51
|
Cho KS, Lee EJ, Kwon KJ, Gonzales ELT, Kim YB, Cheong JH, Bahn GH, Lee J, Han SH, Kim YT, Shin CY. Resveratrol down-regulates a glutamate-induced tissue plasminogen activator via Erk and AMPK/mTOR pathways in rat primary cortical neurons. Food Funct 2014; 5:951-60. [PMID: 24599349 DOI: 10.1039/c3fo60397k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene, RSV) is a polyphenolic compound present in a variety of plant species (including grapes) that produces a myriad of biological activities including anti-inflammatory, antioxidant and neuroprotective effects. In this study, we investigate the effects of resveratrol on the basal and glutamate-stimulated expression and activity of a tissue plasminogen activator (tPA) that plays neuromodulatory or neurotoxic roles in many different neurological situations. Under basal conditions, resveratrol decreased the tPA expression and activity without affecting the tPA mRNA level in rat primary cortical neurons. RSV induced AMPK phosphorylation and inhibited mTOR phosphorylation. Inhibition of AMPK phosphorylation using compound C prevented resveratrol-induced down-regulation of tPA activity. This suggested that AMPK/mTOR-dependent translational inhibition contributes to the down-regulation of the tPA. Under glutamate-stimulated conditions of rat primary cortical neurons, tPA activity and expression were increased along with increased tPA mRNA expression but afterward treatment of RSV inhibited the glutamate-induced increase in tPA activity and expression and tPA mRNA expression. Glutamate stimulation induced activation of Akt and MAPK pathways as well as mTOR which were inhibited by RSV. Interestingly, the Erk pathway inhibitor U0126, but neither PI3K-Akt inhibitor LY294002 nor p38 inhibitor SB203580, mimicked the inhibitory action of RSV on glutamate-induced tPA up-regulation. This suggested the essential role of Erk in the transcriptional up-regulation of tPA expression, which is targeted by RSV. Glutamate stimulation induced neuronal cell death as determined by PI staining and MTT assay. However, RSV protected the cultured rat primary cortical neurons from glutamate-induced cell death as paralleled with the changes in tPA expression. These results suggested that RSV can modulate tPA activity under basal and stimulated conditions by both translational and transcriptional mechanisms. The regulation of the tPA by RSV provides additional therapeutic targets on top of the growing number of molecular substrates of RSV's action in the brain.
Collapse
Affiliation(s)
- Kyu Suk Cho
- Department of Neuroscience and Institute of Functional Genomics, Department of Pharmacology, School of Medicine, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Lin FY, Hsieh YH, Yang SF, Chen CT, Tang CH, Chou MY, Chuang YT, Lin CW, Chen MK. Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells. J Oral Pathol Med 2014; 44:699-706. [PMID: 25401496 DOI: 10.1111/jop.12288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Naturally occurring agents, such as resveratrol, have been determined to benefit health. Numerous studies have demonstrated that resveratrol has antioxidative, cardioprotective, and neuroprotective properties. However, the effect of resveratrol exerts on the metastasis of oral cancer cells remains unclear. In this study, we investigated the effect the anti-invasive activity of resveratrol on a human oral cancer cell line (SCC-9) in vitro and the underlying mechanisms. METHODS Cell viability was examined by MTT assay, whereas cell motility was measured by migration and wound-healing assays. Zymography, reverse-transcriptase polymerase chain reaction (PCR), and promoter assays confirmed the inhibitory effects of resveratrol on matrix metalloproteinase-9 (MMP-9) expression in oral cancer cells. RESULTS We established that various concentrations (0-100 μM) of resveratrol inhibited the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced migration capacities of SCC-9 cells and caused no cytotoxic effects. Zymography and Western blot analyses suggested that resveratrol inhibited TPA-induced MMP-9 gelatinolytic activity and protein expression. In addition, the results indicated that resveratrol inhibited the phosphorylation of c-Jun N-terminal kinase (JNK)1/2 and extracellular-signal-regulated kinase (ERK)1/2 involved in downregulating protein expression and the transcription of MMP-9. CONCLUSION In summary, resveratrol inhibited MMP-9 expression and oral cancer cell metastasis by downregulating JNK1/2 and ERK1/2 signals pathways and, thus, exerts beneficial effects in chemoprevention.
Collapse
Affiliation(s)
- Feng-Yan Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chang-Tai Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ting Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
53
|
Shin JA, Oh S, Ahn JH, Park EM. Estrogen receptor-mediated resveratrol actions on blood-brain barrier of ovariectomized mice. Neurobiol Aging 2014; 36:993-1006. [PMID: 25448605 DOI: 10.1016/j.neurobiolaging.2014.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
Abstract
To test whether resveratrol provides benefits via estrogen receptors (ERs) in the blood-brain barrier of estrogen-deficient females, ovariectomized mice were treated with resveratrol then were subjected to transient middle cerebral artery occlusion (MCAO). Compared with vehicle treatment, resveratrol reduced infarct volume and neurologic deficits after MCAO. Basal tight junction (TJ) protein levels in the brain were increased by resveratrol. After MCAO, blood-brain barrier breakdown reduced levels of TJ proteins, and induction of HIF-1α and VEGF were attenuated by resveratrol. These effects were reversed by the ERs antagonist, ICI182,780. In mouse brain, endothelial cells (bEnd.3) exposed to hypoxia, resveratrol treatment protected the cells against cytotoxicity, increases of paracellular permeability and changes in levels of TJ protein and HIF-1α/VEGF proteins. These effects were reversed by ICI182,780 but not by specific ERα or ERβ antagonists, indicating nonspecific ER mediated effects. Altogether, these results showed that neuroprotective effects of resveratrol in ovariectomized mice were mediated by ERs and associated with tightening of blood-brain barrier, suggesting that resveratrol can be an alternative to estrogens to protect the brains of estrogen-deficient females against ischemic insult.
Collapse
Affiliation(s)
- Jin A Shin
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seikwan Oh
- Department of Neuroscience, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
54
|
Huang T, Gao D, Jiang X, Hu S, Zhang L, Fei Z. Resveratrol inhibits oxygen-glucose deprivation-induced MMP-3 expression and cell apoptosis in primary cortical cells via the NF-κB pathway. Mol Med Rep 2014; 10:1065-71. [PMID: 24840287 DOI: 10.3892/mmr.2014.2239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 03/18/2014] [Indexed: 11/05/2022] Open
Abstract
Resveratrol (Res) or trans-3,4',5-trihydroxystilbene, has been proven to exert neuroprotective effects in cerebral ischemia. The aim of the present study was to investigate whether Res has neuroprotective effects in primary cortical neurons subjected to transient oxygen-glucose deprivation (OGD) via inhibiting the expression of the gene encoding stromelysin-1, also known as matrix metalloproteinase-3 (MMP-3), and via inhibiting cell apoptosis. Primary cortical cells were exposed to OGD, followed by reoxygenation to induce transient ischemia. Res (50 µM) was added into the culture medium during transient ischemia in the presence or absence of the nuclear factor (NF)-κB inhibitor pyrrolidine dithiocarbamate (PDTC; 10 µM) or 500 µM of the nitric oxide (NO) donor NOC-18. Cell viability was assessed using the tetrazolium reduction (MTT) assay. Cell apoptosis was evaluated by flow cytometry. MMP-3 expression was analyzed by western blot and reverse transcription-polymerase chain reaction (RT-PCR), while the levels of inducible NO synthase (iNOS), NF-κB, caspase-3, cleaved caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were assayed by western blot. NO was detected using a spectrophotometric method. We found that the cellular viability was significantly reduced by transient OGD and that this effect was reversed by Res treatment. In addition, OGD was shown to induce cell apoptosis, the expression of Bax and the activation of caspase-3, and inhibit the expression of Bcl-2, and these effects were also reversed by Res treatment. Res treatment significantly reduced the level of MMP-3 that was induced by transient OGD, via inhibition of NF-κB expression. In addition, Res inhibited iNOS expression and NO synthesis that were induced by OGD. MMP-3 expression induced by NO was attenuated by Res treatment and was partially restored by exogenous NO using NOC-18. Taken together, these findings indicate that OGD induces apoptosis through canonical apoptosis signaling and by modulating the expression of MMP-3; Res can reverse the OGD-induced MMP-3 expression and cell apoptosis via the NF-κB-iNOS/NO pathway. Therefore, Res may be a promising agent for the treatment of neuronal injury associated with stroke.
Collapse
Affiliation(s)
- Tao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shijie Hu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
55
|
Ectopic expression of human angiopoietin-1 promotes functional recovery and neurogenesis after focal cerebral ischemia. Neuroscience 2014; 267:135-46. [DOI: 10.1016/j.neuroscience.2014.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 11/22/2022]
|
56
|
Gao D, Kawai N, Nakamura T, Lu F, Fei Z, Tamiya T. Anti-inflammatory effect of D-allose in cerebral ischemia/reperfusion injury in rats. Neurol Med Chir (Tokyo) 2014; 53:365-74. [PMID: 23803614 DOI: 10.2176/nmc.53.365] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D-allose, a type of rare sugar, can produce inhibitory effects on activated leukocytes in various organs, including immunosuppressive effects and anti-inflammatory effects, as well as anti-oxyradical effects. The present experiment was performed to investigate the potential anti-inflammatory effects of D-allose in acute cerebral ischemia/reperfusion (I/R) injury. Transient middle cerebral artery occlusion model was applied in rats. D-allose was administered two times via a tail vein (300 mg/kg, 1 hour before ischemia and 10 hours after reperfusion). After 22 hours of reperfusion following 2 hours of ischemia, brain damage was evaluated by cerebral infarct volume. Myeloperoxidase (MPO) activity assay by enzyme-linked immunosorbent assay, and protein expression of MPO and cyclooxygenase-2 (COX-2) by immunohistochemistry were evaluated to investigate the potential mechanisms of D-allose. The experimental results showed that D-allose exhibited significant neuroprotective effects against acute cerebral I/R injury. The infarct volume in D-allose-treated rats (90.9 ± 13.5 mm(3)) was significantly smaller than that in vehicle rats (114.9 ± 15.3 mm(3), p < 0.01). D-allose treatment significantly suppressed the MPO activity and the number of MPO-positive cells compared with those in the vehicle group, suggesting that treatment with D-allose can reduce the infiltration of leukocytes into the ischemic tissue. Treatment of D-allose also significantly decreased the number of COX-2-positive cells and microglial activation in the ischemic tissue. The present results demonstrate that D-allose exerts potent neuroprotective effects against acute cerebral I/R injury, and constitute the first evidence of anti-inflammatory effects of D-allose which considerably contributes to the beneficial effects. Treatment with D-allose might provide a new strategy and clinically beneficial outcome for acute ischemic stroke.
Collapse
Affiliation(s)
- Dakuan Gao
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
57
|
Gao D, Huang T, Jiang X, Hu S, Zhang L, Fei Z. Resveratrol protects primary cortical neuron cultures from transient oxygen-glucose deprivation by inhibiting MMP-9. Mol Med Rep 2014; 9:2197-204. [PMID: 24682241 DOI: 10.3892/mmr.2014.2086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/18/2014] [Indexed: 11/06/2022] Open
Abstract
It was recently shown that resveratrol exerts neuroprotective effects against cerebral ischemia in mice. The aim of the present study was to further confirm these effects in in vitro primary cortical neuron cultures with transient oxygen-glucose deprivation (OGD), and to investigate whether these effects are due to the inhibition of matrix metalloproteinase-9 (MMP-9) and of cell apoptosis. Neuronal primary cultures of cerebral cortex were prepared from BALB/c mice embryos (13-15 days). Cells from 14- to 16-day cultures were subjected to OGD for 3 h, followed by 21 h of reoxygenation to simulate transient ischemia. Different doses of resveratrol were added into the culture medium during the simulation of transient ischemia. The effect of the extracellular signal-regulated kinase (ERK) inhibitor U0126 was studied by adding U0126 (5 µg/µl, 4 µl) into the culture medium during transient ischemia; as a control, we used treatment of cells with 50 µM of resveratrol. Cell viability was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Cell apoptosis was assessed by flow cytometry. The effects of resveratrol on the expression of MMP-9 were analyzed by western blotting and reverse transcription-polymerase chain reaction (RT-PCR), while the levels of ERK, phosphorylated (p)-ERK, cleaved caspase-3, Bax and Bcl-2 were measured by western blotting. The results of the MTT assay showed that cell viability is significantly reduced by transient OGD. OGD induced cell apoptosis, the expression of Bax and the activation of caspase-3 and ERK, inhibited the expression of Bcl-2 and increased the expression of MMP-9, while these effects were reversed by treatment with resveratrol. The therapeutic efficacy of resveratrol was shown to be dose-dependent, with the most suitable dose range determined at 50-100 µM. Treatment with U0126 inhibited MMP-9 and Bax expression and caspase-3 activation, while it further promoted the expression of the anti-apoptotic molecule Bcl-2, suggesting that resveratrol inhibits MMP-9 expression and cell apoptosis by attenuating the activation of ERK1/2. In conclusion, OGD can induce apoptosis through canonical apoptotic signals and by regulating the expression of MMP-9; the anti-apoptotic activity of resveratrol and its inhibitory effect on MMP-9 expression contribute in the reduced activation of ERK.
Collapse
Affiliation(s)
- Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shijie Hu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
58
|
Gu Y, Chen J, Shen J. Herbal medicines for ischemic stroke: combating inflammation as therapeutic targets. J Neuroimmune Pharmacol 2014; 9:313-39. [PMID: 24562591 DOI: 10.1007/s11481-014-9525-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/23/2022]
Abstract
Stroke is a debilitating disease for which limited therapeutic approaches are available currently. Thus, there is an urgent need for developing novel therapies for stroke. Astrocytes, endothelial cells and pericytes constitute a neurovascular network for metabolic requirement of neurons. During ischemic stroke, these cells contribute to post-ischemic inflammation at multiple stages of ischemic cascades. Upon ischemia onset, activated resident microglia and astrocytes, and infiltrated immune cells release multiple inflammation factors including cytokines, chemokines, enzymes, free radicals and other small molecules, not only inducing brain damage but affecting brain repair. Recent progress indicates that anti-inflammation is an important therapeutic strategy for stroke. Given a long history with direct experience in the treatment of human subjects, Traditional Chinese Medicine and its related natural compounds are recognized as important sources for drug discovery. Last decade, a great progress has been made to identify active compounds from herbal medicines with the properties of modulating post-ischemic inflammation for neuroprotection. Herein, we discuss the inflammatory pathway in early stage and secondary response to injured tissues after stroke from initial artery occlusion to brain repair, and review the active ingredients from natural products with anti-inflammation and neuroprotection effects as therapeutic agents for ischemic stroke. Further studies on the post-ischemic inflammatory mechanisms and corresponding drug candidates from herbal medicine may lead to the development of novel therapeutic strategies in stroke treatment.
Collapse
Affiliation(s)
- Yong Gu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | | | | |
Collapse
|
59
|
Zhai X, Chi J, Tang W, Ji Z, Zhao F, Jiang C, Lv H, Guo H. Yellow Wine Polyphenolic Compounds Inhibit Matrix Metalloproteinase-2, -9 Expression and Improve Atherosclerotic Plaque in LDL-Receptor–Knockout Mice. J Pharmacol Sci 2014; 125:132-41. [DOI: 10.1254/jphs.13263fp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
60
|
Anastácio JR, Netto CA, Castro CC, Sanches EF, Ferreira DC, Noschang C, Krolow R, Dalmaz C, Pagnussat A. Resveratrol treatment has neuroprotective effects and prevents cognitive impairment after chronic cerebral hypoperfusion. Neurol Res 2014; 36:627-33. [DOI: 10.1179/1743132813y.0000000293] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
61
|
Singh N, Agrawal M, Doré S. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 2013; 4:1151-62. [PMID: 23758534 DOI: 10.1021/cn400094w] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resveratrol, a natural stilbene present at relatively high concentrations in grape skin and seeds and red wine, is known for its purported antioxidant activity in the vascular and nervous systems. In contrast to its direct antioxidant role within the central nervous system, recent research supports a protective mechanism through increasing endogenous cellular antioxidant defenses, which triggers a cascade of parallel neuroprotective pathways. A growing body of in vitro and in vivo evidence indicates that resveratrol acts through multiple pathways and reduces ischemic damage in vital organs, such as the heart and the brain, in various rodent models. Most of the protective biological actions of resveratrol have been associated with its antioxidative, anti-inflammatory, and antiapoptotic properties and other indirect pathways. Continued public interest and increasing resveratrol supplements on the market warrant a review of the available in vitro and in vivo science reported in the stroke-related literature. Rigorous clinical trials evaluating the effects of resveratrol in stroke are absent, though the general population consumption appears to be relatively safe. Resveratrol has shown potential for treating stroke in laboratory animals and in vitro human cell studies, yet there is still a need for human research in preclinical settings. This review summarizes many of the findings on the neuroprotective potential of resveratrol in cerebral stroke, focusing on both the in vitro and in vivo experimental models and some proposed mechanisms of action.
Collapse
Affiliation(s)
- Nilendra Singh
- Department of Anesthesiology and ‡Departments of Neurology, Psychiatry, and
Neuroscience, University of Florida, College of Medicine, Gainesville, Florida 32610, United States
| | - Megha Agrawal
- Department of Anesthesiology and ‡Departments of Neurology, Psychiatry, and
Neuroscience, University of Florida, College of Medicine, Gainesville, Florida 32610, United States
| | - Sylvain Doré
- Department of Anesthesiology and ‡Departments of Neurology, Psychiatry, and
Neuroscience, University of Florida, College of Medicine, Gainesville, Florida 32610, United States
| |
Collapse
|
62
|
Dong H, Fan YH, Zhang W, Wang Q, Yang QZ, Xiong LZ. Repeated electroacupuncture preconditioning attenuates matrix metalloproteinase-9 expression and activity after focal cerebral ischemia in rats. Neurol Res 2013; 31:853-8. [DOI: 10.1179/174313209x393960] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
63
|
Kim WK, Kang NE, Kim MH, Ha AW. Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes. Nutr Res Pract 2013; 7:160-5. [PMID: 23766875 PMCID: PMC3679323 DOI: 10.4162/nrp.2013.7.3.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/07/2013] [Accepted: 03/19/2013] [Indexed: 11/04/2022] Open
Abstract
3T3-L1 preadipocyte were differentiated to adipocytes, and then treated with 0, 10, 20, and 40 µg/mL of peanut sprout ethanol extract (PSEE). The main component of PSEE is resveratrol which contained 5.55 mg/mL of resveratrol. The MTT assay, Oil-Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, and the triglyceride concentration were determined in 3T3-L1 cells. MMP-2 and MMP-9 activities as well as mRNA expressions of C/EBP β and C/EBP α were also investigated. As the concentration of PSEE in adipocytes increased, the cell proliferation was decreased in a dose-dependent manner from 4 days of incubation (P < 0.05). The GDPH activity (P < 0.05) and the triglyceride concentration (P < 0.05) were decreased as the PSEE treatment concentration increased. The mRNA expression of C/EBPβ in 3T3-L1 cells was significantly low in groups of PSEE-treated, compared with control group (P < 0.05). The MMP-9 (P < 0.05) and MMP-2 (P < 0.05) activities were decreased in a dose-dependent manner as the PSEE concentration increased from 20 µg/mL. In conclusion, it was found that PSEE has an effect on restricting proliferation and differentiation of adipocytes.
Collapse
Affiliation(s)
- Woo Kyoung Kim
- Department of Food Science and Nutrition, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701, Korea
| | | | | | | |
Collapse
|
64
|
Raza S, Khan M, Ahmad A, Ashafaq M, Islam F, Wagner A, Safhi M, Islam F. Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience 2013; 230:157-71. [DOI: 10.1016/j.neuroscience.2012.10.041] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
|
65
|
Kang NE, Ha AW, Kim JY, Kim WK. Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3T3-L1 preadipocytes. Nutr Res Pract 2012; 6:499-504. [PMID: 23346299 PMCID: PMC3542439 DOI: 10.4162/nrp.2012.6.6.499] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/12/2012] [Accepted: 11/05/2012] [Indexed: 12/18/2022] Open
Abstract
This study attempted to investigate the effects of resveratrol on the differentiation of adipocytes. After cells were treated with various concentrations of resveratrol (0, 10, 20, and 40 µmol/L), adipocyte proliferation, the protein expression of transcription factors, and MMPs' activities were determined. Cell proliferation was inhibited more within 4 days of incubation (P < 0.05), and lipid accumulation in adipocyte was significantly inhibited by 93.8%, 92.4% and 91.5%, respectively, after two days of 10, 20, and 40 µmol/L resveratrol treatment (P < 0.05). Six days of incubation with the three resveratrol concentrations caused a significantly decreases of 63%, 59.9%, and 25.1% GPDH activity as a dose-dependent response. The triglyceride concentration also decreased significantly with the increase of resveratrol concentration (P < 0.05). The protein expression of CCAAT/enhancer-binding protein (C/EBPβ) was decreased significantly by 56% and 30% while PPARγ was significantly reduced by 57% and 15% with resveratrol treatments of 20 and 40 µmol/L, respectively (P < 0.05). The protein expression of C/EBPα was decreased by 83%, 74%, and 38% to increased dosage levels, with significance determined for this decrease from 20 µmol/L of resveratrol. The protein expression of fatty acid binding protein (FABP4) was decreased significantly by 88%, 72%, and 46% with the increase of resveratrol concentration. The activity of MMP-2 was decreased significantly by 84%, 70%, and 63% while MMP-9 activity was decreased significantly by 74%, 62%, and 39% with the increased resveratrol concentrations of 10, 20, and 40 µmol/L, respectively (P < 0.05).
Collapse
Affiliation(s)
- Nam E Kang
- Department of Food and Nutrition, Eulji University, Seongnam, Gyunggi 461-723, Korea
| | | | | | | |
Collapse
|
66
|
Maroon JC, Lepere DB, Blaylock RL, Bost JW. Postconcussion syndrome: a review of pathophysiology and potential nonpharmacological approaches to treatment. PHYSICIAN SPORTSMED 2012; 40:73-87. [PMID: 23306417 DOI: 10.3810/psm.2012.11.1990] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The incidence of all-cause concussions in the United States is estimated to range from 1.6 to 3.8 million annually, with the reported number of sport- or recreation-related concussions increasing dramatically, especially in youth sports.(1,2) Additionally, the use of roadside bombs in Iraq and Afghanistan has propelled the incidence of concussion and other traumatic brain injuries to the highest levels ever encountered by the US military. As a result, there has also been a marked increase in postconcussion syndrome (PCS) and the associated cognitive, emotional, and memory disabilities associated with the condition. Unfortunately, however, there have been no significant advancements in the understanding or treatment of PCS for decades. The current management of PCS mainly consists of rest, reduction of sensory inputs, and treating symptoms as needed. Recently, researchers investigating the underlying mechanisms of PCS have proposed that activation of the immune inflammatory response may be an underlying pathophysiology that occurs in those who experience prolonged symptoms after a concussion. This article reviews the literature and summarizes the immune inflammatory response known as immunoexcitotoxicity. This article also discusses the use of nonpharmacological agents for the management of PCS that directly address this underlying mechanism.
Collapse
Affiliation(s)
- Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
67
|
Rocamonde B, Paradells S, Barcia J, Barcia C, García Verdugo J, Miranda M, Romero Gómez F, Soria J. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience 2012; 224:102-15. [DOI: 10.1016/j.neuroscience.2012.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 12/30/2022]
|
68
|
Liu XQ, Wu BJ, Pan WHT, Zhang XM, Liu JH, Chen MM, Chao FP, Chao HM. Resveratrol mitigates rat retinal ischemic injury: the roles of matrix metalloproteinase-9, inducible nitric oxide, and heme oxygenase-1. J Ocul Pharmacol Ther 2012; 29:33-40. [PMID: 23075401 DOI: 10.1089/jop.2012.0141] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Retinal ischemia-associated ocular disorders, such as retinal occlusive disorders, neovascular age-related macular degeneration, proliferative diabetic retinopathy, and glaucoma are vision-threatening. In this study, we examined whether and by what mechanisms resveratrol, a polyphenol found in red wine, is able to protect against retinal ischemia/reperfusion injury. METHODS In vivo rat retinal ischemia was induced by high intraocular pressure (HIOP), namely, 120 mmHg for 60 min. The mechanism and management was evaluated by electroretinogram (ERG) b-wave amplitudes measurement, immunohistochemistry, and real-time polymerase chain reaction. RESULTS The HIOP-induced retinal ischemic changes were characterized by a decrease in ERG b-wave amplitudes, a loss of choline acetyltransferase immunolabeling of amacrine cell bodies/neuronal processes, and increased vimentin immunoreactivity, which is a marker of Müller cells, together with upregulation of matrix metalloproteinase-9 (MMP-9), heme oxygenase-1 (HO-1), and inducible nitric oxide (iNOS), and downregulation of Thy-1, both at the mRNA level. The detrimental effects due to the ischemia were concentration-dependent (weaker effect at 0.05 nmole) and/or significantly (at 0.5 nmole) altered when resveratrol was applied 15 min before or after retina ischemia. CONCLUSION This study supports the hypothesis that resveratrol may be able to protect the retina against ischemia by downregulation of MMP-9 and iNOS, and upregulation of HO-1.
Collapse
Affiliation(s)
- Xiao-Qian Liu
- Department of Pharmacology, School of Medicine, Shandong University , Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Clark D, Tuor UI, Thompson R, Institoris A, Kulynych A, Zhang X, Kinniburgh DW, Bari F, Busija DW, Barber PA. Protection against recurrent stroke with resveratrol: endothelial protection. PLoS One 2012; 7:e47792. [PMID: 23082218 PMCID: PMC3474795 DOI: 10.1371/journal.pone.0047792] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
Despite increased risk of a recurrent stroke following a minor stroke, information is minimal regarding the interaction between injurious mild cerebral ischemic episodes and the possible treatments which might be effective. The aim of the current study was to investigate recurrent ischemic stroke and whether resveratrol, a nutritive polyphenol with promising cardio- and neuro- protective properties, could ameliorate the associated brain damage. Experiments in adult rats demonstrated that a mild ischemic stroke followed by a second mild cerebral ischemia exacerbated brain damage, and, daily oral resveratrol treatment after the first ischemic insult reduced ischemic cell death with the recurrent insult (P<0.002). Further investigation demonstrated reduction of both inflammatory changes and markers of oxidative stress in resveratrol treated animals. The protection observed with resveratrol treatment could not be explained by systemic effects of resveratrol treatment including effects either on blood pressure or body temperature measured telemetrically. Investigation of resveratrol effects on the blood-brain barrier in vivo demonstrated that resveratrol treatment reduced blood-brain barrier disruption and edema following recurrent stroke without affecting regional cerebral blood flow. Investigation of the mechanism in primary cell culture studies demonstrated that resveratrol treatment significantly protected endothelial cells against an in vitro ‘ischemia’ resulting in improved viability against oxygen and glucose deprivation (39.6±6.6% and 81.3±9.5% in vehicle and resveratrol treated cells, respectively). An inhibition of nitric oxide synthesis did not prevent the improved cell viability following oxygen glucose deprivation but SIRT-1 inhibition with sirtinol partially blocked the protection (P<0.001) suggesting endothelial protection is to some extent SIRT-1 dependent. Collectively, the results support that oral resveratrol treatment provides a low risk strategy to protect the brain from enhanced damage produced by recurrent stroke which is mediated in part by a protective effect of resveratrol on the endothelium of the cerebrovasculature.
Collapse
Affiliation(s)
- Darren Clark
- Departments of Physiology and Pharmacology, Clinical Neurosciences and Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Faculty of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ursula I. Tuor
- Departments of Physiology and Pharmacology, Clinical Neurosciences and Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Faculty of Medicine, University of Calgary, Calgary, Canada
- * E-mail:
| | - Roger Thompson
- Hotchkiss Brain Institute and Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Adam Institoris
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Angela Kulynych
- Hotchkiss Brain Institute and Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Xu Zhang
- Alberta Centre for Toxicology, University of Calgary, Calgary, Canada
| | | | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - David W. Busija
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, United States of America
| | - Philip A. Barber
- Hotchkiss Brain Institute and Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
70
|
Resveratrol role in cardiovascular and metabolic health and potential mechanisms of action. Nutr Res 2012; 32:648-58. [DOI: 10.1016/j.nutres.2012.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
|
71
|
Simard JM, Geng Z, Silver FL, Sheth KN, Kimberly WT, Stern BJ, Colucci M, Gerzanich V. Does inhibiting Sur1 complement rt-PA in cerebral ischemia? Ann N Y Acad Sci 2012; 1268:95-107. [PMID: 22994227 PMCID: PMC3507518 DOI: 10.1111/j.1749-6632.2012.06705.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hemorrhagic transformation (HT) associated with recombinant tissue plasminogen activator (rt-PA) complicates and limits its use in stroke. Here, we provide a focused review on the involvement of matrix metalloproteinase 9 (MMP-9) in rt-PA-associated HT in cerebral ischemia, and we review emerging evidence that the selective inhibitor of the sulfonylurea receptor 1 (Sur1), glibenclamide (U.S. adopted name, glyburide), may provide protection against rt-PA-associated HT in cerebral ischemia. Glyburide inhibits activation of MMP-9, ameliorates edema formation, swelling, and symptomatic hemorrhagic transformation, and improves preclinical outcomes in several clinically relevant models of stroke, both without and with rt-PA treatment. A retrospective clinical study comparing outcomes in diabetic patients with stroke treated with rt-PA showed that those who were previously on and were maintained on a sulfonylurea fared significantly better than those whose diabetes was managed without sulfonylureas. Inhibition of Sur1 with injectable glyburide holds promise for ameliorating rt-PA-associated HT in stroke.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Pamenter ME, Ryu J, Hua ST, Perkins GA, Mendiola VL, Gu XQ, Ellisman MH, Haddad GG. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release. PLoS One 2012; 7:e43995. [PMID: 22937143 PMCID: PMC3427179 DOI: 10.1371/journal.pone.0043995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/27/2012] [Indexed: 12/04/2022] Open
Abstract
During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra). Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs), which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid) preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS) and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4–10 fold and extracellular latent and active MMP isoform expression increased 2–22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20–50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed). DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA). Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS prevented stimulus-evoked release of von Willebrand Factor from human umbilical vein endothelial cells. We conclude that DIDS inhibits MMP exocytosis and through this mechanism preserves neuronal membrane integrity during pathological stress.
Collapse
Affiliation(s)
- Matthew E Pamenter
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Acute resveratrol treatment modulates multiple signaling pathways in the ischemic brain. Neurochem Res 2012; 37:2686-96. [PMID: 22878646 DOI: 10.1007/s11064-012-0858-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/15/2012] [Accepted: 07/28/2012] [Indexed: 12/19/2022]
Abstract
Resveratrol has several beneficial effects, including reductions of oxidative stress, inflammatory responses and apoptosis. It has been known that resveratrol is a sirtuin 1 (SIRT1) activator and protective effects of resveratrol are mediated by Akt and mitogen-activated protein kinases. However, it is not examined whether these pathways are regulated by resveratrol in the ischemic brain. Previously, we found that acute resveratrol treatment reduces brain injury induced by transient focal ischemic stroke. In the present study, we defined the signaling pathways modulated by resveratrol in ischemia by examining SIRT1 expression and phosphorylation of Akt, ERK1/2 and p38 in the ischemic cortex. Resveratrol increased expression of SIRT1 and phosphorylation of Akt and p38 but inhibited the increase in phosphorylation of ERK1/2. Gene and protein levels of peroxisome proliferator-activated receptor γ coactivator 1α, a downstream molecule of SIRT1, and mRNA levels of its target genes antioxidative superoxide dismutase 2 and uncoupling protein 2 were elevated. Resveratrol also increased phosphorylation of cyclic AMP-response-element-binding protein and transcription of the anti-apoptotic gene Bcl-2. These results suggest that various neuroprotective actions of resveratrol, including anti-oxidative, anti-apoptotic and inflammatory effects, are mediated via modulation of multiple signaling pathways in the ischemic brain.
Collapse
|
74
|
Huang P, Zhou CM, Qin-Hu, Liu YY, Hu BH, Chang X, Zhao XR, Xu XS, Li Q, Wei XH, Mao XW, Wang CS, Fan JY, Han JY. Cerebralcare Granule® attenuates blood-brain barrier disruption after middle cerebral artery occlusion in rats. Exp Neurol 2012; 237:453-63. [PMID: 22868201 DOI: 10.1016/j.expneurol.2012.07.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/21/2012] [Accepted: 07/24/2012] [Indexed: 12/18/2022]
Abstract
Disruption of blood-brain barrier (BBB) and subsequent edema are major contributors to the pathogenesis of ischemic stroke, for which the current clinical therapy remains unsatisfied. Cerebralcare Granule® (CG) is a compound Chinese medicine widely used in China for treatment of cerebrovascular diseases. CG has been demonstrated efficacy in attenuating the cerebral microcirculatory disturbance and hippocampal neuron injury following global cerebral ischemia. However, the effects of CG on BBB disruption following cerebral ischemia have not been investigated. In this study, we examined the therapeutic effect of CG on the BBB disruption in a focal cerebral ischemia/reperfusion (I/R) rat model. Male Sprague-Dawley rats (250 to 300 g) were subjected to 1h middle cerebral artery occlusion (MCAO). CG (0.4 g/kg or 0.8 g/kg) was administrated orally 3h after reperfusion for the first time and then once daily up to 6 days. The results showed that Evans blue extravasation, brain water content, albumin leakage, infarction volume and neurological deficits increased in MCAO model rats, and were attenuated significantly by CG treatment. T2-weighted MRI and electron microscopy further confirmed the brain edema reduction in CG-treated rats. Treatment with CG improved cerebral blood flow (CBF). Western blot analysis and confocal microscopy showed that the tight junction proteins claudin-5, JAM-1, occludin and zonula occluden-1 between endothelial cells were significantly degradated, but the protein expression of caveolin-1, the principal marker of caveolae in endothelial cells, increased after ischemia, all of which were alleviated by CG treatment. In conclusion, the post-treatment with CG significantly reduced BBB permeability and brain edema, which were correlated with preventing the degradation of the tight junction proteins and inhibiting the expression of caveolin-1 in the endothelial cells. These findings provide a novel approach to the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Simão F, Matté A, Pagnussat AS, Netto CA, Salbego CG. Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3β and CREB through PI3-K/Akt pathways. Eur J Neurosci 2012; 36:2899-905. [DOI: 10.1111/j.1460-9568.2012.08229.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
76
|
Li W, Jiang D. Effect of resveratrol on Bcl-2 and VEGF expression in oxygen-induced retinopathy of prematurity. J Pediatr Ophthalmol Strabismus 2012; 49:230-5. [PMID: 22148982 DOI: 10.3928/01913913-20111129-01] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/20/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE To explore the effect of resveratrol on B-cell leukemia/lymphoma-2 (Bcl-2) and vascular endothelial growth factor (VEGF) expression in rats with oxygen-induced retinopathy of prematurity (ROP). METHODS Seven-day-old Sprague-Dawley rats (N = 60) were randomly assigned to five groups. Group A received normal partial oxygen pressure and groups B, C, D, and E received 75% ± 2% oxygen for 5 days to induce ROP. The rats in groups C, D, and E were intragastrically treated with resveratrol (10, 30, and 60 mg/kg/d, respectively) once daily for 5 days. Rats were killed at 17 days of age and the retina was collected. RESULTS Western blot analysis revealed increased Bcl-2 protein expression in group B versus group A. Levels of Bcl-2 decreased with the increase of resveratrol concentration in groups C, D, and E. The optical density of Bcl-2 protein expression in group B was four times higher than that in group A (P < .01). When compared with group B, expression of Bcl-2 and VEGF in groups C, D, and E decreased in a dose-dependent manner. Significant differences in expression of Bcl-2 and VEGF were also noted among the three treatment groups with resveratrol (P < .01). After treatment with resveratrol at 10, 30, and 60 mg/kg/d, the inhibition rate of Bcl-2 expression was 11.1%, 38.1%, and 69.8% and that of VEGF expression was 3.4%, 23.0%, and 43.7%, respectively. CONCLUSION Resveratrol can significantly inhibit expression of Bcl-2 and VEGF in the retina of neonatal rats with oxygen-induced ROP. It may provide a protective effect on retinal neovascular diseases, including ROP.
Collapse
Affiliation(s)
- Wenlin Li
- Department of Ophthalmology, Shenzhen Children’s Hospital, 7019# Yitian Road, Futian District, Shenzhen, China.
| | | |
Collapse
|
77
|
Simão F, Matté A, Pagnussat AS, Netto CA, Salbego CG. Resveratrol preconditioning modulates inflammatory response in the rat hippocampus following global cerebral ischemia. Neurochem Int 2012; 61:659-65. [PMID: 22709670 DOI: 10.1016/j.neuint.2012.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 05/31/2012] [Accepted: 06/08/2012] [Indexed: 11/29/2022]
Abstract
Considerable evidence has been accumulated to suggests that blocking the inflammatory reaction promotes neuroprotection and shows therapeutic potential for clinical treatment of ischemic brain injury. Consequently, anti-inflammatory therapies are being explored for prevention and treatment of these diseases. Induction of brain tolerance against ischemia by pretreatment with resveratrol has been found to influence expression of different molecules. It remains unclear, however, whether and how resveratrol preconditioning changes expression of inflammatory mediators after subsequent global cerebral ischemia/reperfusion (I/R). Therefore, we investigated the effect of resveratrol pretreatment on NF-κB inflammatory cascade, COX-2, iNOS and JNK levels in experimental I/R. Adult male rats were subjected to 10 min of four-vessel occlusion and sacrificed at selected post-ischemic time points. Resveratrol (30 mg/kg) pretreatment was injected intraperitoneally 7 days prior to I/R induction. We found that resveratrol treatment before insult remarkably reduced astroglial and microglial activation at 7 days after I/R. It greatly attenuated I/R-induced NF-κB and JNK activation with decreased COX-2 and iNOS production. In conclusion, the neuroprotection of resveratrol preconditioning may be due in part to the suppression of the inflammatory response via regulation of NF-κB, COX-2 and iNOS induced by I/R. JNK was also suggested to play a protective role through in neuroprotection of resveratrol, which may also be contributing to reduction in neuroinflammation. The study adds to a growing literature that resveratrol can have important anti-inflammatory actions in the brain.
Collapse
Affiliation(s)
- Fabrício Simão
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
78
|
Li Z, Pang L, Fang F, Zhang G, Zhang J, Xie M, Wang L. Resveratrol attenuates brain damage in a rat model of focal cerebral ischemia via up-regulation of hippocampal Bcl-2. Brain Res 2012; 1450:116-24. [PMID: 22410291 DOI: 10.1016/j.brainres.2012.02.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 01/25/2023]
Abstract
A number of studies have demonstrated that resveratrol (Res), a natural polyphenol compound found in plants, shows potent neuroprotective, anti-inflammatory and antioxidant effects; however, its ability to prevent ischemia-induced brain damage remains unclear. Here we tested whether Res played a neuroprotective role in a rat brain ischemia model induced by middle cerebral artery occlusion (MCAO). Adult male rats were randomly assigned into four experimental groups: sham operation (sham), ischemia treatment (MCAO), Res-treated MCAO (Res+MCAO) and Res alone group (Res+sham). The brain damage size and hippocampal apoptotic neurons in each rat were evaluated by triphenyltetrazolium chloride (TTC) staining and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) staining, respectively. Long-term potentiation (LTP) induced by high-frequency stimulation (HFS) in the hippocampus was assessed with extracellular recording. The expression of apoptosis-related proteins, i.e., Bcl-2 and Bax, in the hippocampus was detected by western blot. Our results revealed that Res treatment significantly reduced brain infarct volume of MCAO rats as compared to MCAO rats without Res treatment. A significant increase in TUNEL-positive neurons in the hippocampal CA1 region was visualized in the MCAO rats as compared to that of the sham group, but this increase was attenuated with Res treatment. Functionally, extracellular recordings revealed that MCAO operation impaired LTP in the hippocampal CA1 region and the basal synaptic transmission between the Schaffer collaterals, whereas Res treatment rescued the impaired LTP and facilitated synaptic transmission in the CA1 region of the MCAO rats. Res treatment increased the expression of anti-apoptotic protein Bcl-2 and decreased the expression of pro-apoptotic protein Bax in the MCAO rats. The findings suggest that Res can attenuate the deleterious effects of focal cerebral ischemia/reperfusion-induced brain injury and function as a potential neuroprotective agent. The neuroprotective qualities of Res, based on our data, may be attributable to the up-regulation of Bcl-2 expression and down-regulation of Bax expression.
Collapse
Affiliation(s)
- Zhen Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
79
|
Heeba GH, El-Hanafy AA. Nebivolol regulates eNOS and iNOS expressions and alleviates oxidative stress in cerebral ischemia/reperfusion injury in rats. Life Sci 2011; 90:388-95. [PMID: 22226906 DOI: 10.1016/j.lfs.2011.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 10/29/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
AIMS Oxidative stress-induced cell damage is reported to contribute to the pathogenesis of cerebral ischemia/reperfusion injury. This study investigated the neuroprotective effect of nebivolol against cerebral ischemia/reperfusion insult in rats. MAIN METHODS The model adopted was that of surgically-induced forebrain ischemia, performed by means of bilateral common carotid artery occlusion for 1h, followed by reperfusion for 24 h. The effects of 5 and 10 mg/kg nebivolol, treated for 7 days prior to ischemia/reperfusion insult, were investigated by estimating endothelial and inducible nitric oxide synthases (eNOS and iNOS) protein expressions and assessing oxidative stress-related biochemical parameters in the rat forebrain. Also, infarct volume measurement and histopathological study of the forebrain were examined. KEY FINDINGS Administration of nebivolol increased eNOS expression with simultaneous decrease in iNOS expression in a dose dependent manner. Moreover, nebivolol inhibited ischemia/reperfusion-induced depletion of reduced glutathione level and decreased the elevated total nitric oxide end production and malondialdehyde levels, superoxide dismutase and lactate dehydrogenase activities. A notable finding is that catalase activity was not changed in response to either ischemia/reperfusion insult or nebivolol treatment. However, the results confirmed that nebivolol significantly reduced infarct volume and alleviated ischemia/reperfusion-induced histopathological changes. SIGNIFICANCE The present study demonstrates the neuroprotective effect of nebivolol against cerebral ischemia/reperfusion insult. Neuroprotection observed with nebivolol may possibly be explained by regulating eNOS and iNOS expressions and by inhibition of oxidative stress-induced injury. Thus, nebivolol may be considered as a potential candidate for treatment in patients who are prone to stroke.
Collapse
Affiliation(s)
- Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt.
| | | |
Collapse
|
80
|
Yar AS, Menevse S, Dogan I, Alp E, Ergin V, Cumaoglu A, Aricioglu A, Ekmekci A, Menevse A. Investigation of ocular neovascularization-related genes and oxidative stress in diabetic rat eye tissues after resveratrol treatment. J Med Food 2011; 15:391-8. [PMID: 22191573 DOI: 10.1089/jmf.2011.0135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Changes in vascular endothelial growth factor (VEGF), angiotensin-converting enzyme (ACE), matrix metalloproteinase (MMP)-9, and endothelial nitric oxide synthase (eNOS) mRNA expression profiles and oxidative stress in the eye tissue microenviroment may have important roles in ocular neovascularization and permeability in proliferative diabetic retinopathy. The present study investigated the effects of resveratrol (RSV) treatment on the mRNA expression profile of VEGF, ACE, MMP-9, and eNOS, which are associated with vascular neovascularization, and glutathione, protein carbonyl, and nitrite-nitrate levels, which are markers of oxidative stress in eyes of diabetic rats. Twenty-four Wistar albino male rats were divided into four groups. After diabetes induction with streptozotocin (10 mg/kg/day) RSV was administered to the RSV and diabetes mellitus (DM) + RSV groups for 4 weeks. The mRNA levels were measured by quantitative real-time polymerase chain reaction assay, and biochemical estimations were determined with spectrophotometric assays in eye homogenates. The mRNA expression levels of VEGF, ACE, and MMP-9 were increased in the DM group compared with the control group, and RSV treatment decreased their mRNA levels. Expression of eNOS mRNA was increased in the RSV and DM groups and decreased in the DM + RSV group. Nitrite-nitrate levels and protein carbonyl content were increased and glutathione levels were decreased in the DM group compared with controls. Consequently, these data suggest that RSV suppressed the expression of eNOS, which is actively involved in the inflammation and healing process in chronic diabetes. Although oxidative stress was increased in eye tissue from diabetic rats, mRNA levels of VEGF, MMP-9, and ACE genes associated with vascular remodeling did not change in diabetic eyes.
Collapse
Affiliation(s)
- Atiye Seda Yar
- Department of Medical Biology and Genetics, Gazi University, Ankara, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Leonardo CC, Doré S. Dietary flavonoids are neuroprotective through Nrf2-coordinated induction of endogenous cytoprotective proteins. Nutr Neurosci 2011; 14:226-36. [PMID: 22005287 DOI: 10.1179/1476830511y.0000000013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Epidemiological studies have demonstrated that the consumption of fruits and vegetables is associated with reduced risk for cardiovascular disease and stroke. Detailed investigations into the specific dietary components of these foods have revealed that many polyphenolic constituents exert anti-oxidant effects on key substrates involved in the pathogenesis and progression of ischemic injury. These data have perpetuated the belief that the protective effects of flavonoids result from direct anti-oxidant actions at the levels of the cerebral vasculature and brain parenchyma. While many in vitro studies using purified extracts support this contention, first-pass metabolism alters the bioavailability of flavonoids such that the achievable concentrations after oral consumption are not consistent with this mechanism. Importantly, oral consumption of flavonoids may promote neural protection by facilitating the expression of gene products responsible for detoxifying the ischemic microenvironment through both anti-oxidative and anti-inflammatory actions. In particular, the transcriptional factor nuclear factor erythroid 2-related factor 2 has emerged as a critical regulator of flavonoid-mediated protection through the induction of various cytoprotective genes. The pleiotropic effects associated with potent transcriptional regulation likely represent the primary mechanisms of neural protection, as the flavonoid concentrations reaching ischemic tissues in vivo are sufficient to alter intracellular signal transduction but likely preclude the one-to-one stoichiometry necessary to confer protection by direct anti-oxidation. These data reflect an exciting new direction in the study of complementary and alternative medicine that may lead to the development of novel therapies for ischemic/hemorrhagic stroke, traumatic brain injury, and other neurological disorders.
Collapse
Affiliation(s)
- Christopher C Leonardo
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | | |
Collapse
|
82
|
Panickar KS, Anderson RA. Effect of polyphenols on oxidative stress and mitochondrial dysfunction in neuronal death and brain edema in cerebral ischemia. Int J Mol Sci 2011; 12:8181-207. [PMID: 22174658 PMCID: PMC3233464 DOI: 10.3390/ijms12118181] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/18/2011] [Accepted: 11/14/2011] [Indexed: 01/15/2023] Open
Abstract
Polyphenols are natural substances with variable phenolic structures and are elevated in vegetables, fruits, grains, bark, roots, tea, and wine. There are over 8000 polyphenolic structures identified in plants, but edible plants contain only several hundred polyphenolic structures. In addition to their well-known antioxidant effects, select polyphenols also have insulin-potentiating, anti-inflammatory, anti-carcinogenic, anti-viral, anti-ulcer, and anti-apoptotic properties. One important consequence of ischemia is neuronal death and oxidative stress plays a key role in neuronal viability. In addition, neuronal death may be initiated by the activation of mitochondria-associated cell death pathways. Another consequence of ischemia that is possibly mediated by oxidative stress and mitochondrial dysfunction is glial swelling, a component of cytotoxic brain edema. The purpose of this article is to review the current literature on the contribution of oxidative stress and mitochondrial dysfunction to neuronal death, cell swelling, and brain edema in ischemia. A review of currently known mechanisms underlying neuronal death and edema/cell swelling will be undertaken and the potential of dietary polyphenols to reduce such neural damage will be critically reviewed.
Collapse
Affiliation(s)
- Kiran S Panickar
- Diet, Genomics, & Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; E-Mail:
| | | |
Collapse
|
83
|
Karalis F, Soubasi V, Georgiou T, Nakas CT, Simeonidou C, Guiba-Tziampiri O, Spandou E. Resveratrol ameliorates hypoxia/ischemia-induced behavioral deficits and brain injury in the neonatal rat brain. Brain Res 2011; 1425:98-110. [DOI: 10.1016/j.brainres.2011.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 10/17/2022]
|
84
|
Petraglia AL, Winkler EA, Bailes JE. Stuck at the bench: Potential natural neuroprotective compounds for concussion. Surg Neurol Int 2011; 2:146. [PMID: 22059141 PMCID: PMC3205506 DOI: 10.4103/2152-7806.85987] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/22/2011] [Indexed: 12/31/2022] Open
Abstract
Background: While numerous laboratory studies have searched for neuroprotective treatment approaches to traumatic brain injury, no therapies have successfully translated from the bench to the bedside. Concussion is a unique form of brain injury, in that the current mainstay of treatment focuses on both physical and cognitive rest. Treatments for concussion are lacking. The concept of neuro-prophylactic compounds or supplements is also an intriguing one, especially as we are learning more about the relationship of numerous sub-concussive blows and/or repetitive concussive impacts and the development of chronic neurodegenerative disease. The use of dietary supplements and herbal remedies has become more common place. Methods: A literature search was conducted with the objective of identifying and reviewing the pre-clinical and clinical studies investigating the neuroprotective properties of a few of the more widely known compounds and supplements. Results: There are an abundance of pre-clinical studies demonstrating the neuroprotective properties of a variety of these compounds and we review some of those here. While there are an increasing number of well-designed studies investigating the therapeutic potential of these nutraceutical preparations, the clinical evidence is still fairly thin. Conclusion: There are encouraging results from laboratory studies demonstrating the multi-mechanistic neuroprotective properties of many naturally occurring compounds. Similarly, there are some intriguing clinical observational studies that potentially suggest both acute and chronic neuroprotective effects. Thus, there is a need for future trials exploring the potential therapeutic benefits of these compounds in the treatment of traumatic brain injury, particularly concussion.
Collapse
Affiliation(s)
- Anthony L Petraglia
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
85
|
Zhao H, Zhang Q, Xue Y, Chen X, Haun RS. Effects of hyperbaric oxygen on the expression of claudins after cerebral ischemia-reperfusion in rats. Exp Brain Res 2011; 212:109-17. [PMID: 21626096 DOI: 10.1007/s00221-011-2702-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/15/2011] [Indexed: 01/09/2023]
Abstract
The malfunction of tight junctions (TJs) between endothelial cells in the blood brain barrier (BBB) is the pathophysiological basis for cerebral ischemia-reperfusion (IR) injury. Claudins, major molecular elements of the TJs, play a key role in the paracellular permeability of the BBB. Although several studies have demonstrated the impact of hyperbaric oxygenation (HBO) on boosting oxygen supply and reducing infarct size, its effect and underlying mechanism on the integrity of the BBB is unknown. To study the function of HBO on claudins and the permeability of the BBB, we replicated the animal model of local cerebral IR. Using Evans blue dye, permeability of the BBB was examined. Transmission electron microscopy (TEM), immunohistochemistry, western blot, and gelatin zymography were used to detect the integrity of the BBB, the expression of claudin-1 and claudin-5, and the activity of matrix metalloproteinases (MMPs) in brain microvessel endothelium. Our data indicate that compared with the sham-operated group, IR increased permeability of the BBB to Evans blue dye (P < 0.01), peaking at 4 h. The BBB ultrastructure was disrupted and the expression of claudin-5 and claudin-1 decreased (P < 0.01) in the 4 and 72 h IR group, respectively. Increased claudin-5 and claudin-1 expression and decreased permeability of the BBB were observed in the HBO + IR group (P < 0.01) via the suppression of MMP-2 and MMP-9, respectively. Our study provides direct evidence that HBO decreases the permeability of the BBB by reducing the enzymatic activity of MMPs and augmenting the expression of claudins at different stages in cerebral IR injury.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Experimental Center of Functional Subjects, College of Basic Medicine, China Medical University, Shenyang 110001, China.
| | | | | | | | | |
Collapse
|
86
|
Kaneko H, Anzai T, Morisawa M, Kohno T, Nagai T, Anzai A, Takahashi T, Shimoda M, Sasaki A, Maekawa Y, Yoshimura K, Aoki H, Tsubota K, Yoshikawa T, Okada Y, Ogawa S, Fukuda K. Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularization. Atherosclerosis 2011; 217:350-7. [PMID: 21530968 DOI: 10.1016/j.atherosclerosis.2011.03.042] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We sought to examine the effect of resveratrol (3,4',5-trihydroxy-trans-stilbene), a plant-derived polyphenolic compound, on the development of abdominal aortic aneurysm (AAA). METHODS AAA was induced in mice by periaortic application of CaCl(2). NaCl (0.9%)-applied mice were used as a sham group. Mice were treated with intraperitoneal injection of PBS (Sham/CON, AAA/CON, n=30 for each) or resveratrol (100 mg/kg/day) (AAA/RSVT, n=30). Six weeks after the operation, aortic tissue was excised for further examinations. RESULTS Aortic diameter was enlarged in AAA/CON compared with Sham/CON. Resveratrol treatment reduced the aneurysm size and inflammatory cell infiltration in the aortic wall compared with AAA/CON. Elastica Van Gieson staining showed destruction of the wavy morphology of the elastic lamellae in AAA/CON, while it was preserved in AAA/RSVT. The increased mRNA expression of monocyte chemotactic protein-1, tumor necrosis factor-α, intercellular adhesion molecule-1, CD68, vascular endothelial growth factor-A, p47, glutathione peroxidase (GPX)1 and GPX3 were attenuated by resveratrol treatment (all p<0.05). Administration of resveratrol decreased protein expression of phospho-p65 in AAA. The increased 8-hydroxy-2'-deoxyguanosine-positive cell count and 4-hydroxy-2-nonenal-positive cell count in AAA were also reduced by resveratrol treatment. Zymographic activity of matrix metalloproteinase (MMP)-9 and MMP-2 was lower in AAA/RSVT compared with AAA/CON (both p<0.05). Compared with AAA/CON, Mac-2(+) macrophages and CD31(+) vessels in the aortic wall were decreased in AAA/RSVT (both p<0.05). CONCLUSION Treatment with resveratrol in mice prevented the development of CaCl(2)-induced AAA, in association with reduced inflammation, oxidative stress, neoangiogenesis, and extracellular matrix disruption. These findings suggest therapeutic potential of resveratrol for AAA.
Collapse
Affiliation(s)
- Hidehiro Kaneko
- Division of Cardiology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA. Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 2011; 31:1003-19. [PMID: 21224864 PMCID: PMC3070983 DOI: 10.1038/jcbfm.2010.229] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/11/2010] [Accepted: 12/01/2010] [Indexed: 01/11/2023]
Abstract
Caloric restriction (CR), resveratrol, and ischemic preconditioning (IPC) have been shown to promote protection against ischemic injury in the heart and brain, as well as in other tissues. The activity of sirtuins, which are enzymes that modulate diverse biologic processes, seems to be vital in the ability of these therapeutic modalities to prevent against cellular dysfunction and death. The protective mechanisms of the yeast Sir2 and the mammalian homolog sirtuin 1 have been extensively studied, but the involvement of other sirtuins in ischemic protection is not yet clear. We examine the roles of mammalian sirtuins in modulating protective pathways against oxidative stress, energy depletion, excitotoxicity, inflammation, DNA damage, and apoptosis. Although many of these sirtuins have not been directly implicated in ischemic protection, they may have unique roles in enhancing function and preventing against stress-mediated cellular damage and death. This review will include in-depth analyses of the roles of CR, resveratrol, and IPC in activating sirtuins and in mediating protection against ischemic damage in the heart and brain.
Collapse
Affiliation(s)
- Kahlilia C Morris
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Hung Wen Lin
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - John W Thompson
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
88
|
Sun A, Wang Q, Simonyi A, Sun G. Botanical Phenolics and Neurodegeneration. OXIDATIVE STRESS AND DISEASE 2011. [DOI: 10.1201/b10787-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
89
|
Li H, Yan Z, Zhu J, Yang J, He J. Neuroprotective effects of resveratrol on ischemic injury mediated by improving brain energy metabolism and alleviating oxidative stress in rats. Neuropharmacology 2011; 60:252-8. [DOI: 10.1016/j.neuropharm.2010.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/03/2010] [Accepted: 09/06/2010] [Indexed: 01/01/2023]
|
90
|
Ahmad A, Khan MM, Ishrat T, Khan MB, Khuwaja G, Raza SS, Shrivastava P, Islam F. Synergistic effect of selenium and melatonin on neuroprotection in cerebral ischemia in rats. Biol Trace Elem Res 2011; 139:81-96. [PMID: 20358308 DOI: 10.1007/s12011-010-8643-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
The synergistic scavenger effects of selenium and melatonin collectively we called Se-Mel was studied on the prevention of neuronal injury induced by ischemia/reperfusion. Male Wistar rats were treated with sodium selenite (0.1 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) 30 min before the middle carotid artery occlusion (MCAO) and immediately after MCAO to male Wistar rats and was continued for 3 days once daily at the interval of 24 h. Behavioral activity (spontaneous motor activity and motor deficit) was improved in Se-Mel-treated rats as compared to MCAO group rats. The level of glutathione and the activity of antioxidant enzymes was depleted significantly while the content of thiobarbituric acid reactive substances, protein carbonyl, and nitric oxide radical (NO(·)) was increased significantly in MCAO group. Systemic administration of Se-Mel ameliorated oxidative stress and improves ischemia/reperfusion-induced focal cerebral ischemia. Se-Mel also inhibited inducible nitric oxide synthase expression in Se-Mel+MCAO group as compared to MCAO group rats. Thus, Se-Mel has shown an excellent neuroprotective effect against ischemia/reperfusion injury through an anti-ischemic pathway. In conclusion, we demonstrated that the pretreatment with Se-Mel at the onset of reperfusion, reduced post-ischemic damage, and improved neurological outcome following transient focal cerebral ischemia in male Wistar rat.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Neurotoxicology laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Shin JA, Lee H, Lim YK, Koh Y, Choi JH, Park EM. Therapeutic effects of resveratrol during acute periods following experimental ischemic stroke. J Neuroimmunol 2010; 227:93-100. [DOI: 10.1016/j.jneuroim.2010.06.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/19/2010] [Accepted: 06/21/2010] [Indexed: 12/22/2022]
|
92
|
Kwon KJ, Kim HJ, Shin CY, Han SH. Melatonin Potentiates the Neuroprotective Properties of Resveratrol Against Beta-Amyloid-Induced Neurodegeneration by Modulating AMP-Activated Protein Kinase Pathways. J Clin Neurol 2010; 6:127-37. [PMID: 20944813 PMCID: PMC2950917 DOI: 10.3988/jcn.2010.6.3.127] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent studies have demonstrated that resveratrol (RSV) reduces the incidence of age-related macular degeneration, Alzheimer's disease (AD), and stroke, while melatonin (MEL) supplementation reduces the progression of the cognitive impairment in AD patients. The purpose of this investigation was to assess whether the co-administration of MEL and RSV exerts synergistic effects on their neuroprotective properties against β-amyloid (Aβ)-induced neuronal death. METHODS The neuroprotective effects of co-treatment with MEL and RSV on Aβ1-42-induced cell death, was measured by MTT reduction assay. Aβ1-42 caused an increase in intracellular levels of reactive oxygen species (ROS), as assessed by H(2)-DCF-DA dye, and a reduction of total glutathione (GSH) levels and mitochondrial membrane potential, as assessed using monochlorobimane and rhodamine 123 fluorescence, respectively. Western blotting was used to investigate the intracellular signaling mechanism involved in these synergic effects. RESULTS We treated a murine HT22 hippocampal cell line with MEL or RSV alone or with both simultaneously. MEL and RSV alone significantly attenuated ROS production, mitochondrial membrane-potential disruption and the neurotoxicity induced by Aβ1-42. They also restored the Aβ1-42-induced depletion of GSH, back to within its normal range and prevented the Aβ1-42-induced activation of glycogen synthase kinase 3β (GSK3β). However, co-treatment with MEL and RSV did not exert any significant synergistic effects on either the recovery of the Aβ1-42-induced depletion of GSH or on the inhibition of Aβ1-42-induced GSK3β activation. Aβ1-42 treatment increased AMP-activated protein kinase (AMPK) activity, which is associated with subsequent neuronal death. We demonstrated that MEL and RSV treatment inhibited the phosphorylation of AMPK. CONCLUSIONS Together, our results suggest that co-administration of MEL and RSV acts as an effective treatment for AD by attenuating Aβ1-42-induced oxidative stress and the AMPK-dependent pathway.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Department of Neurology, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul, Korea
| | | | | | | |
Collapse
|
93
|
Chen C, Ostrowski RP, Zhou C, Tang J, Zhang JH. Suppression of hypoxia-inducible factor-1alpha and its downstream genes reduces acute hyperglycemia-enhanced hemorrhagic transformation in a rat model of cerebral ischemia. J Neurosci Res 2010; 88:2046-55. [PMID: 20155812 DOI: 10.1002/jnr.22361] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We evaluated a role of hypoxia-inducible factor-1alpha (HIF-1alpha) and its downstream genes in acute hyperglycemia-induced hemorrhagic transformation in a rat model of focal cerebral ischemia. Male Sprague-Dawley rats weighing 280-300 g (n = 105) were divided into sham, 90 min middle cerebral artery occlusion (MCAO), MCAO plus HIF-1alpha inhibitors, 2-methoxyestradiol (2ME2) or 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), groups. Rats received an injection of 50% dextrose (6 ml/kg intraperitoneally) at 15 min before MCAO. HIF-1alpha inhibitors were administered at the onset of reperfusion. The animals were examined for neurological deficits and sacrificed at 6, 12, 24, and 72 hr following MCAO. The cerebral tissues were collected for histology, zymography, and Western blot analysis. The expression of HIF-1alpha was increased in ischemic brain tissues after MCAO and reduced by HIF-1alpha inhibitors. In addition, 2ME2 reduced the expression of vascular endothelial growth factor (VEGF) and the elevation of active matrix metalloproteinase-2 and -9 (MMP-2/MMP-9) in the ipsilateral hemisphere. Both 2ME2 and YC-1 reduced infarct volume and ameliorated neurological deficits. However, only 2ME2 attenuated hemorrhagic transformation in the ischemic territory. In conclusion, the inhibition of HIF-1alpha and its downstream genes attenuates hemorrhagic conversion of cerebral infarction and ameliorates neurological deficits after focal cerebral ischemia.
Collapse
Affiliation(s)
- Chunhua Chen
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Risley Hall Room 219, Loma Linda, CA 92354, USA
| | | | | | | | | |
Collapse
|
94
|
Kubota S, Kurihara T, Ebinuma M, Kubota M, Yuki K, Sasaki M, Noda K, Ozawa Y, Oike Y, Ishida S, Tsubota K. Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1725-31. [PMID: 20709795 DOI: 10.2353/ajpath.2010.100098] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Light damage to the retina accelerates retinal degeneration in human diseases and rodent models. Recently, the polyphenolic phytoalexin resveratrol has been shown to exert various bioactivities in addition to its classical antioxidant property. In the present study, we investigated the effect of resveratrol on light-induced retinal degeneration together with its underlying molecular mechanisms. BALB/c mice with light exposure (5000-lux white light for 3 hours) were orally pretreated with resveratrol at a dose of 50 mg/kg for 5 days. Retinal damage was evaluated by TdT-mediated dUTP nick-end labeling, outer nuclear layer morphometry, and electroretinography. Administration of resveratrol to mice with light exposure led to a significant suppression of light-induced pathological parameters, including TdT-mediated dUTP nick-end labeling-positive retinal cells, outer nuclear layer thinning, and electroretinography changes. To clarify the underlying molecular mechanisms, the nuclear translocation of activator protein-1 subunit c-fos was evaluated by enzyme-linked immunosorbent assay, and the retinal activity of sirtuin 1 was measured by deacetylase fluorometric assay. Retinal activator protein-1 activation, up-regulated following light exposure, was significantly reduced by application of resveratrol. In parallel, retinal sirtuin 1 activity, reduced in animals with light damage, was significantly augmented by resveratrol treatment. Our data suggest the potential use of resveratrol as a therapeutic agent to prevent retinal degeneration related to light damage.
Collapse
Affiliation(s)
- Shunsuke Kubota
- Laboratories of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
CHEN C, ANATOL M, ZHAN Y, LIU W, OSTROWKI R, TANG JIPING, ZHANG JH. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model. Neuroscience 2010; 169:402-14. [PMID: 20423721 PMCID: PMC2900515 DOI: 10.1016/j.neuroscience.2010.04.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/15/2010] [Accepted: 04/19/2010] [Indexed: 01/04/2023]
Abstract
Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested the effect of hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague-Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H(2)); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H(2) (MCAO+H(2)). All rats received an injection of 50% dextrose (6 ml/kg i.p.) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 h during reperfusion. We measured the level of blood glucose at 0 h, 0.5 h, 4 h, and 6 h after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluated by measuring the level of 8 Hydroxyguanosine (8OHG), 4-Hydroxy-2-Nonenal (HNE) and nitrotyrosine), and matrix metalloproteinase (MMP)-2/MMP-9 activity were measured at 24 h after ischemia. We found that hydrogen inhalation for 2 h reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen was accompanied by a reduction of the expression of 8OHG, HNE, and nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500+/-32.51 to 366+/-68.22 mg/dl at 4 h after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occludin, collagen IV or aquaporin4 (AQP4). In conclusion, hydrogen gas reduced brain infarction, hemorrhagic transformation, and improved neurological function in rats. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation.
Collapse
Affiliation(s)
- C.H. CHEN
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anatomy & Embryology, Peking University Health Science Center, Beijing, China
| | - M. ANATOL
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Y. ZHAN
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - W.W. LIU
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - R.P. OSTROWKI
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - JIPING TANG
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - J. H. ZHANG
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
96
|
Zhang F, Liu J, Shi JS. Anti-inflammatory activities of resveratrol in the brain: Role of resveratrol in microglial activation. Eur J Pharmacol 2010; 636:1-7. [DOI: 10.1016/j.ejphar.2010.03.043] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/25/2010] [Accepted: 03/12/2010] [Indexed: 01/12/2023]
|
97
|
Li C, Yan Z, Yang J, Chen H, Li H, Jiang Y, Zhang Z. Neuroprotective effects of resveratrol on ischemic injury mediated by modulating the release of neurotransmitter and neuromodulator in rats. Neurochem Int 2010; 56:495-500. [DOI: 10.1016/j.neuint.2009.12.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/29/2009] [Accepted: 12/14/2009] [Indexed: 01/03/2023]
|
98
|
Abstract
A transient, ischemia-resistant phenotype known as "ischemic tolerance" can be established in brain in a rapid or delayed fashion by a preceding noninjurious "preconditioning" stimulus. Initial preclinical studies of this phenomenon relied primarily on brief periods of ischemia or hypoxia as preconditioning stimuli, but it was later realized that many other stressors, including pharmacologic ones, are also effective. This review highlights the surprisingly wide variety of drugs now known to promote ischemic tolerance, documented and to some extent mechanistically characterized in preclinical animal models of stroke. Although considerably more experimentation is needed to thoroughly validate the ability of any currently identified preconditioning agent to protect ischemic brain, the fact that some of these drugs are already clinically approved for other indications implies that the growing enthusiasm for translational success in the field of pharmacologic preconditioning may be well justified.
Collapse
|
99
|
Dong X, Song YN, Liu WG, Guo XL. Mmp-9, a potential target for cerebral ischemic treatment. Curr Neuropharmacol 2009; 7:269-75. [PMID: 20514206 PMCID: PMC2811860 DOI: 10.2174/157015909790031157] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 09/22/2009] [Accepted: 10/05/2009] [Indexed: 11/27/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) which is a member of matrix metalloproteinases family that normally remodel the extracellular matrix, has been shown to play an important role in both animal models of cerebral ischemia and human stroke. The expression of MMP-9 is elevated after cerebral ischemia which is involved in accelerating matrix degradation, disrupting the blood-brain barrier, increasing the infarct size and relating to hemorrhagic transformation. Recently, many drugs, such as tetracycline derivatives, cyclooxygenase inhibitors, ACEI inhibitors and AT1 receptor blockers, etc., have been found to attenuate the elevated expression levels of MMP-9 after ischemia and to reduce the damage of cerebral ischemic. This article reviews the physiological features of MMP-9 and its important role in the genesis, propagation, and therapeutics of cerebral ischemic diseases.
Collapse
Affiliation(s)
- Xue Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
| | - Yu-Ning Song
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
| | - Wei-Guo Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
- Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
| |
Collapse
|
100
|
Rutin protects the neural damage induced by transient focal ischemia in rats. Brain Res 2009; 1292:123-35. [DOI: 10.1016/j.brainres.2009.07.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 01/13/2023]
|