Xiangguo Xia
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Xianglong Li
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Lilei Peng
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| |
Collapse
|