51
|
Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 2015; 13:1499-516. [PMID: 26646248 DOI: 10.1586/14787210.2015.1100533] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
S. aureus colonizes both artificial and tissue surfaces in humans causing chronic persistent infections that are difficult to cure. It is a notorious pathogen due to its antibiotic recalcitrance and phenotypic adaptability, both of which are facilitated by its ability to develop biofilms. S. aureus biofilms challenge conventional anti-infective approaches, most notably antibiotic therapy. Therefore there is an unmet need to develop and include parallel approaches that target S. aureus biofilm infections. This review discusses two broad anti-infective strategies: (1) preventative approaches (anti-biofilm surface coatings, the inclusion of biofilm-specific vaccine antigens); and (2) approaches aimed at eradicating established S. aureus biofilms, particularly those associated with implant infections. Advances in understanding the distinct nature of S. aureus biofilm development and pathogenesis have led to growing optimism in S. aureus biofilm targeted anti-infective strategies. Further research is needed however, to see the successful administration and validation of these approaches to the diverse types of infections caused by S. aureus biofilms from multiple clinical strains.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA
| | - Daniel J Wozniak
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA.,b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| | - Paul Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA.,d Department of Orthopedics , The Ohio State University College of Medicine , Columbus , OH , USA.,e Department of Engineering Sciences, National Centre for Advanced Tribology at Southampton (nCATS) , University of Southampton , Southampton , UK
| | - Luanne Hall-Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| |
Collapse
|
52
|
Payne DE, Boles BR. Emerging interactions between matrix components during biofilm development. Curr Genet 2015; 62:137-41. [PMID: 26515441 PMCID: PMC4723619 DOI: 10.1007/s00294-015-0527-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023]
Abstract
Bacterial cells are most often found in the form of multicellular aggregates commonly referred to as biofilms. Biofilms offer their member cells several benefits, such as resistance to killing by antimicrobials and predation. During biofilm formation there is a production of extracellular substances that, upon assembly, constitute an extracellular matrix. The ability to generate a matrix encasing the microbial cells is a common feature of biofilms, but there is diversity in matrix composition and in interaction between matrix components. The different components of bacterial biofilm extracellular matrixes, known as matrix interactions, and resulting implications are discussed in this review.
Collapse
Affiliation(s)
- David E Payne
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Blaise R Boles
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
53
|
Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 2015. [PMID: 25566513 DOI: 10.3389/fcimb201400178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.
Collapse
Affiliation(s)
- Jessica L Lister
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Alexander R Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
54
|
Mootz JM, Benson MA, Heim CE, Crosby HA, Kavanaugh JS, Dunman PM, Kielian T, Torres VJ, Horswill AR. Rot is a key regulator of Staphylococcus aureus biofilm formation. Mol Microbiol 2015; 96:388-404. [PMID: 25612137 DOI: 10.1111/mmi.12943] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 01/28/2023]
Abstract
Staphylococcus aureus is a significant cause of chronic biofilm infections on medical implants. We investigated the biofilm regulatory cascade and discovered that the repressor of toxins (Rot) is part of this pathway. A USA300 community-associated methicillin-resistant S. aureus strain deficient in Rot was unable to form a biofilm using multiple different assays, and we found rot mutants in other strain lineages were also biofilm deficient. By performing a global analysis of transcripts and protein production controlled by Rot, we observed that all the secreted protease genes were up-regulated in a rot mutant, and we hypothesized that this regulation could be responsible for the biofilm phenotype. To investigate this question, we determined that Rot bound to the protease promoters, and we observed that activity levels of these enzymes, in particular the cysteine proteases, were increased in a rot mutant. By inactivating these proteases, biofilm capacity was restored to the mutant, demonstrating they are responsible for the biofilm negative phenotype. Finally, we tested the rot mutant in a mouse catheter model of biofilm infection and observed a significant reduction in biofilm burden. Thus S. aureus uses the transcription factor Rot to repress secreted protease levels in order to build a biofilm.
Collapse
Affiliation(s)
- Joe M Mootz
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
McCarthy H, Rudkin JK, Black NS, Gallagher L, O'Neill E, O'Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol 2015; 5:1. [PMID: 25674541 PMCID: PMC4309206 DOI: 10.3389/fcimb.2015.00001] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/05/2015] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance and biofilm-forming capacity contribute to the success of Staphylococcus aureus as a human pathogen in both healthcare and community settings. These virulence factors do not function independently of each other and the biofilm phenotype expressed by clinical isolates of S. aureus is influenced by acquisition of the methicillin resistance gene mecA. Methicillin-sensitive S. aureus (MSSA) strains commonly produce an icaADBC operon-encoded polysaccharide intercellular adhesin (PIA)-dependent biofilm. In contrast, the release of extracellular DNA (eDNA) and cell surface expression of a number of sortase-anchored proteins, and the major autolysin have been implicated in the biofilm phenotype of methicillin-resistant S. aureus (MRSA) isolates. Expression of high level methicillin resistance in a laboratory MSSA strain resulted in (i) repression of PIA-mediated biofilm production, (ii) down-regulation of the accessory gene regulator (Agr) system, and (iii) attenuation of virulence in murine sepsis and device infection models. Here we review the mechanisms of MSSA and MRSA biofilm production and the relationships between antibiotic resistance, biofilm and virulence gene regulation in S. aureus.
Collapse
Affiliation(s)
- Hannah McCarthy
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Justine K Rudkin
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Nikki S Black
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Laura Gallagher
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Eoghan O'Neill
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Dublin, Ireland
| | - James P O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| |
Collapse
|
56
|
Anti-biofilm agents in control of device-related infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 831:137-46. [PMID: 25384667 DOI: 10.1007/978-3-319-09782-4_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
57
|
Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 2014; 4:178. [PMID: 25566513 PMCID: PMC4275032 DOI: 10.3389/fcimb.2014.00178] [Citation(s) in RCA: 419] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.
Collapse
Affiliation(s)
- Jessica L Lister
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Alexander R Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
58
|
Siljamäki P, Varmanen P, Kankainen M, Pyörälä S, Karonen T, Iivanainen A, Auvinen P, Paulin L, Laine PK, Taponen S, Simojoki H, Sukura A, Nyman TA, Savijoki K. Comparative proteome profiling of bovine and human Staphylococcus epidermidis strains for screening specifically expressed virulence and adaptation proteins. Proteomics 2014; 14:1890-4. [PMID: 24909406 DOI: 10.1002/pmic.201300275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 03/19/2014] [Accepted: 06/02/2014] [Indexed: 01/19/2023]
Abstract
The present study reports a comparative proteome cataloging of a bovine mastitis and a human-associated Staphylococcus epidermidis strain with a specific focus on surfome (cell-wall bound and extracellular) proteins. Protein identification by 1DE coupled with LC-MS/MS analyses resulted in 1400 and 1287 proteins from the bovine (PM221) and human (ATCC12228) strains, respectively, covering over 50% of all predicted and more than 30% of all predicted surfome proteins in both strains. Comparison of the identification results suggests elevated levels of proteins involved in adherence, biofilm formation, signal transduction, house-keeping functions, and immune evasion in PM221, whereas ATCC12228 was more effective in expressing host defense evasion proteases, skin adaptation lipases, hemagglutination, and heavy-metal resistance proteins. Phenotypic analyses showed that only PM221 displays protein- and DNA-mediated adherent growth, and that PM221 was more efficient in cleaving tributyrin, a natural compound of milk fat under low CO2 conditions. These findings are in line with the identification data and suggest that distinct expression of lipases and adhesive surfome proteins could lead to the observed phenotypes. This study is the first extensive survey of S. epidermidis proteomes to date, providing several protein candidates to be examined for their roles in adaptation and virulence in vivo. All MS data have been deposited in the ProteomeXchange with identifier PXD000404 (http://proteomecentral.proteomexchange.org/dataset/PXD000404).
Collapse
Affiliation(s)
- Pia Siljamäki
- Institute of Biotechnology, Proteomics Unit, University of Helsinki, Helsinki, Finland; Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 2014; 5:217. [PMID: 24860564 PMCID: PMC4026712 DOI: 10.3389/fmicb.2014.00217] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/25/2014] [Indexed: 12/21/2022] Open
Abstract
It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really replace antibiotics remains a controversial issue. This review summarizes recent development and perspectives of alternatives to antibiotics. The mechanism of actions, applications, and prospectives of the alternatives such as immunity modulating agents, bacteriophages and their lysins, antimicrobial peptides, pro-, pre-, and synbiotics, plant extracts, inhibitors targeting pathogenicity (bacterial quorum sensing, biofilm, and virulence), and feeding enzymes are thoroughly discussed. Lastly, the feasibility of alternatives to antibiotics is deeply analyzed. It is hard to conclude that the alternatives might substitute antibiotics in veterinary medicine in the foreseeable future. At the present time, prudent use of antibiotics and the establishment of scientific monitoring systems are the best and fastest way to limit the adverse effects of the abuse of antibiotics and to ensure the safety of animal-derived food and environment.
Collapse
Affiliation(s)
- Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China ; MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China ; MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China ; National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China ; MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
60
|
Nicholson TL, Shore SM, Smith TC, Frana TS. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of swine origin form robust biofilms. PLoS One 2013; 8:e73376. [PMID: 23951352 PMCID: PMC3739819 DOI: 10.1371/journal.pone.0073376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 07/22/2013] [Indexed: 01/11/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) colonization of livestock animals is common and prevalence rates for pigs have been reported to be as high as 49%. Mechanisms contributing to the persistent carriage and high prevalence rates of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains in swine herds and production facilities have not been investigated. One explanation for the high prevalence of MRSA in swine herds is the ability of these organisms to exist as biofilms. In this report, the ability of swine LA-MRSA strains, including ST398, ST9, and ST5, to form biofilms was quantified and compared to several swine and human isolates. The contribution of known biofilm matrix components, polysaccharides, proteins and extracellular DNA (eDNA), was tested in all strains as well. All MRSA swine isolates formed robust biofilms similar to human clinical isolates. The addition of Dispersin B had no inhibitory effect on swine MRSA isolates when added at the initiation of biofilm growth or after pre-established mature biofilms formed. In contrast, the addition of proteinase K inhibited biofilm formation in all strains when added at the initiation of biofilm growth and was able to disperse pre-established mature biofilms. Of the LA-MRSA strains tested, we found ST398 strains to be the most sensitive to both inhibition of biofilm formation and dispersal of pre-formed biofilms by DNaseI. Collectively, these findings provide a critical first step in designing strategies to control or eliminate MRSA in swine herds.
Collapse
Affiliation(s)
- Tracy L Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA.
| | | | | | | |
Collapse
|
61
|
Abstract
Staphylococcus aureus is a known cause of chronic biofilm infections that can reside on medical implants or host tissue. Recent studies have demonstrated an important role for proteinaceous material in the biofilm structure. The S. aureus genome encodes many secreted proteases, and there is growing evidence that these enzymes have self-cleavage properties that alter biofilm integrity. However, the specific contribution of each protease and mechanism of biofilm modulation is not clear. To address this issue, we utilized a sigma factor B (ΔsigB) mutant where protease activity results in a biofilm-negative phenotype, thereby creating a condition where the protease(s) responsible for the phenotype could be identified. Using a plasma-coated microtiter assay, biofilm formation was restored to the ΔsigB mutant through the addition of the cysteine protease inhibitor E-64 or by using Staphostatin inhibitors that specifically target the extracellular cysteine proteases SspB and ScpA (called Staphopains). Through construction of gene deletion mutants, we determined that an sspB scpA double mutant restored ΔsigB biofilm formation, and this recovery could be replicated in plasma-coated flow cell biofilms. Staphopain levels were also found to be decreased under biofilm-forming conditions, possibly allowing biofilm establishment. The treatment of S. aureus biofilms with purified SspB or ScpA enzyme inhibited their formation, and ScpA was also able to disperse an established biofilm. The antibiofilm properties of ScpA were conserved across S. aureus strain lineages. These findings suggest an underappreciated role of the SspB and ScpA cysteine proteases in modulating S. aureus biofilm architecture.
Collapse
|
62
|
Mitchell G, Fugère A, Pépin Gaudreau K, Brouillette E, Frost EH, Cantin AM, Malouin F. SigB is a dominant regulator of virulence in Staphylococcus aureus small-colony variants. PLoS One 2013; 8:e65018. [PMID: 23705029 PMCID: PMC3660380 DOI: 10.1371/journal.pone.0065018] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus small-colony variants (SCVs) are persistent pathogenic bacteria characterized by slow growth and, for many of these strains, an increased ability to form biofilms and to persist within host cells. The virulence-associated gene expression profile of SCVs clearly differs from that of prototypical strains and is often influenced by SigB rather than by the agr system. One objective of this work was to confirm the role of SigB in the control of the expression of virulence factors involved in biofilm formation and intracellular persistence of SCVs. This study shows that extracellular proteins are involved in the formation of biofilm by three SCV strains, which, additionally, have a low biofilm-dispersing activity. It was determined that SigB activity modulates biofilm formation by strain SCV CF07-S and is dominant over that of the agr system without being solely responsible for the repression of proteolytic activity. On the other hand, the expression of fnbA and the control of nuclease activity contributed to the SigB-dependent formation of biofilm of this SCV strain. SigB was also required for the replication of CF07-S within epithelial cells and may be involved in the colonization of lungs by SCVs in a mouse infection model. This study methodically investigated SigB activity and associated mechanisms in the various aspects of SCV pathogenesis. Results confirm that SigB activity importantly influences the production of virulence factors, biofilm formation and intracellular persistence for some clinical SCV strains.
Collapse
Affiliation(s)
- Gabriel Mitchell
- Centre d'étude et de valorisation de la diversité microbienne, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alexandre Fugère
- Centre d'étude et de valorisation de la diversité microbienne, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Karine Pépin Gaudreau
- Centre d'étude et de valorisation de la diversité microbienne, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Brouillette
- Centre d'étude et de valorisation de la diversité microbienne, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H. Frost
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbooke, Quebec, Canada
| | - André M. Cantin
- Unité de recherche pulmonaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Malouin
- Centre d'étude et de valorisation de la diversité microbienne, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
63
|
Savage VJ, Chopra I, O’Neill AJ. Population diversification in Staphylococcus aureus biofilms may promote dissemination and persistence. PLoS One 2013; 8:e62513. [PMID: 23646129 PMCID: PMC3640034 DOI: 10.1371/journal.pone.0062513] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/21/2013] [Indexed: 12/26/2022] Open
Abstract
The biofilm mode of growth can lead to diversification of the bacterial population by promoting the emergence of variants. Here we report the identification and characterization of two major subpopulations of morphological variants arising in biofilms of S. aureus. One of these lacked pigmentation (termed white variants; WVs), whilst the other formed colonies on agar that were larger and paler than the parental strain (termed large pale variants; LPVs). WVs were unable to form biofilms, and exhibited increased proteolysis and haemolysis; all phenotypes attributable to loss-of-function mutations identified in the gene encoding the alternative sigma factor, sigB. For LPVs, no differences in biofilm forming capacity or proteolysis were observed compared with the parental strain. Genetic analysis of LPVs revealed that they had undergone mutation in the accessory gene regulator system (agrA), and deficiency in agr was confirmed by demonstrating loss of both colony spreading and haemolytic activity. The observation that S. aureus biofilms elaborate large subpopulations of sigB and agr mutants, both genotypes that have independently been shown to be of importance in staphylococcal disease, has implications for our understanding of staphylococcal infections involving a biofilm component.
Collapse
Affiliation(s)
- Victoria J. Savage
- Antimicrobial Research Centre, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Ian Chopra
- Antimicrobial Research Centre, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Alex J. O’Neill
- Antimicrobial Research Centre, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
64
|
Potential use of Atlantic cod trypsin in biomedicine. BIOMED RESEARCH INTERNATIONAL 2013; 2013:749078. [PMID: 23555095 PMCID: PMC3600245 DOI: 10.1155/2013/749078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/09/2013] [Accepted: 01/27/2013] [Indexed: 12/01/2022]
Abstract
Surface proteins of viruses and bacteria used for cell attachment and invasion are candidates for degradation by proteases. Trypsin from Atlantic cod (Gadus morhua) was previously demonstrated to have efficacy against influenza viruses in vitro and on skin. In this paper, cod trypsin is shown to be 3–12 times more effective in degrading large native proteins than its mesophilic analogue, bovine trypsin. This is in agreement with previous findings where cod trypsin was found to be the most active among twelve different proteases in cleaving various cytokines and pathological proteins. Furthermore, our results show that cod trypsin has high efficacy against herpes simplex virus type 1 (HSV-1) and the respiratory syncytial virus (RSV) in vitro. The results on the antipathogenic properties of cod trypsin are important because rhinovirus, RSV, and influenza are the most predominant pathogenic viruses in upper respiratory tract infections. Results from a clinical study presented in this paper show that a specific formulation containing cod trypsin was preferred for wound healing over other methods used in the study. Apparently, the high digestive ability of the cold-adapted cod trypsin towards large native proteins plays a role in its efficacy against pathogens and its positive effects on wounds.
Collapse
|
65
|
Fornbacke M, Clarsund M. Cold-adapted proteases as an emerging class of therapeutics. Infect Dis Ther 2013; 2:15-26. [PMID: 25135820 PMCID: PMC4108096 DOI: 10.1007/s40121-013-0002-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Indexed: 01/11/2023] Open
Abstract
Proteases have been used in medicine for several decades and are an established and well tolerated class of therapeutic agent. These proteases were sourced from mammals or bacteria that exist or have adapted to moderate temperatures (mesophilic organisms); however, proteases derived from organisms from cold environments-cold-adapted or psychrophilic proteases-generally have high specific activity, low substrate affinity, and high catalytic rates at low and moderate temperatures. Made possible by greater flexibility, psychrophilic enzymes interact with and transform the substrate at lower energy costs. Cold-adapted proteases have been used in a wide range of applications, including industrial functions, textiles, cleaning/hygiene products, molecular biology, environmental bioremediations, consumer food products, cosmetics, and pharmaceutical production. In addition to these applications, they have also shown promise as therapeutic modalities for cosmeceutical applications (by reducing glabellar [frown] lines) and a number of disease conditions, including bacterial infections (by disrupting biofilms to prevent bacterial infection), topical wound management (when used as a debridement agent to remove necrotic tissue and fibrin clots), oral/dental health management (by removing plaque and preventing periodontal disease), and in viral infections (by reducing the infectivity of viruses, such as human rhinovirus 16 and herpes simplex virus). Psychrophilic proteases with greater activity and stability (than the original organism-derived variant) have been developed; this coupled with available manufacturing recombinant production techniques suggests that cold-adapted proteases have a promising future as a distinct therapeutic class with diverse clinical applications.
Collapse
|
66
|
Abstract
Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host.
Collapse
Affiliation(s)
- Dorte Frees
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg, C 1870, Denmark
| | | | | |
Collapse
|
67
|
Sibbald MJJB, Yang XM, Tsompanidou E, Qu D, Hecker M, Becher D, Buist G, van Dijl JM. Partially overlapping substrate specificities of staphylococcal group A sortases. Proteomics 2012; 12:3049-62. [PMID: 22930668 DOI: 10.1002/pmic.201200144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/12/2012] [Accepted: 07/27/2012] [Indexed: 11/10/2022]
Abstract
Sortases catalyze the covalent attachment of proteins with a C-terminal LPxTG motif to the cell walls of Gram-positive bacteria. Here, we show that deletion of the srtA genes of Staphylococcus aureus and Staphylococcus epidermidis resulted in the dislocation of several LPxTG proteins from the cell wall to the growth medium. Nevertheless, proteomics and Western blotting analyses revealed that substantial amounts of the identified proteins remained cell wall bound through noncovalent interactions. The protein dislocation phenotypes of srtA mutants of S. aureus and S. epidermidis were reverted by ectopic expression of srtA genes of either species. Interestingly, S. epidermidis contains a second sortase A, which was previously annotated as ``SrtC.'' Ectopic expression of this SrtC in srtA mutant cells reverted the dislocation of some, but not all, cell wall associated proteins. Similarly, defects in biofilm formation were reverted by ectopic expression of SrtC in some, but not all, tested srtA mutant strains. Finally, overexpression of SrtA resulted in increased levels of biofilm formation in some tested strains. Taken together, these findings show that the substrate specificities of SrtA and SrtC overlap partially, and that sortase levels may be limiting for biofilm formation in some staphylococci.
Collapse
Affiliation(s)
- Mark J J B Sibbald
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
68
|
SUDAGIDAN MERT, YEMENİCİOĞLU AHMET. Effects of Nisin and Lysozyme on Growth Inhibition and Biofilm Formation Capacity of Staphylococcus aureus Strains Isolated from Raw Milk and Cheese Samples. J Food Prot 2012; 75:1627-33. [DOI: 10.4315/0362-028x.jfp-12-001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Effects of nisin and lysozyme on growth inhibition and biofilm formation capacity of 25 Staphylococcus aureus strains isolated from raw milk (13 strains) and cheese (12 strains) were studied. Nisin was tested at concentrations between 0.5 and 25 μg/ml; the growth of all strains was inhibited at 25 μg/ml, but the resistances of strains showed a great variation at lower nisin concentrations. In contrast, lysozyme tested at concentrations up to 5.0 mg/ml showed no inhibition on the growth of strains. Nisin used at the growth inhibitory concentration prevented the biofilm formation of strains, but strains continued biofilm formation at subinhibitory nisin concentrations. Lysozyme did not affect the biofilm formation of 19 of the strains, but it caused a considerable activation in the biofilm formation capacity of six strains. Twelve of the strains contained both biofilm-related protease genes (sspA, sspB, and aur) and active proteases; eight of these strains were nisin resistant. These results suggest a potential risk of S. aureus growth and biofilm formation when lysozyme is used in the biopreservation of dairy products. Nisin can be used to control growth and biofilm formation of foodborne S. aureus, unless resistance against this biopreservative develops.
Collapse
Affiliation(s)
- MERT SUDAGIDAN
- 1Science and Technology Application and Research Center, Mehmet Akif Ersoy University, 15100 Burdur, Turkey
| | - AHMET YEMENİCİOĞLU
- 2Department of Food Engineering, Izmir Institute of Technology, Gulbahce Campus, Urla 35430, Izmir, Turkey
| |
Collapse
|
69
|
Junecko JM, Zielinska AK, Mrak LN, Ryan DC, Graham JW, Smeltzer MS, Lee CY. Transcribing virulence in Staphylococcus aureus. World J Clin Infect Dis 2012; 2:63-76. [DOI: 10.5495/wjcid.v2.i4.63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen capable of causing a diverse range of infections. Once regarded as an opportunistic pathogen causing primarily nosocomial infections, recent years have seen the emergence of S. aureus strains capable of causing serious infection even in otherwise healthy human hosts. There has been much debate about whether this transition is a function of unique genotypic characteristics or differences in the expression of conserved virulence factors, but irrespective of this debate it is clear that the ability of S. aureus to cause infection in all of its diverse forms is heavily influenced by its ability to modulate gene expression in response to changing conditions within the human host. Indeed, the S. aureus genome encodes more than 100 transcriptional regulators that modulate the production of virulence factors either directly via interactions with cis elements associated with genes encoding virulence factors or indirectly through their complex interactions with each other. The goal of this review is to summarize recent work describing these regulators and their contribution to defining S. aureus as a human pathogen.
Collapse
|
70
|
Park JH, Lee JH, Cho MH, Herzberg M, Lee J. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. FEMS Microbiol Lett 2012; 335:31-8. [PMID: 22784033 DOI: 10.1111/j.1574-6968.2012.02635.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
Bacterial biofilms are associated with the persistent infections because of their high tolerance to antimicrobial agents. Hence, controlling pathogenic biofilm formation is important in bacteria-related diseases. Staphylococcus aureus is a versatile human pathogen that readily forms biofilms on human tissues and diverse medical devices. As S. aureus can be naturally found in multi-species communities, the supernatants of 28 bacteria were screened to identify new biofilm inhibitory components against S. aureus. The culture supernatant (1%, v/v) of Pseudomonas aeruginosa PAO1 inhibited S. aureus biofilm formation more than 90% without affecting its planktonic cell growth. The P. aeruginosa supernatant contained a high protease activity, which both inhibited S. aureus biofilm formation and detached pre-existing biofilms. An examination of 13 protease-deficient P. aeruginosa mutants identified that LasB elastase is a major antibiofilm protease in P. aeruginosa against S. aureus. Transcriptional analyses showed that P. aeruginosa supernatant induced the expression of endogenous protease genes (aur, clp, scpA, splA, and sspA) and other regulatory genes (agrA, hla, and saeS). Additionally, exogenous proteinase K clearly enhanced the protease activity of S. aureus. Hence, S. aureus accelerated the expression of its own protease genes in the presence of exogenous protease, leading to the rapid dispersal of its biofilm.
Collapse
Affiliation(s)
- Joo-Hyeon Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | | | | | | | | |
Collapse
|
71
|
Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012; 33:5967-82. [PMID: 22695065 DOI: 10.1016/j.biomaterials.2012.05.031] [Citation(s) in RCA: 697] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/15/2012] [Indexed: 02/07/2023]
Abstract
Implant infections in orthopaedics, as well as in many other medical fields, are chiefly caused by staphylococci. The ability of growing within a biofilm enhances the chances of staphylococci to protect themselves from host defences, antibiotic therapies, and biocides. Advances in scientific knowledge on structural molecules (exopolysaccharide, proteins, teichoic acids, and the most recently described extracellular DNA), on the synthesis and genetics of staphylococcal biofilms, and on the complex network of signal factors that intervene in their control are here presented, also reporting on the emerging strategies to disrupt or inhibit them. The attitude of polymorphonuclear neutrophils and macrophages to infiltrate and phagocytise biofilms, as well as the ambiguous behaviour exhibited by these innate immune cells in biofilm-related implant infections, are here discussed. Research on anti-biofilm biomaterials is focused, reviewing materials loaded with antibacterial substances, or coated with anti-adhesive/anti-bacterial immobilized agents, or surfaced with nanostructures. Latter approaches appear promising, since they avoid the spread of antibacterial substances in the neighbouring tissues with the consequent risk of inducing bacterial resistance.
Collapse
|
72
|
Pozzi C, Waters EM, Rudkin JK, Schaeffer CR, Lohan AJ, Tong P, Loftus BJ, Pier GB, Fey PD, Massey RC, O'Gara JP. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog 2012; 8:e1002626. [PMID: 22496652 PMCID: PMC3320603 DOI: 10.1371/journal.ppat.1002626] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/23/2012] [Indexed: 01/15/2023] Open
Abstract
Clinical isolates of Staphylococcus aureus can express biofilm phenotypes promoted by the major cell wall autolysin and the fibronectin-binding proteins or the icaADBC-encoded polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG). Biofilm production in methicillin-susceptible S. aureus (MSSA) strains is typically dependent on PIA/PNAG whereas methicillin-resistant isolates express an Atl/FnBP-mediated biofilm phenotype suggesting a relationship between susceptibility to β-lactam antibiotics and biofilm. By introducing the methicillin resistance gene mecA into the PNAG-producing laboratory strain 8325-4 we generated a heterogeneously resistant (HeR) strain, from which a homogeneous, high-level resistant (HoR) derivative was isolated following exposure to oxacillin. The HoR phenotype was associated with a R602H substitution in the DHHA1 domain of GdpP, a recently identified c-di-AMP phosphodiesterase with roles in resistance/tolerance to β-lactam antibiotics and cell envelope stress. Transcription of icaADBC and PNAG production were impaired in the 8325-4 HoR derivative, which instead produced a proteinaceous biofilm that was significantly inhibited by antibodies against the mecA-encoded penicillin binding protein 2a (PBP2a). Conversely excision of the SCCmec element in the MRSA strain BH1CC resulted in oxacillin susceptibility and reduced biofilm production, both of which were complemented by mecA alone. Transcriptional activity of the accessory gene regulator locus was also repressed in the 8325-4 HoR strain, which in turn was accompanied by reduced protease production and significantly reduced virulence in a mouse model of device infection. Thus, homogeneous methicillin resistance has the potential to affect agr- and icaADBC-mediated phenotypes, including altered biofilm expression and virulence, which together are consistent with the adaptation of healthcare-associated MRSA strains to the antibiotic-rich hospital environment in which they are frequently responsible for device-related infections in immuno-compromised patients. The acquisition of mecA, which encodes penicillin binding protein 2a (PBP2a) and methicillin resistance, by Staphylococcus aureus has added to an already impressive array of virulence mechanisms including enzyme and toxin production, biofilm forming capacity and immune evasion. And yet clinical data does not indicate that healthcare-associated methicillin resistant S. aureus (MRSA) strains are more virulent than their methicillin-susceptible counterparts. Here our findings suggest that MRSA sacrifices virulence potential for antibiotic resistance and that expression of methicillin resistance alters the biofilm phenotype but does not interfere with the colonization of implanted medical devices in vivo. High level expression of PBP2a, which was associated with a mutation in the c-di-AMP phosphodiesterase gene gdpP, resulted in these pleiotrophic effects by blocking icaADBC-dependent polysaccharide type biofilm development and promoting an alternative PBP2a-mediated biofilm, repressing the accessory gene regulator and extracellular protease production, and attenuating virulence in a mouse device-infection model. Thus the adaptation of MRSA to the hospital environment has apparently focused on the acquisition of antibiotic resistance and retention of biofilm forming capacity, which are likely to be more advantageous than metabolically-expensive enzyme and toxin production in immunocompromised patients with implanted medical devices offering a route to infection.
Collapse
Affiliation(s)
- Clarissa Pozzi
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elaine M. Waters
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Justine K. Rudkin
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Carolyn R. Schaeffer
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Amanda J. Lohan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Pin Tong
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Brendan J. Loftus
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Gerald B. Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ruth C. Massey
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - James P. O'Gara
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
73
|
Koziel J, Potempa J. Protease-armed bacteria in the skin. Cell Tissue Res 2012; 351:325-37. [PMID: 22358849 PMCID: PMC3560952 DOI: 10.1007/s00441-012-1355-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
The skin constitutes a formidable barrier against commensal and pathogenic bacteria, which permanently and transiently colonise the skin, respectively. Commensal and pathogenic species inhabiting skin both express proteases. Whereas proteases secreted by commensals contribute to homeostatic bacterial coexistence on skin, proteases from pathogenic bacteria are used as virulence factors, helping them colonise skin with breached integrity of the epithelial layer. From these initial sites of colonisation, pathogens can disseminate into deeper layers of skin, possibly leading to the spread of infection. Secreted bacterial proteases probably play an important role in this process and in the deterrence of innate defence mechanisms. For example, Staphylococcus aureus proteases are essential for changing the bacterial phenotype from adhesive to invasive by degrading adhesins on the bacterial cell surface. Secreted staphylococcal proteases mediate pathogen penetration by degrading collagen and elastin, essential components of connective tissue in the dermis. The activation of the contact system and kinin generation by Streptococcus pyogenes and S. aureus proteases contributes to an inflammatory reaction manifested by oedema, redness and pain. Kinin-enhanced vascular leakage might help bacteria escape into the circulation thereby causing possible systemic dissemination of the infection. The inflammatory reaction can also be fueled by the activation of protease-activated receptors on keratinocytes. Concomitantly, bacterial proteases are involved in degrading antimicrobial peptides, disarming the complement system and neutrophils and preventing the infiltration of the infected sites with immune cells by inactivation of chemoattractants. Together, this provides protection for colonising and/or invading pathogens from attack by antibacterial forces of the skin.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
74
|
Abstract
Bacteria of the genus Staphylococcus are a prominent cause of acute and chronic infections. The ability of the staphylococci to establish biofilms has been linked to the persistence of chronic infections, which has drawn considerable interest from researchers over the past decade. Biofilms can be defined as sessile communities of surface-attached cells encased in an extracellular matrix, and treatment of bacteria in this mode of growth is challenging due to the resistance of biofilm structures to both antimicrobials and host defenses. In this review of the literature, we introduce Staphylococcus aureus and Staphylococcus epidermidis biofilms and summarize current antibiotic treatment approaches for staphylococcal biofilm infections. We also review recent studies on alternative strategies for preventing biofilm formation and dispersing established biofilms, including matrix-degrading enzymes, small-molecule approaches, and manipulation of natural staphylococcal disassembly mechanisms. While research on staphylococcal biofilm development is still in its early stages, new discoveries in the field hold promise for improved therapies that target staphylococcal biofilm infections.
Collapse
Affiliation(s)
- Megan R Kiedrowski
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | | |
Collapse
|
75
|
Ferreira FA, Souza RR, Bonelli RR, Américo MA, Fracalanzza SEL, Figueiredo AMS. Comparison of in vitro and in vivo systems to study ica-independent Staphylococcus aureus biofilms. J Microbiol Methods 2012; 88:393-8. [PMID: 22296887 DOI: 10.1016/j.mimet.2012.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/07/2012] [Accepted: 01/07/2012] [Indexed: 01/12/2023]
Abstract
The ability of Staphylococcus aureus to form biofilms is considered an important factor in the pathogenesis of central venous catheter-related bacteremia and infections associated with the use of medical prostheses. Different methods have been described for assessing staphylococcal biofilms, but few comparative studies have been attempted to evaluate these techniques; especially related to ica-independent biofilm formation/accumulation. In this study we compared some in vitro and in vivo techniques to evaluate ica-independent biofilms produced by methicillin-resistant S. aureus. We observed that biofilms formed on human fibronectin-covered surfaces were about three times higher than those produced on inert polystyrene surfaces. However, despite the difference in absolute values, a linear correlation was detected between these two models. We also found that biofilms formed on polystyrene or polyurethane surfaces treated with human serum were easily detachable during washing and staining processes. The mouse model of subcutaneous foreign body showed good correlation with the in vitro techniques using either inert polystyrene or solid-phase fibronectin. Thus, our data showed that the microtiter-plate-based spectrophotometric assay is an appropriate method for preliminary biofilm investigations, mainly when a large number of isolates, mutants or systems need to be tested.
Collapse
Affiliation(s)
- Fabienne Antunes Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
76
|
Rosenstein R, Götz F. What Distinguishes Highly Pathogenic Staphylococci from Medium- and Non-pathogenic? Curr Top Microbiol Immunol 2012; 358:33-89. [DOI: 10.1007/82_2012_286] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM, Smeltzer MS, Bayles KW, Horswill AR. Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PLoS One 2011; 6:e26714. [PMID: 22096493 PMCID: PMC3214024 DOI: 10.1371/journal.pone.0026714] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 10/03/2011] [Indexed: 12/13/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging contributor to biofilm-related infections. We recently reported that strains lacking sigma factor B (sigB) in the USA300 lineage of CA-MRSA are unable to develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus strains, biofilm formation was inhibited. Following fractionation and mass spectrometry analysis, the major anti-biofilm factor identified in the spent media was secreted thermonuclease (Nuc). Considering reports that extracellular DNA (eDNA) is an important component of the biofilm matrix, we investigated the regulation and role of Nuc in USA300. The expression of the nuc gene was increased in a sigB mutant, repressed by glucose supplementation, and was unaffected by the agr quorum-sensing system. A FRET assay for Nuc activity was developed and confirmed the regulatory results. A USA300 nuc mutant was constructed and displayed an enhanced biofilm-forming capacity, and the nuc mutant also accumulated more high molecular weight eDNA than the WT and regulatory mutant strains. Inactivation of nuc in the USA300 sigB mutant background partially repaired the sigB biofilm-negative phenotype, suggesting that nuc expression contributes to the inability of the mutant to form biofilm. To test the generality of the nuc mutant biofilm phenotypes, the mutation was introduced into other S. aureus genetic backgrounds and similar increases in biofilm formation were observed. Finally, using multiple S. aureus strains and regulatory mutants, an inverse correlation between Nuc activity and biofilm formation was demonstrated. Altogether, our findings confirm the important role for eDNA in the S. aureus biofilm matrix and indicates Nuc is a regulator of biofilm formation.
Collapse
Affiliation(s)
- Megan R. Kiedrowski
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffrey S. Kavanaugh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Cheryl L. Malone
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joe M. Mootz
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jovanka M. Voyich
- Department of Veterinary Microbiology, Montana State University, Bozeman, Montana, United States of America
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Kenneth W. Bayles
- Department of Pathology, Nebraska Medical Center, University of Nebraska, Omaha, Nebraska, United States of America
| | - Alexander R. Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
78
|
Rsp inhibits attachment and biofilm formation by repressing fnbA in Staphylococcus aureus MW2. J Bacteriol 2011; 193:5231-41. [PMID: 21804010 DOI: 10.1128/jb.05454-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms contribute to virulence of Staphylococcus aureus. Formation of biofilms is multifactorial, involving polysaccharide, protein, and DNA components, which are controlled by various regulators. Here we report that deletion of the rsp gene resulted in an increase in biofilm formation in strain MW2, suggesting that Rsp is a repressor of biofilm formation. Using SDS-PAGE, we found that Rsp profoundly affected cell surface and secreted proteins. The rsp gene was transcribed monocistronically, and the transcripts were most abundant at the exponential growth phase. Microarray analyses revealed that Rsp represses 75 genes, including 9 genes encoding cell wall-anchored proteins, and activates 22 genes, including 5 genes encoding secreted proteases. Among these genes, fnbA, fnbB, sasG, and spa (which encode cell wall-anchored proteins) and splABCD (which encode secreted proteases) have been implicated in biofilm formation. To deconvolute Rsp's contribution to biofilm formation, we analyzed deletion mutants of these genes either in the wild-type or in the rsp mutant background. We found that fnbA deletion in the rsp mutant restored biofilm formation to the wild-type level, indicating that FnbA plays a major role in Rsp regulation of biofilm formation. Further studies revealed that Rsp inhibited biofilm formation at the stage of primary attachment through repressing fnbA. Rsp belongs to the AraC/XylS family of regulatory proteins. We expressed the putative Rsp DNA binding domain (RspDBD) in Escherichia coli and showed that RspDBD was able to specifically bind to a short DNA fragment containing the fnbA promoter, suggesting that Rsp represses fnbA expression by direct DNA binding.
Collapse
|
79
|
Boles BR, Horswill AR. Staphylococcal biofilm disassembly. Trends Microbiol 2011; 19:449-55. [PMID: 21784640 DOI: 10.1016/j.tim.2011.06.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/06/2011] [Accepted: 06/16/2011] [Indexed: 01/12/2023]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are a frequent cause of biofilm-associated infections that are a tremendous burden on our healthcare system. Staphylococcal biofilms exhibit extraordinary resistance to antimicrobial killing, limiting the efficacy of antibiotic therapy, and surgical intervention is often required to remove infected tissues or implanted devices. Recent work has provided new insight into the molecular basis of biofilm development in these opportunistic pathogens. Extracellular bacterial products, environmental conditions, and polymicrobial interactions have all been shown to influence profoundly the ability of these bacteria to colonize and disperse from clinically relevant surfaces. We review new developments in staphylococcal biofilm disassembly and set them in the context of potential strategies to control biofilm infections.
Collapse
Affiliation(s)
- Blaise R Boles
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, MI 48109, USA
| | | |
Collapse
|
80
|
Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype. Infect Immun 2010; 79:1153-65. [PMID: 21189325 DOI: 10.1128/iai.00364-10] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus clinical isolates are capable of producing at least two distinct types of biofilm mediated by the fibronectin-binding proteins (FnBPs) or the icaADBC-encoded polysaccharide intercellular adhesin (PIA). Deletion of the major autolysin gene atl reduced primary attachment rates and impaired FnBP-dependent biofilm production on hydrophilic polystyrene in 12 clinical methicillin-resistant S. aureus (MRSA) isolates but had no effect on PIA-dependent biofilm production by 9 methicillin-susceptible S. aureus (MSSA) isolates. In contrast, Atl was required for both FnBP- and PIA-mediated biofilm development on hydrophobic polystyrene. Here we investigated the role of Atl in biofilm production on hydrophilic polystyrene. The alternative sigma factor σ(B), which represses RNAIII expression and extracellular protease production, was required for FnBP- but not PIA-dependent biofilm development. Furthermore, mutation of the agr locus enhanced FnBP-dependent biofilm development, whereas a sarA mutation, which increases protease production, blocked FnBP-mediated biofilm development. Mutation of sigB in MRSA isolate BH1CC lowered primary attachment rates, in part via reduced atl transcription. Posttranslational activation or inhibition of Atl activity with phenylmethylsulfonyl fluoride and polyanethole sodium sulfonate or mutation of the Atl amidase active site interfered with lytic activity and biofilm development. Consistent with these observations, extracellular DNA was important for the early stages of Atl/FnBP-dependent biofilm development. Further analysis of atl regulation revealed that atlR encodes a transcriptional repressor of the major autolysin and that an atlR::Tc(r) mutation in BH1CC enhanced biofilm-forming capacity. These data reveal an essential role for the major autolysin in the early events of the FnBP-dependent S. aureus biofilm phenotype.
Collapse
|
81
|
Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. Peptide signaling in the staphylococci. Chem Rev 2010; 111:117-51. [PMID: 21174435 DOI: 10.1021/cr100370n] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Matthew Thoendel
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
82
|
Ghim CM, Lee SK, Takayama S, Mitchell RJ. The art of reporter proteins in science: past, present and future applications. BMB Rep 2010; 43:451-60. [PMID: 20663405 DOI: 10.5483/bmbrep.2010.43.7.451] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Starting with the first publication of lacZ gene fusion in 1980, reporter genes have just entered their fourth decade. Initial studies relied on the simple fusion of a promoter or gene with a particular reporter gene of interest. Such constructs were then used to determine the promoter activity under specific conditions or within a given cell or organ. Although this protocol was, and still is, very effective, current research shows a paradigm shift has occurred in the use of reporter systems. With the advent of innovative cloning and synthetic biology techniques and microfluidic/nanodroplet systems, reporter genes and their proteins are now finding themselves used in increasingly intricate and novel applications. For example, researchers have used fluorescent proteins to study biofilm formation and discovered that microchannels develop within the biofilm. Furthermore, there has recently been a "fusion" of art and science; through the construction of genetic circuits and regulatory systems, researchers are using bacteria to "paint" pictures based upon external stimuli. As such, this review will discuss the past and current trends in reporter gene applications as well as some exciting potential applications and models that are being developed based upon these remarkable proteins.
Collapse
Affiliation(s)
- Cheol-Min Ghim
- Ulsan National Institute of Science and Technology, Korea
| | | | | | | |
Collapse
|
83
|
Fey PD, Olson ME. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol 2010; 5:917-33. [PMID: 20521936 DOI: 10.2217/fmb.10.56] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Staphylococcus epidermidis is a highly significant nosocomial pathogen mediating infections primarily associated with indwelling biomaterials (e.g., catheters and prostheses). In contrast to Staphylococcus aureus, virulence properties associated with S. epidermidis are few and biofilm formation is the defining virulence factor associated with disease, as demonstrated by animal models of biomaterial-related infections. However, other virulence factors, such as phenol-soluble modulins and poly-gamma-DL-glutamic acid, have been recently recognized that thwart innate immune system mechanisms. Formation of S. epidermidis biofilm is typically considered a four-step process consisting of adherence, accumulation, maturation and dispersal. This article will discuss recent advances in the study of these four steps, including accumulation, which can be either polysaccharide or protein mediated. It is hypothesized that studies focused on understanding the biological function of each step in staphylococcal biofilm formation will yield new treatment modalities to treat these recalcitrant infections.
Collapse
Affiliation(s)
- Paul D Fey
- Department of Pathology & Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| | | |
Collapse
|
84
|
Abstract
The SasG surface protein of Staphylococcus aureus has been shown to promote the formation of biofilm. SasG comprises an N-terminal A domain and repeated B domains. Here we demonstrate that SasG is involved in the accumulation phase of biofilm, a process that requires a physiological concentration of Zn(2+). The B domains, but not the A domain, are required. Purified recombinant B domain protein can form dimers in vitro in a Zn(2+)-dependent fashion. Furthermore, the protein can bind to cells that have B domains anchored to their surface and block biofilm formation. The full-length SasG protein exposed on the cell surface is processed within the B domains to a limited degree, resulting in cleaved proteins of various lengths being released into the supernatant. Some of the released molecules associate with the surface-exposed B domains that remain attached to the cell. Studies using inhibitors and mutants failed to identify any protease that could cause the observed cleavage within the B domains. Extensively purified recombinant B domain protein is very labile, and we propose that cleavage occurs spontaneously at labile peptide bonds and that this is necessary for biofilm formation.
Collapse
|
85
|
Tavanti A, Hensgens LAM, Mogavero S, Majoros L, Senesi S, Campa M. Genotypic and phenotypic properties of Candida parapsilosis sensu strictu strains isolated from different geographic regions and body sites. BMC Microbiol 2010; 10:203. [PMID: 20667137 PMCID: PMC2919483 DOI: 10.1186/1471-2180-10-203] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 07/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Candida parapsilosis is known to show limited genetic variability, despite different karyotypes and phenotypes have been described. To further investigate this aspect, a collection of 62 sensu strictu C. parapsilosis independent isolates from 4 geographic regions (Italy, n = 19; New Zealand, n = 15; Argentina, n = 14; and Hungary, n = 14) and different body sites (superficial and deep seated) were analysed for their genetic and phenotypic traits. Amplification fragment length polymorphism (AFLP) analysis was used to confirm species identification and to evaluate intraspecific genetic variability. Phenotypic characterisation included clinically relevant traits, such as drug susceptibility, in vitro biofilm formation and aspartyl protease secretion. RESULTS AFLP genotyping showed little variation among isolates, when the presence/absence of bands was considered. However, when AFLP profiles were compared by relative intensity for each fragment, a significant level of variation and geographical clustering was observed. All isolates were found to be susceptible to commonly used antifungals, although a reduced susceptibility to echinocandins was observed in all isolates. C. parapsilosis isolates from different geographic origins varied in the number of biofilm producers, with a higher prevalence of producers isolated in Hungary and Argentina. The frequency of secreted proteinase producers also varied in isolates obtained from different areas, with a higher number of proteinase producers found in Italy and New Zealand. Interestingly, biofilm production and proteinase secretion were negatively correlated. This finding could be explained by assuming that proteinase activity plays a role in detachment and release from a mature biofilm, via degradation of C. parapsilosis adhesins and/or extracellular matrix components, as observed for other microorganisms. CONCLUSIONS The low number of polymorphic AFLP bands (18 out of 80) obtained for C. parapsilosis isolates is in agreement with the limited sequence variability described for this species. However, when band intensity was included in the analysis, geographical clustering was observed. Expression of virulence factors varied among strains isolated from different geographical regions, with biofilm and proteinase producers more frequently isolated from Hungary and Italy, respectively.
Collapse
|
86
|
Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One 2010; 5:e10146. [PMID: 20418950 PMCID: PMC2854687 DOI: 10.1371/journal.pone.0010146] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/18/2010] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor alpha(2)-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA) isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development.
Collapse
|