51
|
Leung KH, He HZ, Wang W, Zhong HJ, Chan DSH, Leung CH, Ma DL. Label-free luminescent switch-on detection of endonuclease IV activity using a G-quadruplex-selective iridium(III) complex. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12249-12253. [PMID: 24245499 DOI: 10.1021/am404314p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report herein the synthesis and application of a novel G-quadruplex-selective luminescent iridium(III) complex [Ir(ppy)2(bcp)](+) (where ppy = 2-phenylpyridine and bcp = 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) for the sensitive detection of apurinic/apyrimidinic (AP) endonuclease activity. Using endonuclease IV (Endo IV) as a model enzyme, a duplex DNA substrate containing a G-quadruplex-forming sequence is cleaved by Endo IV at the abasic site. This releases the G-quadruplex sequence, which folds into a G-quadruplex and is recognised by the G-quadruplex-selective iridium(III) complex with an enhanced luminescence response. The assay achieved high sensitivity and selectivity for Endo IV over other tested enzymes.
Collapse
Affiliation(s)
- Ka-Ho Leung
- Department of Chemistry, Hong Kong Baptist University , Kowloon Tong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Deaconescu AM. RNA polymerase between lesion bypass and DNA repair. Cell Mol Life Sci 2013; 70:4495-509. [PMID: 23807206 PMCID: PMC11113250 DOI: 10.1007/s00018-013-1384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/29/2022]
Abstract
DNA damage leads to heritable changes in the genome via DNA replication. However, as the DNA helix is the site of numerous other transactions, notably transcription, DNA damage can have diverse repercussions on cellular physiology. In particular, DNA lesions have distinct effects on the passage of transcribing RNA polymerases, from easy bypass to almost complete block of transcription elongation. The fate of the RNA polymerase positioned at a lesion is largely determined by whether the lesion is structurally subtle and can be accommodated and eventually bypassed, or bulky, structurally distorting and requiring remodeling/complete dissociation of the transcription elongation complex, excision, and repair. Here we review cellular responses to DNA damage that involve RNA polymerases with a focus on bacterial transcription-coupled nucleotide excision repair and lesion bypass via transcriptional mutagenesis. Emphasis is placed on the explosion of new structural information on RNA polymerases and relevant DNA repair factors and the mechanistic models derived from it.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS029, Waltham, MA, 02454, USA,
| |
Collapse
|
53
|
Leung KH, He HZ, Ma VPY, Zhong HJ, Chan DSH, Zhou J, Mergny JL, Leung CH, Ma DL. Detection of base excision repair enzyme activity using a luminescent G-quadruplex selective switch-on probe. Chem Commun (Camb) 2013; 49:5630-2. [PMID: 23559154 DOI: 10.1039/c3cc41129j] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report herein a simple and convenient luminescent assay for detection of base excision repair enzyme activity using an Ir(III) complex as a G-quadruplex selective probe. Using uracil-DNA glycosylase (UDG) as a model enzyme, the assay achieved high sensitivity and selectivity for UDG over other tested enzymes. The utility of the assay for screening potential UDG inhibitors was also demonstrated.
Collapse
Affiliation(s)
- Ka-Ho Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Leung CH, Zhong HJ, He HZ, Lu L, Chan DSH, Ma DL. Luminescent oligonucleotide-based detection of enzymes involved with DNA repair. Chem Sci 2013. [DOI: 10.1039/c3sc51228b] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
55
|
Teyssier JR, Chauvet-Gelinier JC, Ragot S, Bonin B. Up-regulation of leucocytes genes implicated in telomere dysfunction and cellular senescence correlates with depression and anxiety severity scores. PLoS One 2012. [PMID: 23185405 PMCID: PMC3504145 DOI: 10.1371/journal.pone.0049677] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Major depressive disorder (MDD) is frequently associated with chronic medical illness responsible of increased disability and mortality. Inflammation and oxidative stress are considered to be the major mediators of the allostatic load, and has been shown to correlate with telomere erosion in the leucocytes of MDD patients, leading to the model of accelerated aging. However, the significance of telomere length as an exclusive biomarker of aging has been questioned on both methodological and biological grounds. Furthermore, telomeres significantly shorten only in patients with long lasting MDD. Sensitive and dynamic functional biomarkers of aging would be clinically useful to evaluate the somatic impact of MDD. Methodology To address this issue we have measured in the blood leucocytes of MDD patients (N = 17) and controls (N = 16) the expression of two genes identified as robust biomarkers of human aging and telomere dysfunction: p16INK4a and STMN1. We have also quantified the transcripts of genes involved in the repair of oxidative DNA damage at telomeres (OGG1), telomere regulation and elongation (TERT), and in the response to biopsychological stress (FOS and DUSP1). Results The OGG1, p16INK4a, and STMN1 gene were significantly up-regulated (25 to 100%) in the leucocytes of MDD patients. Expression of p16INK4a and STMN1 was directly correlated with anxiety scores in the depression group, and that of p16INK4a, STMN and TERT with the depression and anxiety scores in the combined sample (MDD plus controls). Furthermore, we identified a unique correlative pattern of gene expression in the leucocytes of MDD subjects. Conclusions Expression of p16INK4 and STMN1 is a promising biomarker for future epidemiological assessment of the somatic impact of depressive and anxious symptoms, at both clinical and subclinical level in both depressive patients and general population.
Collapse
Affiliation(s)
- Jean-Raymond Teyssier
- Department of Genetics and Laboratory of Molecular Genetics, University Hospital, Dijon, France.
| | | | | | | |
Collapse
|
56
|
Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:321653. [PMID: 23050038 PMCID: PMC3459245 DOI: 10.1155/2012/321653] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023]
Abstract
Aging is a multifactorial process that depends on diverse molecular and cellular mechanisms, such as genome maintenance and inflammation. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1), which catalyzes the synthesis of the biopolymer poly(ADP-ribose), exhibits an essential role in both processes. On the one hand, PARP1 serves as a genomic caretaker as it participates in chromatin remodelling, DNA repair, telomere maintenance, resolution of replicative stress, and cell cycle control. On the other hand, PARP1 acts as a mediator of inflammation due to its function as a regulator of NF-κB and other transcription factors and its potential to induce cell death. Consequently, PARP1 represents an interesting player in several aging mechanisms and is discussed as a longevity assurance factor on the one hand and an aging-promoting factor on the other hand. Here, we review the molecular mechanisms underlying the various roles of PARP1 in longevity and aging with special emphasis on cellular studies and we briefly discuss the results in the context of in vivo studies in mice and humans.
Collapse
|
57
|
Wang J, Cao H, You C, Yuan B, Bahde R, Gupta S, Nishigori C, Niedernhofer LJ, Brooks PJ, Wang Y. Endogenous formation and repair of oxidatively induced G[8-5 m]T intrastrand cross-link lesion. Nucleic Acids Res 2012; 40:7368-74. [PMID: 22581771 PMCID: PMC3424544 DOI: 10.1093/nar/gks357] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/10/2012] [Accepted: 03/29/2012] [Indexed: 12/19/2022] Open
Abstract
Exposure to reactive oxygen species (ROS) can give rise to the formation of various DNA damage products. Among them, d(G[8-5 m]T) can be induced in isolated DNA treated with Fenton reagents and in cultured human cells exposed to γ-rays, d(G[8-5m]T) can be recognized and incised by purified Escherichia coli UvrABC nuclease. However, it remains unexplored whether d(G[8-5 m]T) accumulates in mammalian tissues and whether it is a substrate for nucleotide excision repair (NER) in vivo. Here, we found that d(G[8-5 m]T) could be detected in DNA isolated from tissues of healthy humans and animals, and elevated endogenous ROS generation enhanced the accumulation of this lesion in tissues of a rat model of Wilson's disease. Additionally, XPA-deficient human brain and mouse liver as well as various types of tissues of ERCC1-deficient mice contained higher levels of d(G[8-5 m]T) but not ROS-induced single-nucleobase lesions than the corresponding normal controls. Together, our studies established that d(G[8-5 m]T) can be induced endogenously in mammalian tissues and constitutes a substrate for NER in vivo.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Huachuan Cao
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Changjun You
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Bifeng Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Ralf Bahde
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Sanjeev Gupta
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Chikako Nishigori
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Laura J. Niedernhofer
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Philip J. Brooks
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| |
Collapse
|
58
|
Zhang L, Zhao J, Jiang J, Yu R. A target-activated autocatalytic DNAzyme amplification strategy for the assay of base excision repair enzyme activity. Chem Commun (Camb) 2012; 48:8820-2. [PMID: 22836748 DOI: 10.1039/c2cc34531e] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Based on a target-activated autocatalytic DNAzyme amplification strategy, novel fluorescence sensing platforms were constructed for highly sensitive and selective assay of base excision repair enzyme activity. By using a rolling circle amplification (RCA)-coupled amplification cascade, an extremely low detection limit (0.002 U mL(-1)) was achieved.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | |
Collapse
|
59
|
Nixon BJ, Stanger SJ, Nixon B, Roman SD. Chronic Exposure to Acrylamide Induces DNA Damage in Male Germ Cells of Mice. Toxicol Sci 2012; 129:135-45. [DOI: 10.1093/toxsci/kfs178] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
60
|
Barakat KH, Gajewski MM, Tuszynski JA. DNA polymerase beta (pol β) inhibitors: a comprehensive overview. Drug Discov Today 2012; 17:913-20. [PMID: 22561893 DOI: 10.1016/j.drudis.2012.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/19/2012] [Accepted: 04/19/2012] [Indexed: 11/25/2022]
Abstract
Base excision repair (BER) is the fundamental pathway responsible for the elimination of damaged DNA bases and repair of DNA single-strand breaks generated spontaneously or produced by DNA-damaging agents. Among the essential enzymes that are required to achieve the BER reaction is DNA polymerase beta (pol β), which has been regarded as a potential therapeutic target. More than 60 pol β-inhibitors have been identified so far; however, most of them are either not potent or not specific enough to become a drug. In this article we compile an essential knowledge base regarding the structures, the modes of inhibition and the activities of these pharmacologically interesting molecules.
Collapse
Affiliation(s)
- Khaled H Barakat
- Department of Physics, University of Alberta, Edmonton, AB, Canada.
| | | | | |
Collapse
|
61
|
Dietary restriction increases site-specific histone H3 acetylation in rat liver: Possible modulation by sirtuins. Biochem Biophys Res Commun 2012; 418:836-40. [DOI: 10.1016/j.bbrc.2012.01.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 11/21/2022]
|
62
|
Nakane S, Ishikawa H, Nakagawa N, Kuramitsu S, Masui R. The structural basis of the kinetic mechanism of a gap-filling X-family DNA polymerase that binds Mg(2+)-dNTP before binding to DNA. J Mol Biol 2012; 417:179-96. [PMID: 22306405 DOI: 10.1016/j.jmb.2012.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/09/2012] [Accepted: 01/17/2012] [Indexed: 11/30/2022]
Abstract
DNA with single-nucleotide (1-nt) gaps can arise during various DNA processing events. These lesions are repaired by X-family DNA polymerases (PolXs) with high gap-filling activity. Some PolXs can bind productively to dNTPs in the absence of DNA and fill these 1-nt gaps. Although PolXs have a crucial role in efficient gap filling, currently, little is known of the kinetic and structural details of their productive dNTP binding. Here, we show that Thermus thermophilus HB8 PolX (ttPolX) had strong binding affinity for Mg(2+)-dNTPs in the absence of DNA and that it follows a Theorell-Chance (hit-and-run) mechanism with nucleotide binding first. Comparison of the intermediate crystal structures of ttPolX in a binary complex with dGTP and in a ternary complex with 1-nt gapped DNA and Mg(2+)-ddGTP revealed that the conformation of the incoming nucleotide depended on whether or not DNA was present. Furthermore, the Lys263 residue located between two guanosine conformations was essential to the strong binding affinity of the enzyme. The ability to bind to either syn-dNTP or anti-dNTP and the involvement of a Theorell-Chance mechanism are key aspects of the strong nucleotide-binding and efficient gap-filling activities of ttPolX.
Collapse
Affiliation(s)
- Shuhei Nakane
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
63
|
Vyjayanti VN, Swain U, Rao KS. Age-related decline in DNA polymerase β activity in rat brain and tissues. Neurochem Res 2012; 37:991-5. [PMID: 22219134 DOI: 10.1007/s11064-011-0694-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/18/2011] [Accepted: 12/29/2011] [Indexed: 11/29/2022]
Abstract
Fidelity of DNA polymerases is vital for maintaining genomic integrity. Deficient DNA repair leads to age related disorders or cancer. If the age at which the decline in activity of predominant DNA repair enzymes starts is identified, and the deficient proteins supplemented, then the manifestation of these diseases can be delayed promoting healthy aging. DNA polymerase β (pol β) is a predominant repair enzyme in brain. DNA pol β activity declines with age in rat brain/neurons but the exact age during the life time of rat when this decline begins is not known, and comparison of this activity was not made between post mitotic and proliferating tissues therefore the pattern of pol β with age was studied in rat brain and tissues. The decline in pol β activity started between 30 and 45 days postnatal in all the tissues. Post mitotic tissues showed pronounced decline than the proliferating tissues.
Collapse
Affiliation(s)
- V N Vyjayanti
- Department of Biochemistry, University of Hyderabad, Hyderabad, Andhra Pradesh 500046, India
| | | | | |
Collapse
|
64
|
Goellner EM, Svilar D, Almeida KH, Sobol RW. Targeting DNA polymerase ß for therapeutic intervention. Curr Mol Pharmacol 2012; 5:68-87. [PMID: 22122465 PMCID: PMC3894524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 01/10/2011] [Accepted: 01/15/2011] [Indexed: 05/31/2023]
Abstract
DNA damage plays a causal role in numerous disease processes. Hence, it is suggested that DNA repair proteins, which maintain the integrity of the nuclear and mitochondrial genomes, play a critical role in reducing the onset of multiple diseases, including cancer, diabetes and neurodegeneration. As the primary DNA polymerase involved in base excision repair, DNA polymerase ß (Polß) has been implicated in multiple cellular processes, including genome maintenance and telomere processing and is suggested to play a role in oncogenic transformation, cell viability following stress and the cellular response to radiation, chemotherapy and environmental genotoxicants. Therefore, Polß inhibitors may prove to be effective in cancer treatment. However, Polß has a complex and highly regulated role in DNA metabolism. This complicates the development of effective Polß-specific inhibitors useful for improving chemotherapy and radiation response without impacting normal cellular function. With multiple enzymatic activities, numerous binding partners and complex modes of regulation from post-translational modifications, there are many opportunities for Polß inhibition that have yet to be resolved. To shed light on the varying possibilities and approaches of targeting Polß for potential therapeutic intervention, we summarize the reported small molecule inhibitors of Polß and discuss the genetic, biochemical and chemical studies that implicate additional options for Polß inhibition. Further, we offer suggestions on possible inhibitor combinatorial approaches and the potential for tumor specificity for Polß-inhibitors.
Collapse
Affiliation(s)
- Eva M. Goellner
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Karen H. Almeida
- Department of Physical Sciences, Rhode Island College, 600 Mt. Pleasant Ave, Providence, RI 02908-1991, USA
| | - Robert W. Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
65
|
Vogel KS, Perez M, Momand JR, Acevedo-Torres K, Hildreth K, Garcia RA, Torres-Ramos CA, Ayala-Torres S, Prihoda TJ, McMahan CA, Walter CA. Age-related instability in spermatogenic cell nuclear and mitochondrial DNA obtained from Apex1 heterozygous mice. Mol Reprod Dev 2011; 78:906-19. [PMID: 21919107 PMCID: PMC3391697 DOI: 10.1002/mrd.21374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/27/2011] [Indexed: 01/17/2023]
Abstract
The prevalence of spontaneous mutations increases with age in the male germline; consequently, older men have an increased risk of siring children with genetic disease due to de novo mutations. The lacI transgenic mouse can be used to study paternal age effects, and in this system, the prevalence of de novo mutations increases in the male germline at old ages. Mutagenesis is linked with DNA repair capacity, and base excision repair (BER), which can ameliorate spontaneous DNA damage, decreases in nuclear extracts of spermatogenic cells from old mice. Mice heterozygous for a null allele of the Apex1 gene, which encodes apurinic/apyrimidinic endonuclease I (APEN), an essential BER enzyme, display an accelerated increase in spontaneous germline mutagenesis early in life. Here, the consequences of lifelong reduction of APEN on genetic instability in the male germline were examined, for the first time, at middle and old ages. Mutant frequency increased earlier in spermatogenic cells from Apex1(+/-) mice (by 6 months of age). Nuclear DNA damage increased with age in the spermatogenic lineage for both wild-type and Apex1(+/-) mice. By old age, mutant frequencies were similar for wild-type and APEN-deficient mice. Mitochondrial genome repair also depends on APEN, and novel analysis of mitochondrial DNA (mtDNA) damage revealed an increase in the Apex1(+/-) spermatogenic cells by middle age. Thus, Apex1 heterozygosity results in accelerated damage to mtDNA and spontaneous mutagenesis, consistent with an essential role for APEN in maintaining nuclear and mtDNA integrity in spermatogenic cells throughout life.
Collapse
Affiliation(s)
- Kristine S. Vogel
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Marissa Perez
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Jamila R. Momand
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | | | - Kim Hildreth
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Rebecca A. Garcia
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | | | | | - Thomas J. Prihoda
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - C. Alex McMahan
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Christi A. Walter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
- South Texas Veteran’s Health Care System, San Antonio, TX 78229
| |
Collapse
|
66
|
Le Bihan YV, Angeles Izquierdo M, Coste F, Aller P, Culard F, Gehrke TH, Essalhi K, Carell T, Castaing B. 5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases. Nucleic Acids Res 2011; 39:6277-90. [PMID: 21486746 PMCID: PMC3152353 DOI: 10.1093/nar/gkr215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/28/2011] [Accepted: 03/20/2011] [Indexed: 11/13/2022] Open
Abstract
DNA base-damage recognition in the base excision repair (BER) is a process operating on a wide variety of alkylated, oxidized and degraded bases. DNA glycosylases are the key enzymes which initiate the BER pathway by recognizing and excising the base damages guiding the damaged DNA through repair synthesis. We report here biochemical and structural evidence for the irreversible entrapment of DNA glycosylases by 5-hydroxy-5-methylhydantoin, an oxidized thymine lesion. The first crystal structure of a suicide complex between DNA glycosylase and unrepaired DNA has been solved. In this structure, the formamidopyrimidine-(Fapy) DNA glycosylase from Lactococcus lactis (LlFpg/LlMutM) is covalently bound to the hydantoin carbanucleoside-containing DNA. Coupling a structural approach by solving also the crystal structure of the non-covalent complex with site directed mutagenesis, this atypical suicide reaction mechanism was elucidated. It results from the nucleophilic attack of the catalytic N-terminal proline of LlFpg on the C5-carbon of the base moiety of the hydantoin lesion. The biological significance of this finding is discussed.
Collapse
Affiliation(s)
- Yann-Vaï Le Bihan
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Maria Angeles Izquierdo
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Pierre Aller
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Françoise Culard
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Tim H. Gehrke
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Kadija Essalhi
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Thomas Carell
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
67
|
Resende B, Rebelato A, D'Afonseca V, Santos A, Stutzman T, Azevedo V, Santos L, Miyoshi A, Lopes D. DNA repair in Corynebacterium model. Gene 2011; 482:1-7. [DOI: 10.1016/j.gene.2011.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/28/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
|
68
|
Swain U, Subba Rao K. Study of DNA damage via the comet assay and base excision repair activities in rat brain neurons and astrocytes during aging. Mech Ageing Dev 2011; 132:374-81. [DOI: 10.1016/j.mad.2011.04.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/24/2011] [Accepted: 04/29/2011] [Indexed: 12/22/2022]
|
69
|
Radak Z, Bori Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos II, Terzis G, Nikolaidis MG, Chatzinikolaou A, Sovatzidis A, Kumagai S, Naito H, Boldogh I. Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radic Biol Med 2011; 51:417-23. [PMID: 21569841 PMCID: PMC3775599 DOI: 10.1016/j.freeradbiomed.2011.04.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 01/25/2023]
Abstract
8-Oxo-7,8-dihydroguanine (8-oxoG) accumulates in the genome over time and is believed to contribute to the development of aging characteristics of skeletal muscle and various aging-related diseases. Here, we show a significantly increased level of intrahelical 8-oxoG and 8-oxoguanine-DNA glycosylase (OGG1) expression in aged human skeletal muscle compared to that of young individuals. In response to exercise, the 8-oxoG level was lastingly elevated in sedentary young and old subjects, but returned rapidly to preexercise levels in the DNA of physically active individuals independent of age. 8-OxoG levels in DNA were inversely correlated with the abundance of acetylated OGG1 (Ac-OGG1), but not with total OGG1, apurinic/apyrimidinic endonuclease 1 (APE1), or Ac-APE1. The actual Ac-OGG1 level was linked to exercise-induced oxidative stress, as shown by changes in lipid peroxide levels and expression of Cu,Zn-SOD, Mn-SOD, and SIRT3, as well as the balance between acetyltransferase p300/CBP and deacetylase SIRT1, but not SIRT6 expression. Together these data suggest that that acetylated form of OGG1, and not OGG1 itself, correlates inversely with the 8-oxoG level in the DNA of human skeletal muscle, and the Ac-OGG1 level is dependent on adaptive cellular responses to physical activity, but is age independent.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, Semmelweis University, Budapest H-1123, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Jeppesen DK, Bohr VA, Stevnsner T. DNA repair deficiency in neurodegeneration. Prog Neurobiol 2011; 94:166-200. [PMID: 21550379 DOI: 10.1016/j.pneurobio.2011.04.013] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington's disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration.
Collapse
Affiliation(s)
- Dennis Kjølhede Jeppesen
- Danish Centre for Molecular Gerontology and Danish Aging Research Center, University of Aarhus, Department of Molecular Biology, Aarhus, Denmark
| | | | | |
Collapse
|
71
|
Metabolism, genomics, and DNA repair in the mouse aging liver. Curr Gerontol Geriatr Res 2011; 2011:859415. [PMID: 21559242 PMCID: PMC3087416 DOI: 10.1155/2011/859415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/11/2011] [Indexed: 12/22/2022] Open
Abstract
The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems.
Collapse
|
72
|
Evaluation of oxidative stress markers in pathogenesis of primary open-angle glaucoma. Exp Mol Pathol 2011; 90:231-7. [DOI: 10.1016/j.yexmp.2011.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 11/15/2022]
|
73
|
Rouissi K, Bahria IB, Bougatef K, Marrakchi R, Stambouli N, Hamdi K, Cherif M, Ben Slama MR, Sfaxi M, Othman FB, Chebil M, Elgaaied AB, Ouerhani S. The effect of tobacco, XPC, ERCC2 and ERCC5 genetic variants in bladder cancer development. BMC Cancer 2011; 11:101. [PMID: 21426550 PMCID: PMC3068124 DOI: 10.1186/1471-2407-11-101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 03/22/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In this work, we have conducted a case-control study in order to assess the effect of tobacco and three genetic polymorphisms in XPC, ERCC2 and ERCC5 genes (rs2228001, rs13181 and rs17655) in bladder cancer development in Tunisia. We have also tried to evaluate whether these variants affect the bladder tumor stage and grade. METHODS The patients group was constituted of 193 newly diagnosed cases of bladder tumors. The controls group was constituted of non-related healthy subjects. The rs2228001, rs13181 and rs17655 polymorphisms were genotyped using a polymerase chain reaction-restriction fragment length polymorphism technique. RESULTS Our data have reported that non smoker and light smoker patients (1-19PY) are protected against bladder cancer development. Moreover, light smokers have less risk for developing advanced tumors stage. When we investigated the effect of genetic polymorphisms in bladder cancer development we have found that ERCC2 and ERCC5 variants were not implicated in the bladder cancer occurrence. However, the mutated homozygous genotype for XPC gene was associated with 2.09-fold increased risk of developing bladder cancer compared to the control carrying the wild genotype (p = 0.03, OR = 2.09, CI 95% 1.09-3.99). Finally, we have found that the XPC, ERCC2 and ERCC5 variants don't affect the tumors stage and grade. CONCLUSION These results suggest that the mutated homozygous genotype for XPC gene was associated with increased risk of developing bladder. However we have found no association between rs2228001, rs13181 and rs17655 polymorphisms and tumors stage and grade.
Collapse
Affiliation(s)
- Kamel Rouissi
- Laboratory of Genetic, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of El Manar I. Tunis, Tunisia
| | - Islem Ben Bahria
- Laboratory of Genetic, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of El Manar I. Tunis, Tunisia
| | - Karim Bougatef
- Laboratory of Genetic, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of El Manar I. Tunis, Tunisia
| | - Raja Marrakchi
- Laboratory of Genetic, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of El Manar I. Tunis, Tunisia
| | - Nejla Stambouli
- Laboratory of Genetic, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of El Manar I. Tunis, Tunisia
| | - Khouloud Hamdi
- Laboratory of Genetic, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of El Manar I. Tunis, Tunisia
| | - Mohamed Cherif
- Department of Urology, Charles Nicolle Hospital, Tunis, Tunisia
| | | | - Mohamed Sfaxi
- Department of Urology, Charles Nicolle Hospital, Tunis, Tunisia
| | | | - Mohamed Chebil
- Department of Urology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Amel Benammar Elgaaied
- Laboratory of Genetic, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of El Manar I. Tunis, Tunisia
| | - Slah Ouerhani
- Laboratory of Molecular and Cellular Haematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
74
|
Abstract
The majority of human cells do not multiply continuously but are quiescent or slow-replicating and devote a large part of their energy to transcription. When DNA damage in the transcribed strand of an active gene is bypassed by a RNA polymerase, they can miscode at the damaged site and produce mutant transcripts. This process is known as transcriptional mutagenesis and, as discussed in this Perspective, could lead to the production of mutant proteins and might therefore be important in tumour development.
Collapse
Affiliation(s)
- Damien Brégeon
- Université Paris Sud-11, Institut de Génétique et Microbiologie, CNRS UMR 8621, Bât 400, F-91405 Orsay Cedex, France, Tel : +33 1 69 15 35 61, Fax : +33 1 69 15 46 29,
| | - Paul W. Doetsch
- Departments of Biochemistry and Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, 1510 Clifton Rd NE, Atlanta, Georgia 30322, USA, Tel : +1 (404) 727-0409, Fax : +1 (404) 727-2618,
| |
Collapse
|
75
|
Barakat K, Tuszynski J. Relaxed complex scheme suggests novel inhibitors for the lyase activity of DNA polymerase beta. J Mol Graph Model 2011; 29:702-16. [DOI: 10.1016/j.jmgm.2010.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 11/26/2022]
|
76
|
Folate supplementation differently affects uracil content in DNA in the mouse colon and liver. Br J Nutr 2011; 105:688-93. [PMID: 21251336 DOI: 10.1017/s0007114510004332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
High folate intake may increase the risk of cancer, especially in the elderly. The present study examined the effects of ageing and dietary folate on uracil misincorporation into DNA, which has a mutagenic effect, in the mouse colon and liver. Old (18 months; n 42) and young (4 months; n 42) male C57BL/6 mice were pair-fed with four different amino acid-defined diets for 20 weeks: folate deplete (0 mg/kg diet); folate replete (2 mg/kg diet); folate supplemented (8 mg/kg diet); folate deplete (0 mg/kg diet) with thymidine supplementation (1·8 g/kg diet). Thymidylate synthesis from uracil requires folate, but synthesis from thymidine is folate independent. Liver folate concentrations were determined by the Lactobacillus casei assay. Uracil misincorporation into DNA was measured by a GC/MS method. Liver folate concentrations demonstrated a stepwise increase across the spectrum of dietary folate levels in both old (P = 0·003) and young (P < 0·001) mice. Uracil content in colonic DNA was paradoxically increased in parallel with increasing dietary folate among the young mice (P trend = 0·033), but differences were not observed in the old mice. The mean values of uracil in liver DNA, in contrast, decreased with increasing dietary folate among the old mice, but it did not reach a statistically significant level (P < 0·1). Compared with the folate-deplete group, thymidine supplementation reduced uracil misincorporation into the liver DNA of aged mice (P = 0·026). The present study suggests that the effects of folate and thymidine supplementation on uracil misincorporation into DNA differ depending on age and tissue. Further studies are needed to clarify the significance of increased uracil misincorporation into colonic DNA of folate-supplemented young mice.
Collapse
|
77
|
Gredilla R. DNA damage and base excision repair in mitochondria and their role in aging. J Aging Res 2010; 2011:257093. [PMID: 21234332 PMCID: PMC3018712 DOI: 10.4061/2011/257093] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/14/2010] [Indexed: 12/28/2022] Open
Abstract
During the last decades, our knowledge about the processes involved in the aging process has exponentially increased. However, further investigation will be still required to globally understand the complexity of aging. Aging is a multifactorial phenomenon characterized by increased susceptibility to cellular loss and functional decline, where mitochondrial DNA mutations and mitochondrial DNA damage response are thought to play important roles. Due to the proximity of mitochondrial DNA to the main sites of mitochondrial-free radical generation, oxidative stress is a major source of mitochondrial DNA mutations. Mitochondrial DNA repair mechanisms, in particular the base excision repair pathway, constitute an important mechanism for maintenance of mitochondrial DNA integrity. The results reviewed here support that mitochondrial DNA damage plays an important role in aging.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Plaza Ramón y Cajal s/n. 28040 Madrid, Spain
| |
Collapse
|
78
|
Jurado S, Smyth I, van Denderen B, Tenis N, Hammet A, Hewitt K, Ng JL, McNees CJ, Kozlov SV, Oka H, Kobayashi M, Conlan LA, Cole TJ, Yamamoto KI, Taniguchi Y, Takeda S, Lavin MF, Heierhorst J. Dual functions of ASCIZ in the DNA base damage response and pulmonary organogenesis. PLoS Genet 2010; 6:e1001170. [PMID: 20975950 PMCID: PMC2958817 DOI: 10.1371/journal.pgen.1001170] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/21/2010] [Indexed: 12/15/2022] Open
Abstract
Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis. ASCIZ is a DNA damage response protein that has been proposed to be a regulator and stabilizing co-factor of the ATM kinase, mutations of which lead to a syndrome involving neurological and immune dysfunctions, tumour predisposition, and X-ray hypersensitivity. To study Asciz function in vivo, we have generated a knockout mouse model lacking this gene. Here we show that ASCIZ has a specific role in mediating cell survival in response to DNA base damage, but it is not required for stabilization and regulation of ATM. Strikingly, Asciz knockout mice fail to survive to birth and have tissue-specific defects in embryonic development. In particular, Asciz null embryos fail to develop lungs and undergo an early arrest in tracheal development. The precursor cells that normally form the lung are present in our embryos, but they fail to segregate from the foregut. These observations indicate that ASCIZ plays an important and previously unrecognized developmental role that is most likely unrelated to its function in mediating responses to DNA damage. Our study delineates the function of ASCIZ in DNA damage survival and highlights an exciting new function of the protein in controlling the early stages of lung development.
Collapse
Affiliation(s)
- Sabine Jurado
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Ian Smyth
- Department of Biochemistry and Molecular Biology and Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Bryce van Denderen
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Nora Tenis
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Andrew Hammet
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Kimberly Hewitt
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Jane-Lee Ng
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | - Hayato Oka
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Timothy J. Cole
- Department of Biochemistry and Molecular Biology and Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | | | - Yoshihito Taniguchi
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Herston, Australia
- Central Clinical Division, University of Queensland, Royal Brisbane Hospital, Herston, Australia
| | - Jörg Heierhorst
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
- * E-mail:
| |
Collapse
|
79
|
Age-associated modifications of Base Excision Repair activities in human skin fibroblast extracts. Mech Ageing Dev 2010; 131:661-5. [PMID: 20854835 DOI: 10.1016/j.mad.2010.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 09/06/2010] [Accepted: 09/11/2010] [Indexed: 11/23/2022]
Abstract
Base Excision Repair (BER) is the predominant repair pathway responsible for removal of so-called small DNA lesions such as abasic sites (AP site), uracil (U), 8-oxo-7,8-dihydroguanine (8oxoG), thymine glycol (Tg). In this study, we investigated effect of aging on excision efficacy of several endogenous base lesions and AP sites using an in vitro multiplexed fluorescent approach on support (parallelized oligonucleotide cleavage assay). Human fibroblasts nuclear extracts from 29 donors of different ages were characterized in their ability to simultaneously excise the different lesions. Clearly, three different groups of lesions emerged according to the efficiency of their cleavage: one exhibited very high cleavage efficiency (AP sites and U paired with G), one showed intermediate cleavage efficiency (U paired with A and Tg). The third group included 8oxoG, A paired with 8oxoG, T at CpG site and hypoxanthine (Hx) and displayed poor repair. Aging was significantly associated with modification of excision efficiency for AP sites, uracil, Tg and 8oxoG. Repair rate decreased for the first three lesions and the most drastic effects were observed for repair of U:A. Surprisingly, excision of 8oxoG increased with aging suggesting a completely different regulation or adaptation for the initiation step of this related specific repair pathway.
Collapse
|
80
|
Szaflik JP, Rusin P, Zaleska-Zmijewska A, Kowalski M, Majsterek I, Szaflik J. Reactive oxygen species promote localized DNA damage in glaucoma-iris tissues of elderly patients vulnerable to diabetic injury. Mutat Res 2010; 697:19-23. [PMID: 20152928 DOI: 10.1016/j.mrgentox.2010.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 06/08/2009] [Accepted: 01/18/2010] [Indexed: 05/28/2023]
Abstract
Glaucoma is typically an insidious-onset disease with serious visual consequences that has been positively linked to diabetes mellitus (DM). Glaucoma is more often present in the elderly. Important prognostic factors of glaucoma may be oxidative stress resulting from the toxic effects of glucose, and diabetes-associated vascular complications. Fifty-five patients and control subjects aged 71.0+/-10.1 yrs were enrolled in this study. Iris-tissue samples from DM type-2 patients, primary open-angle glaucoma-positive and -negative DM patients, and from healthy subjects were examined by use of the alkaline comet assay. We measured the DNA damage as numbers of strand breaks (SBs), oxidized purines as glycosyl-formamido-glycosylase (Fpg)-susceptible sites, and oxidized pyrimidines as endonuclease III (Nth)-susceptible sites. It was found that the level of oxidative damage in iris tissue was statistically higher in DM and glaucoma patients than that in healthy controls (oxidized purines: 38.0% and 34.7% vs 15.4%; oxidized pyrimidines: 43.3% and 39.0% vs 23.3%; P<0.001). Interestingly, we found strongly elevated levels of oxidized purines and pyrimidines in glaucomatous patients who also had DM, in comparison with healthy controls (oxidized purines: 55.7% vs 15.4%; oxidized pyrimidines: 61.8% vs 23.3%; P<0.001). Our observations suggest that the generation of reactive oxygen species may promote localized DNA damage in glaucoma-iris tissues of elderly patients vulnerable to diabetic injury.
Collapse
Affiliation(s)
- Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
81
|
Szaflik JP, Janik-Papis K, Synowiec E, Ksiazek D, Zaras M, Wozniak K, Szaflik J, Blasiak J. DNA damage and repair in age-related macular degeneration. Mutat Res 2009; 669:169-76. [PMID: 19559717 DOI: 10.1016/j.mrfmmm.2009.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/26/2009] [Accepted: 06/18/2009] [Indexed: 05/18/2023]
Abstract
Age-related macular degeneration (AMD) is a retinal degenerative disease that is the main cause of vision loss in individuals over the age of 55 in the Western world. Clinically relevant AMD results from damage to the retinal pigment epithelial (RPE) cells thought to be mainly caused by oxidative stress. The stress also affects the DNA of RPE cells, which promotes genome instability in these cells. These effects may coincide with the decrease in the efficacy of DNA repair with age. Therefore individuals with DNA repair impaired more than average for a given age may be more susceptible to AMD if oxidative stress affects their RPE cells. This may be helpful in AMD risk assessment. In the present work we determined the level of basal (measured in the alkaline comet assay) endogenous and endogenous oxidative DNA damage, the susceptibility to exogenous mutagens and the efficacy of DNA repair in lymphocytes of 100 AMD patients and 110 age-matched individuals without visual disturbances. The cells taken from AMD patients displayed a higher extent of basal endogenous DNA damage without differences between patients of dry and wet forms of the disease. DNA double-strand breaks did not contribute to the observed DNA damage as checked by the neutral comet assay and pulsed field gel electrophoresis. The extent of oxidative modification to DNA bases was greater in AMD patients than in the controls, as probed by DNA repair enzymes NTH1 and Fpg. Lymphocytes from AMD patients displayed a higher sensitivity to hydrogen peroxide and UV radiation and repaired lesions induced by these factors less effectively than the cells from the control individuals. We postulate that the impaired efficacy of DNA repair may combine with enhanced sensitivity of RPE cells to blue and UV lights, contributing to the pathogenesis of AMD.
Collapse
Affiliation(s)
- Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Morinaga H, Yonekura SI, Nakamura N, Sugiyama H, Yonei S, Zhang-Akiyama QM. Purification and characterization of Caenorhabditis elegans NTH, a homolog of human endonuclease III: essential role of N-terminal region. DNA Repair (Amst) 2009; 8:844-51. [PMID: 19481506 DOI: 10.1016/j.dnarep.2009.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 11/26/2022]
Abstract
Oxidatively damaged bases in DNA cause many types of deleterious effects. The main enzyme that removes such lesions is DNA glycosylase, and accordingly, DNA glycosylase plays an important role in genome stability. Recently, a relationship between DNA glycosylases and aging has been suggested, but it remains controversial. Here, we investigated DNA glycosylases of C. elegans, which is a useful model organism for studying aging. We firstly identified a C. elegans homolog of endonuclease III (NTH), which is a well-conserved DNA glycosylase for oxidatively damaged pyrimidine bases, based on the activity and homology. Blast searching of the Wormbase database retrieved a sequence R10E4.5, highly homologous to the human NTH1. However, the R10E4.5-encoded protein did not have NTH activity, and this was considered to be due to lack of the N-terminal region crucial for the activity. Therefore, we purified the protein encoded by the sequence containing both R10E4.5 and the 117-bp region upstream from it, and found that the protein had the NTH activity. The endogenous CeNTH in the extract of C. elegans showed the same DNA glycosylase activity. Therefore, we concluded that the genuine C. elegans NTH gene is not the R10E4.5 but the sequence containing both R10E4.5 and the 117-bp upstream region. NTH-deficient C. elegans showed no difference from the wild-type in lifespan and was not more sensitive to two oxidizing agents, H2O2 and methyl viologen. This suggests that C. elegans has an alternative DNA glycosylase that repairs pyrimidine bases damaged by these agents. Indeed, DNA glycosylase activity that cleaved thymine glycol containing oligonucleotides was detected in the extract of the NTH-deficient C. elegans.
Collapse
Affiliation(s)
- Hironobu Morinaga
- Laboratory of Radiation Biology, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Population study of genetic polymorphisms and superficial bladder cancer risk in Han-Chinese smokers in Shanghai. Int Urol Nephrol 2009; 41:855-64. [DOI: 10.1007/s11255-009-9560-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/16/2009] [Indexed: 12/17/2022]
|