51
|
Tang X, Liu Y, Xiao Q, Yao Q, Allen M, Wang Y, Gao L, Qi Y, Zhang P. Pathological cyclic strain promotes proliferation of vascular smooth muscle cells via the ACTH/ERK/STAT3 pathway. J Cell Biochem 2018; 119:8260-8270. [DOI: 10.1002/jcb.26839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/09/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Xia Tang
- Institute of Mechanobiology and Medical EngineeringSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yanyan Liu
- Institute of Mechanobiology and Medical EngineeringSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qian Xiao
- Institute of Mechanobiology and Medical EngineeringSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qingping Yao
- Institute of Mechanobiology and Medical EngineeringSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Molly Allen
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Yingxiao Wang
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Lizhi Gao
- Institute of Mechanobiology and Medical EngineeringSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yingxin Qi
- Institute of Mechanobiology and Medical EngineeringSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ping Zhang
- Institute of Mechanobiology and Medical EngineeringSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- National Experimental Teaching Demonstration of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
52
|
Tamamori-Adachi M, Koga A, Susa T, Fujii H, Tsuchiya M, Okinaga H, Hisaki H, Iizuka M, Kitajima S, Okazaki T. DNA damage response induced by Etoposide promotes steroidogenesis via GADD45A in cultured adrenal cells. Sci Rep 2018; 8:9636. [PMID: 29941883 PMCID: PMC6018231 DOI: 10.1038/s41598-018-27938-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid production is regulated by adrenocorticotropic hormone (ACTH) via the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway in the adrenal cortex, but the changes in steroidogenesis associated with aging are unknown. In this study, we show that cell-autonomous steroidogenesis is induced by non-ACTH- mediated genotoxic stress in human adrenocortical H295R cells. Low-dose etoposide (EP) was used to induce DNA damage as a genotoxic stress, leading to cellular senescence. We found that steroidogenesis was promoted in cells stained with γH2AX, a marker of DNA damaged cells. Among stress-associated and p53-inducible genes, the expression of GADD45A and steroidogenesis-related genes was significantly upregulated. Immunofluorescence analysis revealed that GADD45A accumulated in the nuclei. Metabolite assay using cultured media showed that EP-treated cells were induced to produce and secrete considerable amounts of glucocorticoid. Knockdown of GADD45A using small interfering RNA markedly inhibited the EP-induced upregulation of steroidogenesis-related gene expression, and glucocorticoid production. A p38MAPK inhibitor, but not a PKA inhibitor, suppressed EP-stimulated steroidogenesis. These results suggest that DNA damage itself promotes steroidogenesis via one or more unprecedented non-ACTH-mediated pathway. Specifically, GADD45A plays a crucial role in the steroidogenic processes triggered by EP-stimulated genotoxic stress. Our study sheds new light on an alternate mechanism of steroidogenesis in the adrenal cortex.
Collapse
Affiliation(s)
- Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Akane Koga
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroko Fujii
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of General Medicine, National Defense Medical College, 3-2, Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Masao Tsuchiya
- Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Harumi Hisaki
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8605, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
53
|
Sanders K, Mol JA, Slob A, Kooistra HS, Galac S. Steroidogenic factor-1 inverse agonists as a treatment option for canine hypercortisolism: in vitro study. Domest Anim Endocrinol 2018; 63:23-30. [PMID: 29223003 DOI: 10.1016/j.domaniend.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/14/2023]
Abstract
Hypercortisolism is one of the most commonly diagnosed endocrinopathies in dogs, and new targeted medical treatment options are desirable. Steroidogenic factor-1 (SF-1), an orphan nuclear hormone receptor, is a key regulator of adrenal steroidogenesis, development, and growth. In pituitary-dependent hypercortisolism (PDH), high plasma ACTH concentrations increase the transcriptional activity of SF-1. In adrenal-dependent hypercortisolism, SF-1 expression is significantly greater in dogs with recurrence after adrenalectomy than in those without recurrence. Inhibition of SF-1 could therefore be an interesting treatment option in canine spontaneous hypercortisolism. We determined the effects of 3 SF-1 inverse agonists, compounds IsoQ A, #31, and #32, on cortisol production, on the messenger RNA (mRNA) expression of steroidogenic enzymes and SFs, and on cell viability, in primary adrenocortical cell cultures of 8 normal adrenal glands and of 3 cortisol-secreting adrenocortical tumors (ATs). To mimic PDH, the normal adrenocortical cell cultures were stimulated with ACTH. The results show that only compound #31 inhibited cortisol production and SF-1 target gene expression in non-ACTH-stimulated and ACTH-stimulated normal adrenocortical cells but did not affect cell viability. In the AT cell cultures, the effects of #31 on cortisol production and target gene expression were variable, possibly caused by a difference in the SF-1 mRNA expressions of the primary tumors. In conclusion, inhibition of SF-1 activity shows much promise as a future treatment for canine hypercortisolism.
Collapse
Affiliation(s)
- K Sanders
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - J A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - A Slob
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - H S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - S Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
54
|
Kiseljak-Vassiliades K, Zhang Y, Bagby SM, Kar A, Pozdeyev N, Xu M, Gowan K, Sharma V, Raeburn CD, Albuja-Cruz M, Jones KL, Fishbein L, Schweppe RE, Somerset H, Pitts TM, Leong S, Wierman ME. Development of new preclinical models to advance adrenocortical carcinoma research. Endocr Relat Cancer 2018; 25:437-451. [PMID: 29371329 PMCID: PMC5831504 DOI: 10.1530/erc-17-0447] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 01/10/2023]
Abstract
Adrenocortical cancer (ACC) is an orphan malignancy that results in heterogeneous clinical phenotypes and molecular genotypes. There are no curative treatments for this deadly cancer with 35% survival at five years. Our understanding of the underlying pathobiology and our ability to test novel therapeutic targets has been limited due to the lack of preclinical models. Here, we report the establishment of two new ACC cell lines and corresponding patient-derived xenograft (PDX) models. CU-ACC1 cell line and PDX were derived from a perinephric metastasis in a patient whose primary tumor secreted aldosterone. CU-ACC2 cell line and PDX were derived from a liver metastasis in a patient with Lynch syndrome. Short tandem repeat profiling confirmed consistent matches between human samples and models. Both exomic and RNA sequencing profiling were performed on the patient samples and the models, and hormonal secretion was evaluated in the new cell lines. RNA sequencing and immunohistochemistry confirmed the expression of adrenal cortex markers in the PDXs and human tumors. The new cell lines replicate two of the known genetic models of ACC. CU-ACC1 cells had a mutation in CTNNB1 and secreted cortisol but not aldosterone. CU-ACC2 cells had a TP53 mutation and loss of MSH2 consistent with the patient's known germline mutation causing Lynch syndrome. Both cell lines can be transfected and transduced with similar growth rates. These new preclinical models of ACC significantly advance the field by allowing investigation of underlying molecular mechanisms of ACC and the ability to test patient-specific therapeutic targets.
Collapse
Affiliation(s)
- Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
- Research Service Veterans Affairs Medical Center, Denver CO 80220
| | - Yu Zhang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | - Nikita Pozdeyev
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | - Mei Xu
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | - Katherine Gowan
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Vibha Sharma
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | | | - Maria Albuja-Cruz
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Lauren Fishbein
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
- Research Service Veterans Affairs Medical Center, Denver CO 80220
| | - Rebecca E. Schweppe
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | - Hilary Somerset
- Department of Pathology; University of Colorado School of Medicine, Aurora, CO 80045
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Margaret E. Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
- Research Service Veterans Affairs Medical Center, Denver CO 80220
| |
Collapse
|
55
|
Majzoub JA, Topor LS. A New Model for Adrenarche: Inhibition of 3β-Hydroxysteroid Dehydrogenase Type 2 by Intra-Adrenal Cortisol. Horm Res Paediatr 2018; 89:311-319. [PMID: 29847819 PMCID: PMC6031466 DOI: 10.1159/000488777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022] Open
Abstract
We propose that the normal adrenarche-related rise in dehydroepiandrosterone (DHEA) secretion is ultimately caused by the rise in cortisol production occurring during childhood and adolescent growth, by the following mechanisms. (1) The onset of childhood growth leads to a slight fall in serum cortisol concentration due to growth-induced dilution and a decrease in the negative feedback of cortisol upon ACTH secretion. (2) In response, ACTH rises and stimulates increased cortisol synthesis and secretion in the growing body to restore the serum cortisol concentration to normal. (3) The cortisol concentration produced within and taken up by adrenocortical steroidogenic cells may rise during this time. (4) Cortisol competitively inhibits 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2)-mediated conversion of 17αOH-pregnenolone to cortisol, causing a further fall in serum cortisol, a further decrease in the negative feedback of cortisol upon ACTH, a further rise in ACTH, and further stimulation of adrenal steroidogenesis. (5) The cortisol-mediated inhibition of 3βHSD2 also blocks the conversion of DHEA to androstenedione, causing a rise in adrenal DHEA and DHEA sulfate relative to androstenedione secretion. Thus, the combination of normal body growth plus inhibition of 3βHSD2 by intra-adrenal cortisol may cause normal adrenarche. Childhood obesity may hasten this process by causing a pathologic increase in body size that triggers these same processes at an earlier age, resulting in the premature onset of adrenarche.
Collapse
Affiliation(s)
- Joseph A. Majzoub
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Lisa Swartz Topor
- Division of Pediatric Endocrinology, Hasbro Children’s Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903
| |
Collapse
|
56
|
Maning J, Negussie S, Clark MA, Lymperopoulos A. Biased agonism/antagonism at the AngII-AT1 receptor: Implications for adrenal aldosterone production and cardiovascular therapy. Pharmacol Res 2017; 125:14-20. [PMID: 28511989 DOI: 10.1016/j.phrs.2017.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 12/23/2022]
Abstract
Many of the effects of angiotensin II (AngII), including adrenocortical aldosterone release, are mediated by the AngII type 1 receptor (AT1R), a receptor with essential roles in cardiovascular homeostasis. AT1R belongs to the G protein-coupled receptor (GPCR) superfamily, mainly coupling to the Gq/11 type of G proteins. However, it also signals through βarrestins, oftentimes in parallel to eliciting G protein-dependent signaling. This has spurred infinite possibilities for cardiovascular pharmacology, since various beneficial effects are purportedly exerted by AT1R via βarrestins, unlike AT1R-induced G protein-mediated pathways that usually result in damaging cardiovascular effects, including hypertension and aldosterone elevation. Over the past decade however, a number of studies from our group and others have suggested that AT1R-induced βarrestin signaling can also be damaging for the heart, similarly to the G protein-dependent one, with regard to aldosterone regulation. Additionally, AT1R-induced βarrestin signaling in astrocytes from certain areas of the brain may also play a significant role in central regulation of blood pressure and hypertension pathogenesis. These findings have provided the impetus for testing available angiotensin receptor blockers (ARBs) in their efficacy towards blocking both routes (i.e. both G protein- and βarrestin-dependent) of AT1R signaling in vitro and in vivo and also have promoted structure-activity relationship (SAR) studies for the AngII molecule in terms of βarrestin signaling to certain cellular effects, e.g. adrenal aldosterone production. In the present review, we will recount all of these recent studies on adrenal and astrocyte AT1R-dependent βarrestin signaling while underlining their implications for cardiovascular pathophysiology and therapy.
Collapse
Affiliation(s)
- Jennifer Maning
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Shmuel Negussie
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA.
| |
Collapse
|
57
|
Hu Z, Shen WJ, Kraemer FB, Azhar S. Regulation of adrenal and ovarian steroidogenesis by miR-132. J Mol Endocrinol 2017; 59:269-283. [PMID: 28729436 PMCID: PMC6376965 DOI: 10.1530/jme-17-0011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
Abstract
miR-132 is hormonally regulated in steroidogenic cells of the adrenal gland, ovary and testis. Here, we examined the potential role of miR-132 in the control of steroidogenesis. Transfection of Y1 adrenal cells with miR-132 increased mRNAs of 3β-HSD and 20α-HSD enzymes, which catalyze the sequential conversion of pregnenolone to progesterone to biologically inactive 20α-hydroxyprogesterone (20α-OHP). Overexpression of miR-132 reduced MeCP2 and StAR protein expression, basal progestin (progesterone and 20α-OHP) production, but enhanced their production in response to cAMP stimulation. Use of [3H] pregnenolone and free-diffusible 22(R)-hydroxycholesterol further confirmed that miR-132 promotes the production of 20α-OHP by upregulating 3β-HSD and 20α-HSD. Evidence is also presented that StAR is a direct target of miR-132. Transient transfection of Y1 cells with miR-132 demonstrated that miR-132 induction of 3β-HSD and 20α-HSD was accompanied by significant suppression of one of its target gene products, MeCP2. In contrast, co-expression of miR-132 plus MeCP2 protein partially blocked the ability of miR-132 to upregulate the expression and function of 3β-HSD and 20α-HSD. Moreover, suppression of MeCP2 protein with siRNA resulted in increased expression of 3β-HSD and 20α-HSD, further demonstrating that miR-132 induces the expression of these two enzymes via inhibition of MeCP2. Likewise, overexpression of miR-132 increased 20α-OHP production with and without HDL loading, while knockdown of miR-132 resulted in a significant decrease of 20α-OHP production by granulosa cells. In conclusion, our data suggest that miR-132 attenuates steroidogenesis by repressing StAR expression and inducing 20α-HSD via inhibition of MeCP2 to generate a biologically inactive 20α-OHP.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric ResearchEducation and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Division of EndocrinologyGerontology and Metabolism, Stanford University, Stanford, California, USA
| | - Wen-Jun Shen
- Geriatric ResearchEducation and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Division of EndocrinologyGerontology and Metabolism, Stanford University, Stanford, California, USA
| | - Fredric B Kraemer
- Geriatric ResearchEducation and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Division of EndocrinologyGerontology and Metabolism, Stanford University, Stanford, California, USA
| | - Salman Azhar
- Geriatric ResearchEducation and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Division of EndocrinologyGerontology and Metabolism, Stanford University, Stanford, California, USA
| |
Collapse
|
58
|
Peverelli E, Catalano R, Giardino E, Treppiedi D, Morelli V, Ronchi CL, Vaczlavik A, Fusco N, Ferrero S, Bertherat J, Beuschlein F, Chiodini I, Arosio M, Spada A, Mantovani G. Cofilin is a cAMP effector in mediating actin cytoskeleton reorganization and steroidogenesis in mouse and human adrenocortical tumor cells. Cancer Lett 2017; 406:54-63. [PMID: 28826686 DOI: 10.1016/j.canlet.2017.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022]
Abstract
cAMP pathway plays a major role in the pathogenesis of cortisol-producing adrenocortical adenomas (CPA). cAMP-induced steroidogenesis is preceded by actin cytoskeleton reorganization, a process regulated by cofilin activity. In this study we investigated cofilin role in mediating cAMP effects on cell morphology and steroidogenesis in adrenocortical tumor cells. We demonstrated that forskolin induced cell rounding and strongly reduced phosphorylated (P)-cofilin/total cofilin ratio in Y1 (-52 ± 16%, p < 0.001) and human CPA cells (-53 ± 18%, p < 0.05). Cofilin silencing significantly reduced both forskolin-induced morphological changes and progesterone production (1.3-fold vs 1.8-fold in controls, p < 0.05), whereas transfection of wild-type or S3A (active), but not S3D (inactive) cofilin, potentiated forskolin effects on cell rounding and increased 3-fold progesterone synthesis with respect to control (p < 0.05). Furthermore, cofilin dephosphorylation by a ROCK inhibitor potentiated forskolin-induced cell rounding and steroidogenesis (2-fold increase vs forskolin alone). Finally, we found a reduced P-cofilin/total cofilin ratio and increased cofilin expression in CPA vs endocrine inactive adenomas by western blot and immunohistochemistry. Overall, these results identified cofilin as a mediator of cAMP effects on both morphological changes and steroidogenesis in mouse and human adrenocortical tumor cells.
Collapse
Affiliation(s)
- E Peverelli
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - R Catalano
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - V Morelli
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - C L Ronchi
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - A Vaczlavik
- Institut Cochin, Inserm U1016, CNRS UMR8104, Descartes University, Paris, France; Department of Endocrinology, Reference Center for Rare Adrenal Diseases, Hôpital Cochin, Paris, France
| | - N Fusco
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan Medical School, Milan, Italy
| | - S Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan Medical School, Milan, Italy
| | - J Bertherat
- Institut Cochin, Inserm U1016, CNRS UMR8104, Descartes University, Paris, France; Department of Endocrinology, Reference Center for Rare Adrenal Diseases, Hôpital Cochin, Paris, France
| | - F Beuschlein
- Medizinische Klinik und Poliklinik IV, Endocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - I Chiodini
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Arosio
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Spada
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - G Mantovani
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
59
|
Lymperopoulos A, Aukszi B. Angiotensin receptor blocker drugs and inhibition of adrenal beta-arrestin-1-dependent aldosterone production: Implications for heart failure therapy. World J Cardiol 2017; 9:200-206. [PMID: 28400916 PMCID: PMC5368669 DOI: 10.4330/wjc.v9.i3.200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/29/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
Aldosterone mediates many of the physiological and pathophysiological/cardio-toxic effects of angiotensin II (AngII). Its synthesis and secretion from the zona glomerulosa cells of the adrenal cortex, elevated in chronic heart failure (HF), is induced by AngII type 1 receptors (AT1Rs). The AT1R is a G protein-coupled receptor, mainly coupling to Gq/11 proteins. However, it can also signal through β-arrestin-1 (βarr1) or -2 (βarr2), both of which mediate G protein-independent signaling. Over the past decade, a second, Gq/11 protein-independent but βarr1-dependent signaling pathway emanating from the adrenocortical AT1R and leading to aldosterone production has become appreciated. Thus, it became apparent that AT1R antagonists that block both pathways equally well are warranted for fully effective aldosterone suppression in HF. This spurred the comparison of all of the currently marketed angiotensin receptor blockers (ARBs, AT1R antagonists or sartans) at blocking activation of the two signaling modes (G protein-, and βarr1-dependent) at the AngII-activated AT1R and hence, at suppression of aldosterone in vitro and in vivo. Although all agents are very potent inhibitors of G protein activation at the AT1R, candesartan and valsartan were uncovered to be the most potent ARBs at blocking βarr activation by AngII and at suppressing aldosterone in vitro and in vivo in post-myocardial infarction HF animals. In contrast, irbesartan and losartan are virtually G protein-"biased" blockers at the human AT1R, with very low efficacy for βarr inhibition and aldosterone suppression. Therefore, candesartan and valsartan (and other, structurally similar compounds) may be the most preferred ARB agents for HF pharmacotherapy, as well as for treatment of other conditions characterized by elevated aldosterone.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Anastasios Lymperopoulos, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Beatrix Aukszi
- Anastasios Lymperopoulos, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| |
Collapse
|
60
|
Li J, Zhou Q, Ma Z, Wang M, Shen WJ, Azhar S, Guo Z, Hu Z. Feedback inhibition of CREB signaling by p38 MAPK contributes to the negative regulation of steroidogenesis. Reprod Biol Endocrinol 2017; 15:19. [PMID: 28302174 PMCID: PMC5356319 DOI: 10.1186/s12958-017-0239-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/06/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Steroidogenesis is a complex, multi-steps biological process in which, cholesterol precursor is converted to steroids in a tissue specific and tropic hormone dependent manner. Given that steroidogenesis is achieved by coordinated functioning of multiple tissue specific enzymes, many steroids intermediates/metabolites are generated during this process. Both the steroid products as well as major lipoprotein cholesterol donor, high-density lipoprotein 3 (hHDL3) have the potential to negatively regulate steroidogenesis via increased oxidative stress/reactive oxygen species (ROS) generation. METHODS In the current study, we examined the effects of treatment of a mouse model of steroidogenesis, Y1-BS1 adrenocortical tumor cells with pregnenolone, 22(R)-Hydroxycholesterol [22(R)-diol] or hHDL3 on ROS production, phosphorylation status of p38 MAPK and cAMP response element-binding protein (CREB), CREB transcriptional activity and mRNA expression of StAR, CPY11A1/P450scc and antioxidant enzymes, superoxide dismutases [Cu,ZnSOD (SOD1), MnSOD (SOD2)], catalase (CAT) and glutathione peroxidase 1 (GPX1). We also detected the steroid product in p38 MAPK inhibitor treated Y1 cells by HPLC-MS / MS. RESULTS Treatment of Y1 cells with H2O2 greatly enhanced the phosphorylation of both p38 MAPK and CREB protein. Likewise, treatment of cells with pregnenolone, 22(R) diol or hHDL3 increased ROS production measured with the oxidation-sensitive fluorescent probe 2',7'-Dichlorofluorescin diacetate (DCFH-DA). Under identical experimental conditions, treatment of cells with these agents also increased the phosphorylation of p38 MAPK and CREB. This increased CREB phosphorylation however, was associated with its decreased transcriptional activity. The stimulatory effects of pregnenolone, 22(R)-diol and hHDL3 on CREB phosphorylation was abolished by a specific p38 MAPK inhibitor, SB203580. Pregnenolone, and 22(R) diol but not hHDL3 upregulated the mRNA expression of SOD1, SOD2 and GPX1, while down-regulated the mRNA levels of StAR and CYP11A1. The p38 inhibitor SB203580 could increase the steroid production in HDL3, 22(R)-diol or pregnenolone treated cells. CONCLUSION Our data demonstrate induction of a ROS/p38 MAPK -mediated feedback inhibitory pathway by oxy-cholesterol and steroid intermediates and products attenuates steroidogenesis via inhibition of CREB transcriptional activity.
Collapse
Affiliation(s)
- Jiaxin Li
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Qian Zhou
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Zhuang Ma
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Meina Wang
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Wen-Jun Shen
- 0000 0004 0419 2556grid.280747.eGeriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304 USA
- 0000000419368956grid.168010.eStanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Salman Azhar
- 0000 0004 0419 2556grid.280747.eGeriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304 USA
- 0000000419368956grid.168010.eStanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Zhigang Guo
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Zhigang Hu
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| |
Collapse
|
61
|
Braadland PR, Grytli HH, Ramberg H, Katz B, Kellman R, Gauthier-Landry L, Fazli L, Krobert KA, Wang W, Levy FO, Bjartell A, Berge V, Rennie PS, Mellgren G, Mælandsmo GM, Svindland A, Barbier O, Taskén KA. Low β₂-adrenergic receptor level may promote development of castration resistant prostate cancer and altered steroid metabolism. Oncotarget 2016; 7:1878-94. [PMID: 26646591 PMCID: PMC4811504 DOI: 10.18632/oncotarget.6479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
The underlying mechanisms responsible for the development of castration-resistant prostate cancer (CRPC) in patients who have undergone androgen deprivation therapy are not fully understood. This is the first study to address whether β2-adrenergic receptor (ADRB2)- mediated signaling may affect CRPC progression in vivo. By immunohistochemical analyses, we observed that low levels of ADRB2 is associated with a more rapid development of CRPC in a Norwegian patient cohort. To elucidate mechanisms by which ADRB2 may affect CRPC development, we stably transfected LNCaP cells with shRNAs to mimic low and high expression of ADRB2. Two UDP-glucuronosyltransferases, UGT2B15 and UGT2B17, involved in phase II metabolism of androgens, were strongly downregulated in two LNCaP shADRB2 cell lines. The low-ADRB2 LNCaP cell lines displayed lowered glucuronidation activities towards androgens than high-ADRB2 cells. Furthermore, increased levels of testosterone and enhanced androgen responsiveness were observed in LNCaP cells expressing low level of ADRB2. Interestingly, these cells grew faster than high-ADRB2 LNCaP cells, and sustained their low glucuronidation activity in castrated NOD/SCID mice. ADRB2 immunohistochemical staining intensity correlated with UGT2B15 staining intensity in independent TMA studies and with UGT2B17 in one TMA study. Similar to ADRB2, we show that low levels of UGT2B15 are associated with a more rapid CRPC progression. We propose a novel mechanism by which ADRB2 may affect the development of CRPC through downregulation of UGT2B15 and UGT2B17.
Collapse
Affiliation(s)
- Peder Rustøen Braadland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Helene Hartvedt Grytli
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Håkon Ramberg
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Betina Katz
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ralf Kellman
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Louis Gauthier-Landry
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Kurt Allen Krobert
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Wanzhong Wang
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Finn Olav Levy
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmø, Sweden.,Department of Clinical Sciences Malmø, Division of Urological Cancers, Lund University, Lund, Sweden
| | - Viktor Berge
- Department of Urology, Oslo University Hospital, Oslo, Norway
| | - Paul S Rennie
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Pharmacy, Faculty of Health Science, University of Tromsø, Tromsø, Norway
| | - Aud Svindland
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Kristin Austlid Taskén
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
62
|
Leal LF, Bueno AC, Gomes DC, Abduch R, de Castro M, Antonini SR. Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis. Oncotarget 2016; 6:43016-32. [PMID: 26515592 PMCID: PMC4767488 DOI: 10.18632/oncotarget.5513] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/05/2015] [Indexed: 11/30/2022] Open
Abstract
Background To date, there is no effective therapy for patients with advanced/metastatic adrenocortical cancer (ACC). The activation of the Wnt/beta-catenin signaling is frequent in ACC and this pathway is a promising therapeutic target. Aim To investigate the effects of the inhibition of the Wnt/beta-catenin in ACC cells. Methods Adrenal (NCI-H295 and Y1) and non-adrenal (HeLa) cell lines were treated with PNU-74654 (5–200 μM) for 24–96 h to assess cell viability (MTS-based assay), apoptosis (Annexin V), expression/localization of beta-catenin (qPCR, immunofluorescence, immunocytochemistry and western blot), expression of beta-catenin target genes (qPCR and western blot), and adrenal steroidogenesis (radioimmunoassay, qPCR and western blot). Results In NCI-H295 cells, PNU-74654 significantly decreased cell proliferation 96 h after treatment, increased early and late apoptosis, decreased nuclear beta-catenin accumulation, impaired CTNNB1/beta-catenin expression and increased beta-catenin target genes 48 h after treatment. No effects were observed on HeLa cells. In NCI-H295 cells, PNU-74654 decreased cortisol, testosterone and androstenedione secretion 24 and 48 h after treatment. Additionally, in NCI-H295 cells, PNU-74654 decreased SF1 and CYP21A2 mRNA expression as well as the protein levels of STAR and aldosterone synthase 48 h after treatment. In Y1 cells, PNU-74654 impaired corticosterone secretion 24 h after treatment but did not decrease cell viability. Conclusions Blocking the Tcf/beta-catenin complex inhibits the Wnt/beta-catenin signaling in adrenocortical tumor cells triggering increased apoptosis, decreased cell viability and impairment of adrenal steroidogenesis. These promising findings pave the way for further experiments inhibiting the Wnt/beta-catenin pathway in pre-clinical models of ACC. The inhibition of this pathway may become a promising adjuvant therapy for patients with ACC.
Collapse
Affiliation(s)
- Letícia F Leal
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ana Carolina Bueno
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Débora C Gomes
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.,Department of Pediatrics, School of Medicine, Federal University of Uberlandia, Uberlândia, Minas Gerais, Brazil
| | - Rafael Abduch
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Margaret de Castro
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
63
|
Gallo-Payet N. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol 2016; 56:T135-56. [PMID: 26793988 DOI: 10.1530/jme-15-0257] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 01/27/2023]
Abstract
The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
64
|
Odermatt A, Strajhar P, Engeli RT. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. J Steroid Biochem Mol Biol 2016; 158:9-21. [PMID: 26807866 DOI: 10.1016/j.jsbmb.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 02/03/2023]
Abstract
In the modern world, humans are exposed during their whole life to a large number of synthetic chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to the development and/or progression of major diseases. Every year approximately 1000 novel chemicals, used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the market, often with limited safety assessment regarding potential endocrine activities. Steroids are essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order to apply them properly, and there is a great demand for improved cell-based testing systems and protocols. This review intends to provide an overview of the available cell lines for studying effects of chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future improvements of cell-based testing systems and protocols.
Collapse
Affiliation(s)
- Alex Odermatt
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Petra Strajhar
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Roger T Engeli
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
65
|
Cellular and Animal Studies: Insights into Pathophysiology and Therapy of PCOS. Best Pract Res Clin Obstet Gynaecol 2016; 37:12-24. [PMID: 27118251 DOI: 10.1016/j.bpobgyn.2016.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/12/2023]
Abstract
Basic science studies have advanced our understanding of the role of key enzymes in the steroidogenesis pathway and those that affect the pathophysiology of PCOS. Studies with ovarian theca cells taken from women with PCOS have demonstrated increased androgen production due to increased CYP17A1 and HSD3B2 enzyme activities. Furthermore, overexpression of DENND1A variant 2 in normal theca cells resulted in a PCOS phenotype with increased androgen production. Notably, cellular steroidogenesis models have facilitated the understanding of the mechanistic effects of pharmacotherapies, including insulin sensitizers (e.g., pioglitazone and metformin) used for the treatment of insulin resistance in PCOS, on androgen production. In addition, animal models of PCOS have provided a critical platform to study the effects of therapeutic agents in a manner closer to the physiological state. Indeed, recent breakthroughs have demonstrated that natural derivatives such as the dietary medium-chain fatty acid decanoic acid (DA) can restore estrous cyclicity and lower androgen levels in an animal model of PCOS, thus laying the platform for novel therapeutic developments in PCOS. This chapter reviews the current understanding on the pathways modulating androgen biosynthesis, and the cellular and animal models that form the basis for preclinical research in PCOS, and sets the stage for clinical research.
Collapse
|
66
|
Wang X, Bai Y, Cheng G, Ihsan A, Zhu F, Wang Y, Tao Y, Chen D, Dai M, Liu Z, Yuan Z. Genomic and proteomic analysis of the inhibition of synthesis and secretion of aldosterone hormone induced by quinocetone in NCI-H295R cells. Toxicology 2016; 350-352:1-14. [PMID: 27046791 DOI: 10.1016/j.tox.2016.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Abstract
Quinoxaline 1,4-dioxides (QdNOs) are widely used as a kind of antibacterial growth promoter in animal husbandry. The adrenal cortex was found to be one of the main toxic targets of QdNOs, accompanied by a decreased aldosterone level. However, the way in which QdNOs decrease production of the hormone aldosterone is far from clear. To illustrate the mechanism by which QdNOs damage the adrenal cortex and decrease aldosterone hormone levels, the QdNOs were screened to choose the drug with most toxic effects on aldosterone production, and then to reveal the mechanism between the gene and protein profiles in human adrenocortical cells (NCI-H295R cells). The results found that quinocetone (QCT) showed the highest adrenal toxic effect among QdNOs. After exposing H295R cells to 10 and 20μM QCT for 24h, compared with blank cells, the gene and protein expression profiles obtained were analyzed by microarray and MALDI TOF/TOF mass spectrometry, respectively. The results of microarray analysis suggested that ABCG1 and SREBF1, which were involved in the cholesterol biosynthetic and metabolic processes, and CYP17A1, NR4A2 and G6PD, which were related to aldosterone biosynthesis, were important molecular targets. It has been speculated that PKC and ERK pathways might be involved in the reduction of aldosterone production caused by QCT, through enhanced mRNA expression of CYP17A1. Additionally, JNK and p38MAPK signal transduction pathways might participate in apoptosis induced by QCT. Twenty-nine and 32 protein spots were successfully identified when cells were treated with 10 and 20μM QCT, respectively. These identified proteins mainly included material synthesis and energy metabolism-related proteins, transcription/translation processing-related proteins, signal transduction proteins, cytoskeletal proteins, molecular chaperones, proteins related to response to stress, and transport proteins. Further investigations suggested that oxidative stress caused by QCT was exacerbated through disruption of the Keap1/Nrf2/ARE anti-oxidative stress pathway. Taken together, the data demonstrated for the first time that the Keap1/Nrf2/ARE pathway plays a crucial role in adrenal toxicity, and that CYP17A1 was the key switch to reduce the aldosterone production induced by QCT. Furthermore, large numbers of genes and proteins and entry points for research in the inhibition of aldosterone synthesis induced by QCT were offered, which will provide new insight into the adrenal toxicity of QdNOs and help to provide a theoretical foundation for the formulation of safety controls for products obtained from animals and to design new QdNOs with less harmful effects.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yijie Bai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Feng Zhu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yulian Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Dongmei Chen
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zhengli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
67
|
Valero TR, Sturchler E, Jafferjee M, Rengo G, Magafa V, Cordopatis P, McDonald P, Koch WJ, Lymperopoulos A. Structure-activity relationship study of angiotensin II analogs in terms of β-arrestin-dependent signaling to aldosterone production. Pharmacol Res Perspect 2016; 4:e00226. [PMID: 27069636 PMCID: PMC4804318 DOI: 10.1002/prp2.226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022] Open
Abstract
The known angiotensin II (AngII) physiological effect of aldosterone synthesis and secretion induction, a steroid hormone that contributes to the pathology of postmyocardial infarction (MI) heart failure (HF), is mediated by both Gq/11 proteins and β-arrestins, both of which couple to the AngII type 1 receptors (AT1Rs) of adrenocortical zona glomerulosa (AZG) cells. Over the past several years, AngII analogs with increased selectivity ("bias") toward β-arrestin-dependent signaling at the AT1R have been designed and described, starting with SII, the gold-standard β-arrestin-"biased" AngII analog. In this study, we examined the relative potencies of an extensive series of AngII peptide analogs at relative activation of G proteins versus β-arrestins by the AT1R. The major structural difference of these peptides from SII was their varied substitutions at position 5, rather than position 4 of native AngII. Three of them were found biased for β-arrestin activation and extremely potent at stimulating aldosterone secretion in AZG cells in vitro, much more potent than SII in that regard. Finally, the most potent of these three ([Sar(1), Cys(Et)(5), Leu(8)]-AngII, CORET) was further examined in post-MI rats progressing to HF and overexpressing adrenal β-arrestin1 in vivo. Consistent with the in vitro studies, CORET was found to exacerbate the post-MI hyperaldosteronism, and, consequently, cardiac function of the post-MI animals in vivo. Finally, our data suggest that increasing the size of position 5 of the AngII peptide sequence results in directly proportional increases in AT1R-dependent β-arrestin activation. These findings provide important insights for AT1R pharmacology and future AngII-targeted drug development.
Collapse
Affiliation(s)
- Thairy Reyes Valero
- Department of Pharmaceutical SciencesLaboratory for the Study of Neurohormonal Control of the CirculationNova Southeastern University College of PharmacyFort LauderdaleFlorida33328
| | | | - Malika Jafferjee
- Department of Pharmaceutical SciencesLaboratory for the Study of Neurohormonal Control of the CirculationNova Southeastern University College of PharmacyFort LauderdaleFlorida33328
| | - Giuseppe Rengo
- Salvatore Maugeri Foundation–Scientific Institute of Telese TermeTelese TermeItaly
| | - Vassiliki Magafa
- Department of PharmacyLaboratory of Pharmacognosy & Chemistry of Natural ProductsUniversity of PatrasPatrasGreece
| | - Paul Cordopatis
- Department of PharmacyLaboratory of Pharmacognosy & Chemistry of Natural ProductsUniversity of PatrasPatrasGreece
| | | | - Walter J. Koch
- Center for Translational MedicineTemple UniversityPhiladelphiaPennsylvania19140
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical SciencesLaboratory for the Study of Neurohormonal Control of the CirculationNova Southeastern University College of PharmacyFort LauderdaleFlorida33328
| |
Collapse
|
68
|
Feng Y, Jiao Z, Shi J, Li M, Guo Q, Shao B. Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells. CHEMOSPHERE 2016; 147:9-19. [PMID: 26751127 DOI: 10.1016/j.chemosphere.2015.12.081] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/09/2015] [Accepted: 12/22/2015] [Indexed: 05/20/2023]
Abstract
The use of Bisphenol A (BPA) has been regulated in many countries because of its potential adverse effects on human health. As a result of the restriction, structural anologues such as bisphenol S (BPS) and bisphenol F (BPF) have already been used for industrial applications as alternatives to BPA. Bisphenol AF (BPAF) is mainly used as a crosslinker in the synthesis of specialty fluoroelastomers. These compounds have been detected in various environmental matrices and human samples. Previous studies have shown that these compounds have potential endocrine disrupting effects on wildlife and mammals in general. However, the effects on adrenocortical function and the underlying mechanisms are not fully understood. In the present study, the H295R cell line was used as a model to compare the cell toxicity and to investigate the potential endocrine disrupting action of four BPs (including BPA, BPS, BPF, and BPAF). The half lethal concentration (LC50) values at 72 h exposure indicated that the rank order of toxicities of the chemicals was BPAF > BPA > BPS > BPF. The hormone results demonstrated that BPA analogues, such as BPF, BPS and BPAF were capable of altering steroidogenesis in H295R cells. BPA and BPS exhibited inhibition of hormone production, BPF predominantly led to increased progesterone and 17β-estradiol levels and BPAF showed induction of progesterone and reduction of testosterone. Inhibition effects of BPA and BPAF on hormone production were probably mediated by down-regulation of steroidogenic genes in H295R cells. However, the mechanisms of the endocrine interrupting action of BPF and BPS are still unclear, which may have additional mechanisms that have not been detected with BPA.
Collapse
Affiliation(s)
- Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Zhihao Jiao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Jiachen Shi
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Ming Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China.
| |
Collapse
|
69
|
Nanba K, Chen AX, Turcu AF, Rainey WE. H295R expression of melanocortin 2 receptor accessory protein results in ACTH responsiveness. J Mol Endocrinol 2016; 56:69-76. [PMID: 26576642 DOI: 10.1530/jme-15-0230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
Abstract
The H295R adrenocortical cell line is widely used for molecular analysis of adrenal functions but is known to have only modest ACTH responsiveness. The lack of ACTH response was linked to a low expression of its receptor, melanocortin 2 receptor (MC2R). We hypothesized that increasing the MC2R accessory protein (MRAP), which is required to traffic MC2R from the endoplasmic reticulum to the cell surface, would increase ACTH responsiveness. Lentiviral particles containing human MRAP-open reading frame were generated and transduced in H295R cells. Using antibiotic resistance, 18 clones were isolated for characterization. The most ACTH-responsive steroidogenic clone, H295RA, was used for further experiments. Successful induction of MRAP and increased expression of MC2R in H295RA cells was confirmed by quantitative real-time RT-PCR and protein analysis. Treatment with ACTH significantly increased aldosterone, cortisol, and dehydroepiandrosterone production in H295RA cells. ACTH also significantly increased transcript levels for all of the steroidogenic enzymes required to produce aldosterone, cortisol, and dehydroepiandrosterone, as well as MC2R mRNA. Using liquid chromatography/tandem mass spectrometry, we further revealed that the main unconjugated steroids produced in H295RA cells were 11-deoxycortisol, cortisol, and androstenedione. Treatment of H295RA cells with ACTH also acutely increased cAMP production and cellular protein levels for total and phosphorylated steroidogenic acute regulatory protein. In summary, through genetic manipulation, we have developed an ACTH-responsive human adrenocortical cell line. The cell line will provide a powerful in vitro tool for molecular analysis of physiologic and pathologic conditions involving the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USADivision of MetabolismEndocrinology, and Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Andrew X Chen
- Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USADivision of MetabolismEndocrinology, and Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Adina F Turcu
- Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USADivision of MetabolismEndocrinology, and Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - William E Rainey
- Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USADivision of MetabolismEndocrinology, and Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USADivision of MetabolismEndocrinology, and Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
70
|
Wang X, Yang C, Ihsan A, Luo X, Guo P, Cheng G, Dai M, Chen D, Liu Z, Yuan Z. High risk of adrenal toxicity of N1-desoxy quinoxaline 1,4-dioxide derivatives and the protection of oligomeric proanthocyanidins (OPC) in the inhibition of the expression of aldosterone synthetase in H295R cells. Toxicology 2016; 341-343:1-16. [PMID: 26802905 DOI: 10.1016/j.tox.2016.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Quinoxaline 1,4-dioxide derivatives (QdNOs) with a wide range of biological activities are used in animal husbandry worldwide. It was found that QdNOs significantly inhibited the gene expression of CYP11B1 and CYP11B2, the key aldosterone synthases, and thus reduced aldosterone levels. However, whether the metabolites of QdNOs have potential adrenal toxicity and the role of oxidative stress in the adrenal toxicity of QdNOs remains unclear. The relatively new QdNOs, cyadox (CYA), mequindox (MEQ), quinocetone (QCT) and their metabolites, were selected for elucidation of their toxic mechanisms in H295R cells. Interestingly, the results showed that the main toxic metabolites of QCT, MEQ, and CYA were their N1-desoxy metabolites, which were more harmful than other metabolites and evoked dose and time-dependent cell damage on adrenal cells and inhibited aldosterone production. Gene and protein expression of CYP11B1 and CYP11B2 and mRNA expression of transcription factors, such as NURR1, NGFIB, CREB, SF-1, and ATF-1, were down regulated by N1-desoxy QdNOs. The natural inhibitors of oxidant stress, oligomeric proanthocyanidins (OPC), could upregulate the expression of diverse transcription factors, including CYP11B1 and CYP11B2, and elevated aldosterone levels to reduce adrenal toxicity. This study demonstrated for the first time that N1-desoxy QdNOs have the potential to be the major toxic metabolites in adrenal toxicity, which may shed new light on the adrenal toxicity of these fascinating compounds and help to provide a basic foundation for the formulation of safety controls for animal products and the design of new QdNOs with less harmful effects.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Chunhui Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xun Luo
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Pu Guo
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Guyue Cheng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zhenli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
71
|
Mangelis A, Dieterich P, Peitzsch M, Richter S, Jühlen R, Hübner A, Willenberg HS, Deussen A, Lenders JWM, Eisenhofer G. Computational analysis of liquid chromatography-tandem mass spectrometric steroid profiling in NCI H295R cells following angiotensin II, forskolin and abiraterone treatment. J Steroid Biochem Mol Biol 2016; 155:67-75. [PMID: 26435452 DOI: 10.1016/j.jsbmb.2015.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023]
Abstract
Adrenal steroid hormones, which regulate a plethora of physiological functions, are produced via tightly controlled pathways. Investigations of these pathways, based on experimental data, can be facilitated by computational modeling for calculations of metabolic rate alterations. We therefore used a model system, based on mass balance and mass reaction equations, to kinetically evaluate adrenal steroidogenesis in human adrenal cortex-derived NCI H295R cells. For this purpose a panel of 10 steroids was measured by liquid chromatographic-tandem mass spectrometry. Time-dependent changes in cell incubate concentrations of steroids - including cortisol, aldosterone, dehydroepiandrosterone and their precursors - were measured after incubation with angiotensin II, forskolin and abiraterone. Model parameters were estimated based on experimental data using weighted least square fitting. Time-dependent angiotensin II- and forskolin-induced changes were observed for incubate concentrations of precursor steroids with peaks that preceded maximal increases in aldosterone and cortisol. Inhibition of 17-alpha-hydroxylase/17,20-lyase with abiraterone resulted in increases in upstream precursor steroids and decreases in downstream products. Derived model parameters, including rate constants of enzymatic processes, appropriately quantified observed and expected changes in metabolic pathways at multiple conversion steps. Our data demonstrate limitations of single time point measurements and the importance of assessing pathway dynamics in studies of adrenal cortical cell line steroidogenesis. Our analysis provides a framework for evaluation of steroidogenesis in adrenal cortical cell culture systems and demonstrates that computational modeling-derived estimates of kinetic parameters are an effective tool for describing perturbations in associated metabolic pathways.
Collapse
Affiliation(s)
- Anastasios Mangelis
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Peter Dieterich
- Institute of Physiology, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Ramona Jühlen
- Department of Pediatrics, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Angela Hübner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Holger S Willenberg
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Division of Endocrinology and Metabolism, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Andreas Deussen
- Institute of Physiology, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jacques W M Lenders
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Department of General Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525 Nijmegen, The Netherlands
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Department of Internal Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
72
|
Pan Z, Fang Z, Lu W, Liu X, Zhang Y. Osthole, a coumadin analog from Cnidium monnieri (L.) Cusson, stimulates corticosterone secretion by increasing steroidogenic enzyme expression in mouse Y1 adrenocortical tumor cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:456-462. [PMID: 26456364 DOI: 10.1016/j.jep.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osthole is an O-methylated coumadin, which was isolated and purified from the seeds of Cnidium monnieri (L.) Cusson. Osthole is a commonly used traditional Chinese medicine to treat patients with Kidney-Yang deficiency patients, who exhibit clinical signs similar to those of glucocorticoid withdrawal. However, the mechanism of action of osthole is not fully understood. OBJECTIVE This study was designed to reveal the effects of osthole on corticosterone production in mouse Y1 cell. MATERIALS AND METHODS Mouse Y1 adrenocortical cells were used to evaluate corticosterone production, which was quantified by enzyme-linked immunosorbent assay (ELISA) kits. Cell viability was tested using the MTT assay, and the mRNA and protein expression of genes encoding steroidogenic enzymes and transcription factors was monitored by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting, respectively. RESULTS Osthole stimulated corticosterone secretion from mouse Y1 cells in a dose- and time-dependent manner, and osthole enhanced the effect of dibutyryl-cAMP (Bu2cAMP) on corticosterone production. Further, osthole also increased StAR and CYP11B1 mRNA expression in a dose-dependent manner and enhanced the expression of transcription factors such as HSD3B1, FDX1, POR and RXRα as well as immediate early genes such as NR4A1. Moreover, osthole significantly increased SCARB1(SRB1) mRNA and StAR protein expression in the presence or absence of Bu2cAMP; these proteins are an important for the transport of the corticosteroid precursor cholesterol transport into mitochondria. CONCLUSIONS Our results show that the promotion of corticosterone biosynthesis and secretion is a novel effect of osthole, suggesting that this agent can be utilized for the prevention and treatment of Kidney-Yang deficiency syndrome.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Basic Medical School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhaoqin Fang
- Basic Medical School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenli Lu
- Basic Medical School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaomei Liu
- Basic Medical School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Zhang
- Basic Medical School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
73
|
Czajkowski MT, Holysz M, Trzeciak WH. Induction of hormone-sensitive lipase/cholesteryl esterase gene expression by C/EBPα independently of the PKA pathway in the adrenocortical Y-1 cells. Steroids 2015; 104:118-21. [PMID: 26362599 DOI: 10.1016/j.steroids.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/24/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
The effect of C/EBPα on the expression of LIPE gene encoding hormone-sensitive lipase/cholesteryl esterase (HSL) was investigated in Y-1 CCL79 cells. It was found that transfection of these cells with the vector overexpressing C/EBPα increased both the level of LIPE transcript, measured by RT-qPCR, and the luminesce emitted by luciferase reporter gene fused to the -2150 fragment of LIPE promoter. Activation of adenylyl cyclase by forskolin resulted in 2.5-fold increase in the intensity of luminescence and over 3-fold increase in luminescence was observed when the cells were cotransfected with the vector overexpressing C/EBP. The incubation of C/EBP-cotransfected cells with forskolin caused over 6-fold increase in the intensity of luminescence, suggesting that the effects of C/EBPα and forskolin are additive. The analysis of sequence of the proximal LIPE promoter showed multiple binding sites for various transcription factors including C/EBPα site, which is located between nucleotides -46 bp and -59 bp. When the Y-1 cells were transfected with the recombinant vector containing -60 bp fragment of LIPE promoter fused to the luciferase reporter gene and were cotransfected with the vector overexpressing C/EBPα, the luminescence increases about 9-fold indicating that C/EBPα stimulates the expression of LIPE by reacting with its response element. The results indicate that C/EBPα stimulates the expression of LIPE independently of the PKA pathway by binding to a response element situated within the -60 bp fragment of LIPE promoter. This suggests that C/EBPα might be involved in the regulation of LIPE expression and thus cholesterol supply for steroid hormone synthesis.
Collapse
Affiliation(s)
- M T Czajkowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - M Holysz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland.
| | - W H Trzeciak
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
74
|
Hu Z, Hu J, Shen WJ, Kraemer FB, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry 2015; 54:6917-30. [PMID: 26567857 DOI: 10.1021/acs.biochem.5b00147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Salt-inducible kinase 1 (SIK1) is a serine/threonine kinase that belongs to the stress- and energy-sensing AMPK family of kinases. SIK1 expression is rapidly induced in Y1 adrenal cells in response to ACTH via the cAMP-PKA signaling cascade, and it has been suggested that an increased level of SIK1 expression inhibits adrenal steroidogenesis by repressing the cAMP-dependent transcription of steroidogenic proteins, CYP11A1 and StAR, by attenuating CREB transcriptional activity. Here we show that SIK1 stimulates adrenal steroidogenesis by modulating the selective HDL-CE transport activity of SR-B1. Overexpression of SIK1 increases cAMP-stimulated and SR-B1-mediated selective HDL-BODIPY-CE uptake in cell lines without impacting SR-B1 protein levels, whereas knockdown of SIK1 attenuated cAMP-stimulated selective HDL-BODIPY-CE uptake. SIK1 forms a complex with SR-B1 by interacting with its cytoplasmic C-terminal domain, and in vitro kinase activity measurements indicate that SIK1 can phosphorylate the C-terminal domain of SR-B1. Among potential phosphorylation sites, SIK1-catalyzed phosphorylation of Ser496 is critical for SIK1 stimulation of the selective CE transport activity of SR-B1. Mutational studies further demonstrated that both the intact catalytic activity of SIK1 and its PKA-catalyzed phosphorylation are essential for SIK1 stimulation of SR-B1 activity. Finally, overexpression of SIK1 caused time-dependent increases in SR-B1-mediated and HDL-supported steroid production in Y1 cells; however, these effects were lost with knockdown of SR-B1. Taken together, these studies establish a role for SIK1 in the positive regulation of selective HDL-CE transport function of SR-B1 and steroidogenesis and suggest a potential mechanism for SIK1 signaling in modulating SR-B1-mediated selective CE uptake and associated steroidogenesis.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Jie Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| |
Collapse
|
75
|
Udhane SS, Flück CE. Regulation of human (adrenal) androgen biosynthesis-New insights from novel throughput technology studies. Biochem Pharmacol 2015; 102:20-33. [PMID: 26498719 DOI: 10.1016/j.bcp.2015.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Abstract
Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.
Collapse
Affiliation(s)
- Sameer S Udhane
- Pediatric Endocrinology and Diabetology of the Department of Pediatrics and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology and Diabetology of the Department of Pediatrics and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
76
|
Chang X, Zhao Y, Ju S, Guo L. Orexin-A regulates cell apoptosis in human H295R adrenocortical cells via orexin receptor type 1 through the AKT signaling pathway. Mol Med Rep 2015; 12:7582-8. [PMID: 26459696 DOI: 10.3892/mmr.2015.4381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have demonstrated the ability of orexin-A to regulate adrenocortical cells through the mitogen-activated protein kinase signaling pathway. In the present study, human H295R adrenocortical cells were exposed to orexin‑A (10‑10-10‑6 M), with orexin receptor type 1 (OX1 receptor) antagonist SB334867 or AKT antagonist PF‑04691502. It was found that orexin‑A stimulated H295R cell proliferation, reduced the pro‑apoptotic activity of caspase‑3 to protect against apoptotic cell death and increased cortisol secretion. Furthermore, phospho‑AKT protein was increased by orexin‑A. SB334867 (10‑6 M) and PF‑04691502 (10‑6 M) abolished the effects of orexin‑A (10‑6 M). These results suggested that the orexin‑A/OX1 receptor axis has a significant pro-survival function in adrenal cells, which is mediated by AKT activation. Further studies investigating the effects of orexin-A-upregulation may further elucidate the diverse biological effects of orexin-A in adrenal cells.
Collapse
Affiliation(s)
- Xiaocen Chang
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuyan Zhao
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shujing Ju
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
77
|
Kienitz MC, Mergia E, Pott L. NCI-H295R cell line as in vitro model of hyperaldosteronism lacks functional KCNJ5 (GIRK4; Kir3.4) channels. Mol Cell Endocrinol 2015; 412:272-80. [PMID: 25998841 DOI: 10.1016/j.mce.2015.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022]
Abstract
As a major cause of aldosterone producing adenomas, numerous gain-of-function mutations in the KCNJ5 gene (encoding the K(+) channel subunit GIRK4) have been identified. The human adrenocortical carcinoma cell line NCI-H295R is the most frequently used cellular model for in vitro studies related to regulation of aldosterone-synthesis. Because of the undefined role of KCNJ5 (GIRK4) in regulating synthesis of aldosterone, we aimed at identifying basal and G protein-activated GIRK4 currents in this paradigmatic cell line. The GIRK-specific blocker Tertiapin-Q did not affect basal current. Neither loading of the cells with GTP-γ-S via the patch-clamp pipette nor agonist stimulation of an infected A1-adenosine receptor resulted in activation of GIRK current. In cells co-infected with KCNJ5, robust activation of basal and adenosine-activated inward-rectifying current was observed. Although GIRK4 protein can be detected in Western blots of H295R homogenates, we suggest that GIRK4 in aldosterone-producing cells does not form functional G(βγ)-activated channels.
Collapse
Affiliation(s)
| | - Evanthia Mergia
- Department of Pharmacology and Toxicology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Lutz Pott
- Institute of Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
78
|
Nakamura Y, Yamazaki Y, Konosu-Fukaya S, Ise K, Satoh F, Sasano H. Aldosterone biosynthesis in the human adrenal cortex and associated disorders. J Steroid Biochem Mol Biol 2015; 153:57-62. [PMID: 26051166 DOI: 10.1016/j.jsbmb.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 10/23/2022]
Abstract
Aldosterone is one of the mineralocorticoids synthesized and secreted by the adrenal glands, and it plays pivotal roles in regulating extracellular fluid volume and blood pressure. Autonomous excessive aldosterone secretion resulting from adrenocortical diseases is known as primary aldosteronism, and it constitutes one of the most frequent causes of secondary hypertension. Therefore, it is important to understand the molecular mechanisms of aldosterone synthesis in both normal and pathological adrenal tissues. Various factors have been suggested to be involved in regulation of aldosterone biosynthesis, and several adrenocortical cell lines have been developed for use as in vitro models of adrenal aldosterone-producing cells, for analysis of the underlying molecular mechanisms. In this review, we summarize the available reports on the regulation of aldosterone biosynthesis in the normal adrenal cortex, in associated disorders, and in in vitro models.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Sachiko Konosu-Fukaya
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
79
|
Schimmer BP, Cordova M. Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells. Mol Cell Endocrinol 2015; 408:5-11. [PMID: 25281401 DOI: 10.1016/j.mce.2014.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex.
Collapse
|
80
|
Dattilo M, Neuman I, Muñoz M, Maloberti P, Cornejo Maciel F. OxeR1 regulates angiotensin II and cAMP-stimulated steroid production in human H295R adrenocortical cells. Mol Cell Endocrinol 2015; 408:38-44. [PMID: 25657046 DOI: 10.1016/j.mce.2015.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/13/2023]
Abstract
Hormone-regulated steroidogenesis and StAR protein induction involve the action of lipoxygenated products. The products of 5-lipoxygenase act on inflammation and immunity by stimulation of a membrane receptor called OxeR1. The presence of OxeR1 in other systems has not been described up to date and little is known about its mechanism of action and other functions. In this context, the aim of this study was the identification and characterization of OxeR1 as a mediator of cAMP-dependent and independent pathways. Overexpression of OxeR1 in MA-10 Leydig cells increased cAMP-dependent progesterone production. Angiotensin II and cAMP stimulation of adrenocortical human H295R cells produced an increase in StAR protein induction and steroidogenesis in cells overexpressing OxeR1 as compared to mock-transfected cells. Additionally, activation of OxeR1 caused a time-dependent increase in ERK1/2 phosphorylation. In summary, membrane receptor OxeR1 is involved in StAR protein induction and activation of steroidogenesis triggered by cAMP or angiotensin II, acting, at least in part, through ERK1/2 activation.
Collapse
Affiliation(s)
- Melina Dattilo
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Isabel Neuman
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Mariana Muñoz
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Paula Maloberti
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Fabiana Cornejo Maciel
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
81
|
Rainey WE. Introduction to the 2014 Adrenal Cortex Conference Keith L. Parker Memorial Lecturer: Bernard Schimmer, Ph.D. Mol Cell Endocrinol 2015; 408:2-4. [PMID: 25542844 DOI: 10.1016/j.mce.2014.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/21/2022]
Affiliation(s)
- William E Rainey
- Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
82
|
Udhane SS, Pandey AV, Hofer G, Mullis PE, Flück CE. Retinoic acid receptor beta and angiopoietin-like protein 1 are involved in the regulation of human androgen biosynthesis. Sci Rep 2015; 5:10132. [PMID: 25970467 PMCID: PMC4429542 DOI: 10.1038/srep10132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/31/2015] [Indexed: 12/17/2022] Open
Abstract
Androgens are essential for sexual development and reproduction. However, androgen regulation in health and disease is poorly understood. We showed that human adrenocortical H295R cells grown under starvation conditions acquire a hyperandrogenic steroid profile with changes in steroid metabolizing enzymes HSD3B2 and CYP17A1 essential for androgen production. Here we studied the regulatory mechanisms underlying androgen production in starved H295R cells. Microarray expression profiling of normal versus starved H295R cells revealed fourteen differentially expressed genes; HSD3B2, HSD3B1, CYP21A2, RARB, ASS1, CFI, ASCL1 and ENC1 play a role in steroid and energy metabolism and ANGPTL1, PLK2, DUSP6, DUSP10 and FREM2 are involved in signal transduction. We discovered two new gene networks around RARB and ANGPTL1, and show how they regulate androgen biosynthesis. Transcription factor RARB stimulated the promoters of genes involved in androgen production (StAR, CYP17A1 and HSD3B2) and enhanced androstenedione production. For HSD3B2 regulation RARB worked in cooperation with Nur77. Secretory protein ANGPTL1 modulated CYP17A1 and DUSP6 expression by inducing ERK1/2 phosphorylation. By contrast, our studies revealed no evidence for hormones or cell cycle involvement in regulating androgen biosynthesis. In summary, these studies establish a firm role for RARB and ANGPTL1 in the regulation of androgen production in H295R cells.
Collapse
Affiliation(s)
- Sameer S Udhane
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, University Children's Hospital, Inselspital.,The Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, University Children's Hospital, Inselspital.,The Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Gaby Hofer
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, University Children's Hospital, Inselspital.,The Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Primus E Mullis
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, University Children's Hospital, Inselspital.,The Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, University Children's Hospital, Inselspital.,The Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
83
|
Charles MS, Drunalini Perera PN, Doycheva DM, Tang J. Granulocyte-colony stimulating factor activates JAK2/PI3K/PDE3B pathway to inhibit corticosterone synthesis in a neonatal hypoxic-ischemic brain injury rat model. Exp Neurol 2015; 272:152-9. [PMID: 25816736 DOI: 10.1016/j.expneurol.2015.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Our previous study demonstrated that granulocyte-colony stimulating factor (G-CSF)-induced neuroprotection is accompanied by an inhibition of corticosterone production in a neonatal hypoxic-ischemic (HI) rat model. The present study investigates how G-CSF inhibits corticosterone production, using adrenal cortical cells and HI rat pups. METHODS Cholera toxin was used to induce corticosterone synthesis in a rodent Y1 adrenal cortical cell line by increasing cyclic adenosine monophosphate (cAMP). Both corticosterone and cAMP were quantitatively measured using a commercial enzyme-linked immunosorbent assay (ELISA). The downstream signaling components of the G-CSF receptor, including Janus Kinase 2 (JAK2)/Phosphatidylinositol-3-kinase (PI3K)/Protein kinase B (Akt) and Phosphodiesterase 3B (PDE3B), were detected by western blot. Sprague-Dawley rat pups at the age of 10days (P10) were subjected to unilateral carotid artery ligation followed by hypoxia for 2.5hours. Brain infarction volumes were determined using 2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining. RESULTS G-CSF at 30ng/ml inhibited corticosterone synthesis but lost its inhibitory effect at higher doses. The inhibitory effect of G-CSF was conferred by interfering with cAMP signaling via the activation of the JAK2/PI3K/PDE3B signaling pathway. The degradation of cAMP by G-CSF signaling reduced corticosterone production. This mechanism was further verified in the neonatal HI brain injury rat model, in which inhibition of PDE3B reversed the protective effects of G-CSF. CONCLUSION Our data suggest that the neuroprotective G-CSF reduces corticosterone synthesis at the adrenal level by degrading intracellular cAMP via activation of the JAK2/PI3K/PDE3B pathway.
Collapse
Affiliation(s)
- Mélissa S Charles
- Department of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, CA, 92354 USA; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354 USA
| | - Pradilka N Drunalini Perera
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354 USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354 USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354 USA.
| |
Collapse
|
84
|
Abstract
Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
85
|
Dabul S, Bathgate-Siryk A, Valero TR, Jafferjee M, Sturchler E, McDonald P, Koch WJ, Lymperopoulos A. Suppression of adrenal βarrestin1-dependent aldosterone production by ARBs: head-to-head comparison. Sci Rep 2015; 5:8116. [PMID: 25631300 PMCID: PMC4309955 DOI: 10.1038/srep08116] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022] Open
Abstract
The known angiotensin II (AngII) physiological effect of aldosterone synthesis and secretion is mediated by either Gq/11 proteins or βarrestin1 (βarr1), both of which can couple to its type 1 receptors (AT₁Rs), present in adrenocortical zona glomerulosa (AZG) cell membranes. In the present study, we examined the relative potencies of all the currently used in the clinic AT₁R antagonist drugs (angiotensin receptor blockers, ARBs, or sartans) at preventing activation of these two signaling mediators (G proteins and βarrs) at the AngII-bound AT1R and, consequently, at suppression of aldosterone in vitro. All ARBs were found to be potent inhibitors of G protein activation at the AT₁R. However, candesartan and valsartan were the most potent at blocking AngII-induced βarr activation at this receptor, among the tetrazolo-biphenyl-methyl derivatives, translating into excellent efficacies at aldosterone suppression in H295R cells. Conversely, irbesartan and losartan were largely G protein-selective inhibitors at the AT₁R, with very low potency towards βarr inhibition. As a result, they were very weak suppressors of βarr1-dependent aldosterone production in H295R cells. These findings provide important pharmacological insights into the drug class of ARBs and medicinal chemistry insights for future drug development in the field of AngII antagonism.
Collapse
Affiliation(s)
- Samalia Dabul
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Ashley Bathgate-Siryk
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Thairy Reyes Valero
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Malika Jafferjee
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Emmanuel Sturchler
- Translational Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Patricia McDonald
- Translational Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Walter J. Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
86
|
Knazicka Z, Forgacs Z, Lukacova J, Roychoudhury S, Massanyi P, Lukac N. Endocrine disruptive effects of cadmium on steroidogenesis: human adrenocortical carcinoma cell line NCI-H295R as a cellular model for reproductive toxicity testing. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:348-56. [PMID: 25723060 DOI: 10.1080/10934529.2015.987520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cadmium (Cd) is a known endocrine disruptor with the ability to affect the production of hormones involved in the regulation of reproductive processes. In this study human adrenocortical carcinoma cell line NCI-H295R was used as an in vitro biological model to study the effect of cadmium (CdCl2) on steroidogenesis. The cell cultures were exposed to different concentrations of CdCl2 (1.90, 3.90, 7.80, 15.60, 31.20 and 62.50 μM) and compared to control (medium without CdCl2). Cell viability was measured by the metabolic activity (MTT) assay for estimation of mitochondria structural integrity. Quantification of sexual steroid production directly from aliquots of the medium was performed by enzyme linked immunosorbent assay (ELISA). Following 48 h culture of the cells in the presence of CdCl2 a concentration-dependent depletion in progesterone production was observed at the lower concentrations of CdCl2. The lowest amount of progesterone was significantly detected in groups with the higher doses (≥ 31.20 μM) of CdCl2, which elicited significant (P < 0.01) cytotoxic action, too. Cadmium decreased testosterone release in the whole applied range even at the lower concentration of CdCl2. The release of 17β-estradiol decreased as well, but the decline was less pronounced compared to decrease of progesterone and testosterone. The cytotoxic effect was significantly (P < 0.01) detected at all concentrations of CdCl2 (1.90-62.50 μM) used in the study. However, the cell viability remained relatively high (>75%) up to 7.80 μM of CdCl2 and significantly (P < 0.01) decreased at 15.60 μM and higher concentrations of CdCl2. These results suggest that cadmium has endocrine disruptive effects on sexual steroid synthesis even at very low concentrations.
Collapse
Affiliation(s)
- Zuzana Knazicka
- a Department of Animal Physiology , Slovak University of Agriculture , Nitra , Slovak Republic
| | | | | | | | | | | |
Collapse
|
87
|
Fujii H, Tamamori-Adachi M, Uchida K, Susa T, Nakakura T, Hagiwara H, Iizuka M, Okinaga H, Tanaka Y, Okazaki T. Marked cortisol production by intracrine ACTH in GIP-treated cultured adrenal cells in which the GIP receptor was exogenously introduced. PLoS One 2014; 9:e110543. [PMID: 25334044 PMCID: PMC4204891 DOI: 10.1371/journal.pone.0110543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/16/2014] [Indexed: 12/21/2022] Open
Abstract
The ectopic expression of the glucose-dependent insulinotropic polypeptide receptor (GIPR) in the human adrenal gland causes significant hypercortisolemia after ingestion of each meal and leads to Cushing’s syndrome, implying that human GIPR activation is capable of robustly activating adrenal glucocorticoid secretion. In this study, we transiently transfected the human GIPR expression vector into cultured human adrenocortical carcinoma cells (H295R) and treated them with GIP to examine the direct link between GIPR activation and steroidogenesis. Using quantitative RT-PCR assay, we examined gene expression of steroidogenic related proteins, and carried out immunofluorescence analysis to prove that forced GIPR overexpression directly promotes production of steroidogenic enzymes CYP17A1 and CYP21A2 at the single cell level. Immunofluorescence showed that the transfection efficiency of the GIPR gene in H295R cells was approximately 5%, and GIP stimulation enhanced CYP21A2 and CYP17A1 expression in GIPR-introduced H295R cells (H295R-GIPR). Interestingly, these steroidogenic enzymes were also expressed in the GIPR (–) cells adjacent to the GIPR (+) cells. The mRNA levels of a cholesterol transport protein required for all steroidogenesis, StAR, and steroidogenic enzymes, HSD3β2, CYP11A1, CYP21A2, and CYP17A1 increased 1.2-2.1-fold in GIP-stimulated H295R-GIPR cells. These changes were reflected in the culture medium in which 1.5-fold increase in the cortisol concentration was confirmed. Furthermore, the levels of adenocorticotropic hormone (ACTH) receptor and ACTH precursor proopiomelanocortin (POMC) mRNA were upregulated 2- and 1.5-fold, respectively. Immunofluorescence showed that ACTH expression was detected in GIP-stimulated H295R-GIPR cells. An ACTH-receptor antagonist significantly inhibited steroidogenic gene expression and cortisol production. Immunostaining for both CYP17A1 and CYP21A2 was attenuated in cells treated with ACTH receptor antagonists as well as with POMC siRNA. These results demonstrated that GIPR activation promoted production and release of ACTH, and that steroidogenesis is activated by endogenously secreted ACTH following GIP administration, at least in part, in H295R cells.
Collapse
Affiliation(s)
- Hiroko Fujii
- Department of General Medicine, National Defense Medical College, Tokorozawa City, Saitama, Japan
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
- * E-mail: (MT-A); (TO)
| | - Kousuke Uchida
- Department of General Medicine, National Defense Medical College, Tokorozawa City, Saitama, Japan
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Nakakura
- Department of Anatomy, Teikyo University School of Medicine, Tokyo, Japan
| | - Haruo Hagiwara
- Department of Anatomy, Teikyo University School of Medicine, Tokyo, Japan
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuji Tanaka
- Department of General Medicine, National Defense Medical College, Tokorozawa City, Saitama, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
- * E-mail: (MT-A); (TO)
| |
Collapse
|
88
|
Chang X, Zhao Y, Ju S, Guo L. Orexin-A stimulates 3β-hydroxysteroid dehydrogenase expression and cortisol production in H295R human adrenocortical cells through the AKT pathway. Int J Mol Med 2014; 34:1523-8. [PMID: 25319929 DOI: 10.3892/ijmm.2014.1959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/23/2014] [Indexed: 11/05/2022] Open
Abstract
Orexin-A is a regulatory peptide involved in the regulation of food intake, sleep-wakefulness, and it has various endocrine and metabolic functions. It orchestrates diverse central and peripheral processes through the stimulation of two G-protein coupled receptors, orexin receptor type 1 (OX1 receptor) and orexin receptor type 2 (OX2 receptor). In this study, human adrenocortical cells (NCI-H295R cells) were incubated with various concentrations of orexin-A (10-10 to 10-6 M) in vitro, and the mRNA and protein expression of OX1 receptor was determined in the cells. In addition, NCI-H295R cells treated with 10-6 M orexin-A were then treated with or without OX1 receptor specific antagonist (SB334867), AKT antagonist (PF-04691502), or a combination of both. Subsequently, cell proliferation, the cortisol content in the medium and the mRNA and protein expression expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) were analyzed. The activity of the AKT signaling pathway was also determined in the NCI-H295R cells. We observed that the increase in the mRNA and protein expression of OX1 receptor was orexin-A concentration-dependent, with 10-6 M orexin-A exerting the most potent effect. Orexin-A enhanced cell proliferation and cortisol production, and increased the mRNA and protein expression of 3β-HSD in the NCI-H295R cells; however, these effects were partly blocked by the OX1 receptor antagonist, the AKT antagonist and the combination of both. Furthermore, orexin-A significantly increased the phosphorylation of AKT, with the levels of total AKT protein remaining unaltered. This effect was blocked in the presence of PF-04691502 (10-6 M), SB334867 (10-6 M) and the combination of both. On the whole, our data demonstrate that the effects of orexin-A on the survival and function of human adrenocortical cells are mediated through the AKT signaling pathway.
Collapse
Affiliation(s)
- Xiaocen Chang
- Departments of Endocrinology and Orthopedic Surgery, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuyan Zhao
- Departments of Endocrinology and Orthopedic Surgery, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shujing Ju
- Departments of Endocrinology and Orthopedic Surgery, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Guo
- Departments of Endocrinology and Orthopedic Surgery, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
89
|
Angiotensin II triggers expression of the adrenal gland zona glomerulosa-specific 3β-hydroxysteroid dehydrogenase isoenzyme through de novo protein synthesis of the orphan nuclear receptors NGFIB and NURR1. Mol Cell Biol 2014; 34:3880-94. [PMID: 25092869 DOI: 10.1128/mcb.00852-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 3β-hydroxysteroid dehydrogenase (3β-HSD) is an enzyme crucial for steroid synthesis. Two different 3β-HSD isoforms exist in humans. Classically, HSD3B2 was considered the principal isoform present in the adrenal. However, we recently showed that the alternative isoform, HSD3B1, is expressed specifically within the adrenal zona glomerulosa (ZG), where aldosterone is produced, raising the question of why this isozyme needs to be expressed in this cell type. Here we show that in both human and mouse, expression of the ZG isoform 3β-HSD is rapidly induced upon angiotensin II (AngII) stimulation. AngII is the key peptide hormone regulating the capacity of aldosterone synthesis. Using the human adrenocortical H295R cells as a model system, we show that the ZG isoform HSD3B1 differs from HSD3B2 in the ability to respond to AngII. Mechanistically, the induction of HSD3B1 involves de novo protein synthesis of the nuclear orphan receptors NGFIB and NURR1. The HSD3B1 promoter contains a functional NGFIB/NURR1-responsive element to which these proteins bind in response to AngII. Knockdown of these proteins and overexpression of a dominant negative NGFIB both reduce the AngII responsiveness of HSD3B1. Thus, the AngII-NGFIB/NURR1 pathway controls HSD3B1. Our work reveals HSD3B1 as a new regulatory target of AngII.
Collapse
|
90
|
Baba T, Otake H, Sato T, Miyabayashi K, Shishido Y, Wang CY, Shima Y, Kimura H, Yagi M, Ishihara Y, Hino S, Ogawa H, Nakao M, Yamazaki T, Kang D, Ohkawa Y, Suyama M, Chung BC, Morohashi KI. Glycolytic genes are targets of the nuclear receptor Ad4BP/SF-1. Nat Commun 2014; 5:3634. [PMID: 24727981 DOI: 10.1038/ncomms4634] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Genetic deficiencies in transcription factors can lead to the loss of certain types of cells and tissue. The steroidogenic tissue-specific nuclear receptor Ad4BP/SF-1 (NR5A1) is one such gene, because mice in which this gene is disrupted fail to develop the adrenal gland and gonads. However, the specific role of Ad4BP/SF-1 in these biological events remains unclear. Here we use chromatin immunoprecipitation sequencing to show that nearly all genes in the glycolytic pathway are regulated by Ad4BP/SF-1. Suppression of Ad4BP/SF-1 by small interfering RNA reduces production of the energy carriers ATP and nicotinamide adenine dinucleotide phosphate, as well as lowers expression of genes involved in glucose metabolism. Together, these observations may explain tissue dysgenesis as a result of Ad4BP/SF-1 gene disruption in vivo. Considering the function of estrogen-related receptor α, the present study raises the possibility that certain types of nuclear receptors regulate sets of genes involved in metabolic pathways to generate energy carriers.
Collapse
Affiliation(s)
- Takashi Baba
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Otake
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kanako Miyabayashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yurina Shishido
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chia-Yih Wang
- 1] Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Nankang, Taipei 115, Taiwan [2] Present address: Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yuichi Shima
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroshi Kimura
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Osaka 565-0871, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hidesato Ogawa
- 1] Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Osaka 565-0871, Japan [2] Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Iwaoka 588-2, Nishi-ku, Kobe 651-2492, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Nankang, Taipei 115, Taiwan
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
91
|
Murthy M, Xu S, Massimo G, Wolley M, Gordon RD, Stowasser M, O’Shaughnessy KM. Role for Germline Mutations and a Rare Coding Single Nucleotide Polymorphism Within the KCNJ5 Potassium Channel in a Large Cohort of Sporadic Cases of Primary Aldosteronism. Hypertension 2014; 63:783-9. [DOI: 10.1161/hypertensionaha.113.02234] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Meena Murthy
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Shengxin Xu
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Gianmichele Massimo
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Martin Wolley
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Richard D. Gordon
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Michael Stowasser
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Kevin M. O’Shaughnessy
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| |
Collapse
|
92
|
Pagotto RM, Pereyra EN, Monzón C, Mondillo C, Pignataro OP. Histamine inhibits adrenocortical cell proliferation but does not affect steroidogenesis. J Endocrinol 2014; 221:15-28. [PMID: 24424290 DOI: 10.1530/joe-13-0433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histamine (HA) is a neurotransmitter synthesized in most mammalian tissues exclusively by histidine decarboxylase enzyme. Among the plethora of actions mediated by HA, the modulatory effects on steroidogenesis and proliferation in Leydig cells (LCs) have been described recently. To determine whether the effects on LCs reported could be extrapolated to all steroidogenic systems, in this study, we assessed the effect of this amine on adrenal proliferation and steroidogenesis, using two adrenocortical cell lines as experimental models, murine Y1 cells and human NCI-H295R cells. Even when steroidogenesis was not modified by HA in adrenocortical cells, the biogenic amine inhibited the proliferation of H295R cells. This action was mediated by the activation of HRH1 subtype and an increase in the production of inositol phosphates as second messengers, causing cell-cycle arrest in the G2/M phase. These results indicate a new role for HA in the proliferation of human adrenocortical cells that could contribute to a better understanding of tumor pathology as well as to the development of new therapeutic agents.
Collapse
Affiliation(s)
- Romina Maria Pagotto
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Biology and Experimental Medicine, National Research Council (IByME-CONICET), Vuelta de Obligado 2490, CP 1428 Buenos Aires, Argentina Department of Biological Chemistry, School of Sciences, University of Buenos Aires (UBA), CP 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
93
|
Kool MMJ, Galac S, Kooistra HS, Mol JA. Expression of angiogenesis-related genes in canine cortisol-secreting adrenocortical tumors. Domest Anim Endocrinol 2014; 47:73-82. [PMID: 24377872 DOI: 10.1016/j.domaniend.2013.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate the expression of angiogenesis-related genes in canine cortisol-secreting adrenocortical tumors (ATs). Quantitative RT-PCR analysis revealed mRNA encoding for vascular endothelial growth factor, vascular endothelial growth factor receptors 1 and 2, angiopoietin 1 and 2 (ANGPT1 and ANGPT2), the splice variant ANGPT2443, the ANGPT-receptor Tie2, and basic fibroblast growth factor in 38 canine cortisol-secreting ATs (26 carcinomas and 12 adenomas) and 15 normal adrenals. The relative expression of both ANGPT2 and ANGPT2443 was higher in adenomas (P = 0.020 for ANGPT2 and P = 0.002 for ANGPT2443) and carcinomas (P = 0.003 for ANGPT2 and P < 0.001 for ANGPT2443) compared with normal adrenals, and this enhanced expression was also detected with Western blot analysis. Immunohistochemistry indicated expression of ANGPT2 protein in AT cells and in vascular endothelial cells of carcinomas, whereas Tie2 was mainly present in the tumor vascular endothelial cells. The ANGPT2-to-ANGTPT1 ratio, a marker for a proangiogenic state, was higher in both adenomas (P = 0.020) and carcinomas (P = 0.043). With the use of the human H295R cortisol-producing adrenocortical carcinoma cell line, we were able to demonstrate that the ANGPT2 expression was stimulated by cyclic adenosine monophosphate and progesterone but not by cortisol. In conclusion, canine cortisol-secreting ATs have enhanced ANGPT2 expression with a concomitant shift toward a proangiogenic state. On the basis of this information, treatment modalities may be developed that interfere with ANGPT2 expression, including inhibition of the cyclic adenosine monophosphate/protein kinase A pathway, or of the effect of ANGPT2, by using specific ANGPT2 inhibitors.
Collapse
Affiliation(s)
- M M J Kool
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, The Netherlands
| | - S Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, The Netherlands.
| | - H S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, The Netherlands
| | - J A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
94
|
Guasti L, Cavlan D, Cogger K, Banu Z, Shakur A, Latif S, King PJ. Dlk1 up-regulates Gli1 expression in male rat adrenal capsule cells through the activation of β1 integrin and ERK1/2. Endocrinology 2013; 154:4675-84. [PMID: 24064361 DOI: 10.1210/en.2013-1211] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development and maintenance of the zones of the adrenal cortex and their steroidal output are extremely important in the control of gluconeogenesis, the stress response, and blood volume. Sonic Hedgehog (Shh) is expressed in the adrenal cortex and signals to capsular cells, which can respond by migrating into the cortex and converting into a steroidogenic phenotype. Delta-like homologue 1 (Dlk1), a member of the Notch/Delta/Serrate family of epidermal growth factor-like repeat-containing proteins, has a well-established role in inhibiting adipocyte differentiation. We demonstrate that Shh and Dlk1 are coexpressed in the outer undifferentiated zone of the male rat adrenal and that Dlk1 signals to the adrenal capsule, activating glioma-associated oncogene homolog 1 transcription in a β1 integrin- and Erk1/2-dependent fashion. Moreover, Shh and Dlk1 expression inversely correlates with the size of the zona glomerulosa in rats after manipulation of the renin-angiotensin system, suggesting a role in the homeostatic maintenance of the gland.
Collapse
Affiliation(s)
- Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
95
|
Ramanjaneya M, Karteris E, Chen J, Rucinski M, Ziolkowska A, Ahmed N, Kagerer S, Jöhren O, Lehnert H, Malendowicz LK, Randeva HS. QRFP induces aldosterone production via PKC and T-type calcium channel-mediated pathways in human adrenocortical cells: evidence for a novel role of GPR103. Am J Physiol Endocrinol Metab 2013; 305:E1049-58. [PMID: 23964068 DOI: 10.1152/ajpendo.00191.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hormonal regulation of adrenal function occurs primarily through activation of GPCRs. GPCRs are central to many of the body's endocrine and neurotransmitter pathways. Recently, it was shown that activation of GPR103 by its ligand QRFP induced feeding, locomotor activity, and metabolic rate, and QRFP is bioactive in adipose tissue of obese individuals. Given that the adrenal gland is a pivotal organ for energy balance and homeostasis, we hypothesized that GPR103 and QRFP are involved in steroidogenic responses. Using qRT-PCR and immunohistochemistry, we mapped both GPR103 and QRFP in human fetal and adult adrenal gland as well as rat adrenals. Both were primarily localized in the adrenal cortex but not in the medulla. Activation of GPR103 in human adrenocortical H295R cells led to a decrease in forskolin-increased cAMP and an increase of intracellular Ca(2+) levels. In addition, treatment of H295R cells with QRFP induced aldosterone and cortisol secretion as measured by ELISA. These increases were accompanied by increased expression and activity of StAR, CYB11B1, and CYP11B2 as assessed by qRT-PCR and luciferase reporter assay, respectively. Using specific inhibitors, we also demonstrated that aldosterone induction involves MAPK, PKC, and/or T-type Ca(2+) channel-dependent pathways. These novel data demonstrate that QRFP induces adrenal steroidogenesis in vitro by regulating key steroidogenic enzymes involving MAPK/PKC and Ca(2+) signaling pathways.
Collapse
Affiliation(s)
- Manjunath Ramanjaneya
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abdel-Khalik J, Björklund E, Hansen M. Development of a solid phase extraction method for the simultaneous determination of steroid hormones in H295R cell line using liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 935:61-9. [DOI: 10.1016/j.jchromb.2013.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/12/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
|
97
|
Udhane S, Kempna P, Hofer G, Mullis PE, Flück CE. Differential regulation of human 3β-hydroxysteroid dehydrogenase type 2 for steroid hormone biosynthesis by starvation and cyclic AMP stimulation: studies in the human adrenal NCI-H295R cell model. PLoS One 2013; 8:e68691. [PMID: 23874725 PMCID: PMC3706324 DOI: 10.1371/journal.pone.0068691] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/31/2013] [Indexed: 12/14/2022] Open
Abstract
Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. Therefore, specific downregulation of HSD3B2 at adrenarche around age 6–8 years and characteristic upregulation of HSD3B2 in the ovaries of women suffering from the polycystic ovary syndrome remain unexplained prompting us to study the regulation of HSD3B2 in adrenal NCI-H295R cells. Our studies confirm that the HSD3B2 promoter is regulated by transcription factors GATA, Nur77 and SF1/LRH1 in concert and that the NBRE/Nur77 site is crucial for hormonal stimulation with cAMP. In fact, these three transcription factors together were able to transactivate the HSD3B2 promoter in placental JEG3 cells which normally do not express HSD3B2. By contrast, epigenetic mechanisms such as methylation and acetylation seem not involved in controlling HSD3B2 expression. Cyclic AMP was found to exert differential effects on HSD3B2 when comparing short (acute) versus long-term (chronic) stimulation. Short cAMP stimulation inhibited HSD3B2 activity directly possibly due to regulation at co-factor or substrate level or posttranslational modification of the protein. Long cAMP stimulation attenuated HSD3B2 inhibition and increased HSD3B2 expression through transcriptional regulation. Although PKA and MAPK pathways are obvious candidates for possibly transmitting the cAMP signal to HSD3B2, our studies using PKA and MEK1/2 inhibitors revealed no such downstream signaling of cAMP. However, both signaling pathways were clearly regulating HSD3B2 expression.
Collapse
Affiliation(s)
- Sameer Udhane
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Berne, Switzerland
- Department of Clinical Research, University of Berne, Berne, Switzerland
- Graduate School Berne for Cellular and Biomedical Sciences, University of Berne, Berne, Switzerland
| | - Petra Kempna
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Berne, Switzerland
- Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Gaby Hofer
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Berne, Switzerland
- Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Primus E. Mullis
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Berne, Switzerland
- Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Christa E. Flück
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Berne, Switzerland
- Department of Clinical Research, University of Berne, Berne, Switzerland
- * E-mail:
| |
Collapse
|
98
|
Cooke M, Di Cónsoli H, Maloberti P, Cornejo Maciel F. Expression and function of OXE receptor, an eicosanoid receptor, in steroidogenic cells. Mol Cell Endocrinol 2013; 371:71-8. [PMID: 23159987 DOI: 10.1016/j.mce.2012.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
Hormonal regulation of steroidogenesis involves arachidonic acid (AA) metabolism through the 5-lipoxygenase pathway. One of the products, 5-hydroperoxy-eicosatetraenoic acid (5-HpETE), acts as a modulator of the activity of the steroidogenic acute regulatory (StAR) protein promoter. Besides, an oxoeicosanoid receptor of the leukotriene receptor family named OXE-R is a membrane protein with high affinity and response to 5-HpETE, among other AA derivatives. The aim of our work was to elucidate whether this receptor may be involved in steroidogenesis. RT-PCR and western blot analysis demonstrated the presence of the mRNA and protein of the receptor in human H295R adrenocortical cells. The treatment of H295R or MA-10 cells (murine Leydig cell line) with 8Br-cAMP together with docosahexaenoic acid (DHA, an antagonist of the receptor) partially reduced StAR induction and steroidogenesis. On the contrary, 5-oxo-ETE - the prototypical agonist, with higher affinity and potency on the receptor - increased cAMP-dependent steroid production, StAR mRNA and protein levels. These results lead us to conclude that AA might modulate StAR induction and steroidogenesis, at least in part, through 5-HpETE production and activation of a membrane receptor, such as the OXE-R.
Collapse
Affiliation(s)
- Mariana Cooke
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | | | | | | |
Collapse
|
99
|
Sewer MB, Li D. Regulation of adrenocortical steroid hormone production by RhoA-diaphanous 1 signaling and the cytoskeleton. Mol Cell Endocrinol 2013; 371. [PMID: 23186810 PMCID: PMC3926866 DOI: 10.1016/j.mce.2012.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The production of glucocorticoids and aldosterone in the adrenal cortex is regulated at multiple levels. Biosynthesis of these hormones is initiated when cholesterol, the substrate, enters the inner mitochondrial membrane for conversion to pregnenolone. Unlike most metabolic pathways, the biosynthesis of adrenocortical steroid hormones is unique because some of the enzymes are localized in mitochondria and others in the endoplasmic reticulum (ER). Although much is known about the factors that control the transcription and activities of the proteins that are required for steroid hormone production, the parameters that govern the exchange of substrates between the ER and mitochondria are less well understood. This short review summarizes studies that have begun to provide insight into the role of the cytoskeleton, mitochondrial transport, and the physical interaction of the ER and mitochondria in the production of adrenocortical steroid hormones.
Collapse
Affiliation(s)
- Marion B Sewer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0704, USA.
| | | |
Collapse
|
100
|
Frizzell C, Ndossi D, Kalayou S, Eriksen GS, Verhaegen S, Sørlie M, Elliott CT, Ropstad E, Connolly L. An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol. Toxicol Appl Pharmacol 2013; 271:64-71. [PMID: 23665424 DOI: 10.1016/j.taap.2013.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/18/2022]
Abstract
Alternariol (AOH) is a mycotoxin commonly produced by Alternaria alternata on a wide range of foods. Few studies to date have been performed to evaluate the effects of AOH on endocrine activity. The present study makes use of in vitro mammalian cellular based assays and gene expression to investigate the ability of AOH to act as an endocrine disruptor by various modes of action. Reporter gene assays (RGAs), incorporating natural steroid hormone receptors for oestrogens, androgens, progestagens and glucocorticoids were used to identify endocrine disruption at the level of nuclear receptor transcriptional activity, and the H295R steroidogenesis assay was used to assess endocrine disruption at the level of gene expression and steroid hormone production. AOH exhibited a weak oestrogenic response when tested in the oestrogen responsive RGA and binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of AOH. H295R cells when exposed to 0.1-1000ng/ml AOH, did not cause a significant change in testosterone and cortisol hormones but exposure to 1000ng/ml (3.87μM) AOH resulted in a significant increase in estradiol and progesterone production. In the gene expression study following exposure to 1000ng/ml (3.87μM) AOH, only one gene NR0B1 was down-regulated, whereas expression of mRNA for CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and CYP19 was up-regulated. Expression of the other genes investigated did not change significantly. In conclusion AOH is a weak oestrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway.
Collapse
MESH Headings
- Androgens/metabolism
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Endocrine Disruptors/administration & dosage
- Endocrine Disruptors/toxicity
- Estrogens/metabolism
- Genes, Reporter
- Glucocorticoids/metabolism
- Humans
- Lactones/administration & dosage
- Lactones/toxicity
- Progestins/metabolism
- RNA, Messenger/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Caroline Frizzell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|