51
|
Fuloria S, Mehta J, Chandel A, Sekar M, Rani NNIM, Begum MY, Subramaniyan V, Chidambaram K, Thangavelu L, Nordin R, Wu YS, Sathasivam KV, Lum PT, Meenakshi DU, Kumarasamy V, Azad AK, Fuloria NK. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Front Pharmacol 2022; 13:820806. [PMID: 35401176 PMCID: PMC8990857 DOI: 10.3389/fphar.2022.820806] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
Curcuma longa Linn. (C. longa), popularly known as turmeric, belongs to the Zingiberaceae family and has a long historical background of having healing properties against many diseases. In Unani and Ayurveda medicine, C. longa has been used for liver obstruction and jaundice, and has been applied externally for ulcers and inflammation. Additionally, it is employed in several other ailments such as cough, cold, dental issues, indigestion, skin infections, blood purification, asthma, piles, bronchitis, tumor, wounds, and hepatic disorders, and is used as an antiseptic. Curcumin, a major constituent of C. longa, is well known for its therapeutic potential in numerous disorders. However, there is a lack of literature on the therapeutic potential of C. longa in contrast to curcumin. Hence, the present review aimed to provide in-depth information by highlighting knowledge gaps in traditional and scientific evidence about C. longa in relation to curcumin. The relationship to one another in terms of biological action includes their antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, cardioprotective, immunomodulatory, antifertility, antimicrobial, antiallergic, antidermatophytic, and antidepressant properties. Furthermore, in-depth discussion of C. longa on its taxonomic categorization, traditional uses, botanical description, phytochemical ingredients, pharmacology, toxicity, and safety aspects in relation to its major compound curcumin is needed to explore the trends and perspectives for future research. Considering all of the promising evidence to date, there is still a lack of supportive evidence especially from clinical trials on the adjunct use of C. longa and curcumin. This prompts further preclinical and clinical investigations on curcumin.
Collapse
Affiliation(s)
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aditi Chandel
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Yuan Seng Wu
- Department of Biological Sciences and Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | | | - Vinoth Kumarasamy
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Perak, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
52
|
Plant-Mediated Green Synthesis of Ag NPs and Their Possible Applications: A Critical Review. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/2779237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The potential applications of Ag NPs are exciting and beneficial in a variety of fields; however, there is less awareness of the new risks posed by inappropriate disposal of Ag NPs. The Ag NPs have medicinal, plasmonic, and catalytic properties. The Ag NPs can be prepared via physical, chemical, or biological routes, and the selection of any specific route depends largely on the end-use. The downside of a physical and chemical approach is that it requires a wide space, high temperature, high temperature for a longer time to preserve the thermal stability of synthesized Ag NPs, and the use of toxic chemicals. Although these methods produce nanoparticles with high purity and well-defined morphology, it is critical to develop cost-effective, energy-efficient, and facile route, such as green synthesis; it suggests the desirable use of renewable resources by avoiding the use of additional solvents and toxic reagents in order to achieve the ultimate goal. However, each method has its pros and cons. The synthesized Ag NPs obtained using the green approach have larger biocompatibility and are less toxic towards the biotic systems. However, identifying the phytoconstituents that are responsible for nanoparticle synthesis is difficult and has been reported as a suitable candidate for biological application. The concentration of the effective bioreducing phytoconstituents plays a crucial role in deciding the morphology of the nanoparticle. Besides these reaction times, temperature, pH, and concentration of silver salt are some of the key factors that determine the morphology. Hence, careful optimization in the methodology is required as different morphologies have different properties and usage. It is due to which the development of methods to prepare nanoparticles effectively using various plant extracts is gaining rapid momentum in recent days. To make sense of what involves in the bioreduction of silver salt and to isolate the secondary metabolites from plants are yet challenging. This review focuses on the contribution of plant-mediated Ag NPs in different applications and their toxicity in the aquatic system.
Collapse
|
53
|
Tian Y, Huang X, Cheng Y, Niu Y, Ma J, Zhao Y, Kou X, Ke Q. Applications of adhesives in textiles: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
54
|
Ghosh S, Nandi S, Basu T. Nano-Antibacterials Using Medicinal Plant Components: An Overview. Front Microbiol 2022; 12:768739. [PMID: 35273578 PMCID: PMC8902597 DOI: 10.3389/fmicb.2021.768739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Gradual emergence of new bacterial strains, resistant to one or more antibiotics, necessitates development of new antibacterials to prevent us from newly evolved disease-causing, drug-resistant, pathogenic bacteria. Different inorganic and organic compounds have been synthesized as antibacterials, but with the problem of toxicity. Other alternatives of using green products, i.e., the medicinal plant extracts with biocompatible and potent antibacterial characteristics, also had limitation because of their low aqueous solubility and therefore less bioavailability. Use of nanotechnological strategy appears to be a savior, where phytochemicals are nanonized through encapsulation or entrapment within inorganic or organic hydrophilic capping agents. Nanonization of such products not only makes them water soluble but also helps to attain high surface to volume ratio and therefore high reaction area of the nanonized products with better therapeutic potential, over that of the equivalent amount of raw bulk products. Medicinal plant extracts, whose prime components are flavonoids, alkaloids, terpenoids, polyphenolic compounds, and essential oils, are in one hand nanonized (capped and stabilized) by polymers, lipids, or clay materials for developing nanodrugs; on the other hand, high antioxidant activity of those plant extracts is also used to reduce various metal salts to produce metallic nanoparticles. In this review, five medicinal plants, viz., tulsi (Ocimum sanctum), turmeric (Curcuma longa), aloe vera (Aloe vera), oregano (Oregano vulgare), and eucalyptus (Eucalyptus globulus), with promising antibacterial potential and the nanoformulations associated with the plants' crude extracts and their respective major components (eugenol, curcumin, anthraquinone, carvacrol, eucalyptus oil) have been discussed with respect to their antibacterial potency.
Collapse
Affiliation(s)
| | | | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
55
|
Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
56
|
Design and Characterization of Silver Nanoparticles of Different Species of Curcuma in the Treatment of Cancer Using Human Colon Cancer Cell Line (HT-29). J Gastrointest Cancer 2022; 54:90-95. [PMID: 35043370 DOI: 10.1007/s12029-021-00788-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cancer is a deadly disease responsible for worldwide mortality; usually, middle- and low-income countries have been more affected by cancer and are responsible for 70% of deaths. The present study was performed with the aim to design silver nanoparticles using three species of Curcuma, i.e., Curcuma longa, Curcuma aromatica, and Curcuma caesia. METHODS The rhizomes of different plants were extracted with ethanol. The rhizome extracts were used to prepare silver nanoparticles. It was optimized at different pH, silver ion concentrations, and concentrations of plant extracts. The anticancer activity of prepared nanoparticles of C. longa, C. aromatica, and C. caesia was evaluated on a human colon cancer cell line (HT-29) using sulforhodamine B (SRB) assay. RESULTS The percentage yield of C. longa, C. aromatica, and C. caesia was 11.34 g, 15.45 g, and 12.67 g, respectively. The results exhibited that the prepared nanoparticles were smooth and spherical. All the nanoparticles of rhizome extracts rescued the viability of HT-29 cells in a different extent. HT-29 cells were sensitive to prepared nanoparticles that induce more cytotoxicity towards cancer cells. CONCLUSION Thus, the prepared silver nanoparticle of Curcuma species through green synthesis may help treat cancer with low toxicity.
Collapse
|
57
|
Chauhan A, Sillu D, Dhiman NK, Agnihotri S. Silver-Based Nano-formulations for Treating Antibiotic-Resistant Microbial Strains. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:279-309. [DOI: 10.1007/978-3-031-10220-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
58
|
Baruah R, Yadav A, Moni Das A. Evaluation of the multifunctional activity of silver bionanocomposites in environmental remediation and inhibition of the growth of multidrug-resistant pathogens. NEW J CHEM 2022. [DOI: 10.1039/d1nj06198d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imperata cylindrica cellulose supported Ag bionanocomposites purified industrial water and controlled the contagious diseases with high potential activity.
Collapse
Affiliation(s)
- Rebika Baruah
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Archana Yadav
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Archana Moni Das
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
59
|
Pasupuleti VR. Nanoscience and nanotechnology advances in food industry. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
60
|
Antibacterial, Antifungal, and Antioxidant Activities of Silver Nanoparticles Biosynthesized from Bauhinia tomentosa Linn. Antioxidants (Basel) 2021; 10:antiox10121959. [PMID: 34943062 PMCID: PMC8749995 DOI: 10.3390/antiox10121959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023] Open
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) has a wide range of applications in the pharmaceutical industry. Here, we synthesized AgNPs using the aqueous flower extract of Bauhinia tomentosa Linn. Formation of AgNPs was observed using ultraviolet-visible light spectrophotometry at different time intervals. Maximum absorption was observed after 4 h at 420 nm due to the reduction of Ag+ to Ag0. The stabilizing activity of functional groups was identified by Fourier-transform infrared spectroscopy. Size and surface morphology were also analyzed using scanning electron microscopy. The present study revealed the AgNPs were spherical in form with a diameter of 32 nm. The face-centered cubic structure of AgNPs was indexed using X-ray powder diffraction with peaks at 2θ = 37°, 49°, 63°, and 76° (corresponding to the planes of silver 111, 200, 220, 311), respectively. Energy-dispersive X-ray spectroscopy revealed that pure reduced silver (Ag0) was the major constituent (59.08%). Antimicrobial analyses showed that the biosynthesized AgNPs possess increased antibacterial activity (against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), with larger zone formation against S. aureus (9.25 mm) compared with that of E. coli (6.75 mm)) and antifungal activity (against Aspergillus flavus and Candida albican (with superior inhibition against A. flavus (zone of inhibition: 7 mm) compared with C. albicans (zone of inhibition: 5.75 mm)). Inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was found to be dose-dependent with half-maximal inhibitory concentration (IC50) values of 56.77 μg/mL and 43.03 μg/mL for AgNPs and ascorbic acid (control), respectively, thus confirming that silver nanoparticles have greater antioxidant activity than ascorbic acid. Molecular docking was used to determine the mode of antimicrobial interaction of our biosynthesized B. tomentosa Linn flower-powder extract-derived AgNPs. The biogenic AgNPs preferred hydrophobic contacts to inhibit bacterial and fungal sustainability with reducing antioxidant properties, suggesting that biogenic AgNPs can serve as effective medicinal agents.
Collapse
|
61
|
Guimarães ML, da Silva FAG, de Souza AM, da Costa MM, de Oliveira HP. All-green wound dressing prototype based on Nile tilapia skin impregnated with silver nanoparticles reduced by essential oil. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
62
|
Acorus calamus-zinc oxide nanoparticle coated cotton fabrics shows antimicrobial and cytotoxic activities against skin cancer cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
63
|
Tyavambiza C, Dube P, Goboza M, Meyer S, Madiehe AM, Meyer M. Wound Healing Activities and Potential of Selected African Medicinal Plants and Their Synthesized Biogenic Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122635. [PMID: 34961106 PMCID: PMC8706794 DOI: 10.3390/plants10122635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 05/06/2023]
Abstract
In Africa, medicinal plants have been traditionally used as a source of medicine for centuries. To date, African medicinal plants continue to play a significant role in the treatment of wounds. Chronic wounds are associated with severe healthcare and socio-economic burdens despite the use of conventional therapies. Emergence of novel wound healing strategies using medicinal plants in conjunction with nanotechnology has the potential to develop efficacious wound healing therapeutics with enhanced wound repair mechanisms. This review identified African medicinal plants and biogenic nanoparticles used to promote wound healing through various mechanisms including improved wound contraction and epithelialization as well as antibacterial, antioxidant and anti-inflammatory activities. To achieve this, electronic databases such as PubMed, Scifinder® and Google Scholar were used to search for medicinal plants used by the African populace that were scientifically evaluated for their wound healing activities in both in vitro and in vivo models from 2004 to 2021. Additionally, data on the wound healing mechanisms of biogenic nanoparticles synthesized using African medicinal plants is included herein. The continued scientific evaluation of wound healing African medicinal plants and the development of novel nanomaterials using these plants is imperative in a bid to alleviate the detrimental effects of chronic wounds.
Collapse
Affiliation(s)
- Caroline Tyavambiza
- Phytotherapy Research Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7535, South Africa; (C.T.); (S.M.)
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (P.D.); (M.G.); (A.M.M.)
| | - Phumuzile Dube
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (P.D.); (M.G.); (A.M.M.)
| | - Mediline Goboza
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (P.D.); (M.G.); (A.M.M.)
| | - Samantha Meyer
- Phytotherapy Research Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7535, South Africa; (C.T.); (S.M.)
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (P.D.); (M.G.); (A.M.M.)
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (P.D.); (M.G.); (A.M.M.)
- Correspondence: ; Tel.: +27-21-9592032
| |
Collapse
|
64
|
Kabeerdass N, Al Otaibi A, Rajendran M, Manikandan A, Kashmery HA, Rahman MM, Madhu P, Khan A, Asiri AM, Mathanmohun M. Bacillus-Mediated Silver Nanoparticle Synthesis and Its Antagonistic Activity against Bacterial and Fungal Pathogens. Antibiotics (Basel) 2021; 10:1334. [PMID: 34827271 PMCID: PMC8614847 DOI: 10.3390/antibiotics10111334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
In this article, the supernatant of the soil-borne pathogen Bacillus mn14 was used as the catalyst for the synthesis of AgNPs. The antibacterial and antifungal activity of Bs-AgNPs was evaluated, in which S. viridans and R. solani showed susceptibility at 70 µL and 100 µL concentrations. Enzyme properties of the isolates, according to minimal inhibitory action and a growth-enhancing hormone-indole acetic acid (IAA) study of the isolates, were expressed in TLC as a purple color with an Rf value of 0.7. UV/Vis spectroscopy revealed the presence of small-sized AgNPs, with a surface plasmon resonance (SPR) peak at 450 nm. The particle size analyzer identified the average diameter of the particles as 40.2 nm. The X-ray diffraction study confirmed the crystalline nature and face-centered cubic type of the silver nanoparticle. Scanning electron microscopy characterized the globular, small, round shape of the silver nanoparticle. AFM revealed the two-dimensional topology of the silver nanoparticle with a characteristic size ranging around 50 nm. Confocal microscopy showed the cell-wall disruption of S. viridans treated with Bs-AgNPs. High-content screening and compound microscopy revealed the destruction of mycelia of R. solani after exposure to Bs-AgNPs. Furthermore, the Bs-AgNPs cured sheath blight disease by reducing lesion length and enhancing root and shoot length in Oryza sativa seeds. This soil-borne pathogen Bacillus-mediated synthesis approach of AgNPs appears to be cost-efficient, ecofriendly, and farmer-friendly, representing an easy way of providing valuable nutritious edibles in the future.
Collapse
Affiliation(s)
- Nivedhitha Kabeerdass
- Department of Microbiology, Muthayammal College of Arts & Science, Rasipuram, Namakkal DT 637408, Tamil Nadu, India;
| | - Ahmed Al Otaibi
- Chemistry Department, Faculty of Science, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia;
| | - Manikandan Rajendran
- Department of Biotechnology, Padmavani Arts and Science College for Women, Salem 636011, Tamil Nadu, India;
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai 600073, Tamil Nadu, India;
- Centre for Catalysis and Renewable Energy, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai 600073, Tamil Nadu, India
| | - Heba A. Kashmery
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - P. Madhu
- Department of Mechanical Engineering, Malnad College of Engineering, Hassan, Visvesvaraya Technological University, Belagavi 590018, Karnataka, India;
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maghimaa Mathanmohun
- Department of Microbiology, Muthayammal College of Arts & Science, Rasipuram, Namakkal DT 637408, Tamil Nadu, India;
| |
Collapse
|
65
|
Giri RK, Chaki S, Khimani AJ, Vaidya YH, Thakor P, Thakkar AB, Pandya SJ, Deshpande MP. Biocompatible CuInS 2 Nanoparticles as Potential Antimicrobial, Antioxidant, and Cytotoxic Agents. ACS OMEGA 2021; 6:26533-26544. [PMID: 34661008 PMCID: PMC8515567 DOI: 10.1021/acsomega.1c03795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 06/10/2023]
Abstract
A simple hydrothermal route is employed to synthesize pure copper indium disulfide (CIS) and CIS nanoparticles (NPs) mediated by various natural plant extracts. The plant extracts used to mediate are Azadirachta indica (neem), Ocimum sanctum (basil), Cocos nucifera (coconut), Aloe vera (aloe), and Curcuma longa (turmeric). The tetragonal unit cell structure of as-synthesized NPs is confirmed by X-ray diffraction. The analysis by energy-dispersive X-rays shows that all the samples are near-stoichiometric. The morphologies of the NPs are confirmed by high-resolution scanning and transmission modes of electron microscopy. The thermal stability of the synthesized NPs is determined by thermogravimetric analysis. The optical energy band gap is determined from the absorption spectra using Tauc's equation. The antimicrobial activity analysis and the estimation of the minimum inhibitory concentration (MIC) value of the samples are performed for Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Staphylococcus aureus pathogens. It shows that the aloe-mediated CIS NPs possess a broad inhibitory spectrum. The best inhibitory effect is observed against S. aureus, whereas the least effect was exhibited against P. vulgaris. The least MIC value is found for aloe-mediated CIS NPs (0.300 mg/mL) against S. aureus, P. aeruginosa, and E. aerogenes, along with basil-mediated NPs against E. coli. The antioxidant activity study showed that the IC50 value to inhibit the scavenging activity is maximum for the control (vitamin C) and minimum for pure CIS NPs. The in vivo cytotoxicity study using brine shrimp eggs shows that the pure CIS NPs are more lethal to brine shrimp than the natural extract-mediated CIS NPs. The in vitro cytotoxicity study using the human lung carcinoma cell line (A549) shows that the IC50 value of turmeric extract-mediated CIS NPs is minimum (15.62 ± 1.58 μg/mL). This observation reveals that turmeric extract-mediated CIS NPs are the most potent in terms of cytotoxicity toward the A549 cell line.
Collapse
Affiliation(s)
- Ranjan Kr. Giri
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, India
| | - Sunil Chaki
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, India
- Department
of Applied & Interdisciplinary Sciences, CISST, Sardar Patel University, Vallabh
Vidyanagar, 388120 Gujarat, India
| | - Ankurkumar J. Khimani
- Department
of Physics, Shri A. N. Patel P. G. Institute
of Science and Research, Anand, 388001 Gujarat, India
| | - Yati H. Vaidya
- Department
of Microbiology, Shri A. N. Patel P. G.
Institute of Science and Research, Anand, 388001 Gujarat, India
| | - Parth Thakor
- P.
G. Department of Biosciences, Sardar Patel
University, Satellite
Campus, Bakrol-Vadtal Road, Bakrol, 388315 Gujarat, India
| | - Anjali B. Thakkar
- Department
of Applied & Interdisciplinary Sciences, CISST, Sardar Patel University, Vallabh
Vidyanagar, 388120 Gujarat, India
- P.
G. Department of Biosciences, Sardar Patel
University, Satellite
Campus, Bakrol-Vadtal Road, Bakrol, 388315 Gujarat, India
| | - Swati J. Pandya
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, India
| | - Milind P. Deshpande
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, India
| |
Collapse
|
66
|
Quorum Sensing Inhibitory Potential and Molecular Docking Studies of Phyllanthus emblica Phytochemicals Against Pseudomonas aeruginosa. Appl Biochem Biotechnol 2021; 194:434-444. [PMID: 34611855 DOI: 10.1007/s12010-021-03683-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Phyllanthus emblica is a traditional medicinal plant that is endowed with curative properties including anti-bacterial, anti-fungal, anti-viral, and analgesic properties. Bacteria make use of cell-cell signaling system known as quorum sensing (QS) and respond to their own population. In most gram-negative bacteria, the transcriptional regulators belonging to the Lux R protein play a crucial role in the QS mechanism by detecting the presence of signaling molecules known as N-acyl homoserine lactones (AHLs). In this present work, the anti-quorum sensing activity of Phyllanthus emblica was evaluated against Pseudomonas aeruginosa. Anti-quorum sensing efficacy of Phyllanthus emblica was estimated with reference to QS bio-monitoring strain Chromobacterium violaceum. The binding efficacy of the phytochemicals of Phyllanthus emblica against CviR protein from Chromobacterium violaceum and LasR protein from Phyllanthus emblica were studied.
Collapse
|
67
|
Phytochemical profile, in vitro antioxidant, and anti-protein denaturation activities of Curcuma longa L. rhizome and leaves. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Curcuma longa L. is a famous spice cultivated in many countries with significant variations reported in its phytochemical contents and biological potential. For the first time, the present work is aimed to identify the major phytochemicals present in methanol:chloroform (MC) and petroleum ether (PE) extracts of Curcuma longa rhizome and leaves (by determining polyphenols and GC/MS analysis), and their in-vitro antioxidant and anti-protein denaturation potential. Results showed that the highest value (P < 0.05) of polyphenolic content was in MC extract of rhizome (51.46 ± 0.46 mg GAE/g) followed by 31.20 ± 0.53 mg GAE/g in MC leaves extract. The strong antiradical activity was evaluated in MC extract of rhizome with IC50 value of 92 ± 0.02 µg/mL. MC extracts of both the rhizome and leaves exerted a potent inhibitory effect against protein denaturation with IC50 values of 106.21 ± 0.53 and 108.06 ± 4.67 μg/mL (P > 0.5), respectively. GC/MS analysis showed that α-tumerone was the main component in the rhizome oil (32.44%), whereas in the leaf oil, palmitic acid was the prominent constituent (28.33%) and α-phellandrene recorded a comparable percentage (7.29). In conclusion, C. longa is a valuable source of natural antioxidants and anti-inflammatory constituents, as indicated by its high polyphenolic content and by its considerable in vitro antiradical and anti-protein denaturation potential.
Collapse
|
68
|
Bouafia A, Laouini SE, Ahmed ASA, Soldatov AV, Algarni H, Feng Chong K, Ali GAM. The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2318. [PMID: 34578634 PMCID: PMC8467496 DOI: 10.3390/nano11092318] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Nanoscience enables researchers to develop new and cost-effective nanomaterials for energy, healthcare, and medical applications. Silver nanoparticles (Ag NPs) are currently increasingly synthesized for their superior physicochemical and electronic properties. Good knowledge of these characteristics allows the development of applications in all sensitive and essential fields in the service of humans and the environment. This review aims to summarize the Ag NPs synthesis methods, properties, applications, and future challenges. Generally, Ag NPs can be synthesized using physical, chemical, and biological routes. Due to the great and increasing demand for metal and metal oxide nanoparticles, researchers have invented a new, environmentally friendly, inexpensive synthetic method that replaces other methods with many defects. Studies of Ag NPs have increased after clear and substantial support from governments to develop nanotechnology. Ag NPs are the most widely due to their various potent properties. Thus, this comprehensive review discusses the different synthesis procedures and electronic applications of Ag NPs.
Collapse
Affiliation(s)
- Abderrhmane Bouafia
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria;
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria;
| | - Abdelaal S. A. Ahmed
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova Str. 178/24, 344090 Rostov-on-Don, Russia;
| | - Hamed Algarni
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Physics, Faculty of Sciences, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kwok Feng Chong
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Gambang, Kuantan 26300, Malaysia;
| | - Gomaa A. M. Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| |
Collapse
|
69
|
Wani IA, Ahmad T, Khosla A. Recent advances in anticancer and antimicrobial activity of silver nanoparticles synthesized using phytochemicals and organic polymers. NANOTECHNOLOGY 2021; 32:462001. [PMID: 34340224 DOI: 10.1088/1361-6528/ac19d5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Development of eco-friendly synthetic methods has resulted in the production of biocompatible Ag NPs for applications in medical sector. To overcome the prevailing antibiotic resistance in bacteria, Ag NPs are being extensively researched over the past few years due to their broad spectrum and robust antimicrobial properties. Silver nanoparticles are also being studied widely in advanced anticancer therapy as an alternative anticancer agent to combat cancer in an effective manner. Keeping this backdrop in consideration, this review aims to provide an extensive coverage of the recent progresses in the green synthesis of Ag NPs specifically using plant derived reducing agents such phytochemicals and numerous other biopolymers. Current development in antimicrobial activity of Ag NPs against various pathogens has been deliberated at length. Recent advances in potent anticancer activity of the biogenic Ag NPs against various cancerous cell lines has also been discussed in detail. Mechanistic details of the synthesis of Ag NPs, their anticancer and antimicrobial action has also been highlighted.
Collapse
Affiliation(s)
- Irshad A Wani
- Postgraduate Department of Chemistry, Govt. Degree College Bhadarwah, University of Jammu, Jammu & Kashmir-182222, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Ajit Khosla
- Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
70
|
Barbinta-Patrascu ME, Gorshkova Y, Ungureanu C, Badea N, Bokuchava G, Lazea-Stoyanova A, Bacalum M, Zhigunov A, Petrovic S. Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4726. [PMID: 34443248 PMCID: PMC8401137 DOI: 10.3390/ma14164726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
The phyto-development of nanomaterials is one of the main challenges for scientists today, as it offers unusual properties and multifunctionality. The originality of our paper lies in the study of new materials based on biomimicking lipid bilayers loaded with chlorophyll, chitosan, and turmeric-generated nano-silver/silver chloride particles. These materials showed a good free radical scavenging capacity between 76.25 and 93.26% (in vitro tested through chemiluminescence method) and a good antimicrobial activity against Enterococcus faecalis bacterium (IZ > 10 mm). The anticancer activity of our developed bio-based materials was investigated against two cancer cell lines (human colorectal adenocarcinoma cells HT-29, and human liver carcinoma cells HepG2) and compared to one healthy cell line (human fibroblast BJ cell line). Cell viability was evaluated for all prepared materials after a 24 h treatment and was used to select the biohybrid with the highest therapeutic index (TI); additionally, the hemolytic activity of the samples was also evaluated. Finally, we investigated the morphological changes induced by the developed materials against the cell lines studied. Biophysical studies on these materials were done by correlating UV-Vis and FTIR absorption spectroscopy, with XRD, SANS, and SAXS methods, and with information provided by microscopic techniques (AFM, SEM/EDS). In conclusion, these "green" developed hybrid systems are an important alternative in cancer treatment, and against health problems associated with drug-resistant infections.
Collapse
Affiliation(s)
- Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Bucharest-Măgurele, Romania;
| | - Yulia Gorshkova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie, 6 Dubna, 141980 Moscow, Russia;
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya Street, 420008 Kazan, Russia
| | - Camelia Ungureanu
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania;
| | - Nicoleta Badea
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania;
| | - Gizo Bokuchava
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie, 6 Dubna, 141980 Moscow, Russia;
| | - Andrada Lazea-Stoyanova
- Low Temperature Plasma Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Ilfov, Romania;
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute of Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry AS CR, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic;
| | - Sanja Petrovic
- Department of Chemical Technology, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| |
Collapse
|
71
|
Nie X, Wu S, Liao S, Chen J, Huang F, Li W, Wang Q, Wei Q. Light-driven self-disinfecting textiles functionalized by PCN-224 and Ag nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125786. [PMID: 33873032 DOI: 10.1016/j.jhazmat.2021.125786] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Toward the goal of preventing microbial infections in hospitals or other healthcare institutions, here we developed a self-disinfecting textile with synergistic photodynamic/photothermal antibacterial property. Porphyrinic Metal-organic frameworks (PCN-224) and Ag nanoparticles (NPs) were in situ grown on knitted cotton textile (KCT) successively to achieve rapid photodynamic antibacterial and durable bacteriostatic effect. Light-driven singlet oxygen (1O2) generated from PCN-224 and heat generated from Ag could function synergistically to realize rapid bacterial inactivation. Interestingly, 1O2 could promote Ag NPs to be degraded to release more Ag+ ions, achieving durable bacteriostatic effect. Antibacterial assay demonstrated 6 and 4.49 log unit inactivation toward two typical bacterial strains (E. coli and S. aureus) under Xe arc lamp in 30 min, respectively. Even after ten washes, the textile still maintained 6 log unit bacterial inactivation. Mechanism study proved light-driven 1O2 and heat are main factors causing bacterial inactivation, they could work synergistically to enhance bacterial inactivation efficiency. Photothermal study revealed that the textile could reach to 69 ℃ under visible light and 79.1 ℃ under 780-nm light-laser, which showed much potential in photothermal material applications. Taken together, our findings demonstrated a synergistic self-disinfecting cotton textile that exhibited constructive significance for preventing microbial infections and transmissions.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shiqin Liao
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Juanfen Chen
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Fenglin Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
72
|
Mehwish HM, Liu G, Rajoka MSR, Cai H, Zhong J, Song X, Xia L, Wang M, Aadil RM, Inam-Ur-Raheem M, Xiong Y, Wu H, Amirzada MI, Zhu Q, He Z. Therapeutic potential of Moringa oleifera seed polysaccharide embedded silver nanoparticles in wound healing. Int J Biol Macromol 2021; 184:144-158. [PMID: 34089759 DOI: 10.1016/j.ijbiomac.2021.05.202] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Wound healing is a complicated process that influences patient's life quality. Plant-based polysaccharide has recently gained interest in its use in wound dressing materials because of its biological compatibility, natural abundance, and ideal physiochemical properties. The present study reveals the potential of polysaccharide isolated from Moringa oleifera seed (MOS-PS) and its nanocomposite with silver (MOS-PS-AgNPs) as alternative materials for wound dressing. First, MOS-PS was isolated and structurally characterized by TLC, HPLC, FTIR, NMR, and GPC analyses. A green and simple method was used to synthesize AgNPs using MOS-PS as a stabilizing and reducing agent. The size, morphology, and structure of the MOS-PS-AgNPs were characterized by UV-Vis spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and zeta potential analysis. The results showed that the MOS-PS-AgNPs were spherically shaped, having no cytotoxicity toward mouse fibroblasts cells and promoting their in-vitro migration. Moreover, the MOS-PS-AgNPs displayed strong anti-microbial activity against wound infectious pathogenic bacteria. Finally, the MOS-PS-AgNPs were used for dressing animal wounds and its preliminary mechanism was studied by RT-PCR and histological analysis. The results showed that the MOS-PS-AgNPs can promote wound contraction and internal tissue growth well. Overall, our results indicated that the MOS-PS-AgNPs might be an excellent candidate for use as an optimal wound dressing material.
Collapse
Affiliation(s)
- Hafiza Mahreen Mehwish
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Huiming Cai
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Jianfeng Zhong
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Xun Song
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Lixin Xia
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Mingzhong Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Inam-Ur-Raheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Yongai Xiong
- College of Pharamacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Haiqiang Wu
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Muhammad Imran Amirzada
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Qinchang Zhu
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China.
| | - Zhendan He
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China.
| |
Collapse
|
73
|
Persons AK, Ball JE, Freeman C, Macias DM, Simpson CL, Smith BK, Burch V. RF. Fatigue Testing of Wearable Sensing Technologies: Issues and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4070. [PMID: 34361264 PMCID: PMC8347841 DOI: 10.3390/ma14154070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022]
Abstract
Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from "bench to bedside", fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.
Collapse
Affiliation(s)
- Andrea Karen Persons
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Starkville, MS 39762, USA; (A.K.P.); (C.L.S.)
- Human Factors and Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA;
| | - John E. Ball
- Human Factors and Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA;
- Department of Electrical and Computer Engineering, Mississippi State University, 406 Hardy Road, Starkville, MS 39762, USA
| | - Charles Freeman
- School of Human Sciences, Mississippi State University, 255 Tracy Drive, Starkville, MS 39762, USA;
| | - David M. Macias
- Department of Kinesiology, Mississippi State University, P.O. Box 6186, Starkville, MS 39762, USA;
- Columbus Orthopaedic Clinic, 670 Leigh Drive, Columbus, MS 39705, USA
| | - Chartrisa LaShan Simpson
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Starkville, MS 39762, USA; (A.K.P.); (C.L.S.)
| | - Brian K. Smith
- Department of Industrial and Systems Engineering, Mississippi State University, 479-2 Hardy Road, Starkville, MS 39762, USA;
| | - Reuben F. Burch V.
- Human Factors and Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA;
- Department of Industrial and Systems Engineering, Mississippi State University, 479-2 Hardy Road, Starkville, MS 39762, USA;
| |
Collapse
|
74
|
Verma C, Gupta A, Singh S, Somani M, Sharma A, Singh P, Bhan S, Dey A, Rymbai R, Lyngdoh A, Nonglang FP, Anjum S, Gupta B. Bioactive Khadi Cotton Fabric by Functional Designing and Immobilization of Nanosilver Nanogels. ACS APPLIED BIO MATERIALS 2021; 4:5449-5460. [PMID: 35006726 DOI: 10.1021/acsabm.1c00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The antimicrobial finishing is the most suitable alternative for designing medical textiles for biomedical applications. The present investigation aims at the preparation of skin-contacting khadi cotton fabric that would prevent microbial infection and offer excellent skin compatibility. A simple approach has been followed for the preparation of bioactive nanogels for antimicrobial finishing of the khadi cotton fabric. Bioactive nanogels were synthesized by using aloe vera (AV) as a reducing agent for silver ions in the presence of polyvinyl alcohol (PVA). PVA stabilizes the growth of silver nanoparticles, which is influenced by the variation in the reaction time and the temperature. Nanogels were characterized by transmission electron microscopy and scanning electron microscopy analyses. The nanogels exhibited strong antimicrobial behavior against both Staphylococcus aureus and Escherichia coli, as confirmed by the colony count method. Almost 100% antibacterial behavior was observed for the nanosilver content of 10 mM. The nanogel-finished khadi fabric showed bactericidal properties against both S. aureus and E. coli. The nanogel-finished fabric exhibited high hydrophilicity allowing complete water droplet penetration within 10 s as compared to 136 s in virgin fabric. Moreover, the skin irritation study of the fabric on male Swiss albino mice did not show any appearance of dermal toxicity. These results demonstrated that the bioactive finished khadi fabric is appropriate as skin contacting material in human health care.
Collapse
Affiliation(s)
- Chetna Verma
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Anushka Gupta
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Surabhi Singh
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Manali Somani
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Ankita Sharma
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Pratibha Singh
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Surya Bhan
- Department of Biochemistry, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ankita Dey
- Department of Biochemistry, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ridashisha Rymbai
- Department of Biochemistry, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Antonia Lyngdoh
- Department of Biochemistry, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | | | - Sadiya Anjum
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
75
|
Wang M, Huang X, Zheng H, Tang Y, Zeng K, Shao L, Li L. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives. J Control Release 2021; 337:236-247. [PMID: 34273419 DOI: 10.1016/j.jconrel.2021.07.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Internal and external factors cause various types of wounds on the skin. Infections, nonhealing chronic wounds, and aesthetic and functional recovery all cause challenges for clinicians. The development of nanotechnology in biomedicine has brought many new materials, methods and therapeutic targets for the treatment of wounds, which are believed to have great prospects. In this work, the nanomaterials applied in different stages to promote wound healing and systematically expounded their mechanisms were reviewed. Then, the difficulties and defects of the present research and suggested methods for improvement were pointed out. Moreover, based on the current application status of nanomaterials in wound treatment, some new ideas for subsequent studies were proposed and the feasibility of intelligent healing by real-time monitoring, precision regulation, and signal transmission between electronic signals and human nerve signals in the future were discussed. This review will provide valuable directions and spark new thoughts for researchers.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Huanxin Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yingmei Tang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
76
|
Jadhav SA, Patil AH, Thoravat SS, Patil VS, Patil PS. A Brief Overview of Antimicrobial Nanotextiles Prepared by In Situ Synthesis and Deposition of Silver Nanoparticles on Cotton. NANOBIOTECHNOLOGY REPORTS 2021. [PMCID: PMC8431954 DOI: 10.1134/s2635167621040170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antimicrobial nanotextiles are prepared by coating or deposition of the biocides such as organic compounds or nanoparticles on the textile fibers. The deposition of silver nanoparticles (AgNPs) on textiles has received increased attention due to their well-known antimicrobial properties. Recently, the technique of in situ synthesis and deposition of AgNPs on cotton is being used frequently to prepare antimicrobial nanotextiles. The technique involves complexation of the Ag+ ions in cotton fibers followed by their reduction to generate the particles. This in situ synthesis and deposition approach provides several advantages over the post synthesis deposition or grafting process. In this brief overview, we have presented basic information about different biocides used to prepare antimicrobial nanotextiles and highlighted the importance of in situ synthesis and deposition of AgNPs on cotton to prepare the antimicrobial nanotextiles. The recent achievements in this field and future challenges that need to be addressed are presented.
Collapse
Affiliation(s)
- Sushilkumar A. Jadhav
- School of Nanoscience and Technology, Shivaji University Kolhapur, Vidyanagar, 416004 Kolhapur, Maharashtra India
| | - Aravind H. Patil
- Department of Physics, Shivaji University Kolhapur, Vidyanagar, 416004 Kolhapur, Maharashtra India
| | - Saurabh S. Thoravat
- School of Nanoscience and Technology, Shivaji University Kolhapur, Vidyanagar, 416004 Kolhapur, Maharashtra India
| | - Vinay S. Patil
- School of Nanoscience and Technology, Shivaji University Kolhapur, Vidyanagar, 416004 Kolhapur, Maharashtra India
| | - Pramod S. Patil
- School of Nanoscience and Technology, Shivaji University Kolhapur, Vidyanagar, 416004 Kolhapur, Maharashtra India
- Department of Physics, Shivaji University Kolhapur, Vidyanagar, 416004 Kolhapur, Maharashtra India
| |
Collapse
|
77
|
Wahab S, Khan T, Adil M, Khan A. Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon 2021; 7:e07448. [PMID: 34286126 PMCID: PMC8273360 DOI: 10.1016/j.heliyon.2021.e07448] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/05/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Resistance among pathogenic bacteria to the existing antibiotics is one of the most alarming problems of the modern world. Alongwith reducing the use of antibiotics, and antibiotic stewardship, an alternative to antibiotics is much needed in the current scenario to combact infectious diseases. One alternative is to produce nanomaterials, especially, silver nanoparticles (AgNPs) against antibiotic-resistant bacteria. AgNPs are the most vital and fascinating nanoparticles because of their unique structural and functional properties and application against pathogenic bacteria. However, the synthesis of AgNPs remains a problem because of the chemicals and energy requirements and the byproducts of the reactions. Concerns have been raised about using chemically and physically synthesized nanoparticles because of their potential risks to the human body, animals, and environment. Green synthesis of these nanoparticles is a better alternative to physical and chemical approaches. Plant-based synthesis in turn is a method which can provide AgNPs that are cost-effective and eco-friendly as well as biocompatible. The specific features of size, morphology and shape of plant-based AgNPs give them the potency to fight multi-drug resistant bacteria. A detailed look into mechanistic aspects of the action of AgNPs against resistant bacteria with a focus on characteristic properties of AgNPs is required. This review discusses in detail these aspects and the potential of plant-based AgNPs as a solution to antibiotic resistance.
Collapse
Affiliation(s)
- Shahid Wahab
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Muhammad Adil
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Centre for Nanoscience and Technology (NCNST), China
| | - Ajmal Khan
- Department of Biology, University of North Carolina at Greensboro, NC, United States
| |
Collapse
|
78
|
Al-Saeedi SI, Al-Kadhi NS, Al-Senani GM, Almaghrabi OA, Nafady A. Antibacterial potency, cell viability and morphological implications of copper oxide nanoparticles encapsulated into cellulose acetate nanofibrous scaffolds. Int J Biol Macromol 2021; 182:464-471. [PMID: 33838197 DOI: 10.1016/j.ijbiomac.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023]
Abstract
It is generally believed that the most challenging impediment for the utilization of cellulose acetate (CA) in the medical field is its hydrophobicity and disability to poison the harmful microbes. Therefore, in this contribution, we aimed to prepare an environmentally scaffold-based CA loaded with copper nanoparticles (CuONPs), which are expected to not only improve the hydrophilicity of the prepared nanofibers, but also have an effective ability to kill such harmful and infectious microbes that are abundant in wounds. The obtained results attested that the generated nanofibers became thicker with increasing the content of CuONPs in CA nanofibers. The roughness average increased from 143.2 to 157.1 nm, whereas the maximum height of the roughness (Rt) increased from 400.8 to 479.9 nm as going from the lowest to the highest content of CuONPs. Additionally, the contact angle of the prepared nanofibers decreased from 105.3° (CA alone) to 85.4° for CuONPs@CA. Significantly, biological studies revealed that cell viability and anti-bacterial potency were improved upon incorporating CuONPs into CA solution. Correspondingly, their inhibition zones reached 18 ± 3 mm, and 16 ± 2 mm for nanofibrous scaffolds having 12.0CuO@CA, besides raising the cell viability from 91.3 ± 4% to 96.4 ± 4% for 0.0CuO@CA, and 12.0CuO@CA, respectively, thereby implying that the fabricated CuONPs@CA nanocomposite has biocompatibility towards fibroblast cells. Thus, introducing biological activity into CA nanofibers via loading with CuONPs makes it suitable for numerous biomedical applications, particularly as an environmentally benign wound dressing fibers.
Collapse
Affiliation(s)
- Sameerah I Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Nada S Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omar A Almaghrabi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
79
|
Verma A, Bharadvaja N. Plant-Mediated Synthesis and Characterization of Silver and Copper Oxide Nanoparticles: Antibacterial and Heavy Metal Removal Activity. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02091-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
80
|
Sampath G, Govarthanan M, Rameshkumar N, Vo DVN, Krishnan M, Sivasankar P, Kayalvizhi N. Eco-friendly biosynthesis metallic silver nanoparticles using Aegle marmelos (Indian bael) and its clinical and environmental applications. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01883-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
81
|
Veeraraghavan VP, Periadurai ND, Karunakaran T, Hussain S, Surapaneni KM, Jiao X. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi J Biol Sci 2021; 28:3633-3640. [PMID: 34220213 PMCID: PMC8241602 DOI: 10.1016/j.sjbs.2021.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 11/28/2022] Open
Abstract
Scutellaria barbata is a perennial herb which was vastly prescribed in Chinese medicine to treat inflammations, infections and it is also used a detoxifying agent. We synthesized silver nanoparticles with Scutellaria barbata extract and characterized the nanoparticles with UV–Vis spectroscopic analysis, TEM, AFM, FTIR and XRD. The biofilm inhibiting property of synthesized silver nanoparticles were examined with XTT reduction assay and the antimicrobial property was examined with well diffusion method. The silver nanoparticles were also coated with cotton fabrics and their efficacy against antimicrobials was analyzed to prove its application. The cytotoxic property of synthesized silver nanoparticles was examined with L929 fibroblast cells using MTT assay. Finally we analyzed the wound healing property of synthesized silver nanoparticles with wound scratch assay. The result of our UV–Vis spectroscopic analysis confirms Scutellaria barbata aqueous extract reduced silver ions and synthesized silver nanoparticles. The characterization studies TEM, AFM, FTIR and XRD confirms the synthesized silver nanoparticles are in ideal shape and size to be utilized as a drug. The XTT reduction assay proves silver nanoparticles effectively inhibits the biofilm formation in both resistant and sensitive strains. Antimicrobial sensitivity tests confirms synthesized silver nanoparticles and cotton coated synthesized silver nanoparticles both are effective against gram positive, gram negative and fungal species. Further the results of MTT assay confirms the synthesized silver nanoparticles are non toxic and finally the wound healing potency of the nanoparticles was confirmed with wound scratch assay. Over all our results authentically confirms the silver nanoparticles synthesized with Scutellaria barbata aqueous extract is potent wound healing drug.
Collapse
Affiliation(s)
- Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Nanthini Devi Periadurai
- Departments of Microbiology, Molecular Virology and Hospital Infection Control, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Thiruventhan Karunakaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.,School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Sardar Hussain
- Department of Biotechnology, Government Science College, Chitradurga 577501, Karnataka, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Clinical Skills & Simulation and Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India
| | - Xinsheng Jiao
- Department of Cosmetic, Plastic and Burn Surgery, No. 50, Normal Road, The Fourth People's Hospital of Jinan, Jinan 250031, China
| |
Collapse
|
82
|
Vigneswari S, Amelia TSM, Hazwan MH, Mouriya GK, Bhubalan K, Amirul AAA, Ramakrishna S. Transformation of Biowaste for Medical Applications: Incorporation of Biologically Derived Silver Nanoparticles as Antimicrobial Coating. Antibiotics (Basel) 2021; 10:229. [PMID: 33668352 PMCID: PMC7996339 DOI: 10.3390/antibiotics10030229] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Nanobiotechnology has undoubtedly influenced major breakthroughs in medical sciences. Application of nanosized materials has made it possible for researchers to investigate a broad spectrum of treatments for diseases with minimally invasive procedures. Silver nanoparticles (AgNPs) have been a subject of investigation for numerous applications in agriculture, water treatment, biosensors, textiles, and the food industry as well as in the medical field, mainly due to their antimicrobial properties and nanoparticle nature. In general, AgNPs are known for their superior physical, chemical, and biological properties. The properties of AgNPs differ based on their methods of synthesis and to date, the biological method has been preferred because it is rapid, nontoxic, and can produce well-defined size and morphology under optimized conditions. Nevertheless, the common issue concerning biological or biobased production is its sustainability. Researchers have employed various strategies in addressing this shortcoming, such as recently testing agricultural biowastes such as fruit peels for the synthesis of AgNPs. The use of biowastes is definitely cost-effective and eco-friendly; moreover, it has been reported that the reduction process is simple and rapid with reasonably high yield. This review aims to address the developments in using fruit- and vegetable-based biowastes for biologically producing AgNPs to be applied as antimicrobial coatings in biomedical applications.
Collapse
Affiliation(s)
- Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Mohamad Hazari Hazwan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Govindan Kothandaraman Mouriya
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Penang 11700, Malaysia
| | - Al-Ashraf Abdullah Amirul
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Penang 11700, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang 11900, Malaysia
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
83
|
An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
84
|
Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv 2021; 11:2804-2837. [PMID: 35424248 PMCID: PMC8694026 DOI: 10.1039/d0ra09941d] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Synthesis of metal nanoparticles using plant extracts is one of the most simple, convenient, economical, and environmentally friendly methods that mitigate the involvement of toxic chemicals. Hence, in recent years, several eco-friendly processes for the rapid synthesis of silver nanoparticles have been reported using aqueous extracts of plant parts such as the leaf, bark, roots, etc. This review summarizes and elaborates the new findings in this research domain of the green synthesis of silver nanoparticles (AgNPs) using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015. While highlighting the recently used different plants for the synthesis of highly efficient antimicrobial green AgNPs, we aim to provide a systematic in-depth discussion on the possible influence of the phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs. Exhaustive details of the plausible mechanism of the interaction of AgNPs with the cell wall of microbes, leading to cell death, and high antimicrobial activities have also been elaborated. The shape and size-dependent antimicrobial activities of the biogenic AgNPs and the enhanced antimicrobial activities by synergetic interaction of AgNPs with known commercial antibiotic drugs have also been comprehensively detailed.
Collapse
Affiliation(s)
- Chhangte Vanlalveni
- Department of Botany, Mizoram University Tanhril Aizawl Mizoram 796001 India
| | - Samuel Lallianrawna
- Department of Chemistry, Govt. Zirtiri Residential Science College Aizawl 796001 Mizoram India
| | - Ayushi Biswas
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Bishwajit Changmai
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Samuel Lalthazuala Rokhum
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
85
|
Boomi P, Ganesan R, Prabu Poorani G, Jegatheeswaran S, Balakumar C, Gurumallesh Prabu H, Anand K, Marimuthu Prabhu N, Jeyakanthan J, Saravanan M. Phyto-Engineered Gold Nanoparticles (AuNPs) with Potential Antibacterial, Antioxidant, and Wound Healing Activities Under in vitro and in vivo Conditions. Int J Nanomedicine 2020; 15:7553-7568. [PMID: 33116487 PMCID: PMC7548233 DOI: 10.2147/ijn.s257499] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background A diabetic ulcer is one of the major causes of illness among diabetic patients that involves severe and intractable complications associated with diabetic wounds. Hence, a suitable wound-healing agent is urgently needed at this juncture. Greener nanotechnology is a very promising and emerging technology currently employed for the development of alternative medicines. Plant-mediated synthesis of metal nanoparticles has been intensively investigated and regarded as an alternative strategy for overcoming various diseases and their secondary complications like microbial infections. Hence, we are interested in developing phyto-engineered gold nanoparticles as useful therapeutic agents for the treatment of infectious diseases and wounds effectively. Methods and Results We have synthesized phyto-engineered gold nanoparticles from the aqueous extract of Acalypha indica and characterized using advanced bio-analytical techniques. The surface plasmon resonance feature and crystalline behavior of gold nanoparticles were revealed by ultraviolet-visible spectroscopy and X-ray diffraction, respectively. High-performance liquid chromatography analysis of the extract demonstrated the presence of different constituents, while major functional groups were interpreted by the Fourier-transform infrared spectroscopy as the various stretching vibrations appeared for important O-H (3443 cm−1), C=O (1644 cm−1) and C-O (1395 cm−1) groups. Scanning electron microscopy, high-resolution transmission electron microscopy results revealed a distribution of spherical and rod-like nanostructures with 20 nm of size. The gold nanoparticle-coated cotton fabric was evaluated for the antibacterial activity against Staphylococcus epidermidis and Escherichia coli bacterial strains which revealed remarkable inhibition at the zone of inhibition of 31 mm diameter against S. epidermidis. Further, antioxidant activity was tested for their free radical scavenging property, and the maximum antioxidant activity of the extract containing gold nanoparticles was found to be 80% at 100 µg/mL. The potent free radical scavenging property of the nanoparticles is observed at IC50 value 16.25 µg/mL. Moreover, in vivo wound-healing activity was carried out using BALB/c mice model with infected diabetic wounds and observed the stained microscopic images at different time intervals (day 2, day 7 and day 15). It was noted that in 15 days, the wound area is completely re-epithelialized due to the presence of different morphologies such as spherical, needle and triangle nanoparticles. The re-epithelialization layer is fully covered by nanoparticles on the wound area and also collagen filled in the scar tissue when compared with the control group. Conclusion The pharmacological evaluation results of the study indicated an encouraging antibacterial and antioxidant activity of the greener synthesized gold nanoparticles tethered with aqueous extract of Acalypha indica. Moreover, we demonstrated enhanced in vivo wound-healing efficiency of the synthesized gold nanoparticles through the animal model. Thus, the outcome of this work revealed that the phyto-engineered gold nanoparticles could be useful for biomedical applications, especially in the development of promising antibacterial and wound-healing agents.
Collapse
Affiliation(s)
- Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Ramalingam Ganesan
- Department of Chemistry, Arumugam Seethaiyammal Arts and Science College, Tiruppattur, Tamil Nadu, India
| | | | - Sonamuthu Jegatheeswaran
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | | | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Science, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
86
|
Ruíz-Baltazar ÁDJ. Kinetic adsorption models of silver nanoparticles biosynthesized by Cnicus Benedictus: Study of the photocatalytic degradation of methylene blue and antibacterial activity. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
87
|
Abstract
In the recent past, epidemics and pandemics caused by viral infections have had extraordinary effects on human life, leading to severe social and financial challenges. One such event related to the outbreak of the SARS-CoV-2 virus has already taken more than 917,417 lives globally (as of September 13, 2020). The nosocomial route of viral transmission has also been playing a significant role in the community spreading of viruses. Unfortunately, none of the existing strategies are apt for preventing the spread of viral infections. In order to contain the viral transmission, the principal target would be to stop the virus from reaching the otherwise healthy individuals. Nanomaterials, due to its unique physical and chemical properties, have been used to develop novel antiviral agents. In this review, we have discussed several nanotechnological strategies that can be used as an antiviral coating to inhibit viral transmission by preventing viral entry into the host cells.
Collapse
|
88
|
Montaser A, Rehan M, El-Senousy W, Zaghloul S. Designing strategy for coating cotton gauze fabrics and its application in wound healing. Carbohydr Polym 2020; 244:116479. [DOI: 10.1016/j.carbpol.2020.116479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
|
89
|
Gonçalves J, Torres N, Silva S, Gonçalves F, Noro J, Cavaco-Paulo A, Ribeiro A, Silva C. Zein impart hydrophobic and antimicrobial properties to cotton textiles. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
90
|
Periyasamy AP, Venkataraman M, Kremenakova D, Militky J, Zhou Y. Progress in Sol-Gel Technology for the Coatings of Fabrics. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1838. [PMID: 32295113 PMCID: PMC7215301 DOI: 10.3390/ma13081838] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022]
Abstract
The commercial availability of inorganic/organic precursors for sol-gel formulations is very high and increases day by day. In textile applications, the precursor-synthesized sol-gels along with functional chemicals can be deposited onto textile fabrics in one step by rolling, padding, dip-coating, spraying or spin coating. By using this technology, it is possible to provide fabrics with functional/multi-functional characteristics including flame retardant, anti-mosquito, water- repellent, oil-repellent, anti-bacterial, anti-wrinkle, ultraviolet (UV) protection and self-cleaning properties. These surface properties are discussed, describing the history, basic chemistry, factors affecting the sol-gel synthesis, progress in sol-gel technology along with various parameters controlling sol-gel technology. Additionally, this review deals with the recent progress of sol-gel technology in textiles in addressing fabric finishing, water repellent textiles, oil/water separation, flame retardant, UV protection and self-cleaning, self-sterilizing, wrinkle resistance, heat storage, photochromic and thermochromic color changes and the improvement of the durability and wear resistance properties.
Collapse
Affiliation(s)
- Aravin Prince Periyasamy
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 46117 Liberec, Czech Republic; (M.V.); (D.K.); (J.M.)
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 46117 Liberec, Czech Republic; (M.V.); (D.K.); (J.M.)
| | - Dana Kremenakova
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 46117 Liberec, Czech Republic; (M.V.); (D.K.); (J.M.)
| | - Jiri Militky
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 46117 Liberec, Czech Republic; (M.V.); (D.K.); (J.M.)
| | - Yan Zhou
- College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China;
| |
Collapse
|