51
|
Stozhko NY, Bukharinova MA, Khamzina EI, Tarasov AV, Vidrevich MB, Brainina KZ. The Effect of the Antioxidant Activity of Plant Extracts on the Properties of Gold Nanoparticles. NANOMATERIALS 2019; 9:nano9121655. [PMID: 31766367 PMCID: PMC6955986 DOI: 10.3390/nano9121655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
Synthesis of gold nanoparticles (phyto-AuNPs) with the use of leaf extracts (phytosynthesis) is based on the concept of Green Chemistry. The present study is conducted to discuss how antioxidant activity (AOA) of extracts from plant leaves impacts on the kinetics of phytosynthesis, the size of the formed nanoparticles, and the stability of their nanosuspensions. Results show that the formation rate of phyto-AuNPs suspensions accelerate due to the increase in the AOA of the extracts. Accompanying the use of transmission electron microscopy (TEM), UV-Vis-spectrophotometry and dynamic light scattering (DLS), it also has been found that higher AOA of the extracts leads to a decrease in the size of phyto-AuNPs, an increase in the fraction of small (d ≤ 5 nm), and a decrease in the fraction of large (d ≥ 31–50 nm) phyto-AuNPs, as well as an increase in the zeta potential in absolute value. Phyto-AuNPs suspensions synthesized with the use of extracts are more resistant to destabilizing electrolytes and ultrasound, as compared to suspensions synthesized using sodium citrate. Thus, the AOA of the extract is an important parameter for controlling phytosynthesis and predicting the properties of phyto-AuNPs. The proposed approach can be applied to the targeted selection of plant extract that will be used for synthesizing nanoparticles with desired properties.
Collapse
Affiliation(s)
- Natalia Yu. Stozhko
- Department of Physics and Chemistry, Research Center of Sensory Technologies, Ural State University of Economics, 8Marta St. 62, 620144 Yekaterinburg, Russia; (M.A.B.); (E.I.K.); (A.V.T.); (M.B.V.); (K.Z.B.)
- Correspondence:
| | - Maria A. Bukharinova
- Department of Physics and Chemistry, Research Center of Sensory Technologies, Ural State University of Economics, 8Marta St. 62, 620144 Yekaterinburg, Russia; (M.A.B.); (E.I.K.); (A.V.T.); (M.B.V.); (K.Z.B.)
| | - Ekaterina I. Khamzina
- Department of Physics and Chemistry, Research Center of Sensory Technologies, Ural State University of Economics, 8Marta St. 62, 620144 Yekaterinburg, Russia; (M.A.B.); (E.I.K.); (A.V.T.); (M.B.V.); (K.Z.B.)
| | - Aleksey V. Tarasov
- Department of Physics and Chemistry, Research Center of Sensory Technologies, Ural State University of Economics, 8Marta St. 62, 620144 Yekaterinburg, Russia; (M.A.B.); (E.I.K.); (A.V.T.); (M.B.V.); (K.Z.B.)
| | - Marina B. Vidrevich
- Department of Physics and Chemistry, Research Center of Sensory Technologies, Ural State University of Economics, 8Marta St. 62, 620144 Yekaterinburg, Russia; (M.A.B.); (E.I.K.); (A.V.T.); (M.B.V.); (K.Z.B.)
| | - Khiena Z. Brainina
- Department of Physics and Chemistry, Research Center of Sensory Technologies, Ural State University of Economics, 8Marta St. 62, 620144 Yekaterinburg, Russia; (M.A.B.); (E.I.K.); (A.V.T.); (M.B.V.); (K.Z.B.)
- Department of Analytical Chemistry, Ural Federal University, Mira St. 19, 620002 Yekaterinburg, Russia
| |
Collapse
|
52
|
Phyto-Nanocatalysts: Green Synthesis, Characterization, and Applications. Molecules 2019; 24:molecules24193418. [PMID: 31547052 PMCID: PMC6804184 DOI: 10.3390/molecules24193418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023] Open
Abstract
Catalysis represents the cornerstone of chemistry, since catalytic processes are ubiquitous in almost all chemical processes developed for obtaining consumer goods. Nanocatalysis represents nowadays an innovative approach to obtain better properties for the catalysts: stable activity, good selectivity, easy to recover, and the possibility to be reused. Over the last few years, for the obtaining of new catalysts, classical methods—based on potential hazardous reagents—have been replaced with new methods emerged by replacing those reagents with plant extracts obtained in different conditions. Due to being diversified in morphology and chemical composition, these materials have different properties and applications, representing a promising area of research. In this context, the present review focuses on the metallic nanocatalysts’ importance, different methods of synthesis with emphasis to the natural compounds used as support, characterization techniques, parameters involved in tailoring the composition, size and shape of nanoparticles and applications in catalysis. This review presents some examples of green nanocatalysts, grouped considering their nature (mono- and bi-metallic nanoparticles, metallic oxides, sulfides, chlorides, and other complex catalysts).
Collapse
|
53
|
Li H, Wang W, Ang B, Xiong J, Zhang F, Chen W, Du J. Green biosynthesis of gold nanoparticles by Lilium casa blanca petals and evaluation of catalytic activity. MICRO & NANO LETTERS 2019; 14:1069-1074. [DOI: 10.1049/mnl.2018.5653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/17/2019] [Indexed: 02/05/2023]
Abstract
A simple, fast, and eco‐friendly method for the biosynthesis of gold nanoparticles (AuNPs) using Lilium casa blanca petals as a reducing and protecting agent was reported. The heating time had been shortened to 30 min for biosynthesis of AuNPs, which only took 15 mg Lilium casa blanca petals powder. The biosynthetic AuNPs, which had a uniform particle size distribution, were in spherical with the average size of 5.933 ± 1.158 nm. In addition, the conversion rate of Au3+ to Au0 was quite high. Through the discussion on the nutrients' concentrations before and after the synthesis, it was found that sugars, alkaloids, flavonoids, and proteins were the reducing and stabilising agents. The biosynthetic AuNPs had good catalytic activity, taking the hydroboration of nitrophenol and methylene blue as examples. Catalytic reduction followed pseudo‐first‐order kinetics. Moreover, the apparent rate constant was a linear correlation with the concentrations of AuNPs. The normalised rate constant of the proposed AuNPs was higher than other reported AuNPs, which indicated the excellent catalytic activity. All the results foreshowed the wide range of applications of the biosynthetic AuNPs by Lilium casa blanca petals.
Collapse
Affiliation(s)
- Haimin Li
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 330045 People's Republic of China
| | - Wenjun Wang
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 330045 People's Republic of China
- Key Lab for Agro‐products Processing & Quality Control of Nanchang Nanchang 330045 People's Republic of China
| | - Beijun Ang
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 330045 People's Republic of China
| | - Jianhua Xiong
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 330045 People's Republic of China
- Key Lab for Agro‐products Processing & Quality Control of Nanchang Nanchang 330045 People's Republic of China
| | - Fengying Zhang
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 330045 People's Republic of China
- Key Lab for Agro‐products Processing & Quality Control of Nanchang Nanchang 330045 People's Republic of China
| | - Weiping Chen
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 330045 People's Republic of China
- Key Lab for Agro‐products Processing & Quality Control of Nanchang Nanchang 330045 People's Republic of China
| | - Juan Du
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang 330045 People's Republic of China
- Key Lab for Agro‐products Processing & Quality Control of Nanchang Nanchang 330045 People's Republic of China
| |
Collapse
|
54
|
Redox Status, Hematological Parameters as Well Liver and Kidney Function Indicators in Blood of Chickens Receiving Gold Nanoparticles. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2018-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
The aim of the study was to assess the biocompatibility of gold nanoparticles (Au-NPs) for chickens by investigating their effect on their growth, hematological parameters, markers of oxidative stress, and indicators of liver and kidney function. The experiment was carried out on 54 chickens assigned to 3 experimental groups of 18 birds each. The control group did not receive gold nanoparticles. The birds in group Au-NPs2.0 received gold nanoparticles in a tube into a crop at a rate of 2.0 mg/kg body weight/day, while the birds in AuNPs5.0 group at a rate of 5.0 mg/kg body weight/day. The blood for analysis was collected after 7, 14, 21 and 28 days of Au-NPs application. The obtained results indicate that short-term (7–14 day) exposure to lower dose (2.0 mg/kg b.w./day) of AuNPs had no toxic impact on chickens, but the extension of the duration time caused toxicological effects evidenced by growth inhibition as well as induction of oxidative stress and liver injury. The higher dose of AuNPs (5.0 mg/kg b.w./day) exerted toxic effects already after 7–14 days of supplementation.
Collapse
|
55
|
Siddiqi KS, Rashid M, Tajuddin, Husen A, Rehman S. Biofabrication of Silver Nanoparticles from Diospyros montana, Their Characterization and Activity Against Some Clinical Isolates. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00629-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
56
|
Chumakov DS, Sokolov AO, Bogatyrev VA, Sokolov OI, Selivanov NY, Dykman LA. Green Synthesis of Gold Nanoparticles using Arabidopsis thaliana and Dunaliella salina Cell Cultures. ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s1995078018050038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
57
|
Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
58
|
Behravan M, Hossein Panahi A, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 2019; 124:148-154. [DOI: 10.1016/j.ijbiomac.2018.11.101] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/21/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
|
59
|
Jalil SU, Zahera M, Khan MS, Ansari MI. Biochemical synthesis of gold nanoparticles from leaf protein of Nicotiana tabacum L. cv. xanthi and their physiological, developmental, and ROS scavenging responses on tobacco plant under stress conditions. IET Nanobiotechnol 2019; 13:23-29. [PMID: 30964033 PMCID: PMC8676148 DOI: 10.1049/iet-nbt.2018.5148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/01/2018] [Accepted: 07/16/2018] [Indexed: 08/06/2023] Open
Abstract
The stress conditions imposed by the impact of metal and non-metal oxide nanoparticles over plant systems enhances the synthesis of reactive oxygen species (ROS), resulting in oxidative damage at cellular level. The objective of this study was to synthesise the gold nanoparticles (GNps) from the leaves protein of Nicotiana tabacum L. cv. xanthi, its characterisation, and response on plant physiology and ROS scavenging activity on plants after exposure to different stresses. The authors have treated N. tabacum L. cv. xanthi plants with 100, 200, 300, 400, and 500 ppm biochemically synthesised GNps and examined physiological as well as biochemical changes. Results showed that biochemically synthesised GNps exposure significantly increased the seed germination (P < 0.001), root (P < 0.001), shoot growth (P < 0.001), and antioxidant ability (P < 0.05) of plants depending on bioengineered GNPs concentrations. Low concentrations (200-300 ppm) of GNps boosted growth by ∼50% and significantly increase in photosynthetic parameters such as total chlorophyll content (P < 0.05), membrane ion leakage (P < 0.05) as well as malondialdehyde (P < 0.05) content with respect to untreated plants under stress conditions. The high concentration (400-500 ppm) of GNps affected these parameters in a negative manner. The total antioxidant activity was also elevated in the exposed plants in a dose-dependent manner.
Collapse
Affiliation(s)
- Syed Uzma Jalil
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Manaal Zahera
- Nanomedicine and Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Nanomedicine and Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Israil Ansari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India.
| |
Collapse
|
60
|
Strungaru SA, Plavan G, Ciobica A, Nicoara M, Robea MA, Solcan C, Todirascu-Ciornea E, Petrovici A. Acute exposure to gold induces fast changes in social behavior and oxidative stress of zebrafish (Danio rerio). J Trace Elem Med Biol 2018; 50:249-256. [PMID: 30262287 DOI: 10.1016/j.jtemb.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
Gold is a noble metal having a long history of human usage and a variety of applications. The present paper was designed in order to see the changes on social and swimming behavior of zebrafish caused by acute gold exposure to high concentrations dissolved in aquatic medium from a standard solution with the highest purity. Some main oxidative stress markers were determined such as: superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and glutathione peroxidase (GPx). We also focused our attention on the bioaccumulation capacity of gold in exposed zebrafish and its competition with essential elements for the body: sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn) and copper (Cu). They were studied the effects of the follow gold concentrations dissolved in experimental aquariums: 1 mg L-1 (Au 1 mg/L), 2 mg L-1 (Au 2 mg/L), 4 mg L-1 (Au 4 mg/L) and 8 mg L-1 (Au 8 mg/L). Our data showed that each group treated with gold had a higher concentration compared with the others suggesting that it can be absorbed into the zebrafish body from environment and may be accumulated. The results obtained in the oxidative stress parameters demonstrated that it can produce changes as a response to its toxicological effects.
Collapse
Affiliation(s)
- Stefan-Adrian Strungaru
- "Alexandru Ioan Cuza" University of Iasi, Department of Research, Faculty of Biology, Bd. Carol I, 20A, 700505, Iasi, Romania.
| | - Gabriel Plavan
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, Bd. Carol I, 20A, 700505, Iasi, Romania
| | - Alin Ciobica
- "Alexandru Ioan Cuza" University of Iasi, Department of Research, Faculty of Biology, Bd. Carol I, 20A, 700505, Iasi, Romania
| | - Mircea Nicoara
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, Bd. Carol I, 20A, 700505, Iasi, Romania.
| | - Madalina Andreea Robea
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, Bd. Carol I, 20A, 700505, Iasi, Romania
| | - Carmen Solcan
- University of Agricultural Science and Veterinary Medicine "Ion Ionescu de la Brad", Department of Molecular Biology, Histology and Embriology, Faculty of Veterinary Medicine, 8, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Elena Todirascu-Ciornea
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, Bd. Carol I, 20A, 700505, Iasi, Romania
| | - Adriana Petrovici
- University of Agricultural Science and Veterinary Medicine "Ion Ionescu de la Brad", Department of Molecular Biology, Histology and Embriology, Faculty of Veterinary Medicine, 8, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| |
Collapse
|
61
|
Salabat A, Mirhoseini F. A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
62
|
Ghazi Y, Haddadi F, Kamaladini H. Gold nanoparticle biosensors, a novel application in gene transformation and expression. Mol Cell Probes 2018; 41:1-7. [PMID: 30244767 DOI: 10.1016/j.mcp.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
The conventional techniques of PCR, Southern blot, northern blot, in situ hybridization, and RNase protection assay have long been used to investigate transformation and expression of genes, but most of them are time-consuming and have relatively low sensitivity. In recent years, applying biosensors for molecular identification of biomolecules has been expanding significantly. Hence in this study, Zabol melon was used as a model plant to introduce new DNA and RNA-based biosensors for confirming gene transformation and expression. First, the melon seeds were grown in vivo and Agrobacterium tumefaciens LBA4404 was used to introduce GUS reporter gene to the plant. In order to analyze GUS gene transformation and expression, probes were designed based on DNA, RNA, and cDNA of GUS gene sequence. Then, the analysis was performed using probes attached to gold nanoparticles to observe color change of the solution in presence of the target biomolecules. Hybridization of the probes with target molecules was evaluated at a wavelength of 400-700 nm and maximum change was observed in the wavelength range of 550-650 nm. In addition, lower detection limit of the assay was 0.25 ng/μL and linear regression showed the relationship between different concentrations of the genomic DNA and absorbance. Consequently, results showed that application of detectors attached to gold nanoparticles for investigation on gene transformation and expression is more rapid, specific and economic compared to the biochemical and molecular techniques. These tests can be carried out with initial optimization at research centers using the least facilities; hence there will be no need for special equipment.
Collapse
Affiliation(s)
- Yaser Ghazi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Fatemeh Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.
| | - Hossein Kamaladini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
63
|
Siddiqi KS, Rashid M, Rahman A, Tajuddin, Husen A, Rehman S. Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen ( Usnea longissima) and their antimicrobial activity. Biomater Res 2018; 22:23. [PMID: 30258651 PMCID: PMC6151007 DOI: 10.1186/s40824-018-0135-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet–visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40–11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.
Collapse
Affiliation(s)
| | - M Rashid
- 2Department of Saidla, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - A Rahman
- 2Department of Saidla, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Tajuddin
- 2Department of Saidla, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Azamal Husen
- 3Department of Biology, College of Natural and Computational Sciences, University of Gondar, P.O. Box #196, Gondar, Ethiopia
| | - Sumbul Rehman
- 4Department of Ilmul Advia (Unani Pharmacy), Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
64
|
Siddiqi KS, Husen A, Sohrab SS, Yassin MO. Recent Status of Nanomaterial Fabrication and Their Potential Applications in Neurological Disease Management. NANOSCALE RESEARCH LETTERS 2018; 13:231. [PMID: 30097809 PMCID: PMC6086777 DOI: 10.1186/s11671-018-2638-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/24/2018] [Indexed: 05/05/2023]
Abstract
Nanomaterials (NMs) are receiving remarkable attention due to their unique properties and structure. They vary from atoms and molecules along with those of bulk materials. They can be engineered to act as drug delivery vehicles to cross blood-brain barriers (BBBs) and utilized with better efficacy and safety to deliver specific molecules into targeted cells as compared to conventional system for neurological disorders. Depending on their properties, various metal chelators, gold nanoparticles (NPs), micelles, quantum dots, polymeric NPs, liposomes, solid lipid NPs, microparticles, carbon nanotubes, and fullerenes have been utilized for various purposes including the improvement of drug delivery system, treatment response assessment, diagnosis at early stage, and management of neurological disorder by using neuro-engineering. BBB regulates micro- and macromolecule penetration/movement, thus protecting it from many kinds of illness. This phenomenon also prevents drug delivery for the neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, and primary brain tumors. For some neurological disorders (AD and PD), the environmental pollution was considered as a major cause, as observed that metal and/or metal oxide from different sources are inhaled and get deposited in the lungs/brain. Old age, obesity, diabetes, and cardiovascular disease are other factors for rapid deterioration of human health and onset of AD. In addition, gene mutations have also been examined to cause the early onset familial forms of AD. AD leads to cognitive impairment and plaque deposits in the brain leading to neuronal cell death. Based on these facts and considerations, this review elucidates the importance of frequently used metal chelators, NMs and/or NPs. The present review also discusses the current status and future challenges in terms of their application in drug delivery for neurological disease management.
Collapse
Affiliation(s)
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, PO Box # 196, Gondar, Ethiopia
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, PO Box # 80216, Jeddah, 21589 Saudi Arabia
| | - Mensur Osman Yassin
- Department of Surgery, College of Medicine and Health Sciences, University of Gondar, PO Box # 196, Gondar, Ethiopia
| |
Collapse
|
65
|
Pradeev raj K, Sadaiyandi K, Kennedy A, Sagadevan S, Chowdhury ZZ, Johan MRB, Aziz FA, Rafique RF, Thamiz Selvi R, Rathina bala R. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. NANOSCALE RESEARCH LETTERS 2018; 13:229. [PMID: 30076473 PMCID: PMC6081874 DOI: 10.1186/s11671-018-2643-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 05/18/2023]
Abstract
In this research, a facile co-precipitation method was used to synthesize pure and Mg-doped ZnO nanoparticles (NPs). The structure, morphology, chemical composition, and optical and antibacterial activity of the synthesized nanoparticles (NPs) were studied with respect to pure and Mg-doped ZnO concentrations (0-7.5 molar (M) %). X-ray diffraction pattern confirmed the presence of crystalline, hexagonal wurtzite phase of ZnO. Scanning electron microscope (SEM) images revealed that pure and Mg-doped ZnO NPs were in the nanoscale regime with hexagonal crystalline morphology around 30-110 nm. Optical characterization of the sample revealed that the band gap energy (Eg) decreased from 3.36 to 3.04 eV with an increase in Mg2+ doping concentration. Optical absorption spectrum of ZnO redshifted as the Mg concentration varied from 2.5 to 7.5 M. Photoluminescence (PL) spectra showed UV emission peak around 400 nm. Enhanced visible emission between 430 and 600 nm with Mg2+ doping indicated the defect density in ZnO by occupying Zn2+ vacancies with Mg2+ ions. Photocatalytic studies revealed that 7.5% Mg-doped ZnO NPs exhibited maximum degradation (78%) for Rhodamine B (RhB) dye under UV-Vis irradiation. Antibacterial studies were conducted using Gram-positive and Gram-negative bacteria. The results demonstrated that doping with Mg ions inside the ZnO matrix had enhanced the antibacterial activity against all types of bacteria and its performance was improved with successive increment in Mg ion concentration inside ZnO NPs.
Collapse
Affiliation(s)
- K. Pradeev raj
- Department of Physics, CSI College of Engineering, Ooty, 643215 India
- Research and Development Centre, Bharathiar University, Coimbatore, 641046 India
| | - K. Sadaiyandi
- Department of Physics, Government Arts College for Women, Nilakkottai, Dindigul 624202 India
| | - A. Kennedy
- Department of Physics, CSI College of Engineering, Ooty, 643215 India
| | - Suresh Sagadevan
- Centre for Nanotechnology, AMET University, Kanathur, Chennai, Tamil Nadu 602 105 India
- Department of Physics, Center for Defence Foundation Studies, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Zaira Zaman Chowdhury
- Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603 Malaysia
| | - Mohd. Rafie Bin Johan
- Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603 Malaysia
| | - Fauziah Abdul Aziz
- Department of Physics, Center for Defence Foundation Studies, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Rahman F. Rafique
- Rutgers Cooperative Extension Water Resources Program, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - R. Thamiz Selvi
- Department of Chemistry, LRG Government Arts College for Women, Tiruppur, 641 604 India
| | - R. Rathina bala
- Research and Development Centre, Bharathiar University, Coimbatore, 641046 India
| |
Collapse
|
66
|
Siddiqi KS, ur Rahman A, Husen A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. NANOSCALE RESEARCH LETTERS 2018; 13:141. [PMID: 29740719 PMCID: PMC5940970 DOI: 10.1186/s11671-018-2532-3] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/16/2018] [Indexed: 05/19/2023]
Abstract
Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.
Collapse
Affiliation(s)
| | - Aziz ur Rahman
- Department of Saidla (Unani Pharmacy), Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, P.O. Box #196, Gondar, Ethiopia
| |
Collapse
|
67
|
Borah D, Hazarika M, Tailor P, Silva AR, Chetia B, Singaravelu G, Das P. Starch-templated bio-synthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0793-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
We describe an in situ method of synthesizing highly branched gold nanoflower (AuNFs) using aqueous seed extract of Syzygium cumini (L.) Skeels as reductant in the presence of 0.3% starch. Surprisingly, when the same reaction was carried out in the absence of starch or with starch at a lower concentration (0.15%), instead of flower-like morphology quasi-spherical or polyhedral nanoparticles (AuNPs) are obtained. The nanomaterials were extensively characterized by HRTEM, FESEM, UV–Vis, FTIR, XRD, XPS and TGA analysis. The biological activities of the materials were investigated for antimicrobial activities against four bacterial strains that include one Gram positive (Staphylococcus aureus MTCC 121), two Gram negative (Escherichia coli MTCC 40 and Pseudomonas aeruginosa MTCC 4673) and one fungi (Candida albicans MTCC 227). The nanoparticles functioned as effective antimicrobial and anti-biofilm agents against all the strains under study. Controlled study revealed that, the AuNFs showed improved efficacy over conventional polyhedral AuNPs against all the microbes under study which might be attributed to the larger surface-to-volume ratio of the nanoflowers. The AuNFs also showed effective in vitro anticancer activity against a human liver cancer cell line (HepG2) with no significant cytotoxicity. Our data suggest that the AuNFs can significantly reduce the cancer cell growth with IC50 value of 20 µg mL−1.
Collapse
|
68
|
Sharma B, Deswal R. Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:408-418. [DOI: 10.1080/21691401.2018.1458034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Bhavana Sharma
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
69
|
Delelegn A, Sahile S, Husen A. Water purification and antibacterial efficacy of Moringa oleifera Lam. ACTA ACUST UNITED AC 2018. [DOI: 10.1186/s40066-018-0177-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
70
|
Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology 2018; 16:14. [PMID: 29452593 PMCID: PMC5815253 DOI: 10.1186/s12951-018-0334-5] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
Use of silver and silver salts is as old as human civilization but the fabrication of silver nanoparticles (Ag NPs) has only recently been recognized. They have been specifically used in agriculture and medicine as antibacterial, antifungal and antioxidants. It has been demonstrated that Ag NPs arrest the growth and multiplication of many bacteria such as Bacillus cereus, Staphylococcus aureus, Citrobacter koseri, Salmonella typhii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, Vibrio parahaemolyticus and fungus Candida albicans by binding Ag/Ag+ with the biomolecules present in the microbial cells. It has been suggested that Ag NPs produce reactive oxygen species and free radicals which cause apoptosis leading to cell death preventing their replication. Since Ag NPs are smaller than the microorganisms, they diffuse into cell and rupture the cell wall which has been shown from SEM and TEM images of the suspension containing nanoparticles and pathogens. It has also been shown that smaller nanoparticles are more toxic than the bigger ones. Ag NPs are also used in packaging to prevent damage of food products by pathogens. The toxicity of Ag NPs is dependent on the size, concentration, pH of the medium and exposure time to pathogens.
Collapse
Affiliation(s)
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, P.O. Box # 196, Gondar, Ethiopia
| | - Rifaqat A. K. Rao
- Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
71
|
Siddiqi KS, Husen A. Plant Response to Engineered Metal Oxide Nanoparticles. NANOSCALE RESEARCH LETTERS 2017; 12:92. [PMID: 28168616 PMCID: PMC5293712 DOI: 10.1186/s11671-017-1861-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 01/19/2017] [Indexed: 05/21/2023]
Abstract
All metal oxide nanoparticles influence the growth and development of plants. They generally enhance or reduce seed germination, shoot/root growth, biomass production and physiological and biochemical activities. Some plant species have not shown any physiological change, although significant variations in antioxidant enzyme activity and upregulation of heat shock protein have been observed. Plants have evolved antioxidant defence mechanism which involves enzymatic as well as non-enzymatic components to prevent oxidative damage and enhance plant resistance to metal oxide toxicity. The exact mechanism of plant defence against the toxicity of nanomaterials has not been fully explored. The absorption and translocation of metal oxide nanoparticles in different parts of the plant depend on their bioavailability, concentration, solubility and exposure time. Further, these nanoparticles may reach other organisms, animals and humans through food chain which may alter the entire biodiversity. This review attempts to summarize the plant response to a number of metal oxide nanoparticles and their translocation/distribution in root/shoot. The toxicity of metal oxide nanoparticles has also been considered to see if they affect the production of seeds, fruits and the plant biomass as a whole.
Collapse
Affiliation(s)
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, PO Box #196, Gondar, Ethiopia
| |
Collapse
|
72
|
Elbagory AM, Meyer M, Cupido CN, Hussein AA. Inhibition of Bacteria Associated with Wound Infection by Biocompatible Green Synthesized Gold Nanoparticles from South African Plant Extracts. NANOMATERIALS 2017; 7:nano7120417. [PMID: 29186826 PMCID: PMC5746907 DOI: 10.3390/nano7120417] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/15/2023]
Abstract
Unlike conventional physical and chemical methods, the biogenic synthesis of gold nanoparticles (GNPs) is considered a green and non-toxic approach to produce biocompatible GNPs that can be utilized in various biomedical applications. This can be achieved by using plant-derived phytochemicals to reduce gold salt into GNPs. Several green synthesized GNPs have been shown to have antibacterial effects, which can be applied in wound dressings to prevent wound infections. Therefore, the aim of this study is to synthesize biogenic GNPs from the South African Galenia africana and Hypoxis hemerocallidea plants extracts and evaluate their antibacterial activity, using the Alamar blue assay, against bacterial strains that are known to cause wound infections. Additionally, we investigated the toxicity of the biogenic GNPs to non-cancerous human fibroblast cells (KMST-6) using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. In this paper, spherical GNPs, with particle sizes ranging from 9 to 27 nm, were synthesized and fully characterized. The GNPs from H. hemerocallidea exhibited antibacterial activity against all the tested bacterial strains, whereas GNPs produced from G. africana only exhibited antibacterial activity against Pseudomonas aeruginosa. The GNPs did not show any significant toxicity towards KMST-6 cells, which may suggest that these nanoparticles can be safely applied in wound dressings.
Collapse
Affiliation(s)
- Abdulrahman M. Elbagory
- DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (A.M.E.); (M.M.)
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (A.M.E.); (M.M.)
| | - Christopher N. Cupido
- Botany Department, University of Forte Hare, Private Bag X1314, Alice 5700, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Correspondence: ; Tel.: +27-21-9596193
| |
Collapse
|
73
|
Idris AO, Mabuba N, Arotiba OA. A Dendrimer Supported Electrochemical Immunosensor for the Detection of Alpha-feto protein - a Cancer Biomarker. ELECTROANAL 2017. [DOI: 10.1002/elan.201700491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Azeez O. Idris
- Department of Applied Chemistry; University of Johannesburg; Doornfontein 2028 Johannesburg South Africa
| | - Nonhlangabezo Mabuba
- Department of Applied Chemistry; University of Johannesburg; Doornfontein 2028 Johannesburg South Africa
- Centre for Nanomaterials Science Research; University of Johannesburg; South Africa
| | - Omotayo A. Arotiba
- Department of Applied Chemistry; University of Johannesburg; Doornfontein 2028 Johannesburg South Africa
- Centre for Nanomaterials Science Research; University of Johannesburg; South Africa
| |
Collapse
|
74
|
Kandimalla R, Dash S, Bhowal AC, Kalita S, Talukdar NC, Kundu S, Kotoky J. Glycogen-gold nanohybrid escalates the potency of silymarin. Int J Nanomedicine 2017; 12:7025-7038. [PMID: 29026299 PMCID: PMC5626415 DOI: 10.2147/ijn.s142497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, a glycogen-gold nanohybrid was fabricated to enhance the potency of a promising hepatoprotective agent silymarin (Sly) by improving its solubility and gut permeation. By utilizing a facile green chemistry approach, biogenic gold nanoparticles were synthesized from Annona reticulata leaf phytoconstituents in combination with Sly (SGNPs). Further, the SGNPs were aggregated in glycogen biopolymer to yield the therapeutic nanohybrids (GSGNPs). Transmission electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analysis confirmed the successful formation and conjugation of both SGNPs and GSGNPs. The fabricated nanohybrids showed significant protection against CCl4-induced hepatic injury in Wistar rats and maintained natural antioxidant (superoxide dismutase and catalase) levels. Animals treated with GSGNPs (10 mg/kg) and SGNPs (20 mg/kg) retained usual hepatic functions with routine levels of hepatobiliary enzymes (aspartate transferase, alanine transaminase, alkaline phosphatase, and lactate dehydrogenase) and inflammatory markers (interleukin-1β and tumor necrosis factor-α) with minimal lipid peroxidation, whereas those treated with 100 mg/kg of Sly showed the similar effect. These results were also supported by histopathology of the livers where pronounced hepatoprotection with normal hepatic physiology and negligible inflammatory infiltrate were observed. Significant higher plasma Cmax supported the enhanced bioavailability of Sly upon GSGNPs treatment compared to SGNPs and free Sly. Graphite furnace atomic absorption spectrophotometry analysis also substantiated the efficient delivery of GSGNPs over SGNPs. The fabricated therapeutic nanohybrids were also found to be biocompatible toward human erythrocytes and L929 mouse fibroblast cells. Overall, due to increased solubility, bioavailability and profuse gut absorption; GSGNPs demonstrated tenfold enhanced potency compared to free Sly.
Collapse
Affiliation(s)
| | - Suvakanta Dash
- Girijananda Choudhury Institute of Pharmaceutical Sciences
| | | | - Sanjeeb Kalita
- Drug Discovery Lab, Institute of Advanced Study in Science and Technology
| | | | - Sarathi Kundu
- Soft Nano Laboratory, Institute of Advanced Study in Science and Technology
| | - Jibon Kotoky
- Drug Discovery Lab, Institute of Advanced Study in Science and Technology
- National Institute of Pharmaceutical Education and Research, Guwahati, India
| |
Collapse
|
75
|
Devi TB, Ahmaruzzaman M. Bioinspired Green and Facile Fabrication of Au@Ag@AgCl Hybrid Nanoparticles and Their Catalytic and Antimicrobial Properties. ChemistrySelect 2017. [DOI: 10.1002/slct.201700601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thengujam Babita Devi
- Department of Chemistry; National Institute of Technology; Silchar- 788010, Assam India
| | - Mohammed Ahmaruzzaman
- Department of Chemistry; National Institute of Technology; Silchar- 788010, Assam India
| |
Collapse
|